
Fig. 8. Resistivity versus temperature of high T c compounds. Part (a) shows the anisotropic resistivity of a detwinned single crystal of
YBa2Cu3O7 (from Friedmann et al., 1990 [83]). Part (b) shows the in-plane resistivity of a series of single crystals of La2!xSrxCuO4, with hole
doping x going from a small x antiferromagnet to an optimum x superconductor (from Ando et al., 2001 [84]). (c) The same data (from Ando
et al., 2001 [84]) on a linear scale after dividing out the nominal carrier density to get inverse mobility. The inset shows the Neel transition of

the x ¼ 0.01 sample detected as a peak in magnetization.

P
.

B
.

A
llen

190

Superconductivity

�0 = !2
p✏0⌧

~!p,a = 2.9 eV
~!p,b = 4.4 eV
~!p,c = 1.1 eV

a

b

c



RAPID COMMUNICATIONS

PAN, BALDWIN, WEST, PFEIFFER, AND TSUI PHYSICAL REVIEW B 91, 041301(R) (2015)

Ω

µ

FIG. 1. (Color online) Rxx and Rxy in the magnetic field range
of 5–14 T at T = 26 mK. Representative fractions are marked by
arrows.

due to the competition between a FQHE phase and a nearby
insulating phase [19].

To further confirm the FQHE states at 4/11 and other filling
factors, we compare in Fig. 2 Rxx and B × dRxy/dB. Here
dRxy/dB is the derivative of the Rxy data with respect to
B, obtained digitally from the Rxy trace in Fig. 1. Overall,
in the whole B-field range, Rxx and B × dRxy/dB look very
similar [20–22]. Strong minima are also seen in B × dRxy/dB
at ν = 5/13, 3/8, and 4/11. Moreover, the relative strength
of the minima in B × dRxy/dB also mimics that in Rxx .
These observations from the comparison between Rxx and
B × dRxy/dB, again, are consistent with the FQHE states at
ν = 4/11, 3/8, and 5/13.

Figure 3(a) shows Rxx traces at three selected temperatures
of 15, 22, and 30 mK. It is clearly seen that the 4/11 state
is activated. Its resistance increases with increasing tempera-
tures. Rxx at other filling factors ν = 5/13, 3/8, and 6/17, on
the other hand, deceases with increasing temperatures, as seen
in the past for fragile FQHE states (e.g., the 5/2 state [2])
when they were first observed. We believe that these states
will eventually become activated with further improvement in

µ

FIG. 2. (Color online) Rxx and B × dRxy/dB in the regime of
3/7 > ν > 1/3.

Ω

ν
∆

FIG. 3. (Color online) (a) T dependence of Rxx between 2/5 >

ν > 1/3. Three traces are shown at T = 15, 22, and 30 mK.
(b) Arrhenius plot for the Rxx minimum at ν = 4/11. The linear
fit to the data points yields an energy gap of ∼7 mK.

sample quality. In Fig. 3(b), we show the Rxx value at ν = 4/11
as a function of 1/T in a semilog plot. From the linear fit to
the data, though within a very limited range, an energy gap of
∼7 mK is obtained.

We notice that the measured activation energy gap is much
smaller than the numerical calculations, where the energy gap
for a (partially) spin polarized 4/11 state has been estimated
[14,17] to be (0.001) 0.002 × e2/εlB , or (0.18) 0.37 K. Here,
e is the electron charge, ε the dielectric constant of GaAs,
lB = (!/eB)1/2 the magnetic length, ! the reduced Planck
constant. This larger discrepancy is not unexpected and has
been observed at many fragile FQHE states, for example at ν =
5/2 [3]. The exact origin of this large discrepancy is still under
debate. Nevertheless, it is widely accepted that the sample
disorder plays an important role. In order to estimate disorder
broadening (#), we first use the so-called transport scattering
time of ∼440 ps, deduced from the zero-field mobility of
11.6 × 106 cm2/V s and effective mass of m∗ = 0.067me (me

is the free electron mass). The so obtained # is merely
∼10 mK, much smaller than the theoretical calculated vales.
On the other hand, if the quantum lifetime of ∼8 ps, obtained
from the onset of Shubnikov–de Haas oscillations, is used,
a disorder broadening # ∼ 0.5 K is obtained, which is larger
than the theoretically calculated ones. These two estimations
show that the energy gap reduction at 4/11 is probably not
related to either the transport scattering time or quantum
lifetime of electrons. In view of this, we note that in a recent
publication [23] the high-temperature resistance of the 5/2
state (at which the 5/2 state is supposed to be a Fermi sea
state) was used as a criterion for judging the FQHE features
in the second Landau level. Following this same line of
thought, we calculate the disorder broadening using the CF
transport scattering time, which was estimated to be ∼50 ps.
With this value, a disorder broadening of ∼80 mK is obtained.
This brings the theoretical values to (0.1) 0.25 K. The finite
thickness of the 2DES in our sample will further reduce the
energy gap to (0.05) 0.12 K. Further reduction of the theoretical
gap due to Landau level mixing [24–33] is expected to bring

041301-2
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Spin flip excitations in fractional quantum Hall systems
Magnetoexcitons - IQHE
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Flipping spin of a quasiparticle� costs Zeeman energy�may reduce the interaction         
(Coulomb) energy
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�lowest excitations contain spin flips not only for filling factor 1/3 but also 2/3, 2/5
theory:     more than one spin flip in a clean system (analogy of skyrmions at 1/3)
experiment: spin flips possible but not their number uncertain

�simplified model of disorder: single charged impurity displaced by d from 2DEG
single value of d can explain gap onsets at different filling factors
finite width of the 2DEG has to be considered
basic mechanism of gap collapse: comparing the magnetic length to some fixed  

 disorder-related length scale
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occur first at B as low as 1 T. These fields are far too low for
the FQHE to be observed, so the only spin-flip excitations
likely to be experimentally observed at !=1/3 are the QEr
and ASky!1".

Once a neutral pair of quasiparticles Sky!KS" and
ASky!KA" has been created, they behave similarly to a mag-
netoexciton. In a magnetic field, the magnetoexciton has a
constant linear momentum k which is proportional to the
mutual distance "x between the quasiparticles. We would
expect its energy to be E!"x"#1/"x with proportionality
constant determined by the charges of the two constituent
quasiparticles. Such modes can be calculated within the
single-mode approximation35 or starting with the Hamil-
tonian theory of composite fermions36 but they can also be
directly identified in the exact diagonalization spectra !Fig.
5". They are usually called the magnetoroton branch EMR!k"
for QE+QH and the spin wave !SW" ESW!k" for QEr+QH.
The limiting values for k→$ are the energies necessary to
create a QE+QH !QEr+QH" pair and to separate them far
from each other. These are the quantities commonly used for
comparison to the transport activation gaps, because the SW
!MR" is the lowest excitation !at k%1.0!−1" among all states
with total spin S=N /2−1 !S=N /2", i.e., with one !no" spin
flip.

It is remarkable how much EMR!k" calculated on a sphere
and on a torus differ, on a quantitative level !Fig. 5". Even
though the positions of the magnetoroton minimum match
well in both geometries !k!0#1.4", the sphere gives seem-
ingly a higher energy of the minimum by as much as 20%. A
careful extrapolation to infinite systems !solid line in Fig. 5",
however, matches excellently the results obtained on a torus.
This is not surprising, given the magnetoexcitonic character
of the MR. The MR of "x comparable to the radius of the
sphere will have the QE and the QH located near the oppo-
site poles. This situation is not compatible with a picture of a
plane wave of k="x /!0

2 propagating along the equator. On
the other hand, with increasing radius of the sphere R this
becomes a finite-size effect if R&"x. Based on Fig. 5, we
believe finite-system data from the torus are more suitable to
give quantitative estimates for magnetoroton and spin wave
energies.

For a Sky!KS"−ASky!KA" pair, we take ESW!k" with k
→$ and add the creation energies of Sky!KS" and of
ASky!KA". Instead of one system, as was the case for study-
ing the QEr+QH pair, we thus have to exactly diagonalize
three different systems: one for the quasiparticle-separation
procedure, one for the Sky, and one for the ASky. This more
complicated procedure suffers possibly less from finite-size
effects, since skyrmions are rather extended objects, in par-
ticular more extended than a bare QH or QEr. Recall that the
sizes of the Sky and ASky need not be the same.

B. Finite thickness, LL mixing, disorder

Aiming at the description of experiments under realistic
conditions, three ever valid facts should not be left unno-
ticed: the sample is actually three dimensional !finite extent
of the wave function perpendicular to the 2DEG", the mag-
netic field is finite !mixing between Landau levels", and the
system is never perfectly homogeneous !disorder".

Nonzero thickness w of the 2DEG can be effectively in-
corporated into the Haldane pseudopotentials25 which com-
pletely determine the Hamiltonian of the lowest LL. Quali-
tatively, the larger the effective thickness w /!0, the more
softened becomes the effective electron-electron interaction
at the shortest distances.

Quantitative effects of the presence of the third dimension
have been studied since the early times of the FQHE, both
with the Laughlin state37 and the activation gap.38 In a het-
erostructure, electrons are confined to a nearly triangular po-
tential well. A standard choice for the wave function in the
growth direction is then the Fang-Howard trial wave
function,39 'FH!z"= !b3 /2"1/2ze−bz/2. We will mostly stay with
this choice, even though we are aware of other options for
'!z" which may lead to slightly lower subband energies !Sec.
V in Morf et al.40". Differences originating from these differ-
ent choices of '!z" should be smaller than the uncertainty in
the variational parameter b !or the thickness of the 2DEG"
relevant for our experiments. This has been checked with
'QW!z"=cos az, $z$() /2a, relevant for symmetric quantum
wells. Taking 'FH!z" instead of *!z" is equivalent38 to using a
nontrivial form factor F!q" in the 2D Fourier transforms V!q"
of the Coulomb interaction,

V!q" =
F!q"

q
, F!q" =

8 + 9!q/b" + 3!q/b"2

!2 + 2q/b"3 . !3"

The quantity V!q" then enters the Coulomb matrix elements
in !1" as given in standard references.23,41 These can be in
turn reexpressed in terms of the Haldane pseudopotentials42

Vm. For reasonable values of b, only V0 changes appreciably;
it decreases by 25% for b−1=0.3!0.

The spatial extent of the wave function along z defined as
the full width at half maximum !FWHM" is w#4.9/b for
'FH and w= 2

3 /a for 'QW. The wave function parameter b
depends on the form !steepness" of the triangular well poten-
tial and therefore it is not constant but it changes with the
applied gate voltage. This leads to38,39

FIG. 5. !Color online" The spin wave !SW" and the magnetoro-
ton branch !MR" seen in the ED spectra of ideal !=1/3 systems of
different sizes and geometries. In the legend, t stands for torus, s for
sphere, and the number indicates the number of electrons. The lines
!solid and dotted" were obtained from the 1/N→0 extrapolation of
the data !MR and SW" on the sphere.

TRANSPORT GAP IN A !=1/3 QUANTUM HALL SYSTEM:… PHYSICAL REVIEW B 74, 195324 !2006"

195324-5

3.4 Quantum Hall effects

Quantum Hall effects (QHE) are explained in PS’s notes. Here, only some additional remarks
follow.

When Fermi level lies in a gap (where it is pinned to localized states), we find ourselves in an
unusual situation where both (longitudinal) resistivity and conductivity are zero. Indeed,

σ = ...ρ = (0, B/ne;−B/ne, 0) (13)

Theoretically, the zero on diagonal of σ can be understood based on Eq. (12) and the off-diagonal
term using Kubo-Středa formula

where ∂n/∂B = νe/h as long as the Fermi level does not leave the gap between Landau levels. This
brings us to the issue of the origin of the gap: zero resistivity observed in experiments at integer
values of ν can be attributed to the energy gap between LLs which are found in the spectrum of
a single electron confined to a plane and subject to magnetic field. However, where can possibly
the gap come from at fractional fillings?

The answer (proposed probably by Robert B. Laughlin) is — from electron-electron interac-
tions. Full many-body Hamiltonian of Ne electrons in magnetic field reads

H =
1

2m

Ne
∑

i=1

(

p⃗i − qA⃗(r⃗i)
)2

+
e2

4πε

∑

i<j

1

|r⃗i − r⃗j |
(14)

where ε is the material permittivity (e.g. ≈ 12.7ε0 in GaAs). While the second term makes any
hope for exact solution of Schrödinger equation almost equal to zero (but not quite), we will argue
below that it is indeed responsible for the occurence of a gapped ground state at fractional filling
factor ν = 1/3.

Before we do that, let us first consider scaling of eigenvalues of this H with magnetic field.
Consider fixed filling factor ν. While the first term will be still varying ∝ B (just as individual
LLs), the second term will be proportional to

√
n and that is in turn ∝ ℓ0 ∝

√
B. We can therefore

expect that in very strong magnetic fields the basic structure of spectrum will be composed of
Landau levels whose macroscopic degeneracy will, however, be lifted. On the other hand, if the
first term of (14) is not much larger than the interactions (which occurs for weaker magnetic fields)
LLs will completely disappear and we obtain a complicated interaction-dominated spectrum. This
situation is called (strong) “LL mixing”.

Exact diagonalization (+condition B > 5 T).
Reasons that led Laughlin to guessing his WF.
Chern-Simons approach (that eventually evolved into Jain’s CF picture)
Quasiparticles with fractional charge.
Note about fractions beyond Jain series and the Pfaffian in particular.
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the eigenvalue Ak implies that f(r) =e'a', and thus

lf = pp P exp (ik r,).
Substitution of (5) into the variational principle

(5)

tij

I-
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O
CF

where

and

+= g/g

h = ~lt*HPd~r

g= lI /*/der

(6)

(7)
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FIG. 1. The liquid structure factor S(k), based on the x-ray
scattering data of Reekie and Hutchison. The principal maximum
corresponds to a wavelength equal to the nearest neighbor
distance in helium. Appendix A describes modifications we have
made in the data.

numbers to allow them to be treated for thermodynamic
purposes as noninteracting. The thermodynamic func-
tions can then be computed; Landau fitted the available
(1947) data on specific heat and second-sound velocity
with the values

6/x=9. 6'K, pp/A=1. 95 A ', @=0.77 ftzn, . (3)
More recent measurements4 of the velocity of second
sound down to T=0.015'K suggest the values

d,/x= 9.6'K, pp/A= 2.30 A ', p =0.40 rizH. , (4)

although the values (3) also fit the data quite well.
The value of 6/x is quite well determined' by the ther-
modynamic data, since it enters formulas in the form
exp(—6/xT). The differences between (3) and (4) are
probably a fair measure of the uncertainty in our
knowledge of pp and li.
The reasoning which led Landau to the general form

of the spectrum, and his method of deducing the two-
Quid picture from the spectrum, will not be reviewed
here. He did not attempt to compute the values of 6,
p, , and p, from first principles.

