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1 Preliminaries

1.1 Heterostructures and quantum wells

Quasi-2D electron gases (2DEGs) can arise on an interface between semiconductors due to size
quantization (subbands). Whether the quasi-2D character of such a system can be detected or not
depends most importantly on the distance between the quantized energy levels En and the total
concentration of carriers in the 2DEG.

The quantized energy levels are found by solving the Schrödinger equation

−~
2

2m∗
ψ′′
n(z) + V (z)ψn(z) = Enψn(z) (1)

in which the total electric potential V (z) comprises of several parts. The conduction band edge
profile Vb(z) and electric field contributions due to ionized donors Vd(z) are relatively simple to
treat; V (~r) = V (z) however also depends on the electron (charge) density q(~r) = eρ(z)n2DEG

∆Ve(~r) =
q(~r)

ǫ
(2)

that is determined by the (occupied) states ψn(z) according to ρ(z) =
∑

n νi|ψn(z)|2; n2DEG

is the areal density of electrons in each subband (related to the 2D density of states) and m∗

is the electron effective mass. Correlations due to Pauli principle (two electrons with the same
spin cannot be at the same spot at the same time) are accounted for using a local exchange term
Vx(z) = −1.19(e2/4πǫ)(3ρ(z)n2DEG/4π)

1/3 (this is called the local density approximation). This
approximative approach largely ignores the many-body character of the wavefunction describing
many (typically 1011 per square centimetre) electrons and emerges from Hartree-Fock perturbative
evaluation of electron-electron interaction in a 3D electron gas (p. 336 in [1]). The system of
equations (1,2) with V = Vb + Vd + Ve + Vx is typically solved iteratively and resulting subband
fractional occupations νi are called self-consistent solution to Poisson and Schrödinger equations.

Depending on the form of Vb and doping (Vd), heterostructures, quantum wells or superlattices
can be described. Eq. (1) is derived (see Sec. 2.2 of Winkler’s book [35]) within the envelope
function approximation applied to the conduction band in case it is described by a single effective
massm∗ (commonly, this is the Γ6 band in zinc-blende direct-band semiconductors such as GaAs).
Any of the functions ψn(z) should be understood as an amplitude (e.g. within some tight-binding
model) that modulates the Bloch-periodic part of the wavefunction, i.e. the replacement for the
first factor in Ψ(z) = exp(ikz)uk(z) (such Ψ would apply to an infinite periodic system while Eq. 1
is meant to describe e.g. a heterostructure). Alternatively, the following product ansatz can be
considered:

Ψ(x, y, z) = exp(ixkx + iyky)ψ(z)u~k(z)

where u(z) = u(z+a) is the Bloch-periodic part (with lattice constant a) and ψ(z) is slowly-varying
for z/a ∼ 1 (viz envelope).
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2π~
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−1/2 kF /π

Table 1: Density of states g(ε) of free electrons (no spin degeneracy) and electron density n.

n [cm
−2

] µ [cm
2
/Vs]

ZnO/ZnMgO 6× 1011 5500
liquid He 105 − 109 ∼ 106 [30]
Si/H 6.8× 1011 17× 103

MoS2 0.48× 103

graphene 2× 1011 0.2× 106

GaAs/GaAlAs 3× 1011 33× 106 [28, 29]

Table 2: Mobilities in 2D systems.

1.2 Density of states

For a given multiband dispersion, E = Ei(~k), the density of states (DOS) counts the number of
states per small energy interval around energy ε. Because we will now often speak about infinite
systems (in d dimensions) — where states are indexed by the wavevector ~k — DOS is the density
in energy per unit volume and its natural units in solid-state physics are eV−1nm−d . Apart from
the canonical definition g(ε) = V −1dN/dε (N is the number of occupied states with energy less
than ε and we took 3D case for definiteness), there are two other useful equivalent definitions:

g(ε) =
∑

i

∫
d3k

(2π)3
δ
(
ε− Ei(~k)

)
≡

∑

i

∫

FS

dΩ

(2π)3
k3/|~k · ∇kEi(~k)|−1 . (3)

The second expression uses only a double integral over the i-th Fermi surface εF = Ei(~k).

Assuming free electrons in single band, E(~k) = ~
2k2/2m+ ε0, DOS in 1D, 2D and 3D case is

summarized in Tab. 1. At ε = ε0, discontinuities (in value or in derivative) occur and they are
referred to as the van Hove singularities. They are hallmarks of points where dE/dk = 0 in the
band structure.

Density of states is useful to evaluate quantities that depend on ~k only through energy. To name
one of many: number of states with energy less than ε per unit area (i.e. density or concentration
of electrons for a given Fermi level εF = ε) can be calculated using Heaviside function θ(x) = 0/1
for x negative/non-negative.

n =

∫
d3k

(2π)3
θ
(
εF − E(~k)

)
=

∫ ∞

−∞

θ(εF − ε)g(ε)dε =

∫ εF

−∞

g(ε)dε (4)

Corresponding results expressed via Fermi wavevector, E(kF ) = εF , are again shown in Tab. 1.

1.3 Coherence length and mean free path

Mean free path λ is related to mobility through λ = ~kFµ/e. This quantity, however, has a
strictly classical meaning: it is the (mean) distance an electron traverses between two successive
scattering events. In order to get rid of ~, we can write λ = vFµ/em in terms of the Fermi velocity
vF rather than Fermi wavevector kF . Mobilities in specially designed systems (see Tab. 2) can
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be very high compared to usual silicon-based electronic devices. To get a feeling for the orders of
magnitude, consider a rectangular (L × w) MOSFET structure with mobility 100 cm2/Vs where
the thickness of the insulating oxide is a (between the gate and the conducting channel which has
the same thickness, let us say). Switching between ’0’ and ’1’ states of such transistor corresponds
to discharging a capacitor with C = ǫLW/a over a resistor of R = L/(Waσ) where σ = neµ
which takes ∼ RC (more precisely, voltage on the capacitor decays as exp(−t/τ), τ = RC). For
a/L = 0.1, ǫ/ǫ0 = 11 and typical n = 1018 cm−3, the operational frequency f = 1/2πRC is of the
order of GHz.

