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We compare quantum Hall systems at filling factors �=2 to �= 2
3 and 2

5 , corresponding to the exact filling of
two lowest electron or composite fermion �CF� Landau levels. The two fractional states are examples of CF
liquids with spin dynamics. There is a close analogy between the ferromagnetic �spin polarization P=1� and
paramagnetic �P=0� incompressible ground states that occur in all three systems in the limits of large and
small Zeeman spin splitting. However, the excitation spectra are different. At �=2, we find spin domains at
half-polarization �P= 1

2
�, while antiferromagnetic order seems most favorable in the CF systems. The transition

between P=0 and 1, as seen when, e.g., the magnetic field is tilted, is also studied by exact diagonalization in
toroidal and spherical geometries. The essential role of an effective CF-CF interaction is discussed, and the
experimentally observed incompressible half-polarized state is found in some models.
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I. INTRODUCTION

The long-range spin order in quantum Hall systems at
integer filling factor can easily be explained in terms of
single-electron Landau levels, and it became common to call
these systems quantum Hall ferromagnets1 �QHF’s�. The
electron-electron repulsive interaction, in particular ex-
change, is known to further stabilize the ferromagnetism.
Given the composite fermion �CF� mapping,2 it was not sur-
prising that ground states �GS’s� with spin order were found
also at fractional filling factors which correspond to an inte-
ger filling factor of CF’s. However, since the interactions
between CF’s are different from the previous case, it was not
clear whether they promote or suppress ferromagnetism.
Moreover, the interaction can be more important in the frac-
tional regime and it might even destroy the ferromagnetism,
especially near a transition between two GS’s of different
order, because it cannot be downscaled as in the integer re-
gime for B→�. The field of fractional QHF’s became par-
ticularly interesting when signatures of states with interme-
diate polarization were experimentally discovered near the
transition.

The mentioned GS transition in systems at filling factor
�=n / �eB /h�=2 occurs when the 0↑ and 1↓ Landau levels
�LL’s� cross.3,4 This happens when we vary the ratio of Zee-
man and cyclotron energies ��� as it is the case with tilting
the magnetic field B, changing the g factor or pumping the
nuclear spins of the host lattice. The 0↑ LL is always full at
filling factor 2, while 1↑ and 0↓ is full and empty for large �
and vice versa for small �. The GS is thus fully spin polar-
ized in the first case and it is a spin singlet in the second
case. The stabilizing effect of interactions implies that the
transition between these two spin-ordered states is abrupt
without any intermediate state when � is varied.

The situation is different at filling factors �= 2
5 and 2

3
which both correspond to filling factor �*=2 of composite
fermions �in the latter case, the effective magnetic field act-
ing on CF’s points in opposite direction to B�. The crossing
of 0↑ and 1↓ CF LL’s is now induced by varying the ratio of

Zeeman and Coulomb energy ���B, since the CF cyclotron
energy ���c

*� is determined fully by the electron-electron in-
teraction if LL mixing is neglected. Optical experiments by
Kukushkin et al.5 confirmed the transition from P=0 to
P=1 when � was increased, but they also revealed a stable
intermediate state at P=0.5. Experiments by Freytag et al.6

suggested another intermediate state with P�0.8. On the
other hand, transport measurements7–11showed huge longitu-
dinal magnetoresistance at the transition, which was attrib-
uted to domain formation as an opposite to a homogeneous
incompressible quantum Hall state.

Possible stable half-polarized states in the context of
�= 2

5 and 2
3 were then discussed by Apalkov et al.12 �conden-

sate of L=1 excitons�, Murthy13 using the Hamiltonian
theory14 of CFs �quantum Hall crystals�, Mariani et al.15 and
Merlo et al.16 �pairing of CF’s similar to superconductivity�,
and more recently also by Yang et al.17 �unidirectional CDW
of CF’s�. Spin transitions and instabilities were also studied
in other QH systems including �=2 �Giuliani and Quinn3�,
�=4/3 �one of the authors4� or higher integer fillings
�Rezayi et al.18�.

The purpose of this article is primarily to compare sys-
tems of electrons and composite fermions at the same filling
factor � or �* equal to 2. We numerically investigate the
electrons at filling �=2 versus �= 2

5 and 2
3 . We show that

even though the ground states are analogous, the excitations
are quite different. As a consequence, the physics of the
paramagnet-ferromagnet transition is distinct in the two sys-
tems. A low-energy half-polarized state with antiferromag-
netic spin order is found at �= 2

3 , while domains of P=0 and
P=1 are found at �=2. Next we turn to the concept of com-
posite fermions. It is demonstrated that the effective interac-
tion between the CF’s calculated near �= 1

3 �or �*=1� leads to
very questionable results when applied to �= 2

5 , 2
3 and we

discuss alternative approaches.