3. A SIMPLE WAVE FUNCTION FOR THE
EXCITATIONS

In III a wave function of the form P= q P f(r;) is
proposed to represent an excitation. The physical
reasons for this wave function will not be reviewed here.
The sum runs over all the atoms in the liquid, and q is
the wave function for the liquid in its ground state.
The requirement that f be an eigenfunction of the total
momentum operator' P= iA Q V';—corresponding to
' deKlerk, Hudson, and Pellam, Phys. Rev. 95, 28 (1954).
p Dr J. R. Pel.1am (private communication) estimates the

uncertainty in n/z to be less than 0.2'.' If the liquid were con6ned to a box of side I., with fIxed walls,
'

then the walls could absorb momentum and the energy eigenstates
would not be momentum eigenstates. Instead, we control the
density by requiring the wave function to be periodic in all

gives an upper limit' for the energy of the lowest excita-
tion of momentum Ak. The result is

E(k) =A'k'/2fNS(k), (9)
where S(k) is the Fourier transform of the zero-tem-
perature two-atom correlation function p(r),

S(k)—
~

erk rp(r)dr (10)

The data which we have used for S(k) are given in Fig. 1
and are essentially those obtained from x-ray diffraction
by Reekie and Hutchison. " Figure 2 is the corre-
sponding curve for p(r). S(k) exhibits a sharp maximum
near k= 2 A ', which corresponds to a wavelength equal
to the nearest neighbor distance in the liquid. Accord-
ingly, the spectrum (9) exhibits a minimum at approx-
mately the correct wave number (see curve 8 of Fig. 6).
It is shown in III that the wave function (5) is exact
for phonons (small k) and that the limiting form of (9)
is E(k) =Ack. The occurrence of a minimum at k= 2 A '
is in qualitative agreement with Landau's predictions,
but the value of 6/x computed from (9) is 19.1'K,
which is twice the value given by experiment.

variables with period I. With this boundary condition, I'
commutes with H and the energy eigenstates can also be taken
as momentum eigenstates.
7Eigenfunctions of P belonging to different eigenvalues Ak

are orthogonal. Hence, for different k, the trial functions (5) are
orthogonal to each other and also to the true wave functions which
minimize (6). The entire spectrum E(k) therefore lies above the
true spectrum. In footnote 3 of III it is mentioned that the wave
function p exp(pE 'k Z r;), which represents translational
motion of the whole liquid, has momentum Ak and energy
k'k'/2m%, which is certainly lower than any energy we shall
compute from (5). The periodic boundary condition, however,
rules out such states unless k is as large as Ã'.

P J. Reekie and T. S. Hutchison, Phys. Rev. 92, 827 (1953).
Their paper contains a curve for r'p(r), but does not include their
data on 5(k). We are indebted to Dr. Reekie for sending us the
data, which are now generally available in reference 9. Appendix
A contains a discussion of some changes which we have made in
the data.' L. Goldstein and J. Reekie, Phys. Rev. 98, 857 (1955).

4. ARGUMENTS FOR A NEW WAVE FUNCTION

The excitation (5) can be localized in a definite
region by the formation of a wave packet. If k(r) is a
function, like a Gaussian, which is peaked about some

Single-mode approximation
superfluid He

EXCITATIONS IN LIQUID He

have the correct limiting behavior. "A more direct way
of seeing the result is to look at (21) )or (20)j when k
is very small. The correlation term g(r;;) is significant
only when atoms i and j are fairly close. But in this
case exp(iit. ri) and exp(sk. r;) are almost equal because
k is small, and hence the correlation terms cancel
almost completely because g is odd. Thus, (21) is
almost the same as (5) for small k, and leads to the
same energy.
For high k, E&(k)/E&(k) approaches unity because

the approximation exp/i P g(r, ;)$ 1+t' P g(r;,) fails
badly. Ke noted earlier that if we could compute with
the wave function (20), the interference between terms
with different s wouM vanish when k is large. If Es(k)
is the energy arising from (20), we should find that for
large k,

Es(k)/Ei(k) =0.65,

Fzo. 6.The energy
spectrum of excita-
tions. Curve A is the
spectrum Z2(k} com-
puted from Eq. (61).
Curve 8 is the spec-
'truI11 Eg (0) com-
puted with the sim-
pler wave function
(5). Curve C is the
Landau-type spec-
trum used by de-
Klerk et ul. 4 to Gt the
second sound and
specific heat data.
Curve D is a Landau-
type spectrum with
p0 taken the same as
in A, and p and d,
chosen to fit the
specific heat data.
For small k, all
curves are asymp-
totic to the line
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as in the foreign atom problem. It is amusing to con-
jecture on how much Es(k) might lie below Es(k)
when k= j..8 A '. The accuracy of the approximation
exp(i P g) = 1+iP g in the foreign atom problem (see
reference 11) suggests that Es may be 0.5' less.
The energy spectrum Es(k) is shown in Fig. 6 as

curve A. We have also plotted B:E&(k)=h'k'/2tNS(k);
C: de Klerk, Hudson, and Pellam's spectrum fEq.
(4)j; D: spectrum of the form (2), with 6/a=9. 6',
ps/A=1. 85 A ' and p chosen so that p&ps' has the
same value as in C. (The specific heat depends on p
and Ps only through the product li&Ps'. ) From the
curvatures of A, C, and D it is clear that our spectrum
Es(k) predicts too small a value of Ii. In a computation
of this sort, however, it is doubtful that the curvature
has much significance.
Curve A brings out the fact that the "hump" between

the phonon and roton regions is not nearly so high as
one might expect from (1). Consequently, when com-
puting the speci6c heat or normal Quid density at
temperatures high enough to excite rotons, it is probably
also necessary to take into account the deviations of the
phonon spectrum from linearity (and also the devia-
tions of the roton spectrum from pure parabolic be-
havior). Qualitatively, it appears that such corrections
might improve the agreement between the theoretical
spectrum and the speci6c heat and second sound data.

V. DISCUSSION OF ACCURACY

Initially, the major potential sources of error in this
computation were (a) the absence of information about
the true form of ps(1,2,3); (b) absence of information
about p4(1,2,3,4); (c) uncertainties in the data for Si(k)
at large k (see Appendix A).
The uncertainty caused by (a) has, we think, been

minimized. by the introduction of a correction to the
Kirkwood approximation. The errors remaining in I3
"If g(r) falls off sharply at large r, the analysis is simple. In

our case the analysis is complicated by the slowness with which
Is r/r' falls off, but the ultimate result is the desired one.

and I9 after the correction are probably less than three
percent; the resultant error in 5/~ is less than ().3'.
The approximation (59), which gives rise to the

error (b), ought to be about as accurate as the approxi-
mation I~Is„since both approximations are based
on the same oscillation argument. The latter approxi-
mation was found accurate to better than 10% in the
roton region. A ten percent change in I~0 would alter
the value of 6/~ by 0.2'; we regard this number as a
fair estimate of the error caused by (b).
Considerable pains were taken to arrange the nu-

merical work in such a way that the answers are
insensitive to the behavior of Si(k) for large k. The
residual error due to (c) is found mainly in the coef-
ficient of A' in the numerator of (61). This coefficient
may be in error by 5%, and the resulting error in 6/&
might be as much as 0.4'.
We consider the value d/s=11. 5' to be accurate

within 0.6', i.e., the lowest energy computable with the
wave function (21) is between 10.9' and 12.1'.
A wave function which gives a good value of the

energy may, of course, be inaccurate for calculation of
other properties of the system. Gn the other hand this
function was chosen by a physical argument, and
achieved a very considerable increase in the accuracy
of the energy, without in fact using any variable
parameters. It might be argued that some of this
increase should be associated simply with the fact that
we have one extra parameter A to vary. But had we
used the A determined by the physical argument (—3.6)
we would have obtained practically the same energy as
if we let it vary.
For this reason we believe that the wave function

(20) Lor for practical calculations (21)$ not only gives
the energy well but is a reasonably accurate physical
description of the excitations. On the basis of this
optimistic hope, (21) is currently being employed in the
calculation of other properties of helium.
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TABLE I. Coefficients c obtained from fitting Eq. {5.1) to
the MC data for g (r) subject to the constraints (5.2)—(5.4). The
v= ~ fit is somewhat less reljttable than the v= —,

' case (see text).

1

3
5

9
11
13
15
17
19
21
23
25
27

e (~= 3)
—1.00000
+ 0.51053—0.02056
+ 0.31003—0.49050
+ 0.20102—0.00904
—0.00148
+ 0.00000
+ 0.001 20
+ 0.00060—0.001 80
+ 0.00000
+ 0.00000

Ic (v= —, )

—1.0000—1.0000
+ 0.6765
+ 0.3130—0.1055
+ 0.8910—0.3750
—0.7750
+ 0.3700
+ 0.0100—0.0050
—0.0000
—0.1000
+ 0.1000

values for v= —,
' and —,

' are displayed in Table I and the
resultant analytic g(r) is shown in Fig. 1 along with the
MC data. Having obtained an analytic form, the required
Fourier transform is readily computed.
An alternative method of abtaining s(k) is to use a

modified hypernetted-chain (MHNC) approximationz'
which guarantees that the sum rules' ' an s (k) are satis-
fied. This method gives a value for the energy in the
v= —, Laughlin state of Eir3——0.4092, whi—ch is quite
close to the value of Sinai —0.4100+——0.0001) from the
essentially exact MC method. Figure 2 displays s{k)
computed by the MHNC and MC methods.
Having obtained s (k) we compute s(k) from Eq. (4.18)

and then use this in Eq. (4.15). We also require the in-
teraction potential u(q). Taking the unit of energy to be
(e /eI), where e is the dielectric constant of the back-
graund medium, the Coulomb potential is V{r)=llr,
which has the transform

(5.5)

Using (5.5), the quadratures in (4.15) were computed nu-
merically to obtain the oscillator strength and hence the
gap function b, (k).

VI. EVALUATION OF THE GAP
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Using the results of the preceding section, we have
evaluated the collective-mode dispersion for filling factors
v= —,', —,', —,', and —,

' using the MHNC structure factors.
The various gap functions for the case of the pure
Coulomb potential are shown in Fig. 3. The MC struc-
ture factors for v= —,

' and —,
' yield nearly identical results, 7

except for a small discrepancy in the v= —,
' curve at small

k. We believe that this is due to the difficulty of extract-
ing accurate information on the long-distance behavior of
g(r) from the v= —,

' MC data and we therefore consider
the MHNC result more reliable for this case.
Note that, as discussed earlier, the gap is finite at zero
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FIG. 2. Static structure factor. Solid line is modified-
hypernetted-chain calculation. Dashed line is from fit to Monte
Carlo data.

FIG. 3. Collective-mode dispersion. Arrows at the top indi-
cate magnitude of primitive reciprocal-lattice vector of corre-
sponding signer crystal. (a) v= 3 (scale on left}; v= —,

' (scale
on right). (1) v= 7 (scale on left); v= 9 (scale on right).
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Finally, Johnson-Nyquist noise measurements for different
temperatures at fixed conductance in the fractional regime
provide an absolute calibration as in [24].
The results of a series of current noise power measure-

ments versus backscattering current IB at Q � 25 mK is
shown in Fig. 2. The noise measured in the 4 8 KHz fre-
quency range is white. The background noise �5.32 3
10228 A2⌅Hz is due to the circuit noise. The error bars
represent the statistical accuracy expected for 1500 s ac-
quisition time. IB can be varied by changing either the
dc bias Vds or the tunnel coupling with gate voltage. In
order to keep dI⌅dVds � Gdiff constant and follow the
path A shown in Figs. 1(b) and 1(c) both the bias (40
to 78 mV ) and the gate voltage (2170.5 to 2178.5 mV)
are varied. The backscattering current is obtained within
5% accuracy by measuring the dc voltage VB � V3,2 or
V5,6 across the QPC, using IB � ⇥2VB 2 Vds⇤e2⌅3h. The
“reflexion coefficient” R � IB3h⌅e2Vds is kept small for
weak backscattering. It increases with IB from 4% to
35%. The linear variation of the noise with IB tells us
that we do observe shot noise associated with backscat-
tering. We can compare the rate of noise variation with
that given by Eq. (1) (dashed line). The agreement with
the prediction of Laughlin quasiparticle tunneling is ex-
cellent. Electron tunneling would have given a very dif-
ferent result (dotted line). Electron shot noise is found for
similar conductance G � 0.32e2⌅h at a lower field in the
integer quantum Hall regime (nL � 4 in the leads), inset

FIG. 2. Tunneling noise at n � 1⌅3 (nL � 2⌅3) when fol-
lowing path A and plotted versus IB � ⇥e2⌅3h⇤Vds 2 I (filled
circles) and IB⇥1 2 R⇤ (open circles). The slopes for e⌅3
quasiparticles (dashed line) and electrons (dotted line) are
shown. Q � 25 mK. Inset: data in same units showing elec-
tron tunneling for similar G � 0.32e2⌅h but in the IQHE
regime (nL � 4). The expected slope for electrons 2eIB⇥1 2
R⇤ [R � 0.68, IB � ⇥e2⌅h⇤Vds 2 I] is shown. Q � 42 mK.

of Fig. 2. The data agree with the electron theory for a
lowest Landau level transmission 0.32 [26].
How is this remarkable result robust against parameter

changes? Figure 3(a) shows the current noise versus IB
for two different Gdiff (path B and C). The noise also
compares well with that expected for e⌅3 charges except
for the points at high bias where the backscattering is no
longer weak and less noise is found. A good agreement
is also found for a different tunneling regime obtained
by detuning a resonance [Fig. 1(d), path D: Vds � 78 to
175 mV and gate voltage 2161 to 2177 mV]. The result
is also robust against temperature change as shown by
the series E corresponding to the tunneling conditions of
Fig. 1(b) but at Q � 150 mK. Finally, room temperature
thermal cycling changes the resonance shape but not the
noise results.
How to take into account the deviations for large R? As

long as electron tunneling does not start to compete with
quasiparticle tunneling, we may expect a decrease of noise
when R increases. Indeed, the tunneling events are no
longer Poissonian as the exclusion statistics and the inter-
actions correlate the quasiparticles. If they were fermions
a noise reduction ⇥1 2 R⇤would occur [24,26,27]. It is not
legitimate [21], but nevertheless tempting to plot the noise
data as a function of IB⇥1 2 R⇤ (open circles of Figs. 2 and
3). Within experimental accuracy, the simple ⇥1 2 R⇤ re-
duction factor accounts well for the data but slightly over-
estimates ep. The least squares linear fit gives ep � 0.38,
0.36, 0.35, and 0.36 for A, B, C, and D.
The final check to confirm our observation of e⌅3

Laughlin quasiparticles is the crossover from Johnson-
Nyquist to shot noise at epVds⌅2 � kBQ. Figure 4 shows
measurements at Q � 134 mK and low bias. Here, the
bias voltage Vds varies from 13 to 140 mV and Gdiff �
0.26e2⌅h. The nearly linear noise variation at high bias,
consistent with Eq. (1), saturates at low bias. The arrow,
indicating when epVds � 2kBQ, is well in the crossover
region. Comparison with Eq. (2) (solid curves) shows

FIG. 3. Filled circles: Shot noise measured at 25 mK versus
IB corresponding to the paths B, C, and D of Fig. 1, and to
a series of measurements (E) at 150 mK. Open circles: same
data versus IB⇥1 2 R⇤.
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shot noise, the ‘‘low frequency’’ spectral density is propor-
tional to the dc excitation current and to the charge of the
quasiparticles. In multiple channel transport, only the par-
titioned channel carries noise, which is independent of the
presence of other channels that are fully transmitted or are
fully reflected. Indeed, in previous measurements, the as-
sumption of mutually independent propagating modes was
found to strictly hold [20–22].

Two GaAs-AlGaAs heterostructures, with embedded
high mobility 2DEG, were used. One (labeled A) had a
low temperature mobility in excess of 6! 106 cm2=Vs
and an electron density 8:8! 1010 cm"2, and another
(labeled B) had a mobility 4:3! 106 cm2=Vs and an
electron density 10! 1010 cm"2. Four different structures
had been fabricated (different processes and different QPC
configurations, with three of them on the higher mobility
2DEG). The QPCs were made either by top metallic split-
gate or via ‘‘mesa-side-gates’’ [23]—these two methods
provide very different confining potentials for the constric-
tions. The data taken in all samples were found to be
quantitatively very similar. The measurements, unless spe-
cifically mentioned, were carried out in a dilution refrig-
erator at an electron temperature of 10 mK (as deduced
from shot noise measurements).