Now as for the electron wave decoherence, if we blame it on inelastic scattering with phonons,
and assume diffusive motion of the electron, the coherence length (independent of dimensionality)
can be estimated as λφ ≈ λT =

√

4D~/kT . An order-of-magnitude (at best) estimate of the
diffusion constant in a clean silver sample is D = 2

3εF τ/m ≈ 1300 cm2/s (data from Tab. 1.3
and 2.1 in [1] were used) and the corresponding coherence length λφ ≈ 220 nm at liquid nitrogen
temperature. Realistically, coherence length may even exceed 1 µm at low temperatures (see data
in Fig. 7 of Ref. [4] or a more recent review of Webb [5]). It should always be λ < λφ. Coherence is
a more general notion which also applies to other contexts than transport. For example, coherence
time of a qubit is the time over which the full information on the quantum state is preserved. In
suitable systems, it can be significantly more than a second even at room temperature [32].
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2 Classical, semiclassical, and quantum

The three attributes above are often used without having a sharp boundary between the respective
areas in mind. However, thinking about transport, one can roughly get oriented on the following:

• classical transport. Charge carriers (electrons) are treated as charged balls subject to New-
tonian mechanics that typically includes electric and magnetic forces. Electrical current
between A and B is evaluated by counting the number of particles that have travelled from
A to B over a unit of time. This number is multiplied by the (elementary) charge.

• semiclassical transport focuses on the phase space and its occupation described by the dis-
tribution function g(~r,~k, t). In equilibrium, it equals the Fermi-Dirac distribution and out
of equilibrium (e.g. when current-driving electrical field is applied), it is described by the
Boltzmann equation. Summing over the occupied states when out from equilibrium yields
the current (again after multiplication by change).

The Boltzmann equation treats electrons almost as in classical case but: (a) rather than by

momentum ~p, the states are identified by their wavevector ~k = ~p/~, and (b) the relationship
between energy E and p = |~p| may be more complicated than simply E = p2/2m. The

dispersion relation E = E(~k) is typically taken from a pure quantum-mechanical model e.g.
of a crystalline solid. With some exaggeration: semiclassics – classics = quantum dispersion
relation.

• quantum transport requires not only the knowledge of the dispersion relation but also of
the corresponding wavefunctions. Without any need to refer to classical notions (particle =
charged ball), it calculates current as a response to time-dependent perturbation (current-
driving electric fields).

Quite often, all three approaches lead to the same result at the end. A well-known example is
the Drude formula

σ =
n

m
e2τ (5)

which we shall now derive thrice for a 2D electron gas.

2.1 Drude formula (classical)

Among all the assumptions needed here (see [1], Chapter 1, p. 6), let us highlight that electrons
thought to be independent from each other, undergo completely randomizing collisions that occur
on average after time τ .

In absence of magnetic fields, a particle of charge q emerging from the last collision with random
velocity ~v0 at time t = 0 will accelerate according to1 ~F = m~a, i.e. ~v(t) = ~v0 + qt ~E/m. Averaged
over random scattering events (that occur around t = τ on average), the mean particle velocity is

qτ ~E/m and total current (in amperes) from A to B equals q2τ ~E/m times the number of particles
available and divided by the distance from A to B (we imagine that all particles start at A at
the same time and ask how long they need to travel to B). Recast in terms of current density ~j
(in Am−d+1 for d-dimensional system),

~j =
n

m
e2τ ~E , (6)

where n is the charge carrier concentration in m−d (and we inserted q = −e for electrons). Obvi-
ously, the conductivity (in inverse Ωmd−1) of Eq. (5) is recovered for any number of dimensions
at once.

1Conventions: electric field ~E points from the positive pole to the negative one. Electron charge is q = −e < 0
(like in [1]!). Current flows in the same direction as positively charged particles, ~j = nq~v (opposite to the motion
of electrons).
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2.2 Drude formula (semiclassical)

To cheat as little as possible, we should start with a Hamiltonian. Consider Ĥ = p̂2/2m∗ in two

dimensions; the corresponding dispersion relation reads E(~k) = ~
2k2/2m∗ with effective mass m∗

and k = |~k|. At this point, we have provided information about the (possibly complicated) band
structure that had to be obtained from quantum mechanical calculation. It is the approximation
we chose that m∗ replacing the vacuum electron mass is the only remnant of this complexity.

Boltzmann equation for the ~k-indexed states reads ∂g/∂t + (∂g/∂t)drift = (∂g/∂t)scatt —
in-flow of particles due to drift or explicit time dependence (’source term’, ’adding particles by
hand’, for instance photoexcitation) equals the out-flow due to scattering. In a steady state (and
no externally driven excitation, ∂g/∂t = 0), homogeneous system (∂g/∂xi = 0), linear response

to ~E, and relaxation time approximation (the collision part approximated as shown on the r.h.s.
below), this transforms into

−∂f
∂ε
~v · q ~E = −g − g0

τ
. (7)

Here g0(~k) = f
(
E(~k)

)
is the equilibrium (i.e. Fermi-Dirac) distribution and τ is the phenomeno-

logical relaxation time. At this point, we introduce the chemical potential µ (appearing in f) and
set it for this moment equal to the Fermi level εF . It should be noted that in obtaining Eq. (7),

(a) the dispersion relation has been employed (~v = ~
−1∂E/∂~k) together with (b) semiclassical

equations of motion ~~̇k = q ~E.
The unknown in Eq. (7), g can readily be expressed (g = g0 + τ · . . .) and it represents the

distribution function (occupation of states) of a system that has been driven out from equilibrium

by a weak electric field ~E. Current (density) calculated as

~j =

∫
d2k

(2π)2
q~v(~k)g(~k) = q2τ

∫
d2k

(2π)2

(

−∂f
∂ε

)

~v(~v · ~E) (8)

turns out to be proportional to ~E times a second-rank tensor whose xx component equals

σxx =
e2

m∗
τ
1

4π

2m

~2
εF . (9)

Making use of the 2D relation n = k2F /(4π), we once again recover the Drude formula (5). The
derivation in 3D goes by analogy, it yields vaguely speaking a different result than Eq. (9) (it

contains ε
3/2
F ) which however transforms again into the same Drude formula as in (5) if we express

it in terms of n rather than εF .
Relaxation time can be calculated using the (modified) Fermi golden rule

1

τ(~k)
=

2π

~
ni

∫
d3k′

(2π)3
|Mkk′ |2(1 − cos θkk′ )δ

(
E(~k)− E(~k′)

)
(10)

whereMkk′

is the matrix element of the single impurity potential between the state before (~k) and

after (~k′) scattering and ni is the density of impurities. The factor 1 − cos θkk′ makes backward
scattering more important than forward scattering since the latter should not impede current flow
much (cos θkk′ = ~k · ~k′/|~k||~k′|). ’Original’ Fermi golden rule is written without this factor and
it gives the so called quantum relaxation time as opposed to the transport relaxation time of
Eq. (10). The ~k–dependence of τ is usually neglected and for some special cases (spherical Fermi
surface, isotropic scatterers) is even absent.