A. Exact diagonalization

Each LL is highly degenerate; in a given area it can ac-
commodate �a maximum of� Nm electrons of exactly the
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same energy. When studying the QHF’s, it happens fre-
quently that N particles, electrons or composite fermions, are
to occupy these states. In the absence of interaction this

yields a vast number of degenerate N-particle states: �Nm

N �.
With the particle-particle interaction switched on, no pertur-
bation theory is tractable, as it requires a unique ground state
to start with. The standard way to handle this problem is to
diagonalize the full Hamiltonian with respect to the full basis

of dimension �Nm

N �. The Hamiltonian is comprised primarily

of the particle-particle interaction, and the fundamental ap-
proximation made is that we consider a finite system of N
particles rather than an infinite one.

Within Haldane’s model,19 N electrons are confined to a
spherical surface of radius R. A Dirac monopole of strength
2Q �in units of the elementary flux quantum hc /e� in the
center acts as a source of radial �i.e., normal to the surface�
magnetic field B. The magnetic length scale �0=�hc /eB is
simply related to 2Q and R by R2=Q�0

2.
The lowest �zeroth� LL is a shell of angular momentum

l0=Q and finite degeneracy g0=2l0+1 �with different orbit-
als distinguished by angular momentum projection m�.
Higher LL’s, labeled by n	0, have ln=Q+n and gn=2ln+1.
Including spin, the single-particle states on Haldane sphere
�called “monopole harmonics” �Ref. 20�� are uniquely de-
noted by i= �n ,m ,
�. The dependence of LL degeneracy gn

on the LL index n is a finite-size artifact of spherical geom-
etry, known to cause some inconvenience in calculations in-
volving different LL’s.

The integration of two-body interaction �Coulomb� matrix
elements �i , j �V �k , l	 can be done analytically for an ideally
two-dimensional �2D� system.21 For finite width w of the
electron layer, a fixed density profile �w�z� can be used to
model the lowest subband in the normal direction and the
calculation of �i , j �V �k , l	 involves one-dimensional numeri-
cal integration. These two-body matrix elements are related
to the Haldane interaction pseudopotential �pair interaction
energy as a function of relative angular momentum R �Ref.
22�� through the Clebsch-Gordan coefficients.

A complication with the spherical geometry is the defini-
tion of the filling factor: �=N / �2l0+��. The “shift” � is a
topological quantum number23 which is of the order of 1,
independent of N, but it need not be the same for different
states at the same value of �. Thus, looking for one particular
state at a given filling factor, we must also know its � and
adjust the value of l0=Q properly �simple 2l0=N /� may not
work�. Further implications of this fact are discussed below
�Sec. II A�.

The torus geometry,24,25 or rectangle �a by b� with peri-
odic boundary conditions26 �PBC’s�, is characterized by the
number of single-particle states Nm and aspect ratio �=a :b.
The area of the rectangle is fixed by ab=2
�0

2Nm.27 The
filling factor is �=N /Nm when N electrons are put into the
rectangle. The Haldane pseudopotentials can be defined in
this geometry, too, albeit they no longer correspond to eigen-
states of angular momentum.28

The rotational symmetry of a sphere, implying the angular

momentum �L� � and its z component Lz to be good quantum

numbers, is replaced by the invariance to magnetic transla-
tions in the rectangle with PBC’s �described in detail by
Haldane29�. The corresponding good quantum numbers are
linear momentum along the sides of the rectangle, kx and ky.
These can take on discrete values30 kx= iku and ky = jku� with
i , j=0, ±1, . . . , ± �N /2� and ku=�2
 / �Nm�� /�0 �note that
this depends on the filling factor29�. The magnetic Brillouin
zone is therefore rectangular, and its size is grows with sys-
tem size ���Nm, Fig. 6 in Ref. 28�.

Conceptually, �L� � and Lz of the sphere correspond to �k��
and ky on the torus. Indeed, the exact diagonalization spectra

from both geometries mapped using �L� � / � = �k� �R are in a
good quantitative agreement. However, the representations
of these symmetries do differ in finite systems. The relation-
ship between the orbital degeneracy of a given level and its
�k� � /ku is nontrivial �nonmonotonous and Nm dependent�,
while there are always 2L+1 degenerate states for a level
with total angular momentum L. Moreover, the orbital de-
generacy on the torus, corresponding to rotational symmetry
in an infinite system, can easily be lifted by displacing the
aspect ratio � slightly from 1. We may expect that isotropic
states �e.g., a single quasiparticle on the background of an
isotropic ground state� will suffer less from the finite size
when studied on a sphere. Translationally invariant but an-
isotropic states �such as a plane wave� will be better served
on a torus.

B. Quantum Hall ferromagnets

The basic fact about quantum Hall systems is that in a
situation where N electrons have the freedom to occupy N
places �single-electron orbitals� out of 2N, the ground state
will be unique and it will possess long-range spin order.