The configuration of the device is shown in Fig. 1. A
split gate, with 400 nm gap, was deposited on the surface of
the heterojunction, forming upon biasing a controlled con-
striction in the 2DEG. The multiterminal configuration
ensures a constant output resistance at the drain at a Hall
plateau (being Hall resistance)—independent of the trans-
mission of the constriction, thus allowing subtracting the
contribution of the ‘‘current noise’’ of the preamplifier
[24]. The fluctuations in the drain voltage were IdRq,
with Id the current fluctuations and Rq the quantum resis-

tance for bulk filling factor v. The drain voltage was
filtered by a resonant circuit tuned to #800 KHz with a
bandwidth of some 30 kHz, and subsequently amplified by
a homemade, low-noise, cryogenic preamplifier (cooled to

4.2 K, with voltage noise #800 pVHz"1=2 and current

noise #10 fAHz"1=2). The output of this preamplifier

was fed to a room temperature amplifier followed by a
spectrum analyzer. Note that the central frequency was
chosen to be far above the 1=f noise knee of the sample,
with the 1=f noise contribution (which is quadratic with
the current) much smaller than the shot noise and the
thermal noise. All measurements in the fractional regime
were preceded by charge measurements in the integer
regime, verifying that an electron charge is being
measured.
The spectral density of a partitioned current due to

stochastic back scattering at a finite temperature is de-
scribed well by the analytic expression [8–10]:

SIð0Þ ¼ 2eIimptð1" tÞ½cothðe(V=2kBTÞ " 2kBT=e
(V);

(1)

where the impinging current Iimp ¼ Vgq with gq ¼
ð2=3Þe2=h for bulk filling factor v ¼ 2=3, t the constric-
tion’s transmission coefficient (assuming energy indepen-
dence), e( the quasiparticle charge, and T the electron
temperature. When t depends weakly on the current, its dif-
ferential value as function of current was used. Figure 2(a)
shows a plot of the transmission, deduced from the two
terminal linear conductance g, as function of the applied

DS
AC

FIG. 1 (color online). Schematic of the noise measurement
setup (see text for details).

split-gate voltage, Vg (volts)

FIG. 2 (color online). Conductance and spectral density at
electron temperature 10 mK. (a) Conductance g and transmis-
sion t of the constriction as a function of split-gate voltage. Note
the appearance of a prominent plateau at g ¼ e2=3h (t ¼ 1=2).
(b) Upper panel—dependence of the transmission (zero bias t ¼
1=2, split-gate voltage Vg ¼ "0:3 V) on injected electron en-
ergy. Lower panel—spectral density SI at this value of trans-
mission. The blue dots are the measured data points. Shown is
the expected spectral density for transmission t ¼ 1=2, tempera-
ture T ¼ 10 mK, and quasiparticle charge e( ¼ e (cyan solid
line), ð2=3Þe (red dashed line), and e=3 (olive dotted line). For
comparison, we also show (purple stars) the noise measured
when !b ¼ 2=5 and !C ¼ 1=3.
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Figure 4.3: Left and middle: Correlation functions of the ground states of 50-60 particles at
filling factors 1

3 and 2
5 of the principal Jain’s sequence, ν = p/(2p + 1) (cf. Subsect. 3.4.2).

The wavefunctions (WF) predicted by composite fermion theory were taken (for ν = 1/3 this is
identical with the Laughlin WF) and g(r) was calculated by a Monte Carlo method. Taken from
Ref. [49]. Right: correlation function between oxygen atoms in liquid water as an example of a
density–density correlation function in a well–known liquid (see text on p. 75). Results of both
numerical simulation and experiments are shown, see the original paper by Allesch et al. [12] for
details.

ΨL is indeed the ground state or a good approximation to it, e.g. for Coulomb–interacting
electrons. Note also that Figs. 4.4 refer to electrons on torus whereas Fig. 4.3 refers to
the disc geometry (see Subsect. 3.5.3). The fact that correlation functions are very similar
in both geometries (compare Fig. 4.4(b) and Fig. 4.3) supports the hypothesis that the
corresponding states are universal and hence basically the same as the ground state in an
infinite 2D system.

Several points should be mentioned here.

(i) The correlation function g(r ) in Fig. 4.4 is rather isotropic, at least on distances
smaller than a/2. This distinguishes the Laughlin state from a Wigner crystal (Sub-
sect. 4.4.1) or a unidirectional charge density wave (Subsect. 4.1.3) in which some
special directions exist. This fact motivates also the ’incompressible liquid’ terminol-
ogy4.

(ii) The first maximum in g(r) occurs at r1 ≈ 4.4ℓ0 (Fig. 4.4(b)) and this separation
can be taken as a typical interparticle distance in the Laughlin state5. After r1,

4Liquids and gases differ in the strength of interparticle interaction. Whereas negligible in gases, the
interaction in liquids is strong compared to kinetic energy. In the lowest Landau level, kinetic energy
is zero (or constant, more precisely, Subsect. 3.2.1).

5It is an interesting fact that this distance lies close to the mean interparticle distance determined by
the filling factor, rmean/ℓ0 =

√
2π/ν ≈ 4.35 (cf. Eq. 3.6). This quite precise match between ’pure

geometry’ (rmean) and a property of ΨL (r1) probably considerably contributes to the exceptional
stability of the Laughlin state.
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is the total angular momentum. Since I. and E are con-
stants of the motion, their fluctuations vanish, leaving
MP——M1———1.
This general result implies that, for any liquid ground

state in the lowest Landau level, s(k)-
~
k

~
. Hence any

liquid state automatically satisfies the SMA gap condition
b,(0)&0 discussed above. Interpreting s(k) as the mean-
square density fluctuation at wave vector k, the condition
s(k)-

~
k

~
is a statement of the lack of density fluctua-

tions or the incompressibility of the quantum system at
long wavelengths. This is the source of the finite gap.
Within the SMA the existence of a gap for hquid

ground states appears to be the rule rather than the excep-
tion. The interesting question of whether or not liquid
ground states must have a rational filling factor is an en-
tirely separate issue, about which nothing has been proved
by these arguments.
Within the SMA, gapless excitations can occur only as

Goldstone modes in systems with broken translational
symmetry (which therefore violate our assumption of a
liquid ground state). It is worth noting in this connection
that the SMA analog of Eq. (4.19) yields the correct trans-
verse magneto-phonon dispersion curve for the Wigner
crystal.
We can shed additional light on the meaning of Eq.

(4.21) and (4.22) by considering the specific case of the
Laughlin ground state. Invoking the analogy with the
two-dimensional one-component plasma (2DOCP) 6' '
we see that Mo ———1 is the charge-neutrality sum rule
and Mi ———1 is the perfect screening sum rule for the
2DOCP. ' ' Making use of the 2DOCP compressibility
sum rule, ' ' we obtain M& and hence the exact leading
term in s(k),

0.25
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0.5
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v=1/3

u= I/5

s(k)= ik i +1—v 4
Sv

(4.29)

This result emphasizes the profound importance of the ex-
istence of long-range forces in the 2DOCP analog system.
These long-range forces are responsible for the charge-
neutrality and perfect screening sum rules. From these it
follows that there is (within the SMA) a finite excitation
gap at k=0 and from these also follows the exactness of
the fractional charge +v of the Laughlin quasiparticles.

V. STATIC STRUCTURE FACTOR

In order to go beyond the small-k limit in evaluating
Eq. (4.19), we need to have s(k) for finite k. Lacking the
experimental structure factor that was available for the
case of He, we are forced to adopt a specific model for
the ground state. %e have chosen to use the Laughlin
ground-state wave function since it appears to be quite
accurate' ' and because the static structure factor is
available through the 2DOCP analogy. ' '
The static structure factor for the 2DOCP has been

computed by both Monte Carlo' ' (MC) and
hypernetted-chain' ' (HNC} methods. The MC results
for g(r) used in Ref. 7 are shown in Fig. 1. Recall from
Eq. (2.8} that we need to Fourier-transform g (r) to obtain
s(k). This is most easily accomplished by transforming
an analytic function which has been fitted to the MC
data. Fortunately, we can take advantage of the known

FIG. 1. Crosses are Monte Carlo data for h(r)=g(r) —1.
Solid 1ine is analytic flt of Eq. (5.1) to the data. (a) v= 3; (b)

1

analytic form of g (r) for any liquid ground state,

g(r)=1—e ' ~ + g' (r /4)~c~e
1 m!

(5.1)

where the c are unknown coefficients and the prime on
the sum indicates that it is restricted to odd m only. The
latter is a reflection of the Fermi statistics, which requires
that pairs of (spin-polarized) particles have odd relative
angular momentum. For the Mth Laughlin state
(v= 1/Mj the coefficients c are constrained by the
2DOCP charge-neutrality, perfect screening, and
compressibility sum rules' ' to obey
g' c =(1—M)/4,
m=1

(5.2)

g' (m +1)c~=(1—M}/8,
m=1

(5.3)

g' (m +2)(m +1)c =(1—M)2/8 .
NI =1

(5 4)

We flt a finite number (27) of the coefficients to the MC
data subject to the constraints (5.2)—(5.4). The best-fit
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Figure 4. (a) Schematic representation of the device 
used to demonstrate quantum oscillations in the 
thermopower of a quantum point contact by means of a 
current heating technique. The channel has a width of 
4 pm, and the two opposite quantum point contacts at its 
boundaries are adjusted differently. (6) Measured 
conductance and voltage - ( V ,  - V,) as a function of the 
gate voltage defining point contact 1. at a lattice 
temperature of 1.65 K and a current of 5pA.  The gates 
defining point contact 2 were kept at -2.OV. 

servations are a manifestation of the quantum oscilla- 
tions in S described in section 2. 

A detailed comparison of the oscillations in figure 4(b) 
with the ideal electron waveguide model (extended to 
the regime of finite thermovoltages and temperature 
differences) has been presented elsewhere [13]. The de- 
crease in amplitude of consecutive peaks is in agreement 
with equation (19). We therefore only discuss the 
amplitude of the strong peak near G = 1.5(2e2/h). The 
stepfunction transmission probability result (19) predicts 
S -  - 4 0 p V K - '  for this peak, but a value 
S- -201 V K - '  is probably more realistic (cf figure 3). 
The measured value of about 50pV for the amplitude of , 

that peak thus indicates that the temperature of the 
electron gas in the channel is AT - 2 K  above the lattice 
temperature T = 1.65 K. 

The increase in temperature AT is expected to be 
related to the current in the channel by the heat balance 
equation 

c J T  = ( [ / W , d 2 p ~ ,  (26) 
with c, = (x2/3)(kBT/E,)n.kB the heat capacity per unit 
area, n, the electron density, and re an energy relaxation 
time associated with energy transfer from the electron gas 
to the lattice. The symmetry of the geometry implies that 
V, - V,  should be even in the current, and equation (26) 
predicts more specifically that the thermovoltage dif- 
ference V, - V, K A T  should be proportional to 12-at 
least for small current densities. This is born out by 
experiment [13, 141 (not shown). Equation (26) allows us 
to determine the time rz from the experimental value 
AT - 2 K. Under the experimental conditions of figure 
'yb) we have T = 1.65 K, 1 = 5 pA, W,, = 4pm, p = 2 0 a .  
We thus find T~ - 10-los, which is not an unreasonable 
value for the 2DEG in GaAs-AIGaAs heterostructures at 
helium temperatures 1171. 

The sudden decrease in VI - V, beyond the last peak 
(strong negative gate voltages) is not quite understood. 
As discussed in section 2, the behaviour of S in this 
regime depends crucially on the details of the energy 
dependence of t (E) .  

3.2. Thermal conductance 

The sizable thermopower of a quantum point contact (up 
to -4OpVK-') suggests its possible use as a miniature 
thermometer, suitable for local measurements of the 
electron gas temperature. We have used this idea in an 
experiment designed to demonstrate the quantum steps 
in the thermal conductance of a second quantum point 
contact. 

The geometry of the device is shown schematically in 
figure 5(a). The main channel has a boundary containing 
a quantum point contact. Using current heating, the 
electron gas temperature in the channel is increased by 
A T  giving rise to a heat flow Q through the point contact. 
This causes a steady state temperature rise ST of the 
ZDEG region behind the point contact (neglected in the 
previous subsection), which we detect by a measurement 
of the thermovoltage across a second point contact 
situated in that region. 

T o  increase the sensitivity of our experiment, we have 
used a low-frequency AC current to heat the electron gas 
in the channel, and a lock-in detector tuned to the second 
harmonic to measure the root-mean-square amplitude of 
the thermovoltage VI - V,. The voltages on the gates 
defining the second quantum point contact were adjusted 
so that its conductance was G = 1.5(2e2/h). Finally, we 
applied a very weak magnetic field (1SmT) to avoid 
detection of hot electrons on ballistic trajectories from 
the first to the second point contact. 

Figure 5(b) shows a plot of the measured thermovol- 
tage as a function of the voltage on the gates defining the 
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temperature of 1.65 K and a current of 5pA.  The gates 
defining point contact 2 were kept at -2.OV. 

servations are a manifestation of the quantum oscilla- 
tions in S described in section 2. 

A detailed comparison of the oscillations in figure 4(b) 
with the ideal electron waveguide model (extended to 
the regime of finite thermovoltages and temperature 
differences) has been presented elsewhere [13]. The de- 
crease in amplitude of consecutive peaks is in agreement 
with equation (19). We therefore only discuss the 
amplitude of the strong peak near G = 1.5(2e2/h). The 
stepfunction transmission probability result (19) predicts 
S -  - 4 0 p V K - '  for this peak, but a value 
S- -201 V K - '  is probably more realistic (cf figure 3). 
The measured value of about 50pV for the amplitude of , 

that peak thus indicates that the temperature of the 
electron gas in the channel is AT - 2 K  above the lattice 
temperature T = 1.65 K. 

The increase in temperature AT is expected to be 
related to the current in the channel by the heat balance 
equation 

c J T  = ( [ / W , d 2 p ~ ,  (26) 
with c, = (x2/3)(kBT/E,)n.kB the heat capacity per unit 
area, n, the electron density, and re an energy relaxation 
time associated with energy transfer from the electron gas 
to the lattice. The symmetry of the geometry implies that 
V, - V,  should be even in the current, and equation (26) 
predicts more specifically that the thermovoltage dif- 
ference V, - V, K A T  should be proportional to 12-at 
least for small current densities. This is born out by 
experiment [13, 141 (not shown). Equation (26) allows us 
to determine the time rz from the experimental value 
AT - 2 K. Under the experimental conditions of figure 
'yb) we have T = 1.65 K, 1 = 5 pA, W,, = 4pm, p = 2 0 a .  
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The sudden decrease in VI - V, beyond the last peak 
(strong negative gate voltages) is not quite understood. 
As discussed in section 2, the behaviour of S in this 
regime depends crucially on the details of the energy 
dependence of t (E) .  

3.2. Thermal conductance 

The sizable thermopower of a quantum point contact (up 
to -4OpVK-') suggests its possible use as a miniature 
thermometer, suitable for local measurements of the 
electron gas temperature. We have used this idea in an 
experiment designed to demonstrate the quantum steps 
in the thermal conductance of a second quantum point 
contact. 

The geometry of the device is shown schematically in 
figure 5(a). The main channel has a boundary containing 
a quantum point contact. Using current heating, the 
electron gas temperature in the channel is increased by 
A T  giving rise to a heat flow Q through the point contact. 
This causes a steady state temperature rise ST of the 
ZDEG region behind the point contact (neglected in the 
previous subsection), which we detect by a measurement 
of the thermovoltage across a second point contact 
situated in that region. 

T o  increase the sensitivity of our experiment, we have 
used a low-frequency AC current to heat the electron gas 
in the channel, and a lock-in detector tuned to the second 
harmonic to measure the root-mean-square amplitude of 
the thermovoltage VI - V,. The voltages on the gates 
defining the second quantum point contact were adjusted 
so that its conductance was G = 1.5(2e2/h). Finally, we 
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detection of hot electrons on ballistic trajectories from 
the first to the second point contact. 

Figure 5(b) shows a plot of the measured thermovol- 
tage as a function of the voltage on the gates defining the 
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power can be evaluated analytically. By substitution of 
(15) into (7), one finds for the conductance 1 

with E, E (E .  - E,)/k, 7: This reduces to G = (2e2/h)N at. 
low temperatures (N is the number of occupied sub- 
bands). Similarly, using the identity 

1; f d E  = k,TIn[l + exp(EF/knT)] (17) 

we find the exact result 

I 2e2k, 
~ = ~ ~ ~ T ~ [ l n ( l  +e-")+en(1 +e'.)-']. (18) 

The thermopower S = - L/G and the Peltier coefficient 
n = TS follow immediately from (16) and (18). At low 
temperatures the tbermopower vanishes, unless the 
Fermi energy is within k,Tfrom a subband bottom. In 
the limit T = 0 one finds from (16), (18) that the maxima 
are given by 

k, In2 
e N - f  

s =  if E, = E,; N > 1. (19) 

(Note that at  E, = E, one also has G = (2e2//h)(N - i).) 
Equation (19) was first obtained by Streda [SI. For the 
step-function model the width ofthe peaks in the thermo- 
power as a function of E, is of order k,7: at least in the 
linear transport regime of small applied temperature 
differences across the point contact (AT << T). 

