Berry phase manifestation in Landau level offset

graphene

- 'half-integer' IQHE
- Berry phase = π

- true IQHE
- Berry phase = 0

Graphene band structure

Superconductivity

3

Temperature (K)

Superconducting cables in action

Project	Location	Length [m]	Capacity [MVA]	Schedule	Operator
LIPA	Long Island/USA	600	574 (138 kV AC, 2.4 kA)	In operation since 2008	LIPA
AmpaCity	Essen/Germany	1000	40 (10 kV AC, 2.3 kA)	Start of operation 01/2014	RWE
	Amsterdam/NL	6000	250 (50 kV AC)	Proposed	Alliander
St. Petersburg Project	St. Petersburg/Russia	2500	50 (20 kV DC, 2.5 kA)	Start of operation 2015	FGC UES ^a
Ishikari	Ishikari/Japan	2000	100 (± 10 kV DC, 5 kA)	Start of construction spring 2014	City of Ishikari
	Icheon/Korea	100	154 (154 kV AC, 3.75 kA)	Operating since 11/2013	KEPCO ^b
	Jeju Island/Korea	1000	154 (154 kV AC, 3.75kA)	Operation 2015	KEPCO
	Jeju Island/Korea	500	500 (80kV DC)	Operation 2014	KEPCO
HYDRA	Westchester county/USA	170	96 (13.8 kV AC/4 kA)	Start of construction early 2014	ConEdison
	Yokohama/Japan	250	200 (66 kV AC, 5kA)	Operation stopped December	TEPCO ^c
				2013, continuation planned with	
				new high-performance refrig-	
				erator 2015.	
	China	360	13 (1.3 kV DC, 10 kA)	Operation since 2011	IEE CAS ^d
REG ^f	Chicago/US	5 km	to be specified	Planning since 2014	ComEd ^e
Tres Amigas	New Mexico/US		750/5000	Postponed	Tres Amigas LLC

Fig. 2. TEPCO/Sumitomo 66 kV AC HTS test station at Asahi substation in Yokohama/Japan: left image shows the cable with a joint, right image shows the 66 kV AC end stations responsible for the transition from standard conductor to superconductor and from room to cryogenic temperature (2014).

Weak superconductivity

Current larger than Ic, voltage measured

AC current (used to generate mag. field)

Josephson junction subject...

- homogeneous mag. field
- microwave radiation (Shapiro steps)

Current

Quantum dots (QDs)

Fig. 2 Molecular simulation snapshot of a colloidal CdSe NC apped by hexylamine molecules. Colour coding: black, Se; orange, Cd; light blue, C; dark blue, N; white, H; yellow, S; brown, P; red, O. The simulation methodology is described in ref. 3. Coursesy of P. Schapotschnikow (Delft University of Technology, Netherlands).

Colloidal CdSe nanocrystals (NC), diameter 1.7-4.5 nm (left to right) under UV illumination.

3:09

Tunneling current: tip-QD-substrate

Differential conductivity energy level spectroscopy

- non-linear VA characteristics
- clear steps visible at certain voltages
- InAs QD, diameter 4.4 nm