Such a situation typically occurs when two Landau levels
are degenerate. The best known example is �=1 at zero Zee-
man energy. Here, N=eB /h electrons �per unit area� can
choose any of 2eB /h single-electron states available in the
degenerate 0↑ and 0↓ Landau levels. The electron-electron
interaction implies31 a unique ground state ��	 which is the
completely filled 0↑ LL or any state R ��	 where R is an
arbitrary rotation of the total spin �leading to an SU�2� sym-
metry of the GS�. The popular explanation of this effect is
the tendency to maximize the gain in Coulomb exchange
energy. All spins in the ground state must be parallel to each
other but the direction can be arbitrary. This renders the
�=1 system to be called a Heisenberg ferromagnet.

Here we investigate another system. A different QHF oc-
curs at �=2 when 0↓ and 1↑ LL are degenerate as it is the
case when the cyclotron energy is equal to the Zeeman split-
ting. The low-lying 0↑ LL is completely filled, and it can be
considered inert. The two crossing levels then again dispose
of 2eB /h single-electron states to be occupied by eB /h elec-
trons. This time, the ground state is twofold degenerate and it
consists either of the completely occupied 0↓ LL or the com-
pletely occupied 1↑ LL �disregarding the occupied 0↑ LL�.
The Z2 symmetry of the GS, regarding the inversion of all
spins in the active LL’s, earned this system the name Ising
QHF.
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To make the 0↓ and 1↑ LL degenerate, the Zeeman energy
has to be adjusted properly to compensate the difference in
their Hartree-Fock self-energies �n
 �unlike �0↓, the self-
energy �1↑ includes exchange with the completely filled 0↑
LL in addition to the cyclotron energy�. Throughout this ar-
ticle we will almost always work at the degeneracy; hence,
Zeeman energy will be included, making the energies of the
two Z2 symmetric ground states �S=0 and S=N /2, when the
occupied 0↑ LL is included� equal. Experimental techniques
to achieve this situation �tilted magnetic field, g factor re-
duced by hydrostatic pressure, etc.� are summarized
elsewhere.28,32

II. POLARIZATIONS FROM 0 TO 1

A. Calculation in terms of electrons

To study the transition between polarized and unpolarized
�*=2 ��=2/3 and 2/5� Jain states on a sphere, we have used
the series of finite systems �N ,2Q� in which these ground
states occur and compared their energy spectra for arbitrary
spin configurations. The relation between N and 2Q for these
Jain states is obtained from the condition of complete filling
of two lowest CF shells at the effective magnetic monopole
strength 2Q*=2Q−2�N−1�. The �=2/5 and 2/3 states occur
for 2Q* having the same or opposite sign to 2Q,
respectively.33,34

Because g0
*=2Q*+1 is different from g1

*=2Q*+3, the po-
larized and unpolarized �*=2 states occur in different sys-
tems �N ,2Q�, corresponding to N=g0

*+g1
* or 2g0

*, respec-
tively. As an unfortunate artifact of the spherical geometry,
the “shift” � is thus different for the polarized and unpolar-
ized states of electrons: namely, �=4 and 3 �at �=2/5� and
�=0 and 1 �at �=2/3�.

The fact that the pair of polarized and unpolarized
N-electron �*=2 �either �=2/5 or 2 /3� states do not occur at
the same value of 2Q prevents transition �on a sphere� from
one to the other through a sequence of spin flips. Beginning
from a polarized state and flipping consecutive K=N /2−1
spins leads to the system containing two CF’s in the n*=1
LL �so-called quasielectrons �QE’s�� in addition to the unpo-
larized state of N−2 electrons. On the other hand, beginning
from an unpolarized state and flipping consecutive K=N /2
spins leads to the system containing two CF vacancies
�called quasiholes �QH’s�� in the polarized state of N+2 elec-
trons.

This discrepancy complicates calculation of the ground-
state energy E at a fixed filling factor ��=2/5 or 2 /3� as a
function of spin polarization P= �N↑−N↓� / �N↑+N↓�=2Sz /N.
In contrast to torus geometry, it cannot be simply calculated
as the ground-state energy for fixed �N ,2Q� as a function of
Sz. This forces one into comparison of energies obtained for
different N or 2Q �problematic in small systems because the
energies of the QE’s and QH’s and of the underlying incom-
pressible Jain state scale differently with N and because the
surface curvature R−1 affecting all interaction energies de-
pends on 2Q�.

Therefore, we have calculated separately the energy as a
function of Sz for only up to a few spin flips away from the

polarized and from the unpolarized �*=2 state �this corre-
sponds to studying the behavior of E�P� separately at
P�1/2 and P	1/2 and leaving the P
1/2 regime un-
known�. Recall, however, that the goal is to find the E�P�
curve at the Zeeman energy EZ=EZ� for which the polarized
and unpolarized Jain states are degenerate, E�0�=E�1�.
Hence, in order to estimate EZ�, one has to know the energies
of both polarized and unpolarized Jain states corresponding
to the same �N ,2Q�. In other words, one needs the estimate
of E /N �energy per electron� in both polarized and unpolar-
ized Jain states in small systems.