The thermopower of a quantum point contact with a 
step-function t ( E )  does not exhibit a peak near E, = E,. 
Instead, it follows from (16) and (18) that - S  increases 
monotonically as E, is reduced below E, 

I (20) 
k 
e 

Note also that for E ,  >> 1, S increases as 1/T as the 
temperature is reduced. This result is probably not very 
realistic. Indeed, for a saddle-shaped potential model of a 
quantum point contact we find instead in this regime a 
constant value which is proportional to T (see subsection 
2.3). 

Plots of the thermo-electric coefficients as a function 
of Fermi energy, calculated from (7)-(9) and (15), are 
given in figures 2(a) and 2(b), for T = 1 K and T = 4 K  
respectively. The values for E. are those for a parabolic 
lateral confinement potential V ( y )  = V, + $ m o : y 2 ,  with 
ho, = 2.0meV. We draw the following conclusions from 
these calculations. 

1. The temperature T affects primarily the width of the 
steps in G, and of the peaks in S, leaving the value of G on 
the plateaux, and the height of the peaks in S essentially 
unaffected. 
2. The thermal conductance K (divided by LOT) exhibits 
secondary plateaux near the steps in G, in violation of the 
Wiedemann-Franz law. At 4 K  the secondary plateaux 
in K are even more pronounced than those in phase with 

.yz -2  (1 + E l ) .  

l 

1 
~ 

0 1 2 3 4 5 
(EF-Vo)/hwv 

1 
I- 
t: 
vi 

\ 

0 
0 1 2 3 4 5 

(EF-Vo)/h~, 

Figure 2. Calculated conductance G (full curve), thermal 
conductance KIL,T (broken curve). and the thermopower 
Sand Peltier coefficient l l IT=S (same dotted curve) for a 
quantum point contact with step function ?(E)  as a 
function of Fermi energy at ( a )  1 K and ( b )  4 K. The 
parameter used in t h e  calculation is hwV=2meV. 

the plateaux in the conductance. These piateaux, which 
apparently have not been noted previously, are due to the 
bimodal shape of the kernel e2df/de (see figure 1). 
3. The coefficients K and K differ from each other 
whenever the thermopower S does not vanish (cf (6)). We 
have verified that this correction is usually negligible, 
except in the vicinity of the first step in G. 

2.3. Saddle-shaped potential 

A more realistic model of a quantum point contact 
should account for the rounding of the steps in t(E). One 
way to do this is to model the electrostatic potential 
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(a) (b) (c)

Figure 4. Schematic illustrations of the edge states in (a) QHE, (b) QAHE and (c) QSHE.

index n, m and becomes nonabelian. Then, the Berry curvature that defines the Chern number is
obtained from the trace of the Berry connection A(k).

The Hall conductivity of a Chern insulator with a non-zero Chern number must be quantized
as an integer multiple of e2/h. Different Chern numbers give different states whose Hall con-
ductivities are different, but their local symmetry can be the same. Therefore, to distinguish the
states, we cannot use local order parameters (in the language of Landau’s symmetry-breaking
theory); instead, we need a topological invariant, the Chern number, as a global order parameter
of the system. By rewriting Hall conductivity in terms of the Berry curvature and Berry phase, we
can now unify QHE and QAHE. Readers will recall that the QAHE is nothing but the quantum
version of the AHE realized in a Chern insulator without the presence of external magnetic field.

Similar to QHE, where the TKNN number is related to the number of edge states in a real
2D sample with boundary [28], the Chern number can also be physically related to the number
of edge states for a 2D Chern insulator [37]. The existence of edge states is a direct result of the
topological property of the bulk electronic structure, and is due to the phenomenon discussed in
the literature as the bulk-boundary correspondence [86, 87]. In this case, due to the broken TRS,
the edge state must be chiral (i.e. the electrons of the edge state can move only in one direction
surrounding the sample boundary, either left- or right-handed, as shown in Figure 4(b)). As dis-
cussed with regard to IQHE, the charge transport of the edge state is in principle dissipationless,
and back scattering is absent due to the lack of an edge state with opposite velocity [88, 89].

Although the topological properties of Chern insulators and the related QAHE are fundamen-
tally the same as that discussed with regard to IQHE, they are conceptually broadly generalized
to a wide field and to a rich variety of materials. This generalization is an important step forward,
providing the building blocks for subsequent discussions of many possible topological electronic
states. From the application point of view, the Chern insulator (or the related QAHE) is also
important because the quantized Hall conductivity can be realized in the absence of magnetic
field, greatly simplifying measurement conditions.

2.2. Z2 invariant, TI, and quantum spin Hall effect (QSHE)
Although the Chern insulator (or the related QAHE) is the simplest topological electronic state,
its realization occurred rather later and was much stimulated by the rapid development in the field
of TIs—another interesting topological electronic state protected by TRS. Considering symmetry,
it is easy to prove that the Chern number in Equation (20) must be vanishing for an insulator with
TRS. However, this does not mean that the electronic state carries no topological property in
this case. Kane and Mele [38] introduced a new topological invariant, the Z2 number, to classify
an insulating system with TRS. They proposed that a time-reversal invariant insulator can be
further classified as a trivial insulator with Z2 = 0 or a non-trivial TI with Z2 = 1, which is a
typical example of a symmetry protected topological state [90]. A Z2 TI in 2D is also called
a quantum spin Hall insulator (QSHI) because it can support the QSHE [39–42], which shares
certain features with the IQHE and QAHE and can be understood from the viewpoint of “band-
twisting” or winding number of Berry phase in momentum space. A QSHI is different from a
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inset of Fig. 1. The 2DES density in the patterned
sample can be tuned , in situ, from !0:3" 1011 to 2:3"
1011 cm#2 by a low temperature red light-emitting diode
illumination.

In Fig. 1(a), we show the diagonal resistance Rxx and
Hall resistance Rxy traces for this sample over a wide range
of B. Well developed IQHE states are observed at
! ¼ 1; 2; 3; . . . Fig. 1(b) focuses on the Rxx data around
B ¼ 0. Several features are worth emphasizing. First, there
is a positive magnetoresistance around B ¼ 0 and a local
maximum at B! 0:1 T. They have been observed in pre-
vious experiments on quantum antidot array samples, and
can be attributed to magnetic breakdown in the presence of
modulation [23]. Using the value of the magnetic field (Bp)
at the local Rxx maximum and following the standard
analysis [23,24], we estimate a potential modulation
strength of !V ! 1:5 meV in our antidot array sample.
Second, commensurability oscillations (COs) [25] occur at

low magnetic fields, marked by the upward triangles. From
their period in 1=B [Fig. 1(c)] an antidot periodicity of
!380 nm is deduced, which is consistent with the design
value of 350 nm. Third, Shubnikov–de Haas (SdH) oscil-
lations occur at higher B field, marked by the downward
triangles, from which the 2DES density is determined.
Figure 2(a) shows the temperature (T) dependence of

Rxx in high B fields. Over the whole temperature range, the
! ¼ 2 QH state remains strong and its resistance minimum
vanishingly small. On the other hand, the ! ¼ 1 state
shows a very strong temperature dependence, with Rxx

rising from a vanishingly small value at T ¼ 1:2 K to
Rxx ! 2700 " at 2.3 K. Figure 2(b) shows the activation
plot for the Rxx minimum at ! ¼ 1 and an energy gap of
!19 K is deduced from the linear fit to the data points.
We have carried out a systematic density dependent

study of the ! ¼ 1 energy gap. The electron density was
continuously tuned by applying different doses of light-
emitting diode illumination. Figure 3(a) shows the energy
gap as a function of the ED. The effective disorder is

FIG. 2 (color online). (a) Temperature dependence of Rxx.
(b) Activation plot for the Rxx minimum at ! ¼ 1. The line is
a linear fit to the data points.

FIG. 1 (color online). (a) Rxx and Rxy in a quantum antidot
array sample. The IQHE states at ! ¼ 1, 2, 3 are marked. The
inset shows an SEM picture of the device. (b) Rxx around B ¼ 0.
The arrows mark the B field positions where Rxx reaches a local
maximum. The downward triangles mark the Shubnikov–
de Haas (SdH) oscillations, and the upward triangles the com-
mensurate oscillations (COs). (c) Fan diagram for the SdH
oscillations and COs. From the slope of their linear fits, the
electron density and the period of the electronic potential modu-
lation can be deduced. N denotes the Landau level filling factor
in the case of the SdH oscillations and an integer value assigned
to the Rxx minimum in the case of the COs.

FIG. 3 (color online). (a) The ! ¼ 1 energy gap as a function
of effective disorder, defined as Bp=n. (b) Illustration of the
strength of the effective disorder in a quantum antidot device.
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The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are

divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of

the QHE states and the electrostatic Coulomb interaction. Local probing of these submicrometer features,

however, is challenging due to the buried 2DEG structures. Using a newly developed microwave

impedance microscope, we demonstrate the real-space conductivity mapping of the edge and bulk states.

The sizes, positions, and field dependence of the edge strips around the sample perimeter agree

quantitatively with the self-consistent electrostatic picture. The evolution of microwave images as a

function of magnetic fields provides rich microscopic information around the ! ¼ 2 QHE state.

DOI: 10.1103/PhysRevLett.107.176809 PACS numbers: 73.43."f, 07.79.Fc, 73.22."f, 84.40.Dc

The quantum Hall effect (QHE) is among the few
textbook examples where the experimental results are in-
sensitive to imperfections in real materials and solely
determined by fundamental physics constants. After deca-
des of research, the exact quantization of the Hall resist-
ance in a two-dimensional electron gas (2DEG) system
under strong magnetic (B) fields is now understood by the
localization of electronic states when the bulk of the 2DEG
is close to integer or fractional Landau level (LL) filling
factors (!) [1]. Near the sample edges, however, the LLs
bend up in energy due to the confining potential and
intersect with the Fermi energy, resulting in alternating
compressible (metal-like) and incompressible (insulator-
like) strips [2–4]. In macroscopic samples, carriers prop-
agating along the metallic edge channels are free from
backscattering when scattered by impurities or inelastic
events and, therefore, responsible for the topological ro-
bustness of the QHE [5]. The crucial role of edge states in
the quantumHall regimewas recognized immediately after
the proposal [2–5] and has continued to attract research
interest in recent years [6,7].

Spatially resolved studies of the edge channels are usu-
ally challenging because most high mobility 2DEGs are
located tens or even hundreds of nanometers below the
surface of semiconductor heterostructures. Nevertheless, a
number of novel designs, such as scanning gate micros-
copy [8–10], scanning single-electron transistor [11–13],
and scanning charge accumulation microscopy [14–16],
have shown compelling evidence of such edge modes by
providing information on charge motion, surface potential,
or local compressibility. Thorough studies of the local
conductivity and the sizes of these edge channels, however,
have not been achieved. In this Letter, we demonstrate the
conductivity mapping of the bulk and edge states in a
GaAs=AlGaAs 2DEG using a cryogenic microwave im-
pedance microscope (MIM) [17–19]. Narrow strips with

either metallic or insulating screening properties are ob-
served along edges of the sample as the system enters the
QHE state. The evolution of the local conductivity distri-
bution through the bulk filling factor !b ¼ 2 agrees with
the self-consistent electrostatic calculation [3]. The imag-
ing was performed without dc electrodes, vividly manifest-
ing that the QHE edges are equilibrium states and do not
depend on externally supplied currents.
The schematic setup of the variable-temperature (T)

microwave microscope is shown in Fig. 1(a). An excitation
power of 0:1–1 "W at 1 GHz is delivered to the shielded
cantilever probe [20]. The reflected microwave is amplified
by a cryogenic high electron mobility transistor (HEMT)

FIG. 1 (color online). (a) Schematic setup of the microwave
microscope and the 3D rendered image of the sample surface.
The reflected 1 GHz microwave from the cantilever tip is
amplified and demodulated to form imaginary (MIM-Im) and
real (MIM-Re) parts of the impedance maps. (b) A line profile of
the surface topography through three dots. The 2DEG located
30 nm below the surface is indicated in the plot.
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changes as a function of local !xx can be computed by the
finite-element analysis [18–20], as shown in Fig. 2(f). As
detailed in the Supplemental Material [21], the MIM re-
sponse is a weighted average of the complex dielectric
constant in a volume probed by the rf electric fields, which
localize well underneath the tip for conducting 2DEG and
extend up to several hundred nanometers for insulating
2DEG. We can therefore use simple 2D axisymmetric
simulation to interpret the data for the wide etched region,
the metallic edge, and the bulk. For an insulating strip as
narrow as !100 nm sandwiched between conducting re-
gions, the full 3D modeling is required. Using Fig. 2(f) as a
guide, the nonmonotonic conductivity distribution near the
2DEG edge is readily captured. First, the halo and the dark
border near the physical boundary of the dot in Fig. 2(c) are
topographic artifacts as the tip approaches and climbs up
the 40 nm step edge (see the Supplemental Material [21]).
The effect is less problematic when the tip moves toward
the interior for a distance close to the tip size, which
coincides with the nominal depletion width. The MIM-
Im signal then rises to a high value and stays for!300 nm
before dropping slightly into the bulk [22]. The high MIM-
Im and low MIM-Re signals here indicate a high local
!xx > 1" 10#4 !#1 of this band. The bulk conductivity

!1" 10#5 !#1 is also determined by the lower MIM-Im
and slightly higher MIM-Re signals than the metallic edge.
Interestingly, in between these two regions, a narrow bright
strip appears in the MIM-Re image, which can only be
explained by the presence of a highly resistive channel
with!xx in the order of 10

#7–10#8 !#1 [14]. This feature,
which is also confirmed by 3D simulation with the tip
scanning across a strip with fixed !xx, is not well resolved
at higher T or near "b ¼ 4 (see the Supplemental Material
[21]), presumably due to the lower resistivity of the strip
under those conditions. Using standard edge detection
schemes, boundaries of different regions are determined
by the midpoints of the rising and falling edges, e.g.,
arrows in Fig. 2(e). We then construct an idealized con-
ductivity map in Fig. 2(g), which vividly demonstrates the
nontrivial physics of the QHE edge states.
The microwave images [23] around "b ¼ 2 are shown in

Figs. 3(b)–3(l), with the corresponding B fields labeled on
the transport data [Fig. 3(a)]. The conducting edge in
MIM-Im and the resistive strip in MIM-Re are visible at
"b ¼ 2:60 [Fig. 3(b)] and grow in width toward "b ¼ 2
[Figs. 3(c) and 3(d)]. Discernible MIM-Re ‘‘patch’’ signals
are seen at "b ¼ 2:12 [Fig. 3(e)] in the bulk, indicative of
the decrease of bulk conductivity here. Near the integer

FIG. 3 (color online). (a) Longitudinal and Hall resistivity as a function of B or " at 2 K. The corresponding B fields in (b)–(l) are
labeled in the #xx trace. (b)–(l) Counterclockwise from top left to top right, MIM images at T ¼ 2:3 K as the B field increases from
4.8 T ("b ¼ 2:6) to 7.3 T ("b ¼ 1:7). All scale bars are 1 $m. The full color scales (not shown) are the same as Figs. 2(c) and 2(d).
(m) From left to right, schematic density profiles across the center of the dots at "b ¼ 2:2, 2.0, 1.8, and 1.7, respectively. The shaded
areas are sketches of the localized band.
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amplifier and demodulated by a room-temperature quad-
rature mixer. The two output signals are directly propor-
tional to the imaginary (MIM-Im) and real (MIM-Re) parts
of the tip-sample admittance (inverse impedance) during
the scan. The electronics in this experiment were set such
that a 1 aF admittance change corresponds to 14 mV in the
output. The spatial resolution !100 nm is limited by the
tip diameter rather than the wavelength of the microwave
[17]. In order to create physical boundaries, the 2DEG
sample was patterned into isolated dots, each with a di-
ameter of 6–7 !m. As shown in the atomic-force micro-
scope line profile in Fig. 1(b), the 2DEG in the
GaAs=AlGaAs interface (30 nm below the surface)
was etched away between the dots. The bulk electron
density (nb ¼ 3# 1011 cm$2) and mobility (! ¼
5# 105 cm2=V s) at T ¼ 2 K were measured by dc trans-
port on an unpatterned piece from the same wafer. We note
that only the local diagonal conductivity "xx is responsible
for screening the in-plane radial microwave electric fields
from the tip. The tangential current proportional to the Hall
conductivity "xy is irrelevant since it does not contribute to
the screening.