For so called uncorrelated short-range scatterers, V (~r) =
∑

i V0δ(~r − ~ri) placed at random
positions {~ri}, Eq. (10) gives 1/τ ∝ niV

2
0 g(εF ) where g(εF ) is the density of states at the Fermi

level.
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2.3 Drude formula (quantum)

The standard tool to evaluate conductivity quantum-mechanically (QM) is the Kubo formula
(see [2] Ch. 3, p. 165) that e.g. determines the linear response of current to time-dependenent

electric field ~E(~q, ω) in terms of a current-current correlator.2 By carefully taking the static limit
(ω, ~q → 0 ), we obtain

σxx(εF ) =
π~e2

A
Tr v̂xÂ(εF )v̂xÂ(εF ) (11)

where Â(z) =
(
Ĝ−(z)− Ĝ+(z)

)
/(2πi) is the spectral function (to be imagined as an almost-delta-

function of εF − Ĥ) and Ĝ±(z) are the Green’s functions (z − Ĥ ± iε)−1. The imaginary part of
self-energy, ε corresponds to ~/2τ (spectral broadening3 ) and its real part is disregarded for now.

To evaluate the trace in Eq. (11) we choose the basis of eigenstates to Ĥ , i.e. 〈ψ|~r〉 = exp(i~k · ~r),
and use the magic formula4 δ(x)δ(x) ≈ (2πε)−1δ(x) ≡ (2τ/h)δ(x). In a 2D system of area A, we
get

σxx =
e2

A
τ

∫
d2k

(2π)2
〈ψ|v̂xδ(εF − Ĥ)v̂x|ψ〉 =

e2

m∗

τ

4π

∫ ∞

0

dε δ(εF − ε)
2m∗

~2
ε

which transforms into Eq. (9) and hence we have again obtained the Drude conductivity (5) of a
free 2D electron gas.

Broadening of the spectral function can be evaluated as the imaginary part of the self-energy
Σ (rather than ε, it is usually denoted by Γ). From the Dyson equation (see p. 88 and 200 in [2])
〈G〉 = G0 + G0Σ〈G〉 for clean-system Green’s function G0 and dirty-system 〈G〉 averaged over
impurity ensemble configurations, it is possible to express

Γ ≡ Im Σ = 〈V Im G0V 〉 = niV
2
0 g(εF ), (12)

where the last step holds for uncorrelated short-range scatterers. The brackets 〈·〉 indicate aver-
aging over impurity configurations, relaxation time equals ~/2Γ.

3 Magnetoresistance

In zero magnetic field, resistivity tensor ρ is diagonal. That is to say, electric field ~E that arises
when we create current density ~j, will be parallel to ~j since ~E = ρ~j. When magnetic field is
switched on, transversal electric field (EH) appears due to the classical Hall effect hence ~j and ~E
are no longer parallel and ρ must attain off-diagonal components. We now derive these classicaly.

In a very long and narrow stripe (let its width be w), when steady state is reached, current will
be flowing along x with drift velocity vd (j = −nevd). This is only possible when Lorentz force
is fully compensated by EH — its microscopical origin is the following: before steady state was
reached, electrons were deflected towards one of the edges of the stripe; charge inbalance arose
and hence EH became nonzero. We obtain ~EH = −~vd × ~B = ~j × ~B/ne. In terms of the voltage
Uxy measured accros the stripe, Uxy/w = IB/(new) which implies Hall resistance RH = B/ne (in
2D) or RH = B/net (in a 3D stripe of thickness t). Longitudinal voltage will not be influenced
by B (Lorentz force has been compensated) and we may write

~E =

(
ρ0 B/ne

−B/ne ρ0

)

~j. (13)

2One of the currents has a clear origin: we are interested in current response. The other current comes from
the term ~A ·

~j that describes the force exerted by ~E = −∂ ~A/∂t on electric charge; this ~A ·
~j corresponds to ~E · ~v in

Eq. (7).
3To see this, plot the (expectation value of) spectral function Â as a function of z for a system with single energy

level at ε0. It is a Lorentzian with FWHM 2ε = ~/τ . Beware of the slightly confusing notation: ε is the broadening,
not to be confused with the line position ε0, Fermi level εF or the Fermi-Dirac function variable in df/dε.

4Reasoning behind is based on taking (ε/π) · (x2 + ε2)−1 = δε(x) as an approximate expression for Dirac delta
distribution (lim δε = δ). Just as it holds

∫
δε(x)dx = 1, we then require

∫
c[δε(x)]2 = 1 and find c (which however

depends on ε), that makes lim c[δε(x)]2 = δ(x).
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Conductivity tensor σ is simply the inverse of ρ and it has the same form as what is implied by
Chamber’s solution[3] to the Boltzmann equation.5 Details of this calculations are given in Ref. [1]

(p. 248), we only sketch the main steps here. When evaluating g(~k, t), we follow trajectory of the

particle that will occupy the state ~k in time t. This non-equilibrium and equilibrium occupation
numbers will be denoted by g(t) and g0(t). It holds

g(t) = g0(t)−
∫ t

−∞

dt′P (t, t′)
dg0(t

′)

dt′
(14)

where P (t, t′) is the probability that the particle won’t suffer any scattering between t and t′ (and
t > t′). In the RTA, this probability is exp(−(t − t′)/τ). We then insert the drift and diffusion
terms of the Boltzmann equation for dg0(t

′)/dt′, i.e. the same terms that produced the l.h.s. of
Eq. (7) and finally obtain

g(~k, t) = g0(~k) +

∫ t

−∞

e−(t−t′)/τ

(

−f0
ε

)

~v(~k(t′)) · (−e ~E) . (15)

This is the non-equilibrium distribution function that can be inserted into formula for current (8)

and the proportionality constants between components of ~j and components of ~E are the conduc-
tivity tensor components.

