Four-terminal measurement on a quasi 1D channel

Figure 2 Two- and four-terminal resistances of a ballistic quantum wire. The dashed line shows the two-terminal resistance of the $2-\mu \mathrm{m}$-long central section of the wire versus the voltage applied to the associated gate 2. Gates 1 and 3 are not activated. The solid line shows the four-terminal resistance, $\left(V_{\mathrm{A}}-V_{\mathrm{B}}\right) / I$, versus the voltage applied to gate 2 . Here V_{A} and V_{B} are the voltages at probes A and B respectively and /is the current driven from source to drain. For this measurement, the voltages applied to gates 1 and 3 correspond to a single mode in the wire sections in front of these gates. Measurements were performed at a temperatureof $\theta=300 \mathrm{mK}$ with an excitation current smaller than 1 nA . While the two-terminal resistance moves through the characteristic quantized resistance steps, the four-terminal resistance fluctuates around zero indicating that the inherent resistance of a clean one-dimensional wire is vanishingly small. The small oscillations around zero resistance (from -3.8 V to -4.5 V) suggest that mesoscopic variation of the various transmission amplitudes with the one-dimensional density dominate the resistance in this regime. Indeed a similar, although not identical, pattern is observed upon successive cool-downs of the same device. As expected, similar mesoscopic variations are observed when a magnetic field is applied (see Fig. 3). Inset, probe invasiveness in a quantum wire. Diamonds, the ratio between the four-terminal and two-terminal resistances versus the invasiveness of the voltage probes (see text). Solid line, theoretical prediction of the Landauer-Buttiker model ${ }^{16}$ (see text). All measurements are for singlemode wires.

Coherence length

Fig. 1. Phase coherence length as a function of temperature for an ultrapure gold sample before (\bullet) and after (0) annealing. The solid line corresponds to the theoretical expectation within the AAK picture [30]. Data are taken from Ref. [26].

Weak localisation in a Cr wire

FIG. 7. Resistance as a function of temperature for a dirty wire with $\sqrt{A}=890 \AA . \quad R(12 \mathrm{~K})=58 \mathrm{k} \Omega$.

FIG. 10. Resistance as a function of $T^{-1 / 2}$ for several dirty wires. The data are the same as that shown in Fig. 8. For the sake of clarity some overlapping points have been omitted.
$\Delta R \propto l_{\phi} \propto T^{-1 / 2}$

Aharonov-Bohm effect in a metallic ring

FIG. 1. (a) Magnetoresistance of the ring measured at $T=0.01 \mathrm{~K}$. (b) Fourier power spectrum in arbitrary units containing peaks at h / e and $h / 2 e$. The inset is a photograph of the larger ring. The inside diameter of the loop is 784 nm , and the width of the wires is 41 nm .