The origin of quantum Hall edge states is strictly quan-
tum mechanical in nature. A semiclassical toy model,
which intuitively suggests a conducting edge due to the
cycloidal ‘‘skipping-orbit’’ motion, completely misses the
essential physics of the QHE. The noninteracting one-
electron picture is also inadequate here because it leads

to abrupt changes in density, prohibited by strong Coulomb
penalty, where the Fermi level crosses a LL. When the
electrostatic interaction is included [3], the density in
real devices is depleted to zero near the sample edge
by the confining potential, and rises smoothly toward nb
with a length scale determined by the depletion width (L).
The Landau quantization "N ¼ ðN þ 1=2Þ@!C, whereN is
the LL index and @!C the cyclotron energy, gives rise
to narrow constant-density regions with integer #’s.
These highly resistive strips subdivide the edge into re-
gions of different LL occupancy, commonly referred to as
‘‘edge states.’’ The above scenario, including both the
density profile and the energy diagram, is depicted in
Figs. 2(a) and 2(b) using the actual sample parameters at
#b ¼ 2:31. The depletion width L ¼ "VG=$nbe!
110 nm sets the density profile at the edge [3], where "
is the dielectric constant of GaAs, VG the band gap, and e
the electron charge. The N ¼ 0 incompressible strip,
which scales with ðaBLÞ1=2 and aB ! 10 nm being the
effective Bohr radius in GaAs, is narrower than the com-
pressible edge, whose width scales with L. Because of the
small spin splitting in GaAs, each LL is twofold degenerate
at this temperature so the # ¼ 1 incompressible strip is
ignored.
Figures 2(c) and 2(d) show the MIM images at #b ¼

2:31 (B ¼ 5:4 T) and T ¼ 2:3 K, with a typical line cut
plotted in Fig. 2(e). In the extreme near-field regime, the
tip-sample interaction is quasistatic and the impedance

FIG. 2 (color online). (a) Density profile and (b) energy diagram near the sample edge at the bulk filling factor #b ¼ 2:31. The
etched area (I), depletion region (II), metallic (III) and insulating (IV) strips, and the bulk (V) are labeled in the plot. The circles in the
energy diagram (filled, half filled, and empty) show the level occupancy. (c) MIM-Im and (d) MIM-Re images at B ¼ 5:4 T and
T ¼ 2:3 K. The full color scale corresponds to 0.2 V in MIM-Im and 0.03 V in MIM-Re. The scale bars are 1 !m. (e) Line cuts of the
microwave data, labeled in (c). The vertical scales are 40 mV for the MIM-Im (solid line) and 4 mV for the MIM-Re data (dashed line).
Rising and falling edges are indicated by arrows. (f) Results of the finite-element modeling, including the 2D axisymmetric analysis
(thick solid and dashed lines) for the metallic edge and the bulk and the full 3D simulation (thin solid and dashed lines) for the
insulating strip. (g) Idealized conductivity map combining the MIM images and the simulation.
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I. INTRODUCTION

Spintronics is a field that jointly utilizes the spin and
charge degrees of freedom to control equilibrium and non-
equilibrium properties of materials and devices (Bader
and Parkin, 2010; Wolf et al., 2001; Zutic et al., 2004).
The generation, manipulation, and detection of spin-
currents is one of the key aspects of the field of spintron-
ics. Among the several possibilities to create and con-
trol spin-currents the spin Hall e↵ect (SHE) has gained
its distinct place since its first observation a decade ago
(Day, 2005; Kato et al., 2004b; Wunderlich et al., 2004,
2005). In the direct SHE, an electrical current passing
through a material with relativistic spin-orbit coupling
can generate a transverse pure spin-current polarized per-
pendicular to the plane defined by the charge and spin-
current. Its reciprocal e↵ect, the so called inverse SHE
(ISHE), is the phenomenon in which a pure spin-current
through the material generates a transverse charge cur-
rent.

The SHE borrows its concept from the well established
anomalous Hall e↵ect (AHE) where relativistic spin-orbit
coupling generates an asymmetric deflection of the charge
carriers depending on their spin direction (Nagaosa et al.,
2010). The AHE can be detected electrically in a ferro-
magnet (FM) via a transverse voltage because of the dif-
ference in population of majority and minority carriers.
The generalization of this e↵ect to a pure spin-current
generated by the SHE in a non-magnetic material (NM)
was proposed over four decades ago (Dyakonov and Perel,
1971b) based on the idea of asymmetric Mott scattering
(Mott, 1929). This so called extrinsic SHE remained un-
explored until recent proposals that put forward a similar
prediction (Hirsch, 1999; Zhang, 2000) as well as the pos-
sibility of a strong intrinsic e↵ect (Murakami et al., 2003;
Sinova et al., 2004).

The initial challenge for SHE detection was primarily
the lack of direct electrical signals; therefore initial exper-
iments detected it by optical means, both in the extrin-
sic regime (Kato et al., 2004b) and the intrinsic regime
(Wunderlich et al., 2004, 2005). The ISHE was detected
soon thereafter (Saitoh et al., 2006; Valenzuela and Tin-
kham, 2006; Zhao et al., 2006). Early measurements were
mostly qualitative. However, more accurate quantitative
measurements of spin Hall angles have been established
in later experiments through the aid of FM detectors in
static or dynamic magnetization regimes, and a much
firmer situation has arisen in the field.

Adding to this flurry of activity and increased under-
standing, recent experiments in magnetic tunnel junc-
tions have aimed to use spin-currents injected from an
adjacent spin Hall NM for spin-transfer torque (STT)
switching of a FM (Liu et al., 2012; Miron et al., 2011a).
In addition to this SHE induced torque there is also
a spin-orbit torque (SOT) (Bernevig and Vafek, 2005;
Chernyshov et al., 2009), which is generated via the in-
verse spin galvanic e↵ect (ISGE) (Belkov and Ganichev,
2008). In the ISGE, a charge current can generate a
non-equilibrium homogeneous spin-polarization via rela-
tivistic spin-orbit coupling and it is often a companion
e↵ect to the spin-current generating SHE (Kato et al.,
2004b,c; Wunderlich et al., 2004, 2005). These results
underscore the relevance of the SHE for applications.

As already mentioned, the SHE borrows directly from
the physics and mechanisms of the AHE and correspond-
ingly much of their descriptions are parallel. The family
of these three key spin-dependent Hall e↵ects is illus-
trated in Fig. 1. The important caveat is that, unlike
the AHE which correlates charge degrees of freedom via
relativistic spin-orbit interaction, the SHE and ISHE cor-
relate the charge degree of freedom, a conserved quantity,
and the spin degree of freedom, a non-conserved quantity
subject to decay and dephasing.

magnetic Mz≠0

optical detection

AHE

SHE
non-magnetic Mz=0 non-magnetic Mz=0

I=0

SHE-1

electrical detection

electrical detection

FIG. 1 An illustration of the connected family of the spin-
dependent Hall e↵ects. In the AHE, a charge current gen-
erates a polarized transverse charge current. In the SHE an
unpolarized charge current generates a transverse pure spin-
current. In the ISHE a pure spin-current generates a trans-
verse charge current.

Spin Hall effect

Extreme quantum limit

Shubnikov - de Haas 
oscillations

povrch vzorku. Napra:ování (Leybold), kde argonové ionty údery do slitiny AuGe vy-
rá>ejí atomy a ty se v:esm6rov6 :í9í ke vzorku. P9i této metod6 je rychlost atom; v6t:í,
pronikají tedy hloub6ji do materiálu a pokr=vají i mírn6 zakryté prostory (nevytvá9ejí
„stíny@). Titanová vrtsva se i v tomto p9ípad6 pouze pa9í.
P9esto>e sou5et v=:ek jednotliv=ch pater sandwiche by m6l b=t 100 nm, na Dektaku

se zm69ila v=:ka reliéfu 73 nm (pa9ení) a 160 nm (prá:ení). P9esto>e se metody sna>í
b=t obdobné, srovnatelné se nezdají b=t. Pro to hovo9í i srovnání morfologie na obrázku
ní>e. Povrch legendárních kontakt; od pana Melichara vykazovaly charakter podobn=
spí:e sou5asnému Leyboldu.

Obrázek 3: Srovnání morfologie ohmick+ch kontakt*. Zleva: napra)ované,
napa(ované, pan Melichar, pan Melichar. Rozdílnost metod je zjevná.
Autor obrázk*: Z. V+born+.

Za>íhání je provád6no v pícce a typické hodnoty jsou 450�C po 2 minuty.
Na tyto ohmické kontakty (tedy kontaktu kov-polovi5, kde nedochází k vytvo9ení

bariéry p9i pr;chodu nosi5; z jednoho materiálu do druhého, tzv. Shottkyho bariéry)
je posléze nanesena dostate5n6 velká plocha :icího kovu (nej5ast6ji zlata), na n6j> lze
p9ipevnit ultrazvukovou fixací st9íbrn= vodi5. V p9ípad6 vyu>ití zlata je t9eba plochu
nejprve pokr=t titanem, kter= zvy:uje adhezi Au.

Obrázek 4: P(íklad kontaktování na zlaté )icí desky. Autor obrázk*: Z. V+born+.
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Obrázek 20: Teplotní pr*b'h vzork* E081#1 a D101#8. Jeho charakter
je dobrou indicií správné funk&nosti vzorku a nakontaktování 2DEGu.

polohách ( 1n25.813 k�, n = 4, 6, 8, . . .), SdHO pom4ry minim le<í v ideálních pozicích.
Z jejich polohy byla ur3ena koncentrace nosi39 nSdHO ⇥ 2.5 � 1011 cm�2. Z Hallovy
sm4rnice potom koncentrace nHall ⇥ 2.4� 1011 cm�2 a s ohledem na rozm4ry hallbaru
(l=1000 µm, d=100 µm) mobilita nosi39 µ ⇥ 1.1 cm2/Vs. V8e odpovídá údaj9m z doby
r9stu waferu.
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Obrázek 21: Magnetotransport pro vzorky E081#1 a D101#8.

Zatímco p7ede8l; vzorek fungoval skv4le, D101#8 se skute3n4 choval nekulturn4 –
signál byl zna3n4 za8um4n;, pravd4podobn4 vlivem neideálního okontaktování (ostré
úzké struktury se objevily poté, co jsem rychle pro8el kolem vodi39. . . ). Oscila3ní cha-
rakter sice dob7e viditeln; je, nicmén4 Hall9v odpor má p7ibli<n4 t7ikrát men8í sm4rnici,
ne< bylo o3ekáváno, zcela neprochází nulou a nevykazuje <ádná plata. Z SdH oscilací
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!xy
" -H curve against the M-H curve measured at

each T, we have determined (24) Rs versus T in
each of the samples studied (Fig. 3). The intro-
duction of Br causes the Rs versus T profiles to
change markedly. In the undoped sample (x #
0), Rs is positive and monotonically decreasing
below 360 K, as is typical in high-purity ferro-
magnets (Fig. 3B). Weak doping (x # 0.1) pro-
duces a negative shift in Rs and a finite negative
value at low T. Increasing the doping to x # 0.25
leads to an Rs profile that is large, negative, and
nearly independent of T below 50 K (Fig. 3B).
At mid-range doping and higher (x ! 0.5), the
magnitude of Rs increases steeply, but now in the
positive direction. At maximum doping (x # 1),
the value of Rs at 5 K is very large, correspond-
ing to !xy

" $ 700 %&!cm (Fig. 2B).
Our focus is on the low-T values of !xy

"

where impurity scattering dominates. At 5 K,
!xy

" is too small to be resolved in the sample
with x # 0. As x increases to 1, the absolute
magnitude !!xy

" ! at 5 K increases by more than
three orders of magnitude (hereafter, !xy

" re-
fers to the saturated value measured at 2 T or
higher). It is noteworthy that !xy

" is negative at
low doping (0 ' x ' 0.4) but becomes
positive for x ( 0.5. Initially, the sign change
seemed to suggest to us that there might
exist two distinct mechanisms for the AHE
in this system. As more samples were stud-
ied, however, it became apparent that irre-
spective of the sign, the magnitude !!xy

" !
versus ! falls on the same curve over sev-
eral decades (Fig. 4), providing strong ev-
idence that the same AHE mechanism oc-
curs in both sign regimes. We focus first on
the magnitude !!xy

" ! versus !, and discuss
the change in sign later.

It is worth emphasizing that )xy
" is propor-

tional to the carrier density nh (see Eq. 1). For
our goal of determining whether the AHE
current is dissipationless, it is clearly neces-
sary to factor out nh before comparing !"xy

against !. Hence, we divide !!xy
" ! by nh. We

refer to )xy
" /nh as the normalized AHE con-

ductivity (24).
Figure 4 shows !!"xy!/nh versus ! in log-log

scale for all samples investigated [except x #
0 (24)]. Over several decades, the data fit
well to !!xy

" !/nh # A!* with * # 1.95 + 0.08
(because Ms is nearly insensitive to x, Fig. 4
also gives Rs/nh $ !2). This immediately
implies that the normalized AHE conductiv-
ity )xy

" /nh at 5 K is dissipationless. Increasing
! by a factor of $100 leaves the AHE current
per carrier unchanged to our measurement
accuracy [see (24) for a discussion of our
resolution]. As noted, the two samples with
x # 1 are in the localization regime. The fact
that their points also fall on the line implies
that the dissipationless nature of the normal-
ized AHE current extends beyond the Bloch-
state regime (where most AHE theories ap-
ply) into the weak localization regime, where
much less has been done. This supports re-

cent theories (10, 11, 17) that the anomalous-
velocity origin is topological in nature and is
equally valid in the Bloch and localization
regimes.

The sign change at x $ 0.4 is reminiscent
of sign changes observed in ferromagnetic
alloys (versus composition). The common
feature is that doping drives the Fermi energy
εF across the overlap between two narrow
bands derived from distinct transition-metal
elements. In the alloy Ni1–xFex, the band
derived from Fe 3d states lies just above the
3d band of Ni. As εF crosses the overlap, !xy

"

changes from negative to positive. Similar
sign changes are observed in Au-Fe and Au-
Ni alloys. It has been pointed out (2) that the
effective spin-orbit parameter , in Eq. 1
changes sign whenever εF moves between
overlapping narrow bands. A similar effect is
implied in Noziéres and Lewiner’s calcula-
tion (9). Band-structure calculations (25) on
CuCr2Se4 reveal that εF lies in a hole-like
band of mostly Cu 3d character strongly ad-
mixed with Cr 3d states lying just above. We
infer that as εF rises with increasing Br con-
tent, the conduction states acquire more Cr 3d
character at the expense of Cu 3d, triggering

Fig. 1. (A) Hole density nh (solid circles) in
CuCr2Se4–xBrx versus x determined from R0 at 400 K
(one hole per formula unit corresponds to nh # 7.2 -
1021 cm.3). The Curie temperature TC is shown as open circles. (B) Curves of the magnetization M
versus H at 5 K in three samples (x values indicated). The saturation value Ms # 3.52 - 105
A/m for x# 0, 3.72- 105 A/m for x# 0.5, and 3.95- 105 A/m for x# 1.0. (C) Resistivity ! versus
T in 10 samples with Br content x indicated (a and b indicate different samples with the same x).
Values of nh in all samples fall in the metallic regime (for x # 1, nh # 1.9 - 1020 cm.3).