At B = 0, the integral in Eq. (15) simply produces a factor of τ because ~k does not vary much

in time, it only slightly accelerates between ~k and ~k − e ~Eτ between two scattering events. We
are now in the diffusive regime (as opposed to ballistic regime where scattering events are rare),
eEτ ≪ kF , hence we drop the t′ dependence as announced in the footnote before Eq. (14).

On the other hand, for large magnetic fields (the precise condition will be revealed soon),

electron’s ~k will change rapidly in time albeit not in its magnitude. Classically, this corresponds
to the statement that homogeneous magnetic field cannot change particle’s energy (Lorentz force
is perpendicular to velocity) and we will now show how to describe the situation semiclassically
in the language needed for Eq. (15).

What lies at the heart of semiclassical dynamics are naturally equations of motion:

~̇r ≡ ~v =
1

~
∇kE(~k) , ~~̇k = q( ~E + ~v × ~B) . (16)

Insert the first equation into the second one and what you then have to face is a system of two
differential equations for kx(t) and ky(t) provided that we (for the sake of simplicity) put kz(t) ≡ 0.
For zero electric field, these equations can be readily solved and yield (kx, ky) = k0(cosωt, sinωt)
where ω = eB/m and k0 is determined by the initial condition. Being interested in states that
determine system’s transport properties, we will take k0 = kF .

This solution of Eq. (16), inserted into Eq. (15) and having evaluated the time integral, the non-
equilibrium distribution plugged into Eq. (8) produces the current in linear response to electric
field (and under arbitrary B). If we carried out the calculation for electric field along x, we
will nevertheless find nonzero current along both x and y hence the conductivity tensor will be
non-diagonal. In particular, σxx = jx/Ex and σxy = jx/Ey. The whole tensor assumes the form

σ =
σ0

1 + (ωτ)2

(
1 −ωτ
ωτ 1

)

(17)

where σ0 is the Drude conductivity. As promised, the inverse of σ in Eq. (17) exactly equals the
classical result for resistivity in Eq. (13).

Experiments confirm the behaviour of Eqs. (13,17) in some range of parameters, but under
more “extreme conditions” significant deviations occur as shown in Fig. 1: longitudinal resistance
(ρxx) starts to oscillate and transversal resistance (ρxy) develops plateaus close to quantized values
h/e2 times one over integer number (most prominently even number). The whole range of these
effects is covered by the so-called Shubnikov–de Haas oscillations and the quantum Hall effect.

5Boltzmann equation in the form of Eq. (7) already contains certain assumptions which are violated when
magnetic field is present. In illustrative terms, without magnetic field, electron states accelerated by electric field
do not “move much around” in the phase space.
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Figure 1: Shubnikov-de Haas oscillations in a GaAs/AlGaAs Hall bar containing 2DEG. (Measured
by L. Nádvorńık.)

3.1 Shubnikov–de Haas oscillations

Oscillations shown in Fig. 1 originate from quantum mechanics and cannot be explained by semi-
classical theory of charge carriers as it is. However, we can borrow the substantial quantum feature
of electrons, described by their wavefunction, and explain what corrections to Eq. (17) should be
expected.

What quantum mechanics tells us (and what semiclassical theories do not know6) is that
the wavefunction of an electron must unambiguous that is, if an electron follows a cyclotron
trajectory, its phase must be the same modulo 2π at the beginning and at the end of each period.
Alternatively, one could require the length of the closed trajectory to be an integer multiple of
electron’s wavelength. More precisely, this Bohr-Sommerfeld quantization condition reads

∮

~k · d~r = 2π(n+ γ) (18)

where n is an integer and γ a quantum-mechanical correction (related to the fact that for instance

Landau level energies in units of ~ω are n + 1
2 and not just n; see Sec. 6.3). Inserting ~~k =

m~v− e ~A into the l.h.s. of Eq. (18), we get 2πR2
CeB/~− (e/~)

∮
~A ·d~r = 2SB/(~/e)−SB/(~/e) =

2πSB/(h/e) in terms of magnetic flux Φ = SB passing through electron’s cyclotron orbit. Except
for the corrective term γ, Eq. (18) can be reexpressed as a requirement that Φ be an integer
multiple of magnetic flux quantum Φ0 = h/e.

Let us apply condition (18) to states at the Fermi level. As we could have verified when solving

Eqs. (16), real-space trajectories (cyclotron orbits) correspond to a periodic motion in the ~k-space
via a mapping that consists of a 90◦ rotation and rescaling by7 mω/~. A 2D electron will orbit

around the Fermi surface in the ~k-space and so will a 3D electron which moreover never leaves

6There is not a universal rule of what one should call ”semiclassical theory”. The construction we are just about
to described is sometimes also called ”semiclassical theory”.

7That is: take ~r(t), multiply it by mω/~, rotate it and you get ~k(t).
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one single plane in the ~k-space that is perpendicular to ~B (3D electron thus remains confined to

a section of the Fermi surface in the direction ⊥ ~B). Owing to the rescaling, Eq. (18) can be
rewritten as

1

B
=

2πe

A~
(n+ γ) (19)

where A is the area of the Fermi surface (section). Whenever this condition is violated, the state
at the Fermi energy is quantum-mechanically forbidden. In 2D, the density of states (DOS) at
such Fermi energy (or equivalently, carrier concentration) should be zero, in 3D the corresponding
Fermi-surface section does not contribute to the DOS. Lowered DOS will make the conductivity
drop, as demonstrated in Eq. 21, and oscillations in ρxx arise which are periodic in 1/B. If we
measure their period in 1/B, the area of the Fermi surface may be inferred and hence also the
total density of carriers.

3.2 Selected other types of magnetoresistance

Except for SdH oscillations, where can other deviations from Eq. (13) come from? Weak local-
ization is also an example of a magnetoresistive effect. There is however a whole myriad of other
reasons why resistance may depend on magnetic field.