Let us explain how it is done on the example of �=2/5
and N=8. To get E�P� at small P we use finite-size calcula-
tion of E�Sz� starting with the unpolarized Jain state at
2Q=17. In the CF picture of this state, 2Q*=3, g0

*=4, and
the N=8 CF’s fill completely the 0↑ and 0↓ LL’s. We calcu-
late E�Sz� in the whole range of Sz. At Sz=N /2, the ground
state contains two QH’s in the polarized Jain state, whose
energy must be subtracted to find EZ� correctly. This is done
easily by replacing the calculated E�Sz=N /2� by the energy
obtained for the polarized Jain state at 2Q=16, rescaled ap-
propriately by �16/17 to account for a different �0. With
such estimate of EZ� we ignore all but the few values of E�Sz�
corresponding to the smallest Sz and recalculate them into
E�P� at small P. The result is plotted in Fig. 1�a�, also show-
ing weak finite-size effects �due to the g0

*�g1
* discrepancy�

at small P, confirmed by comparison with the N=6 calcula-
tion. The calculation of E�P� at large P goes analogously,
starting with the polarized Jain state at 2Q=16 and with the
energy of the unpolarized Jain state needed for EZ� obtained
by rescaling the value at 2Q=17 and Sz=0. Again, as shown
in Fig. 1�b�, comparison of data for N=6 and 8 confirms the
size convergence. The same procedure has been carried out
for �=2/3, with the results plotted in Figs. 2�a� and 2�b�.

While the calculation on a sphere allowed us to find E�P�
only at small or large P �and with some uncertainty in the
estimate of EZ��, one conclusion seems established despite
finite-size problems: E�P� at EZ� increases when P is either
increased from 0 or decreased from 1. In other words, E�P�
at small either P or 1− P is larger than E�0�=E�1�, which
would imply abrupt transition between the polarized and un-
polarized n*=2 Jain states as a function of EZ.

Contrary to the sphere, it is possible to scan the whole
range of P using calculations on a torus �square with periodic

FIG. 1. �Color online� Excitation energy E as a function of
electron spin polarization P, calculated on a sphere for N=6 and 8
electrons, at the values of 2Q corresponding to incompressible
�=2/5 Jain states at P=0 �a� or P=1 �b�.
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boundary conditions�. Choosing �N ,Nm�, the number of
electrons and magnetic flux quanta, the sector of spin
Sz corresponds to filling factor �=N /Nm and polarization
P=Sz / �N /2�.

The principal conclusion is to confirm the observations
made for a sphere: all states with intermediate polarization
0� P�1 are higher in energy than the polarized �P=1� and
the singlet state �P=0�. Systems of different sizes exhibit
qualitatively the same behavior both at filling factors 2

5 and
2
3 , Fig. 3. On a quantitative level and within the small sys-
tems accessible to exact diagonalization, it seems unlikely
that this situation changes if we continue to larger systems.
Nevertheless, the ground-state energies at P=0, 1

2 , and 1
extrapolated to 1/N→0, Fig. 4, give opposite predictions in
this aspect: E� 1

2
�	E�0�=E�1� on a torus while the oposite

was found on the sphere.35 It is, however, important to note
that the extrapolation for E� 1

2
� is based only on two points.

Moreover, it cannot be established reliably whether all these
points correspond to a realization of the same state in an
infinite system.28 On the other hand, it is possible to specu-
late that the P= 1

2 state of �= 2
3 is more stable than other

states with �P− 1
2 � �

1
2—i.e., that there may be a downward

cusp at P= 1
2 , Fig. 3�b�.

B. Composite fermion calculation

In the CF picture,2 the �=2/3 and 2/5 fillings correspond
to the same effective CF filling factor �*=2. The completely
polarized �S=N /2 and P=1� and unpolarized �S= P=0�
states are represented by simple single-particle configura-
tions, with a pair of completely filled CF LL’s: 0↑ and either
1↑ or 0↓. Stability of the corresponding four Jain states
��=2/3 or 2 /5, P=0 or 1� requires a splitting � of the 1↑
and 0↓ LL’s, and their incompressibility is attributed to a
single-particle �cyclotron� CF gap ��c

*.
The intermediate polarizations �0� P�1� are possible for

nearly degenerate CF self-energies �n
 of the 1↑ and 0↓ LL’s
�Sec. I B�. Whether such partially polarized states indeed oc-
cur for some appropriate � depends on the CF-CF interac-
tions within and between the two partially filled CF LL’s. If
they do, their many-CF wave functions, the CF-CF correla-
tions, and possible incompressibility �at least at some of the
intermediate values of P� also depend completely on the
CF-CF interaction. Remarkably, the P=1–0 �paramagnet-
ferromagnet� transition occurs directly for the electrons fill-
ing two LL’s ��=2�,3 but partially polarized states were sug-
gested in a mixed electron-CF system at �=4/3.4