Fig. 2. Curves of the observed Hall resistivity
!xy # R0B / Rs%0M versus H (at temperatures
indicated) in CuCr2Se4–xBrxwith x# 0.25 (A) and
x# 1.0 (B). In (A), the anomalous Hall coefficient
Rs changes sign below 250 K, becomes negative,
and saturates to a constant value below 50 K.
However, in (B), Rs is always positive. At low T, it
rises to very large values (note difference
in scale).

Fig. 3. (A) Values of Rs extracted from the
curves of !xy and M versus H measured
at each T in CuCr2Se4–xBrx, with values of x
indicated (a and b refer to different crystals
with the same x). (B) The corresponding
curves for x # 0, 0.1, 0.25, and 0.5 (two
crystals a and b). The values of Rs at 5 K are
negative at small x (' 0.4), but as x increases,
Rs rapidly rises to large positive values.
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Figure 2. Two-dimensional energy dispersion 3±,k of a Rashba system calculated from equation (4.2)
for the non-magnetic case ((a) J = 0), weak exchange interaction ((b) J /akF = 0.1) and strong
exchange ((c) J /akF = 2.5). The magnetization in (b) and (c) is assumed to be parallel to the
ŷ-axis (q = f = p/2). (d) Fermi contours and spin quantization direction of the bands depicted in
(a) at equilibrium and (e) in response to an applied current parallel to x̂. (f , g) Same for the bands
depicted in (c). (Online version in colour.)

value reads

⟨s⟩±,k = ⟨j±,k|s|j±,k⟩ = 1
k

(±ky
∓kx
0

)

=
(± sin x

∓ cos x
0

)

. (3.4)

As shown in figure 2a, the energy dispersion corresponding to equation (3.2) is not
anymore a paraboloid of revolution as in the free-electron case, but the quadric
surface generated by the rotation of the two branches 3+,k>0, 3−,k>0 around the
energy axis intersecting the G point. The radius of the two Fermi discs, kF+ and
kF−, can be found by imposing that the total electron density of the system is the
same as in the free-electron case, i.e. by solving 3−, kF− = 3+, kF+ = 3F for kF±. This
gives, to first order in a,

kF± ≈ kF ∓ m∗
e a

h̄2 = kF(1 ∓ h), (3.5)

with h = m∗
e a/(h̄2kF). Although the total spin polarization in each branch

averages out, the direction of k and the spin orientation are related to each other
because of the quantization of the electron spin parallel or antiparallel to the SO
field. This, together with the fact that kF+ ̸= kF−, has important consequences
for the out-of-equilibrium transport properties of an SIA system, notably the
creation of a net spin polarization by a charge current. The comparison of
figure 2d and e readily shows how an external electric field E displaces the two
Fermi discs by an amount dk± = −eEt±/h̄, resulting in incomplete cancellation
of opposite spin-polarization contributions. Note that, since the scattering rate is
generally energy- and wavevector-dependent [61], the resistivity relaxation times
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Evidence for reversible control of magnetization in
a ferromagnetic material by means of spin–orbit
magnetic field
Alexandr Chernyshov1*, Mason Overby1*, Xinyu Liu2, Jacek K. Furdyna2, Yuli Lyanda-Geller1
and Leonid P. Rokhinson1†

The current state of information technology accentuates the
dichotomy between processing and storage of information,
with logical operations carried out by charge-based devices and
non-volatile memory based on magnetic materials. The main
obstacle for a wider use of magnetic materials for information
processing is the lack of efficient control of magnetization.
Reorientation of magnetic domains is conventionally carried
out by non-local external magnetic fields or by externally
polarized currents1–3. The efficiency of the latter approach
is enhanced in materials where ferromagnetism is carrier-
mediated4, because in such materials the control of carrier
polarization provides an alternative means for manipulating
the orientation of magnetic domains. In some crystalline
conductors, the charge current couples to the spins by
means of intrinsic spin–orbit interactions, thus generating
non-equilibrium electron spin polarization5–11 tunable by local
electric fields. Here, we show that magnetization can be
reversibly manipulated by the spin–orbit-induced polarization
of carrier spins generated by the injection of unpolarized
currents. Specifically, we demonstrate domain rotation and
hysteretic switching of magnetization between two orthogonal
easy axes in a model ferromagnetic semiconductor.

In crystalline materials with inversion asymmetry, intrinsic
spin–orbit interactions couple the electron spinwith itsmomentum
h̄k. The coupling is given by the Hamiltonian Hso = (h̄/2)�̂ ·�(k),
where h̄ is the reduced Planck constant and �̂ is the electron
spin operator (for holes �̂ should be replaced by the total angular
momentum J). Electron states with different spin projection signs
on �(k) are split in energy, analogous to the Zeeman splitting
in an external magnetic field. In zinc-blende crystals such as
GaAs there is a cubic Dresselhaus term12 �D / k3, whereas strain
introduces a term �" = C1"(kx ,�ky ,0) that is linear in k, where
1" is the difference between strain in the ẑ and x̂, ŷ directions13.
In wurtzite crystals or in multilayered materials with structural
inversion asymmetry, there also exists the Rashba term14 �R,
which has a different symmetry with respect to the direction of k,
�R =↵R(�ky ,kx ,0), where ẑ is along the axis of reduced symmetry.
In the presence of an electric field, the electrons acquire an average
momentum h̄1k(E), which leads to the generation of an electric
current j= ⇢̂�1E in the conductor, where ⇢̂ is the resistivity tensor.
This current defines the preferential axis for spin precession h�(j)i.
As a result, a non-equilibrium current-induced spin polarization
hJEikh�(j)i is generated, the magnitude of which hJ Ei depends
on the strength of various mechanisms of momentum scattering

1Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA, 2Department of Physics, University of
Notre Dame, Notre Dame, Indiana 46556, USA. *These authors contributed equally to this work. †e-mail: leonid@purdue.edu.
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Figure 1 | Layout of the device and symmetry of the spin–orbit fields.
a, Atomic force micrograph of sample A with eight non-magnetic metal
contacts. b, Diagram of device orientation with respect to crystallographic
axes, with easy and hard magnetization axes marked with blue dashed and
red dot–dash lines, respectively. Measured directions of Heff field are
shown for different current directions. c,d, Orientation of effective magnetic
field with respect to current direction for strain-induced (c) and Rashba (d)
spin–orbit interactions. The current-induced Oersted field under the
contacts has the same symmetry as the Rashba field.

and spin relaxation5,15. This spin polarization has been measured
in non-magnetic semiconductors using optical7–9,11,16 and electron
spin resonance17 techniques. It is convenient to parameterize hJEi
in terms of an effective magnetic field Hso. Different contributions
to Hso have different current dependencies (/ j or j3), as well
as different symmetries with respect to the direction of j, as
schematically shown in Fig. 1c,d, enabling one to distinguish
between spin polarizations in different fields.

To investigate interactions between the spin–orbit-generated
magnetic field and magnetic domains, we have chosen (Ga,Mn)As,
a p-type ferromagnetic semiconductor18,19 with zinc-blende crys-
talline structure similar to GaAs. Ferromagnetic interactions in this
material are carrier-mediated20,21. The total angular momentum of
the holes J couples to the magnetic moment F of Mn ions by means
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Figure 4 | Current-induced reversible magnetization switching. a, 'H

dependence of Rxy near the [010] ! [̄100] magnetization switching for
I= ±0.7 mA in sample A for Ik[11̄0]. b, Rxy shows hysteresis as a function
of current for a fixed field H= 6 mT applied at 'H = 72�. c, Magnetization
switches between the [010] and [̄100] directions when alternating ±1.0 mA
current pulses are applied. The pulses have 100 ms duration and are shown
schematically above the data curve. Rxy is measured with I= 10 µA.

experiment. As for the magnitude of H so, for three-dimensional
J = 3/2 holes we obtain

Hso(E)= eC1"

g ⇤µB

(�38nh⌧h +18nl⌧l)
217(nh +nl)

· (Ex ,�Ey ,0)

where E is the electric field, g ⇤ is the Luttinger Landé factor for
holes, µB is the Bohr magneton and nh,l and ⌧h,l are densities and
lifetimes for the heavy (h) and light (l) holes. Detailed derivation of
H so is given in the Supplementary Information. Using this result, we
estimate dH so/dj = 0.6⇥10�9 T cm2 A�1 assuming nh =n�nl and
⌧h =mh/(e2⇢n), where ⇢ is the resistivity measured experimentally,
and using 1" = 10�3, n = 2⇥ 1020 cm�3. The agreement between
theory and experiment is excellent. It is important to note, however,
that we used GaAs band parameters25 mh = 0.4m0, where m0
is the free electron mass, g ⇤ = 1.2 and C = 2.1 eVÅ. Although
the corresponding parameters for (Ga,Mn)As are not known, the
use of GaAs parameters seems reasonable. We note, for example,

that GaAs parameters adequately described tunnelling anisotropic
magnetoresistance in recent experiments26.

Finally, we demonstrate that the current-induced effective spin–
orbit field H so is sufficient to reversibly manipulate the direction
of magnetization. Figure 4a shows the 'H dependence of Rxy for
sample A, showing the [010] ! [1̄00] magnetization switching. If
we fix H = 6mT at 'H = 72�, Rxy forms a hysteresis loop as current
is swept between ±1mA. Rxy is changing between ±5�, indicating
that M is switching between the [010] and [1̄00] directions. Short
(100ms) 1mA current pulses of alternating polarity are sufficient to
permanently rotate the direction of magnetization. The device thus
performs as a non-volatile memory cell, with two states encoded in
the magnetization direction, the direction being controlled by the
unpolarized current passing through the device. The device can be
potentially operated as a four-state memory cell if both the [110]
and [1̄10] directions can be used to inject current. We find that
we can reversibly switch the magnetization with currents as low as
0.5mA (current densities 7⇥ 105 A cm�2), an order of magnitude
smaller than by polarized current injection in ferromagnetic
metals1–3, and just a few times larger than by externally polarized
current injection in ferromagnetic semiconductors4.

Methods
The (Ga,Mn)As wafers were grown by molecular beam epitaxy at 265 �C and
subsequently annealed at 280 �C for 1 h in nitrogen atmosphere. Sample A
was fabricated from a 15-nm-thick epilayer with 6% Mn, and sample B from a
10-nm-thick epilayer with 7%Mn. Both wafers have a Curie temperature Tc ⇡80K.
The devices were patterned into 6- and 10-µm-diameter circular islands to decrease
domain pinning. Cr/Zn/Au (5 nm/10 nm/300 nm) ohmic contacts were thermally
evaporated. All measurements were carried out in a variable-temperature cryostat
at T = 40K for sample A and at 25K for sample B, well below the temperature of
(Ga,Mn)As-specific cubic-to-uniaxial magnetic anisotropy transitions27, which has
been measured to be 60 and 50K for the two wafers. The temperature rise for the
largest currents used in the reported experiments wasmeasured to be<3K.

Transverse anisotropic magnetoresistance Rxy =Vy/Ix is measured using
the four-probe technique, which ensures that possible interfacial resistances, for
example, those related to the antiferromagnetic ordering in the Cr wetting layer28,
do not contribute to the measured Rxy . The d.c. current Ix was applied either along
the [110] (contacts 4–8 in Fig. 1a) or along the [11̄0] (contacts 2–6) direction.
Transverse voltage was measured in the Hall configuration, for example, between
contacts 2–6 for Ixk[110]. To ensure uniformmagnetization of the island, magnetic
field was ramped to 0.5 T after adjusting the current at the beginning of each field
rotation scan. We monitor Vx between different contact sets (for example, 1–7, 4–6
and 3–5) to confirm the uniformity ofmagnetizationwithin the island.

To determine the direction of magnetization M, we use the dependence of
Rxy on magnetization29:

Rxy = 1⇢ sin'Mcos'M

where 1⇢ = ⇢k �⇢?, ⇢k < ⇢? are the resistivities for magnetization oriented
parallel and perpendicular to the current, and 'M = \MI is an angle between
magnetization and current. In a circular sample, the current distribution is
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dence of the resistance on the basis of AMR and OMR.

IV. ANALYSIS AND DISCUSSION

We analyze our data with the expression of Döring7 for
the resistivity, which is based on the symmetry of the crystal.
He assumed that the electric field components E1 , E2, and
E3 along the cubic directions are linear functions of the com-
ponents j1 , j2, and j3 of the electrical current density: Ei
!!k!1

3 wik jk . Here wik are the magnetization-direction de-
pendent components of the magnetoresistivity tensor, which
describes all ohmic MR effects, including AMR and OMR.
The resistivity can be written as "!! i ,k!1

3 wik# i#k , where
#1 , #2, and #3 are the direction cosines of the electrical
current with respect to the cubic axes. The components wik
can be rewritten using the symmetry of a cubic crystal. This
yields for the relative change in resistivity for arbitrary cur-
rent and magnetization directions:7,22

"""*
"*

!k1! $1
2#1

2#$2
2#2

2#$3
2#3

2"
1
3 "

#2k2%$1$2#1#2#$2$3#2#3#$3$1#3#1&

#k3s#k4! $1
4#1

2#$2
4#2

2#$3
4#3

2#
2
3 s"

1
3 "

#2k5%$1$2$3
2#1#2#$2$3$1

2#2#3

#$3$1$2
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where "* is the average resistivity of a hypothetical multi-
domain sample with equal volume fractions with the magne-
tization pointing along a '100( direction, k1 , k2 , k3 , k4, and
k5 are temperature dependent constants, $1 , $2, and $3 are
the direction cosines of the magnetization direction with re-
spect to the cubic axes and s!$1

2$2
2#$2

2$3
2#$3

2$1
2. The lo-

cal magnetization direction should be used if the sample is in
a multidomain state. Equation %1& then describes the local
change in resistivity. Equation %1& is an expansion based on

the symmetry of the crystal. Therefore, it is hard to directly
relate the k constants to physical properties such as the spin-
orbit interaction. The relation of the k constants with the
underlying physics should follow from first principle AMR
models, but that is beyond the scope of this article.
For our purpose, we adapt Eq. %1& to the specific geometry

of our %110& films, using $1!"$2!(1/!2)sin), $3
!cos), #1!"#2!(1/!2)sin *, and #3!cos *. Here ) is
the angle between the magnetization and the +001, direction
and * is the angle between the electrical current and the
+001, direction %see inset Fig. 3&. This leads to four indepen-
dent terms in Eq. %1&:
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A linear term in ) is added to Eq. %2& to take into account the
small temperature drift in our measurements at high tempera-
tures %while stepping through the range of angles
+.start ,.end , the resistance drifts linearly in time&. A linear
term is orthogonal to the other terms, so that it does not
influence these in principle, but helps to correctly weigh each
measurement point. It is not possible to determine both "*
and - from the measurements. Therefore, we use +"""*(1
#-),/"*/(R"R0)/R0, which introduces a negligible error
(/1%) compared to the other errors in the C coefficients.
We analyze the resistance versus angle data with Eq. %2&

for measurements at up to 13 different temperatures in the
range 4.2–220 K for each sample, using )!.#* . In the
analysis, the value of the coefficients C1 , C2 , C3, and C4
results from a fitting procedure. In general, good agreement
between the experimental data and Eq. %2& is obtained, as
exemplified by the fit results in Figs. %4& and %6&. The tem-
perature dependence of the C coefficients is plotted in Figs. 7
and 8, where the error bars reflect the different fit results
obtained for curves measured with opposite angle-step direc-
tion at each temperature. The following general observations

FIG. 6. Magnetoresistance of sample B at H!10 kOe as a func-
tion of the angle between the applied magnetic field and the current
at %a& T!4.2 K, %b& T!80 K, and %c& T!184 K. The measurement
geometry is as in Fig. 5.
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Epitaxial Fe layer

uniaxial and cubic crystalline terms, and a crossed non-
crystalline/crystalline term. The purely crystalline terms
are excluded by symmetry for the transverse AMR and we
obtain, !!xy=!av ! CI sin2"" CI;C sin#4 " 2"$.