3.2.1 Geometrical magnetoresistance

A very common reason for the resistance to depend on magnetic field is that the current lines
bend within a specific conductor geometry, depending on B. To find out how we have to find
electrostatic potential in the sample by solving Laplace equation ∆V = 0 and combine it with
~j = σ∇V where σ is given by Eq. (17). Here, boundary conditions play a crucial role: they
may be either ~n · ~j = 0 (insulating surface defined by its normal vector ~n), V equal to constant
(equipotential surface, i.e. an ideal metallic contact) or possibly more complicated.

Two good examples which can be solved without involved numerical calculations are a very
narrow conducting channel (such as a Hall bar) and a Corbino disc (area between two concentric
rings which represent contacts) or its non-periodic modification (infinite slab). Concisely summa-
rized, the current lines will be mostly parallel to the Hall bar while equipotentials will be parallel
to the slab. Because of ~j = σ∇V , the two (equipotentials and current lines) will not be perpendic-

ular, the angle between ~E and ~j being called the Hall angle. Resistance of such a device (voltage
drop between contacts divided by current) turns out to be independent from B for the Hall bar
but it equals (1 +ω2τ2)l/wσ0 for a 2D slab of width w and thickness l. Several more complicated
situations are shown in Fig. 2.

3.2.2 Multi-band magnetoresistance

So far, we only considered systems with a single band of charge carriers described by dispersion
E(~k). Conductivity in such a system given by Eq. (17) inverted into resistivity yields constant
(B-independent) ρxx. If more bands cross the Fermi level then individual conductivities simply
add but the miraculous single-band property of ρxx is lost and magnetoresistance arises.

It is an instructive exercise to calculate ρxx for two bands with equal carrier concentrations
n1 = n2 and different mobilities µ1 > µ2. Using electron mobility that fulfils σ0 = neµ, Eq. (17)
can be rewritten as

σ1 =
n1eµ1

1 + (µ1B)2

(
1 −µ1B

µ1B 1

)

(20)

for the first band and an analogous expression describes σ2. In the limit µ1B ≪ 1, the diagonal
components of the inverse of σ1 + σ2 acquire a positive correction to 1/(n1eµ1 + n2eµ2) which is
proportional to B2. [6]
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Figure 2: Realistic current profiles (red lines) and equipotentials (dense blue/magenta lines) in a
finite Hall bar. (note that µB = ωτ) Courtesy of V. Novák.

3.2.3 Superlattices

A large class of magnetoresistive phenomena can appear due to broken translational symmetry
of the system. Apart from the already mentioned geometrical magnetoresistance (i.e. cutting a
finite piece from an infinite 2DEG) this can happen by imposing a periodic external potential on
a ∼ 10 to 100 nm scale (superlattice) as it can be achieved by various methods, most prominently
by optical or electron lithography. Possible effects in a 2DEG include

• Weiss oscillations that occur under 1D modulation [8]. They result from commensurability
of the classical cyclotron radius (of electrons at the Fermi level) with the potential period a;

• Hofstadter butterfly spectrum in 2D superlattices manifesting8 itself in non-monotonous
ρxy [9]. Here the commensurability occurs between a and the magnetic length ℓ0 =

√

~/eB;

• magnetic breakdown which is a term used to describe oscillatory ρxx appearing even in sit-
uations where electrons do not follow closed orbits (and hence the Bohr-Sommerfeld quan-
tization cannot be applied as it was in a translationally invariant 2DEG). [13] Strongly
modulated 2DEG is a simple model system where this effect can be studied. [12]

3.2.4 Quantum oscillations

To illustrate the connection between conductivity and DOS at the Fermi level, we recall the
semiclassical B = 0 result

σxx = τe2
1

2

∫
d2k

(2π)2
v2(~k)δ(εF − E(~k)) = 1

2τe
2v2F g(εF ) (21)

which is equal to e2τn/m. Here, the DOS is a smooth function of εF , cf. Tab. 1, so there seems
to be no way open to obtain oscillations in conductivity.

The same result as in Eq. (21) can also be derived from the Kubo formula quantum-mechanically
[see Eq. (11) and its subsequent evaluation]. It can therefore be expected that if we perform the
full QM calculation including magnetic field which yields g(εF ) oscillating as a function of B, we

8Note however, that the non-monotonicity alone is not an unambiguous evidence here. Complicated FQHE
(competition between different incompressible states [10]) or an integer QHE in a multi-band system may also
produce dρxy/dB of varying sign. [11]
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recover SdH oscillations and this expectation proves correct [14]. Two factors that can suppress
these oscillations should be mentioned: disorder and temperature. By effectively smearing out the
oscillatory features of the DOS, the SdH oscillations disappear when ωτ & 1 or kT & ~ω.

The extreme quantum limit of the SdH oscillations is the quantum Hall effect.

3.2.5 Resistance of magnetic materials

Concisely summarized, efficiency of a system in transporting charge (i.e. conductivity) depends on
three factors: number of states that participate in transport, their group velocity, and scattering.
Any of these can be influenced by magnetic field and magnetoresistance ensues. SdH oscillations
are an example of the first cause (modulation of DOS), classical Hall effect relates to the second.9

The easiest way to influence scattering by magnetic field is to focus on magnetic systems.
The basic idea behind (one type of) magnetoresistance is that the magnetic moments on which
electrons may scatter, are somehow disordered (when temperature is larger than zero and smaller

than Curie temperature) and this disorder can be suppressed by external magnetic field ~B which

helps them align along ~B. Scattering is then reduced. A nice model system where this effect was
observed is the dilute magnetic semiconductor10 (Ga,Mn)As, see for example Fig. 4 in Ref. [15].
Additionally, this magnetoresistance is anisotropic with respect to crystallographic directions and
thus resistance may be varied even by keeping the magnitude of ~B constant and only rotating it
in the sample [16].

Both effects (magnetoresistance and anisotropic magnetoresistance) are frequent in most of
magnetic materials (iron, cobalt, permalloy, . . . )

3.3 Comment on measuring the Fermi surfaces

In a 3D system, the gaps between Landau levels close due to continuous part of the spectrum
corresponding to electron’s motion parallel to the applied magnetic field. No QHE can be expected
but oscillation in the DOS are preserved. From their period, the area of the Fermi surface cross
section can be determined and by applying mangetic field in various directions, the Fermi surface
can often be completely reconstructed.