The interaction between two particles �e.g., electrons or
CF’s� in a pair of LL’s �n1 ,
1� and �n2 ,
2� is determined by
Haldane pseudopotential V�R�, defined as pair interaction
energy as a function of relative angular momentum.22 For a
pair of identical CF’s in the same LL �here, 0↓ or 1↑�, the
allowed R’s are odd integers. For two CF’s distinguished by
spin and/or LL index, R can be odd or even. Assigning pseu-
dospins ↑ and ↓ to the CF LL’s 1↑ and 0↓, the CF dynamics
within these two levels is determined by a set of three
pseudopotentials: V↑↑�R� and V↓↓�R� for R=1,3 ,5 , . . . and
V↑↓�R� for R=0,1 ,2 , . . . . Because V↑↑ and V↓↓ describe in-
teraction in different LL’s, they are not equal. Hence, the
CF-CF interaction within these two LL’s is pseudospin asym-
metric.

Knowing V is the key to understanding the CF dynamics
in partially filled shells. The correlations have particularly
simple form when V�R� is dominated by one coefficient. In
this case, the particles interacting through V�R� tend to avoid
the corresponding high-energy pair state.22 More generally,
the correlations depend only on the anharmonic contribution

FIG. 2. �Color online� Same as Fig. 1, but �=2/3 and
N=8,10.

FIG. 3. �Color online� E�P� of the 2
5 and 2

3 systems on a torus.
Here, the singlet and polarized states occur in systems with the
same �N ,Nm�, so that the E�P� dependence shown here is relevant
in the whole range of P. The 1/N→0 extrapolated values are dis-
played by S �sphere� and T �torus�.

FIG. 4. �Color online� Energy per particle of the singlet state,
half-polarized state �half-polarized state�, and the fully polarized
state at �= 2

3 . Different system sizes are shown �N=4–18 electrons�,
extrapolation to infinite systems, 1 /N→0 �only solid points were
used�.

VÝBORNÝ et al. PHYSICAL REVIEW B 75, 045434 �2007�

045434-4



to V�R�, where the harmonic dependence means V linear in
average squared distance �r2	, which corresponds to a
roughly linear V�R�.36

The three CF-CF pseudopotentials V↑↑, V↓↓ and V↑↓ are
known quite well for electron systems near �=1/3, where
they describe interactions among Laughlin QE’s37 or
reversed-spin QER’s.38,39 At long range �large R� these
pseudopotentials must be consistent with Coulomb repulsion
of two fractional charges, −e /3. At short range they can be
obtained from finite-size calculations40–43 and show features
revealing the CF internal structure. Radial charge distribu-
tions of QE and QER’s are presented in Fig. 5�a�. They were
calculated numerically from the exact eigenstates of ten elec-
trons, and they are normalized to ���r�rdr=1/3 �in the
length units of �0�. Comparison with the electron charge pro-
files plotted in the inset shows that, except for the reduced
QE/QER charge, the CF’s and electrons in their lowest LL’s
are very similar �QER and LL0 in Figs. 5�a� and 5�b��, while
the CF’s and electrons in their excited LL’s are quite differ-
ent �QE and LL1 in Figs. 5�a� and 5�b��. In Fig. 5�c� we plot
the QE-QE, QE-QER, and QER-QER pseudopotentials ob-
tained by combining the short-range data from exact diago-
nalization and the electron-electron parameters at long range.
These are the effective interactions that we used in numerics
at �*=2. We also removed the �artificial� discrepancy be-
tween the degeneracy of 0↑ and 0↓ CF LL’s on a sphere by
considering a pair of LL shells with the same angular mo-
mentum l.

The computation consisted of the exact diagonalization of
the V= �V↑↑ ,V↓↓ ,V↑↓� interaction Hamiltonian, separately for
each combination of N↑ and N↓ �CF numbers in the two LL’s�

giving N�N↑+N↓=2l+1—i.e., corresponding to �*=2. Note
that because the length of pseudospin is not conserved by V,
a separate diagonalization is required for each pseudospin
projection Sz= �N↑−N↓� /2, corresponding to different polar-
izations P=2Sz /N of the CF system �or �1+ P� /2 of the
whole electron state�.

The result is the dependence of energy on polarization,
E�P�, tilted �by adding the appropriate linear Zeeman term
EZ�Sz� P� to the E�0�=E�1� situation. In Fig. 6�a� we com-
pare the data for two largest CF numbers we have used,
N=14 and 15. For only one spin flip away from P=0 or 1 is
the ground state at each N a single spin wave. For more than
one spin flip, regular dependence of energy on K /N
 P
rather than on K is evident. In this �P
1/2� regime, E at
each P scales roughly linearly with N and the excitation
energy per particle ��P�=E�K /N� /N becomes a convergent
characteristic of the macroscopic system. The convergence
with increasing the system size is evident, with a continuous
E�P� curve emerging for N→�. The data are polarization
symmetric, E�P�=E�1− P�, reflecting the particle-hole sym-
metry at a half-filling of a pair of shells �note that
E�0�=E�1� is equivalent to �0↑=�1↓�.