Microscopically, we describe the AMR components
starting from the valence-band kinetic-exchange model of
(Ga,Mn)As with metallic conductivities, which is an estab-
lished qualitative and often semiquantitative theoretical
approach [14,15]. The description is based on the canoni-
cal Schrieffer-Wolff transformation of the Anderson
Hamiltonian which for (Ga,Mn)As replaces hybridization
of Mn d orbitals with As and Ga sp orbitals by an effective
spin-spin interaction of L ! 0; S ! 5=2 local moments
with host valence-band states. These states, which carry
all the SO coupling, can be described by the k % p Kohn-
Luttinger Hamiltonian [14,16].

In these dilute moment systems two distinct microscopic
mechanisms lead to anisotropic carrier lifetimes
[Fig. 1(a)]: One combines the SO coupling in the carrier
band with polarization of randomly distributed magnetic
scatterers and the other with polarization of the carrier
band itself resulting in an asymmetric band-spin texture.
Although acting simultaneously in real systems, theoreti-
cally we can turn both mechanisms on and off indepen-
dently. We find that the former mechanism clearly
dominates in (Ga,Mn)As which allows us to neglect spin-
splitting of the valence band in the following qualitative
discussion. This is further simplified by focusing on the
noncrystalline AMR in the heavy-hole Fermi surfaces in
the spherical, s k k, spin-texture approximation [17] [see
Fig. 1(a)] and considering scattering off a #-function po-
tential / #$& M̂ % s$. Here, s and k are the carrier spin
operator and wave vector, and $ represents the ratio of
nonmagnetic and magnetic parts of the impurity potential.
Assuming a proportionality between conductivity and life-
times of carriers with kjjI we obtain,

 %M̂kI=%M̂?I ! #$2 & 1=4$#$2 & 1=12$=#$2 " 1=4$2:
(1)

Therefore, when $' 1, one expects %M̂kI < %M̂?I (as is
usually observed in metallic ferromagnets). The sign of the
noncrystalline AMR reverses at a relatively weak nonmag-
netic potential ($ ! 1=

!!!!!!
20
p

in the model), its magnitude is
then maximized when the two terms are comparable ($ !
1=2), and, for this mechanism, it vanishes when the mag-
netic term is much weaker than the nonmagnetic term
($! 1).

Physically, carriers moving along M̂, i.e., with s parallel
or antiparallel to M̂, experience the strongest scattering
potential among all Fermi surface states when $ ! 0,
giving %M̂kI < %M̂?I. When the nonmagnetic potential is
present, however, it can more efficiently cancel the mag-
netic term for carriers moving along M̂, and for relatively
small $ the sign of AMR flips. Since $< 1=

!!!!!!
20
p

is un-

realistic for the magnetic acceptor Mn in GaAs [12,14] we
obtain %M̂kI > %M̂?I, consistent with experiment. Our
analysis also predicts that when the SO coupling in the
host band is of the form s ? k, as in the Rashba-type 2D
systems, or when Mn forms an isovalent pure magnetic
impurity, e.g., in II-VI semiconductors, the sign of the
noncrystalline AMR will be reversed.

Numerical simulations of hole scattering rates, illus-
trated in Fig. 1(a) on a color-coded minority heavy-hole
Fermi surface, were obtained within the spherical approxi-
mation but including the hole spin polarization, light-hole,
and split-off valence bands, and realistic nonmagnetic and
magnetic Mn impurity potentials [12]. The simulations
confirm the qualitative validity of the analytical, noncrys-
talline AMR expressions of Eq. (1). The additional crys-
talline AMR terms are obtained when the spherical
approximation is relaxed and band warping is included in

FIG. 1 (color). (a) Noncrystalline AMR in spherical bands: 2D
cartoons of AMR mechanisms and calculated anisotropic scat-
tering rate on the 3D Fermi surface of the minority heavy-hole
band in Ga0:95Mn0:05As. (b) Noncrystalline and crystalline AMR
on warped bands: calculated anisotropic scattering rates for M̂ k
[100] and [110] axes. (c) Calculated and (d) measured (at 4.2 K)
longitudinal and transverse AMR for Ga0:95Mn0:05As as a func-
tion of the angle between M̂ and I. The legend shows the
direction of the current. The y axes show !!=!av shifted so
that the minimum is at zero.
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Spin-orbit driven effects:
TAMR (tunneling anisotropic magnetoresistance)

from !30 to "30 mT. In all cases, the magnetoresistance
shows spin-valve-like behavior with an amplitude of
#3% delimited by two switching events ( labeled Hc1
and Hc2 in the figure) between which the resistance of the
sample is different from its value outside these events.
However, the width and even the sign of the TAMR
feature depend on !. In comparing the curves of
Fig. 1(b), we emphasize that, despite the feature changing
signs as a function of !, the device appears to have only
two distinct resistance states: a low one of #2920 ! and a
high one of #3000 !.

In order to better understand this behavior, we summa-
rize the data from field sweeps at many angles in the polar
plot of Fig. 2. Here the open circles represent the fields at
which the switching events Hc1 and Hc2 occur in the
individual sweeps. These delimit boundaries between
sections of higher and lower resistance. Shaded areas
indicate regions where the sample is in its high-resistance
state. Viewed in this way, the loci of switching events
form a highly symmetric pattern with a striking resem-
blance to switching previously observed in magneto-
optical studies of epitaxial Fe films [7] and (Ga,Mn)As
[8], as well as in transport studies on (Ga,Mn)As in the
in-plane Hall geometry [9], and associated with materials
that reverse their magnetization M in two steps by the
nucleation and propagation of 90$ domain walls.

Within single-domain theory, the expression for the
total magnetic energy Em of our system is

Em % Kusin
2&"' " Kcsin

2&2"' !MH cos&"!!'; (1)

where Kc is the cubic anisotropy known to be dominant in

(Ga,Mn)As [8–10], while Ku is the uniaxial anisotropy
which is also often observed in (Ga,Mn)As [8]. H is the
amplitude of the applied magnetic field and " is the angle
of the magnetization measured from the (100) crystal
direction.

Since the magnetization reversal takes place through
domain walls propagating through the structure, the pic-
ture of Stoner–Wohlfarth [11] of a coherent magnetiza-
tion reversal does not apply (neglecting rotations away
from the cubic easy axis at higher H). Instead, as dis-
cussed in Ref. [7], the magnetization will switch from its
local minimum to the global energy minimum as long as
the energy gained in doing so is larger than the energy
required to nucleate or propagate a domain wall through
the sample. Calling this energy #, it follows from the form
of Em that as H is swept the switching of the magnetiza-
tion can take place in two steps. In the first step, M
switches from the cubic easy axis closest to the initial
direction of H to a global easy axis 90$ askew from this
one. Then, in the second step, M switches by an additional
90$ completing its reversal. Pursuing the analysis, one
finds that the fields at which these switching events take
place are given by Hc1;2 % &#* Ku'=(Mjj cos&!'j*
j sin&!'jj), where the plus (minus) sign in the denominator
is for Hc1 (Hc2). The sign before Ku depends on if the
switching is towards or away from a uniaxial easy axis.
The sign therefore reverses every 90$ and is opposite for
Hc1 and Hc2 [7]. Fitting the above equation to our data
produces the solid line in the polar plot of Fig. 2. This
yields a value of 450 erg=cm3 for Ku and 1550 erg=cm3

for #. We confirmed the two-step switching behavior of
the sample through SQUID measurements.

From this analysis and Fig. 2 it is clear that our sample
is in a high-resistance state when M lies along the (100) or

FIG. 2 (color online). Polar plot compiled from individual
magnetoresistance curves. The circles indicate the switching
events Hc1 and Hc2 from the individual curves. The shaded
areas are regions where the sample is in a high-resistance state.
The solid lines are a fit to the model described in the text.
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FIG. 1 (color online). (a) Device schematic showing the con-
tact geometry and the crystallographic directions.
(b) Hysteretic magnetoresistance curves acquired at 4.2 K
with 1 mV bias by sweeping the magnetic field along the 0$,
50$, and 55$ directions. Spin-valve-like features of varying
widths and signs are clearly visible, delimited by two switch-
ing events labeled Hc1 and Hc2. The magnetoresistance is
independent of the bias direction or amplitudes up to 1 meV.
(c) TAMR along 30$ for temperatures from 1.6 to 20 K,
showing a change of sign of the signal. The curves are verti-
cally offset for clarity.
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fabrication, the wafer was annealed at 350! C for 1 h in a
10"6 Torr vaccum in a magnetic field of 0.4 T applied
along the same direction as during the growth. Several
samples fabricated from each wafer were measured and
showed comparable transport characteristics. X-ray dif-
fraction was used to verify the out-of-plane texture of the
films; the IrMn and NiFe layers are (111) out-of-plane
oriented, and Ru and Ta are (001) and (110) oriented,
respectively. In the plane of the layers, the samples are
polycrystalline.

In Figs. 1(a) and 1(b), we show magnetization loops
measured by SQUID in the 3 and 1.5 nm IrMn wafers at
5, 50, and 100 K. At 100 K, the 1.5 nm IrMn sample shows
a very narrow hysteresis loop with coercive field Hc #
10 Oe, which is similar to the coercivity of the reference
NiFe sample without IrMn and is comparable to the error
bar of our SQUID measurements. At 50 K, Hc of the
1.5 nm IrMn sample is enhanced, but the hysteresis loop
remains centered around zero external field; i.e.,Heb is still
negligible at this temperature. Only at temperatures below
the blocking temperature TB $ 50 K is the broadening of
the loop accompanied by a nonzero shift as seen on the 5 K
panel. The magnetization of the 3 nm IrMn sample shows
qualitatively the same behavior; only the onset of the
broadening of the hysteresis loop occurs at higher tem-
peratures and TB $ 100 K is also larger in the 3 nm IrMn
sample. This is illustrated in Figs. 1(a) and 1(b) and

summarized in Figs. 1(c) and 1(d). Hc > Heb, and both
fieldsHc and Heb and the blocking temperature decreasing
with decreasing thickness of the AFM film are character-
istic features of AFM/FM exchange-coupled systems with
ultrathin (< 10 nm) IrMn films [13–15]. Note that, unlike
the decreasing blocking temperature with decreasing thick-
ness, previous studies of the Néel temperature showed that
the ordering temperature in thin films can be enhanced
above the bulk value due to the coupling of the AFM to
the FM [18].
Results of our tunneling resistance measurements in

transport microdevices with the 3 and 1.5 nm IrMn are
shown in Fig. 2. While the SQUID measurements detect
the reversal of the FM moments, the tunneling magnetore-
sistance is sensitive to the change in the orientation of the
AFM moments in IrMn. The origin of this transport signal
is in the recently discovered tunneling anisotropic magne-
toresistance of an AFM/insulator/normal-metal tunnel
junction [17]. In analogy to the magnetocrystalline anisot-
ropy or optical linear dichroism, the tunneling anisotropic
magnetoresistance is an even function of the microscopic
moment and therefore is present equally well for rotating
AFM moments as for rotating moments in a FM [17,19].
Since the tunneling resistance is determined by layers
adjacent to the tunnel barrier, in our device geometry it
corresponds to the reorientation of the AFM moments in
IrMn which is in contact with the MgO barrier. The FM
moments in the more remote NiFe layer have only an
indirect effect on the tunneling transport; they induce via
an exchange spring effect [11] the rotation of the AFM

FIG. 1 (color online). SQUID magnetization loops of the 3 (a)
and 1.5 nm (b) IrMn samples at 5, 50, and 100 K. (c),
(d) Temperature dependence of the width of the hysteresis
loop (Hc) and of the shift of the loop (Heb) for the two samples.
The inset shows the multilayer structure. The width of the
hysteretic region of the tunneling anisotropic magnetoresistance
of the 3 nm IrMn sample is shown in (c) for comparison.

FIG. 2. Tunneling anisotropic magnetoresistance measured as
a function of the applied magnetic field strength at the same
conditions as the SQUID magnetization loops in Fig. 1.
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toresistance of an AFM/insulator/normal-metal tunnel
junction [17]. In analogy to the magnetocrystalline anisot-
ropy or optical linear dichroism, the tunneling anisotropic
magnetoresistance is an even function of the microscopic
moment and therefore is present equally well for rotating
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Tunneling through quantum dots

trolled between 10–40 Å in radius, and 10% size
distributions.3,22 The nanocrystal surface is passivated by or-
ganic ligands. For the tunneling measurements we link the
nanocrystals to a gold film via hexane dithiol molecules,23 as
shown schematically in the upper inset of Fig. 1!a".
Scanning tunneling microscopy !STM" data were ob-

tained using a homebuilt cryogenic STM. The scan head and
sample area are evacuated just before introducing helium ex-
change gas and inserting the STM to the liquid helium bath.
All data presented here were acquired at 4.2 K. In a typical
experiment, a topographic image of an isolated InAs QD was
taken, from which its size was determined.8 Then, the STM
tip was positioned above the QD, forming a double barrier
tunnel junction !DBTJ" configuration,11,12 as depicted in Fig.
1!a". Tunneling I-V or dI/dV versus V characteristics were
acquired while disabling the scanning and feedback controls.
These data were acquired with the tip retracted from the QD
to a distance where the bias predominantly drops on the
tip-QD junction, forming a highly asymmetric DBTJ. In
these conditions, CB !VB" states appear at positive !nega-
tive" sample bias, and the real QD level separations can be
extracted directly from the peak spacings.8,24

RESULTS AND DISCUSSION

The I-V curve in Fig. 1!a" was acquired on an InAs QD,
22 Å in radius. This curve, typical of others, shows a region

of suppressed tunneling current around zero bias, followed
by a series of steps at both negative and positive bias. In Fig.
1!b" we present the corresponding dI/dV versus V , tunnel-
ing conductance spectrum, which is proportional to the tun-
neling density-of-states.25 A series of discrete peaks is
clearly observed, where the separations are determined by
both the single-electron charging energy and the discrete
level spacings in the QD. Also presented in the figure is a fit
to the orthodox model for single-electron tunneling, which
will be discussed below.
In Fig. 2, we plot a set of tunneling-conductance spectra

acquired on InAs QDs of radii ranging from 35–10 Å. In
Ref. 8, we discussed the detailed assignment of the observed
peaks, and extracted spectroscopic information from these
data. Briefly, on the positive bias side, immediately follow-
ing current onset, we always observed a doublet that we
assign to tunneling through the twofold spin degenerate 1Se
CB state. Then, a larger spacing is observed followed by a
higher multiplet, of up to six peaks, that we attribute to the
CB 1Pe state. The negative bias side shows a more complex
structure, reflecting the complicated QD VB level spectrum,3
but in each spectra one can identify two peaks with a larger
separation, from which the spacing between the ground and
first excited VB levels was extracted.

FIG. 1. Tunneling spectroscopy of a single InAs nanocrystal, 22
Å in radius (T!4.2 K). !a" Measured I-V curve !solid line" and the
simulated one !dotted line". The DBTJ configuration and the
equivalent circuit are shown schematically in the insets. !b" Simu-
lated !bottom trace" and experimental tunneling conductance
spectra.