See Chapter 14 in Ashcroft&Mermin [1].

3.4 Quantum Hall effects

Quantum Hall effects (QHE) are explained in PS’s notes. Here, only some additional remarks
follow.

When Fermi level lies in a gap (where it is pinned to localized states), we find ourselves in an
unusual situation where both (longitudinal) resistivity and conductivity are zero. Indeed,

σ =

(
0 −ne/B

ne/B 0

)

ρ =

(
0 B/ne

−B/ne 0

)

(22)

Theoretically, the zero on diagonal of σ can be understood based on Eq. (21) and the off-diagonal
term using Kubo-Středa formula [7]

σxy(εF ) =
i~e2

2
Tr

[
vxG

+vyA− vxAvyG
−
]
+ e

∂n

∂B

∣
∣
∣
∣
E=εF

where ∂n/∂B = νe/h as long as the Fermi level does not leave the gap between Landau levels
(and because the spectral functions A make the other term vanish, we are left with σxy quantized
to integer multiples of e2/h). This brings us to the issue of the origin of the gap: zero resistivity

9This analysis should not be taken too strictly, some effects may not fit in any of the classes (e.g. quantum
interference such as the weak localization).

10This material can be viewed as the usual GaAs with a small part of gallium substituted by manganese atoms
which carry magnetic moment.
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observed in experiments at integer values of ν can be attributed to the energy gap between LLs
which are found in the spectrum of a single electron confined to a plane and subject to magnetic
field. However, where can possibly the gap come from at fractional fillings?

The answer (proposed probably by Robert B. Laughlin) is — from electron-electron interac-
tions. Full many-body Hamiltonian of Ne electrons in magnetic field reads

H =
1

2m

Ne∑

i=1

(
~pi − q ~A(~ri)

)2
+

e2

4πε

∑

i<j

1

|~ri − ~rj |
(23)

where ε is the material permittivity (e.g. ≈ 12.7ε0 in GaAs). While the second term makes any
hope for exact solution of Schrödinger equation almost equal to zero (but not quite), we will argue
below that it is indeed responsible for the occurence of a gapped ground state at fractional filling
factor ν = 1/3.

Before we do that, let us first consider scaling of eigenvalues of this H with magnetic field.
Assume constant11 Ne and consider fixed filling factor ν. While the first term will be still varying
∝ B (just as individual LLs), the second term will be proportional to

√
n and that is in turn

∝ ℓ0 ∝
√
B. We can therefore expect that in very strong magnetic fields the basic structure

of spectrum will be composed of Landau levels whose macroscopic degeneracy will, however, be
lifted. On the other hand, if the first term of (23) is not much larger than the interactions (which
occurs for weaker magnetic fields) LLs will completely disappear and we obtain a complicated
interaction-dominated spectrum. This situation is called (strong) “LL mixing”.

Reasons that (probably) led Laughlin to guessing his WF are summarized in Ref. [17] (see
p. 31 of the electronic version).

Quasiparticles with fractional charge: experimental evidence of current being carried by par-
ticles with charge e/3 is mentioned in slides shown in the lecture.

A good book covering large part of the FQHE is Ref. [18].

3.4.1 Quantum Hall ferromagnets

Consider the situation of integer ν where there are two (nearly) degenerate LLs and below them
ν− 1 completely occupied LLs. The two degenerate LLs then offer 2eB/h single-particle states to
fill with only eB/h electrons (per unit area A) at hand and without taking the electron-electron
interaction into account, this can be done by very many equally good ways. ’Equally good’
means that all of the (2N !)/(N !)2 ways of distributing the N = AeB/h electrons have the same
(minimum) energy.

Electron-electron interaction changes the situation dramatically. In order to maximise the
exchange energy gain, electrons will prefer to have their spins mutually aligned. Also, their
pseudospin

|ψ〉 =
(

cos θ/2
sin θ/2

)

(24)

will be aligned and depending on the nature of the two crossing LLs, an anisotropy energy will be
associated with the choice of θ (states with θ = 0 and θ = π correspond to an electron in the one
or in the other LL, respectively). Within Hartree-Fock approximation and assuming the absence
of LL mixing, this energy is

E(θ) = (−b+ Uρ,σ) cos θ +
1

2
Uσ,σ cos

2 θ (25)

as given by Eq. (3) in Ref. [31]. Splitting of the nearly degenerate LLs is 2b and Uρ,σ, Uσ,σ describe
the electron-electron interaction. For ν = 2, it holds12 Uσ,σ = − 1

16

∫
q3 exp(−q2/2)d2q < 0 and

hence if the first term in Eq. (25) is annulated by tuning b, this is an Ising-type QHF.

11This corresponds to evaluating energy per particle.
12Uρ,σ, Uσ,σ are evaluated from Eq. (4) and Tab. I in Ref. [31]. The appropriate Laguerre polynomials in Tab. I

are L0(x) = 1 and L1(x) = −x+ 1.
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4 Superconductivity

This note should be taken as a context for the discussion of Josephson effects rather than a
thorough introduction to superconductivity. We will largely follow Ref. [20].

Low-temperature (or type-I) superconductivity arises because of the formation of a gapped
ground state consisting of Cooper pairs which are difficult to break and hence scattering is sup-
pressed. Roughly speaking, zero resistance state persists up to temperatures kT ∼ ∆0 and the gap
∆0 is the energy needed to break a Cooper pair. The ground state is described by the BCS theory
of individual Cooper pairs (by L.N. Cooper) that condense into a state with macroscopically many
of them (proposed by J.R. Schrieffer) by virtue of an effective electron-electron interaction due to
phonons (studied by J. Bardeen and D. Pines).

4.1 Cooper pairs

Consider Fermi sea of non-interacting electrons (e.g. Fermi sphere for electrons obeying E(~k) =
~
2k2/2m). Will there be some significant change if electron-electron interactions are switched on?

L.N. Cooper found[21] that the answer is positive under specific circumstances and the system
can lower its energy by forming a pair of electrons outside the original Fermi surface.