The ��P� curve determines dependence of the ground-
state polarization P on the Zeeman gap in tilted-field experi-
ments. To calculate P�EZ�, one must find the minimum of the
total energy �per particle� including a linear Zeeman term,
��P�− P�EZ−EZ�� /2. Clearly, only the convex points of ��P�
can become ground states at the appropriate EZ. A special
case is a convex parabola ��P�= �� /4�P�P−1�, leading to a
linear dependence P�EZ�=1/2+ �EZ−EZ�� /�, with P varying
between 0 and 1 over the EZ range of length �.

FIG. 5. �Color online� �a� Radial charge dis-
tributions of QER and QE at �=1/3—i.e., of the
CF’s in the lowest and first excited LL. �b� Same
for the electrons. �c� CF-CF interaction pseudo-
potentials at �=1/3.

FIG. 6. �Color online� �a� Energy per particle,
�=E /N, as a function of CF spin polarization P,
calculated for N=14 and 15 CF’s at �*=2
using effective CF-CF interactions of Fig. 5
Curves: parabolic fits. �b� Anharmonic coefficient
� /4=� / P�P−1� for 12�N�14 �same units�. �c�
Same as �a� but using fill-dependent CF-CF inter-
actions corresponding to a variable CF charge
�see text�. Curves: polynomial fit.

INTEGRAL AND FRACTIONAL QUANTUM HALL ISING… PHYSICAL REVIEW B 75, 045434 �2007�

045434-5



Figure 6�a� show that ��P� indeed is nearly parabolic, so
in Fig. 6�a� we plot ��P�=��P� / P�P−1� to study the anhar-
monic contribution. Only the result for N=12 �� having a
local maximum at P=1/2� agrees with the earlier
calculation,12 also showing a downward cusp of ��P� at the
half-polarization. Such cusp would lead to an inflection or a
plateau in P�EZ� around EZ�.

The emergence of a plateau would imply that the system
is not affected by infinitesimal variation of the gap �—i.e.,
that it is incompressible and should exhibit quantum Hall
effect. However, our calculations for larger systems seem to
invalidate the prediction of a plateau, showing a disappear-
ance of the downward cusp in ��P� for N	12. In Fig. 6�c�
this is seen as transition from a local maximum to a local
minimum in ��P� at P=1/2. Remarkably, in experiment, the
partially polarized states were only observed over a narrow
polarization range around P=1/2, implying a well-
developed plateau in P�EZ�, in disagreement with the CF
calculation.

C. Composite fermions with fill-dependent charge

We found notable qualitative disagreement between the
numerical results obtained �i� in terms of CF’s at �*=2 and
�ii� in terms of electrons at �=2/3 or 2 /5. The first approach
allows for studying fairly large systems and is free of the
troubling artificial g0

*�g1
* asymmetry on a sphere. However,

the results obtained using the latter, more direct approach
appear more consistent in both used geometries. The main
conclusion, too, seems established despite finite-size effects:
the absence of a ground state of intermediate polarization
between P=0 and 1. While the experiment5 indicates a stable
half-polarized quantum Hall state in apparent contradiction
with approach �i�, the �suggested earlier12� agreement with
approach �ii� is also not convincing in view of our numerics
for larger systems and different geometries.

The most questionable assumption in using the CF model
is that the interactions among the CF’s at �*=2 can be de-
scribed by a set of three two-body pseudopotentials, indepen-
dent of the filling of 0↑ and 0↓ CF LL’s. Consequently, these
pseudopotentials are estimated at �=1/3, for the QE-QE,
QE-QER, and QER-QER pairs �i.e., with only two CF’s
present in the 0↑ or 0↓ LL�. Such approach was proven suc-
cessful only for polarized systems with QE fillings merely up
to �QE=1/3 �corresponding to 1/3���4/11�.44 On the
other hand it is well known that the form of an actual elec-
tron excitation represented by a CF depends on the filling
factor. For example, charge of a Laughlin QE at �=1/3 is
−e /3, while charge of QH at �=2/5 is only e /5.

This implies �significant� reduction of all three CF-CF
pseudopotentials when going from �=1/3 to 2/5, demon-
strated earlier for polarized systems.41,42 Clearly, the pseudo-
potentials determined at �=1/3 cannot be used at �=2/5
with great confidence �note, however, that we have checked
that the results are quite insensitive to the model V’s used, as
long as they retain qualitative behavior at short range�. But
more importantly, it probably also invalidates the concept of
using fixed two-body pseudopotentials V↑↑, V↓↓, and V↑↓,
which are independent of the filling of each of the two CF

LL’s �at least in the whole range between the empty and full
shells�. While the electron system at �=2/3 or 2 /5 may well
be correctly represented by a two-pseudospin fluid of CF’s
with two-body forces, the polarization dependence of the ef-
fective CF-CF pseudopotentials must probably be taken into
account when modelling the P
1/2 regime.