FIG. 2. Size evolution of the tunneling dI/dV vs V characteris-
tics of single InAs QDs displaced vertically for clarity. The position
of the centers of the zero current gap showed nonsystematic varia-
tions with respect to the zero bias, of the order of 0.2 eV, probably
due to variations of local offset potentials. For clarity of presenta-
tion, we offset the spectra along the V direction to center them at
zero bias. Representative nanocrystal radii are denoted. All spectra
were acquired at T!4.2 K.
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Tunable Coulomb blockade in nanostructured graphene
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We report on Coulomb blockade and Coulomb diamond measurements on an etched, tunable
single-layer graphene quantum dot. The device consisting of a graphene island connected via two
narrow graphene constrictions is fully tunable by three lateral graphene gates. Coulomb blockade
resonances are observed and from Coulomb diamond measurements, a charging energy of
#3.5 meV is extracted. For increasing temperatures, we detect a peak broadening and a
transmission increase of the nanostructured graphene barriers. © 2008 American Institute of
Physics. $DOI: 10.1063/1.2827188%

Graphene is a promising material1,2 to investigate meso-
scopic phenomena in two dimensions !2D". Unique elec-
tronic properties, such as massless carriers, electron-hole
symmetry near the charge neutrality point, and weak spin-
orbit coupling3 makes graphene interesting for high mobility
electronics,4,5 for tracing quantum electrodynamics in 2D
solids, and for the realization of spin qubits.6 Whereas diffu-
sive transport in graphene and the anomalous quantum Hall
effect have been investigated intensively,7,8 graphene quan-
tum dots are still in their infancy from an experimental point
of view.1,9 This is mainly due to difficulties in creating tun-
able quantum dots in graphene because of the absence of an
energy gap. Also, phenomena related to Klein tunneling
make it hard to confine carriers laterally using electrostatic
potentials.10,11 Here, we report on Coulomb blockade and
Coulomb diamond measurements on an etched graphene
quantum dot tunable by graphene side gates.12

The nanodevice, schematically shown in Fig. 1!a", has
been fabricated from graphene, which has been extracted
from the bulk graphite by mechanical exfoliation onto
300 nm SiO2 on n-Si substrate as described in Ref. 13. Ra-
man imaging14 is applied to verify the single-layer character
of the investigated devices.15–17 90 nm polymethyl methacry-
late !PMMA" is then spun onto the samples and electron-
beam !e-beam" lithography is used to pattern the etch mask
for the graphene devices. Reactive ion etching !RIE" based
on an Ar /O2 !9:1" plasma is introduced to etch away unpro-
tected graphene. A scanning force microscope !SFM" image
of the etched graphene structure after removing the residual
PMMA is shown in Fig. 1!b". Finally, the graphene device is
contacted by e-beam patterned 2 nm Ti and 50 nm Au elec-
trodes, as shown in Fig. 1!c". A Raman spectrum recorded on
the final device taken at the location of the graphene island is
plotted in Fig. 1!e". It is an unambiguous fingerprint of
single-layer graphene with a linewidth of the 2D line of ap-
proximately 33 cm−1.15–17 The elevated background origi-
nates from the nearby metal electrodes and the significant D
line is due to the edges within the area of the laser spot size
of #400 nm. In addition to Raman spectroscopy, the SFM
step height of #0.5 nm, as shown in Fig. 1!d", proves also
the single-layer character of the graphene flake and shows
that the RIE etching does not attack the SiO2.

The fabricated device consists of two #50 nm narrow
graphene constrictions connecting source !S" and drain !D"
electrodes to a graphene island with an area A#0.06 !m2.
The two graphene side gates !SG1 and SG2" and the
graphene plunger gate !PG" patterned next to the island are
used to electrostatically tune the two barriers and the island,
respectively. For the assignment of the gate electrodes see
Fig. 1!a". All three graphene side gates have been patterned
closer than 100 nm to the active graphene regions, as shown
in Figs. 1!b" and 1!c". An additional back gate !BG" is used
to adjust the overall Fermi energy.

Transport measurements have been performed in a vari-
able temperature He cryostat at a base temperature of
#1.7 K. Before the cool down, the sample has been baked in
vacuum at 135 °C for 12 h. We have measured the two-
terminal conductance through the dot by applying a small
!symmetric" dc or ac bias voltage Vbias, and measuring the
current through the dot with a resolution better than 20 fA.
At high bias !e.g., Vbias=100 mV, not shown", the !back"

a"Author to whom correspondence should be addressed. Electronic mail:
stampfer@phys.ethz.ch.

FIG. 1. !Color online" Nanostructured graphene quantum dot device. !a"
Schematic illustration of the tunable graphene quantum dot. !b" Scanning
force microscope !SFM" image of the investigated graphene device after
RIE etching and !c" after contacting the graphene structure. The minimum
feature size is approximately 50 nm. The dashed lines indicate the outline of
the graphene areas. !d" shows a SFM cross section along a path x $marked in
!b"% averaged over #40 nm perpendicular to the path proving the selective
etch process. !e" Confocal Raman spectra recorded on the final device at the
graphene island with a spot size of approximately 400 nm, clearly proving
the single-layer character of the investigated device. For more information
on the D, G, and 2D !also called D*" line please refer to Ref. 17.
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gate characteristics clearly reveal the charge neutrality point
of the graphene material. Such measurements are used to
adjust the range of the back gate voltage. In the following,
we kept the back gate fixed close to the overall charge neu-
trality point at VBG=−6 V, where the transport can be
pinched off by the two side gates VSG1 and VSG2. At small
bias !Vbias!200 "V", transport is dominated !i" by the two
narrow junctions, where strong transmission modulations
and gap effects appear, and !ii" by Coulomb blockade due to
the charging of the graphene island. Both effects can be seen
in Fig. 2, where the source-drain current is plotted as a func-
tion of the two barrier gate voltages VSG1 and VSG2 for con-
stant Vbias=200 "V. The large scale horizontal and vertical
current modulations can be attributed to either one or the
other narrow graphene constriction, being tuned !almost" in-
dependently from each other. On top, we observe Coulomb
resonances which are associated with charging of the
graphene island and, thus, tuned by both side gate potentials
VSG1 and VSG2 !diagonal lines".

By sweeping VSG1 and VSG2 to a regime where the back-
ground current is significantly suppressed !see white point in
Fig. 2", the plunger gate VPG can be used to trace Coulomb
resonances, as shown in Fig. 3!a". In this configuration of
gate voltages, the peak positions were stable in more than ten
consecutive plunger gate sweeps. Among the regions where
the transport is completely pinched off by the narrow con-
strictions, large scale conductance modulations in the barri-
ers are observed. Nearby and on top of these large features,
clear Coulomb peaks are measured #see e.g., Fig. 3!b", which
is a close-up of Fig. 3!a"$. The period of the Coulomb oscil-
lations measured over 18 consecutive peaks is #V̄pp
%18.2 mV, as shown in Fig. 3!c". There are no systematic
peak spacing fluctuations and the observed deviations might
be influenced by the underlying transmission modulation in
both narrow constrictions. However, the distribution of the
nearest-neighbor spacing of the Coulomb oscillations is sig-
nificantly larger than expected for purely metallic single-
electron transistors.18

Coulomb diamond measurements,19 i.e., measurements
of the differential conductance !Gdiff" as function of symmet-
ric bias voltage Vbias and plunger gate voltage VPG, are shown
in Fig. 4. The elevated background at the left and right sides
is due to barrier dependent conductance modulations, as
shown in Fig. 3!b". Please note that within the swept plunger
gate voltage range, no charge rearrangements have been ob-

served. From the extent of the diamonds in bias direction, we
estimate the charging energy of the graphene dot to be EC
%3.5 meV. This charging energy corresponds to a capaci-
tance of the dot C=e2 /EC%45.8 aF. The lever arm of the
plunger gate is $PG=CPG /C%0.19. The electrostatic cou-
pling of all other lateral gates was determined19 to be CSG1
%3.9 aF, CSG2%5.9 aF, and CPG%8.7 aF. The extracted
back gate capacitance CBG%18 aF is slightly higher than the
purely geometrical parallel plate capacitance of the graphene
island C=%0%A /d%7.4 aF. This is not surprising since &A
%d, where A is the area of the graphene island and d is the
gate oxide thickness. A screened Hartree approximation can
easily account for a factor 2.20

FIG. 2. Source-drain current as a function of the two barrier gate voltages
VSG1 and VSG2 for constant bias Vbias=200 "V. The dashed lines indicate
transmission modulations and oscillations attributed to the graphene con-
strictions !horizontal and vertical lines" and to the island !diagonal line".
Measurements are preformed at VBG=−6 V and VPG=0 V.

FIG. 3. Source-drain current through the graphene nanostructure as function
of the plunger gate voltage VPG. !a" Clear Coulomb resonances are observed
on top and next to the large scale conductance modulations. !b" shows a
marked close-up of !a", and in !c" the peak spacing is plotted for 18
consecutive peaks. Measurements are preformed in the dot configuration:
VBG=−6 V, VSG1=25 mV, and VSG2=−510 mV.

FIG. 4. !Color online" Coulomb diamonds in differential conductance Gdiff,
represented in a logarithmic color scale plot !dark regions represent low
conductance". A dc bias Vbias with a small ac modulation !50 "V" is applied
symmetrically across the dot, and the current through the dot is measured.
Differential conductance has been directly measured by a lock-in amplifier.
The charging energy is estimated to be %3.6 meV from this measurements.
Measurements are preformed in the dot configuration: VBG=−6 V,
VSG1=25 mV, and VSG2=−510 mV.
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of fabrication [4]. The drawback is an increasing sensitivity
of the confinement potential imposed by the control gate
to impurities and roughness, and a consequent impact on
the electronic shell structure of the quantum dot. In the
past, some approaches for creating single electron silicon
quantum dots have been explored, including the employment
of a gate induced two-dimensional electron gas (2DEG)
at the Si/SiO2 interfaces [5], global gate controlled edge
roughness of an ultra-small nanowire [6], local gate equipped
underlap geometry where the gate is not state-of-the-art and
consequently enforces the use of large gate voltages [7],
triple-layer gate stacks [8] and Si/SiGe modulation-doped
heterostructures [9].

Our approach consists in confining electrons in a well
defined bilateral doping modulation. Indeed barriers are a
consequence of undoped silicon below spacers which are on
both sides of the gate [10]. In the past, this approach has been
exploited to fabricate compact double and triple quantum dots
realized with only two gates [11]. The two main advantages
are on one hand its compactness compared with previous
state-of-the-art works on Si including an additional upper
gate [12], and on the other the detection of a clear single
electron regime.

The use of CMOS technology in quantum dot fabrication
has the benefit of reproducibility and reliability, as well as the
co-integration of quantum circuits with traditional CMOS.

In section 2 the fabrication of the CMOS device is
illustrated, while in section 3 the simulation of electron
confinement is discussed. In section 4 the quantum transport
obtained in the 20 ⇥ 20 nm2 samples at the temperature
T = 4.2 K is presented.

2. Fabrication of the devices

For the purposes of repeatability and reliability our
metal oxide silicon SETs (MOSSETs) are built within a
pre-industrial fully depleted silicon on insulator (FDSOI)
technology on 200 mm wafers. Only a few modules of the
device are slightly modified, such as the gate stack and the
source/drain (S/D) implantation. Since we aim to scale our
MOSSETs down to 20 nm in both gate length and gate width
dimensions, electron beam lithography was used for active
and gate level patterning. Dots as small as 20 ⇥ 20 ⇥ 10 nm3

are achieved with this process.
The undoped SOI layer is thermally thinned down to

reach a silicon thickness of either 13 or 20 nm, depending
on the sacrificial oxide thickness. After the first e-beam
lithography treatment, the SOI layer is etched to pattern
the active area above the buried oxide (BOX). As a result
of these first process steps a silicon nanowire is obtained.
This mesa isolation allows us to have wrapping gates on
three sides of the nanowires. The silicon nanowire is then
thermally oxidized on the top and sides, resulting in a 4 nm
thick SiO2 formation and a final silicon thickness TSi =
10 nm (17 nm) prior to polycrystalline silicon deposition. A
second e-beam lithography treatment is performed to define
the tri-sided gate. Self-aligned silicon nitride spacers are
formed on both the source and the drain side of the gate

Figure 1. (a) TEM micrograph of a typical scaled MOSSET
adapted from the FDSOI technology. The polysilicon gate length is
22 nm long, and dot thickness is 17 nm (the dot width is not shown
on this view). The SiO2 gate oxide of 4 nm, the nitride spacers of
11 nm and the raised source/drain are also clearly visible.
(b) Scheme of the simulated device. Light-blue represents the
silicon nanowire. The tri-sided gate is highlighted in red whereas
the source and drain contacts are in blue and silicon dioxide is in
yellow. The electron density in the central planes of the nanowire is
reported as color-scaled projections for the case of single electron
occupancy of the dot.

to protect the underlying silicon from the subsequent doping
steps. Epitaxy is then performed to raise the source and drain,
and finally arsenic is implanted at a high dose (leading to a
typical concentration above 1020 cm�3) to create metallic-like
S/D contacts. The resulting junction profile is such that
the device is non-overlapped, i.e. the transistor’s channel is
separated from the source and drain by the small low-doped
region below the spacers. This non-overlapped geometry is
responsible for the SET behavior [10]. Figure 1(a) shows a
transmission electron micrograph of a tri-sided gate nanowire
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MOSSET coming from a wafer used for the morphological
characterization with channel thickness TSi = 17 nm, oxide
thickness Tox = 4 nm and gate length Lg = 22 nm realized
with a process identical to the samples reported throughout
the text.

3. Simulation of the electrostatic confinement

In order to evaluate the confinement of the electrons
induced by the applied electrostatic potential we used a
three-dimensional self-consistent simulator based on current
spin density functional theory (CS-DFT) in the framework
of the NanoTCAD ViDES package [13–16]. This package
solves the many particle Schrödinger equation by means
of CS-DFT, by transforming the many electron problem
into a single electron problem with exchange–correlation
potential. It embraces the local density approximation and
the effective mass approximation with parabolic bands. The
method provides the ground state of the system for each
occupation number N of electrons. They fill the lowest
single-particle Kohn–Sham eigenvalues calculated for each
spin and each pair j = 1–3 of the three 1 valley pairs aligned
to the main directions in k space.

The final shape of the confining potential energy is
reached by self-consistently solving the Poisson equation. The
effective nature of the confinement is due to the combination
of the band alignment between the silicon and silicon dioxide
and of the applied external potentials.

The SET is modeled as a silicon nanowire with length L

along the x direction and with a rectangular section of area
Weff ⇥ TSi on the y–z plane with source and drain contacts
at the head and tail of the nanowire on the top of a silicon
dioxide slab of thickness Tbox (see figure 1(b)). The device
has a tri-sided gate structure and the gate is insulated from the
nanowire with a Tox thick silicon dioxide layer.

The many particle problem is solved in the entire silicon
nanowire and in a 1 nm thick region inside the surrounding
oxide. Potentials to the tri-sided gate, source and drain
regions are applied, whereas a zero electric field z-component
boundary condition is forced at the bottom of the device.
We simulate the electrostatic behavior of the SETs imposing
an effective gate length Lg,eff = 22 nm, an effective width
Weff = 10 nm to take into account the variability of the
lithography process on the nominal length Lg = 20 nm
and both the variability of the lithographic process and the
oxidation reduction on the nominal width W = 20 nm.

In figure 1(b) the electron density in the central planes
of the nanowire is reported as color-scaled planes, showing a
strong confinement in the region under the gate contact biased
at Vg = 26 mV when one electron is in the dot. The first
addition energy E(2,1) which provides the energy separation
between the one-electron state and the two-electrons state has
been calculated. By using the effective size of Lg,eff = 22 nm,
Weff = 10 nm we determined an addition energy of E(2,1) =
17 meV. Note that our simulations take into account all the
couplings of the SET with the gate electrode but also with the
source and drain contacts. Our approach does not take into
account the possible disorder caused by the impurities and the

Figure 2. (a) Differential conductance as a function of Vd and Vg

for a Lg ⇥ W = 20 ⇥ 20 nm2. (b) Conductance at T = 4.2 K and at
T = 300 K (inset) as a function of Vg.

interface roughness, which are expected to further enhance the
confinement of the wavefunction in such small devices.

4. Quantum transport: experimental results

The investigation of the electronic transport through the
devices yields both the electron filling as a function of
the QD gate voltage Vg, as well as the addition energies
E(n+1,n) needed to add the (n + 1)th electron when n

electrons occupy the quantum dot. The characterization at
the temperature T = 4.2 K of several nominally identical
samples like those described in section 2 demonstrate that the
transistors operate as single-electron devices, with relatively
high addition energies.

In figure 2(a) the stability diagram of a typical device with
of Lg = 20 nm and W = 20 nm is shown. The coupling with
the source, drain and gate are Cs = 1.0 aF, Cd = 1.3 aF and
Cg = 4.0 aF, respectively. The lever arm factor, which allows
one to convert the voltage spacing between the peaks into
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