Wavefunction of such a pair will be |FS〉 ⊗ |ψ〉 (Fermi sea plus the pair) and 〈~r1, ~r2|ψ〉 =

ψ(~r1, ~r2) = ϕ~q(~r)e
i~q·~R with ~r1,2 denoting the coordinates of the two electrons in the pair and

~R = (~r1 + ~r2)/2, ~r = ~r1 − ~r2. When no current is flowing, ~q = 0, the wavefunction of the pair is a
superposition of states with opposite wavevectors (and opposite spin [23])

ψ(~r1, ~r2) = ϕq=0(~r) =
∑

~k

a~ke
i~k·~r =

∑

~k

a~k e
i~k·~r1e−i~k·~r2
︸ ︷︷ ︸

|~k,−~k〉

(26)

whose coefficients can be found by solving Schrödinger equation. If we measure all energies from

the Fermi level εF , it reads (Ĥ0 + V̂ )|ψ〉 = E|ψ〉 where Ĥ0|ei~k·~r1〉 = ε~k|ei
~k·~r1〉, ε~k = E(~k) − εF is

the single-particle part of the Hamiltonian and V̂ is the (effective) electron-electron interaction.

Inserting Eq. (26) into the Schrödinger equation and comparing the coefficients in front of |~k,−~k〉,
we get

2εkak +
∑

k′

Vkk′ak′ = Eak (27)

where we have abbreviated 〈~k,−~k|V |~k′,−~k′〉 as Vkk′ (we will omit the vector signs henceforth
for brevity). Next, we consider a model interaction Vkk′ = λwkwk′ of strength λ, which allows
scattering of the pairs only outside the Fermi sea (wk = 0 when εk < 0) and later, we will also
make use of the simplifying assumption wk = 0 for εk > ~ω0. Eq. (27) can then be rewritten as
(E − 2εk)ak = λwk

∑

k′ wk′ak′ , or using

C ≡
∑

k′

wk′ak′ also as
λwkC

E − 2εk
= ak. (28)

The second equation in (28) can then be re-inserted into the first one and cancelling C on both
sides, we arrive at

1

λ
=

∑

k

w2
k

E − 2εk
. (29)

Here, we got rid of ak, hence we cannot use this equation to determine the wavefunction in Eq. (26)
but we still can use it to find its energy E. Graphical solution of this equation is shown in Fig. 3.
For arbitrarily weak attractive interaction between electrons (λ < 0), there is always a bound
state (solution with E < 0). This can be the case when electron-phonon interactions are stronger
than the usual electron-electron repulsion.[22]
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Figure 3: Graphical solution of Eq. (29) for negative λ. Wavevectors in the sum are taken to be
discrete but the conclusion about a bound state (solution with E < 0) remains true even in the
limit where k becomes continuous.

4.2 BCS wavefunction

The existence of a state with E < 0 suggests that not only one but more Cooper pairs will
form is the effective attractive interaction is present (the Fermi sea is unstable). A many-body
wavefunction can be written for such a state [23]

|BCS〉 =
∏

k

(uk + vkc
+
k c

+
−k)|vac〉 (30)

in terms of Cooper-pair creation operators c+k c
+
−k and certain numerical coefficients uk, vk. These

coefficients can be expressed (see below) in terms of ∆0 which is in equilibrium just the square
root of Cooper pair density ρ. When current is flowing, ∆0 becomes complex, ∆0 =

√
ρeiφ(r), and

the macroscopically coherent position-dependent phase φ(r) gives rise to the Josephson effects.
Coefficients uk, vk in the BCS wavefunction are normalized to |uk|2 + |vk|2 = 1 and if we take

vk = 1 for εk < 0 and vk = 0 for εk > 0, Eq. (30) recovers the (normal) Fermi sea state. The
relevant states are added to vacuum |vac〉 pair by pair but otherwise, Eq. (30) is then just an
alternative way of writing Πkc

+
k |vac〉 where the product goes over all states with energy less than

EF (εk < 0). Situation is different when the electron-phonon interaction is switched on. By
minimising the energy implied by Hamiltonian Ĥ0 + V̂ , see text around Eq. (27), we arrive at

uk =
Ek + εk

√

∆2
0 + (Ek + εk)2

, vk =
∆0

√

∆2
0 + (Ek + εk)2

(31)

for |εk| < ~ωD while for all other values of k, the values of vk remain 0 or 1 as in the Fermi sea
state. The BCS wavefunction with uk, vk of this form is fundamentally different from the normal
Fermi sea, for example it does not have a sharp number of particles, and it exhibits an off-diagonal
long-range order.

Energy of the BCS wavefunction is lower than that of the Fermi sea by 1
2N0∆

2
0 where N0 is

the density of states at the Fermi level of the normal state. Parameter ∆0 in Eq. (31) is found in
the energy minimisation procedure, ∆0 = ~ωD/ sinh(1/N0|λ|) and E2

k = ε2k +∆2
0.

5 Spin and transport

. . . a very broad topic indeed, only selected effects are discussed.
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5.1 Hanle effect

An analogy of magnetic-field-induced spin precession of a free electron in vacuum can be also
performed in solid state. Such experiments with non-local spin valves were first performed in van
Wees group [33]. The signal is proportional to the spin polarisation that arrives at the second
(’read-out’) electrode by diffusion characterised by D. Probability to travel a distance of L in
such a manner is P (t) = exp(−L2/4Dt)/

√
4πDt where t is the time of travel. At the same time,

resulting spin (its z-component) also depends on t as cosΩLt where ΩL = gBe/2m is the Larmor
frequency. The total signal is then [33]

V ∝
∫

dt P (t)e−t/τsf cosΩLt (32)

where we also account for the possibility of a random spin flip (spin relaxation time τsf ).