As a test, we allowed for a very simple dependence of the
CF-CF interactions on P. We assumed a linear dependence
of the charge q
 carried by a CF with pseudospin 
=↑ or ↓
on the partial filling �
 of its LL �with q
=1/3 and 1/5 at
N=0 and g*, respectively�. For interaction pseudopotentials
we took V

�

P =q
q
�V

�, with V

� shown in Fig. 5�c�. The
assumption that only the scale of V depends on the LL filling
�with the structure unaffected� is justified by the comparison
of V in polarized �=1/3 and 2/5states.41

The E�K� calculated in this way and plotted in Fig. 6�b�
shows opposite �concave versus convex� behavior to Fig.
6�a� obtained ignoring the fill dependence of V. Again, the
values at only a few spin flips away from P=0 or 1 scale best
with N and K, but a convergent ��P�=E�K /N� /N curve
emerges around P=1/2. Note that though the CF particle-
hole pairs become charged for q↑�q↓, this artifact does not
affect the interesting regimes of P=0 or 1 �exactly� or
P
1/2.

The contrast between E�K� shown in Figs. 6�a� and 6�b� is
an obvious warning that the CF-CF interactions used so far
to model �*=2 may have been not exact enough. To the best

FIG. 7. Spectra of �a� �=1 and �b� �=2 quantum Hall ferromag-
nets. Eight electrons on a torus. The complete degeneracy of
Sz=−S ,−S+1, . . . ,S levels �a� corresponds to a Heisenberg ferro-
magnet; the degeneracy of Sz and −Sz only �b� is proper to an Ising
ferromagnet.
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of our knowledge, the fact that quasiparticles �of, e.g.,
�=2/5� around P=0 and around P=1 might have different
charge and hence different interactions has not been previ-
ously considered. Although the exact particular form of the
interaction, V

�

P , chosen in Fig. 6�b�, does not describe cor-
rectly �*=2 in the whole range of P, it does show that mod-
els of CF-CF interactions used in earlier works �assuming all
quasiparticles to have the same charge for all values of P�
may have given qualitatively incorrect predictions. In
order to determine whether E� 1

2
� is larger or smaller than

E�0�=E�1�, a correct CF-CF interaction must be found.

III. POLARIZATION ONE-HALF

Owing to the Z2 symmetry of the GS, it is customary to
call the systems at �=2 an Ising-type QHF.18 Regarding only
the ground state, the �*=2 ��= 2

5 , 2
3

� systems fall into the
same category. Despite this, there are substantial differences
between the integer and fractional systems. Most impor-
tantly, the possible onset of domain formation in the integer
systems is replaced by an antiferromagnetic ordering in the
systems at fractional filling.

When the two ferromagnetic GS’s are degenerate, the
complete spectrum of the �=2 system, Fig. 7�b�, is symmet-
ric under the spin inversion. While Heisenberg ferromagnets
have a spin wave with vanishing energy at k→0 as the low-
est excitation, Fig. 7�a�, the first excited state of a �=2 sys-
tem has a single spin flip at a finite wave vector k, Fig. 7�b�.
This is in line with Goldstone theorem which requires a con-

tinuous symmetry of the GS, which is SU�2� in the former
case.

The corresponding full spectra of the �*=2 systems, Fig.
8, do not have any obvious structure resembling the one of
�=2, Fig. 7�b�. The spin-inversion symmetry is missing,
Sz=3.0 and Sz=1.0 states have different energies, Fig. 8. No
definite prediction can be made about the spin of the lowest
excitation. Perhaps most importantly, the �= 2

3 and 2
5 spectra

look very differently, Figs. 8�a� and 8�b�, except for the GS
at k=0 and its gap. This is markedly at odds with the picture
of noninteracting composite fermions according to which the
spectra should be the same after rescaling to equal effective
magnetic length.

Let us now concentrate on the sector of Sz corresponding
to equal number of up and down spins in the active Landau
levels. For �= 2

3 , 2
5 using the exact diagonalization with elec-

trons this means Sz=N /4, and for �=2 with the low-lying 0↓
level neglected, it is Sz=0.

The spectrum of a �=2 system has a clear structure, Fig.
9�a�. A �2N−2�-tuplet of states distinguished by

k�r/ku = �0, ± i� or �±i,0�, i = 0,1,2, . . . ,N/2, �1�

is separated from higher excited states. Rezayi et
al.18identified this group as a state with two �Ising� domains
in different system of the same type.