6 Miscellanea

6.1 Shot noise

Consider a time-dependent random quantity A(t) and let us define the spectral density of its
fluctuations

SA(ω) = lim
T→∞

〈|ÃT (ω; t0)|2〉
T

where ÃT (ω; t0) =

∫ t0+T

t0

dt eiωtA(t). (33)

We will show that when the quantity in question is electric current (carried by individual electrons
traversing the measurement point at times tn),

A(t) = a
∑

n

δ(t− tn), (34)

i.e. the amplitude of each peak a = e (charge transported by one electron), the spectral density
of current fluctuations is independent of ω at finite frequencies and in particular

SI(ω 6= 0) = eĪ (35)

where Ī = νe is the average current (ν is the average number of tn’s per unit time).
To show that Eq. (35) holds, we use the Wiener–Khinchin theorem (p. 214 in [19])

2πδ(ω − ω′)SA(ω) = 〈Ã(ω)Ã∗(ω′)〉 (36)

where 〈. . .〉 denotes averaging over the randomly distributed {tn}. On the left-hand side of Eq. (36),
we have taken the T → ∞ limit to ÃT (ω; t0) and assume translational invariance in time (inde-
pendence on the starting time of the measurement t0). The Fourier transform of A(t) is

Ã(ω) = af̃(ω)
∑

n

eiωtn

and for f(t) = δ(t), it is f̃(ω) = 1. We proceed by evaluating the right-hand side of Eq. (36)

2πδ(ω−ω′)SA(ω) =

〈

a2
∑

n,n′

eiωtne−iω′tn′

〉

= a2

[〈
∑

n

ei(ω−ω′)tn

〉

+

〈
∑

n

eiωtn

〉〈
∑

n

e−iω′tn

〉]

where we split the n = n′ (first term) from the n 6= n′ cases (second term). Using 〈∑n exp(iωtn)〉 =∫
exp(iωt)νdt = 2πνδ(ω), we can now write

2πδ(ω − ω′)SA(ω) = 2πνa2δ(ω − ω′) + (2πν)2a2δ(ω)δ(ω′). (37)

Let’s focus on ω′ 6= 0. The second term in Eq. (37) then drops out and we obtain SA(ω) = νa2

for ω 6= 0. When A is electrical current, i.e. a = e in Eq. (34), we immediately recover Eq. (35).
Current fluctuations in the (classical) shot-noise regime are proportional to the average current
and the proportionality constant is the charge of individual carrier. If electrical charge were not
quantized, there would be no shot noise.
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6.2 Metal-insulator transitions

Introductory paragraph of a relatively recent article of Aleiner et al. (PRL 114, 076802) illus-
trates pretty well the context: Quantum coherence of electron motion dramatically affects low
temperature phenomena in disordered conductors. Anderson localization is the most profound of
them, but even in the metallic regime, where quantum effects are relatively small, they give rise
to a number of dramatic effects due to their extreme sensitivity to magnetic field and inelastic
processes. Celebrated examples are universal conductance fluctuations (UCF), magnetoresistance
in weak magnetic fields, and Aharonov-Bohm (AB) oscillations in thin mesoscopic cylinders and
rings.

Anderson-type metal-insulator transition (MIT) [34] be explained in the following way. Upon
doping, the T → 0 conductivity of a 3D semiconductor remains zero up to a certain critical dopant
concentration nc which can be linked — at least naively — to the effective Bohr radius aB,eff

by a3B,effnc ≈ 0.053 (Eq. 18.34 in Marder). Above that threshold, σ ∝ (n − nc)
α with a certain

critical exponent.[24] This is an example of insulator to metal transition. In late 1970s, a scaling
argument appeared [25] that while there is such a transition in 3D, ideal 2D and 1D systems
should be always insulating at arbitrarily weak disorder.

6.3 Berry phase

Berry phase is an (indirectly) measurable quantity related to a certain property of wavefunc-
tions which vary across some parameter space. For cyclotron motion described by Eq. (18), this

parameter space is the ~k-space and the property is

~Ω = i〈uk|∇k|uk〉, γB =

∮

~Ω · d~k (38)

where |u~k〉 are the wavefunctions. This relation is derived in Supplement I of Ref. [26] assuming
adiabatic evolution in the parameter space. The Berry phase γB picked up by an electron moving
on a closed path (cyclotron orbit) in the ~k-space can be rewritten as a surface integral of ~F = ∇×~Ω
across the area enclosed by the cyclotron orbit. This property (Berry curvature) is arguably a more

generic choice than ~Ω because it is gauge-independent (it does not change upon transformation

|uk〉 → eiφ(k)|uk〉 where φ(k) is an arbitrary phase which is uniquely defined in the ~k-space).
Nevertheless, whatever choice we make, γB is also gauge-independent.

The way to (indirectly) measure γB is afforded for example by Shubnikov-de Haas oscillations.
Eq. (19) which gives the positions of maxima of conductivity, contains [27]

γ =
1

2
− 1

2π
γB . (39)

Berry curvature ~F is zero for free electrons in vacuum, hence γB = 0, and Eqs. (19,39) then
reproduce the energies of Landau levels E = ~ωc(n+ 1

2 ). On the other hand, multi-band systems
such as graphene (the two important bands are the electron and the hole cones) may in general
have non-zero Berry curvature. The Landau levels in graphene, E = E0

√
n with integer n and

E0 =
√

2e~v2FB bear witness of γB = π.
Aside from cyclotron motion, the effect of nonzero Berry curvature can (and should, in general,

be) included in the semiclassical equations of motion (16). Since the modification reads ~~v =

∇kE(~k) + ~~F × d~k/dt, the Berry curvature is sometimes said to act as a ”magnetic field” in the
~k-space as it resembles the Lorentz force in the direct space.

6.4 Quantum dot in magnetic field

Energy levels in a parabolic 2D quantum dot defined by the confinement potential 1
2mω

2
0(x

2 + y2)
are Enx,ny

= ~ω0(nx + ny + 1). Clearly, the n-th level is n-fold degenerate (e.g. E = 3~ω0 can be
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obtained by three combinations of nx, ny). This degeneracy is lifted by applying magnetic field

En,m = −1

2
m~ωc +

1

2
(2n+ |m| − 1)~

√

ω2
c + 4ω2

0 (40)

These energy levels constitute the so called Fock-Darwin spectrum. In the free-2DEG limit (ω0 =
0), n = 1, 2, 3, . . . counts the Landau levels and the integer m resolves their degeneracy.
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[7] P. Středa, J. Phys. C 15, L717 (1982).

[8] C.W.J. Beenakker, Phys. Rev. Lett. 62, 2020 (1989) and ref. 1 in that paper in particular.

[9] M.C. Geisler et al., Phys. Rev. Lett. 92, 256801 (2004).

[10] J.S. Xia, Wei Pan et al., Phys. Rev. Lett. 93, 176809 (2004).

[11] C. Ellenberger et al., Phys. Rev. B 74, 195313 (2006)

[12] KV et al., Phys. Rev. B 66, 205318 (2002).
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