The easiest way to see this is in the spin-resolved density-
density correlation functions.45 Another possibility18 is to re-
place the square in our model by a rectangle with periodic
boundary conditions while keeping its area fixed, Fig. 10. A

FIG. 8. Full spectrum of eight electrons at �= 2
3 and 2

5 �hence
both �*=2� on a torus with Zeeman energy adjusted so that the fully
polarized and spin-singlet incompressible states are degenerate. To
be compared with �=2, Fig. 7�b�.

FIG. 9. �Color online� Spectra of the half-polarized sector in a 2
3

and �=2 systems. The titles give N /Nm, number of electrons N, and
filling factor �=N /Nm. The reference energy is the ferromagnetic
ground state at degeneracy. Small numbers at some of the states are
their linear momenta �kx ,ky� /ku.
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group of N states quickly detaches from the �2N−2�-tuplet
once the aspect ratio �=a :b of the rectangle exceeds �1.2.
These states have k�r /ku= �±i ,0�, i=0,1 ,2 , . . . ,N /2, their de-
generacy improves with increasing �, and the energy
changes roughly proportional to 1/���b. It is very sugges-
tive that the change of energy is mostly due to changing
length of the domain walls which are likely to be oriented
along the shorter side of the rectangle.

This method of investigation is particularly useful for
small systems. It is not possible to distinguish the
�2N−2�-tuplet in a N=6 system ��=2�, because its degen-
eracy is far from being perfect, so that it is mixed up with
higher excited states, Fig. 9�b�. A minute variation of the
aspect ratio, however, separates the N-tuplet of states with
domains oriented parallel to b, Fig. 10�a�. The energy cost of
a domain wall per magnetic length obtained for both system
sizes in Fig. 10 is the same, 0.042e2 /4
��0.

The �= 2
3 system has again a rather different spectrum of

the Sz=N /4 sector, Figs. 9�c� and 9�d� compared to Figs. 9�a�
and 9�b�. No similar grouping of states is obvious. On the
other hand, because six electrons should be in the inactive
CF LL in the N=12 system, for instance, we should also
keep in mind a comparison between the �N ,Nm�= �12,18�
and �6,6� spectra, Figs. 9�c� and 9�b�. In both systems, the

lowest-energy states form a loose group �the marked states in
Figs. 9�b� and 9�c��. This group is separated from other states
by 0.01 �Fig. 9�c�� and 0.04e2 /4
��0 �Fig. 9�b��, which is
slightly more than differences between energies within the
group. The states can be classified by their momentum k�r /ku:
these are �±2,0� , �3,0� for �=2 and �±2,0� , �3,0� , �3,3� for
�= 2

3 plus their x-y symmetric states. For �=2, these states
belong to the �2N−2�-tuplet of the single-domain state.

The k�r /ku= �3,3� state of �= 2
3 , Fig. 9�c�, as the only clear

difference between Figs. 9�c� and 9�b�, cannot be just a
finite-size artifact. Under a slight squeeze, the 2

3 systems re-
veal a clearly different behavior compared to �=2. The
k�r /ku= �3,3� state �marked by A in Fig. 11�b�� quickly be-
comes the absolute ground state of the system, together with
the k�r /ku= �0,3� state �B in Fig. 11�b��. These two states
react to the squeezing very similarly within the range
1.3���2.3. With some experience from �=2 systems, Fig.
10, this range of � may correspond to the lifting of the x-y
degeneracy while still preserving the 2D character of the
system �� not too far from one�. An N-tuplet similar to the
integer filling systems �Eq. �1�� does not appear as far as for
��3. Even though such grouping is possible for larger as-
pect ratios, their eventual relevance would have to be sup-
ported by some strong external anisotropy justifying the
large aspect ratio chosen for the model.

Going from smaller to larger systems, Figs. 11�a� and
11�b�, it seems indeed possible that the two states
k�r /ku= �0,N /2� , �N /2 ,N /2� become the lowest states with
Sz=N /4 when the x-y symmetry is lifted. Namely,
k�r /ku= �0,2� , �2,2� for N=8 and k�r /ku= �0,3� , �3,3� for
N=12 do and kx /ku=2 and 3 are the maximal kx values in the
finite system with N=8 and 12 electrons.

Albeit distinguished by k�r, the two states �A ,B in Fig.
11�b�� look very similar in their spin-resolved density-
density correlation functions

g↑↑�r�� = ���r�1 − r�2 − r���
1↑�
2↑	 ,

as shown in Figs. 12�c� and 12�e�. Other combinations of
spins not shown in Fig. 12 �↓↓, ↑↓� also confirm this conclu-
sion. We observe for both states two vertical stripes
�maxima� in g↑↑�r��, g↓↓�r�� together with the two complemen-
tary stripes �minima� in g↑↓�r��, Fig. 12�d�. This could mean

FIG. 10. �Color online� Energies of the Sz=0 states in the �=2
Ising ferromagnet relative to the ground state �Sz= ±N /2�. The solid
line is a fit c /��, ���b. Right: N=6 �c=0.52�. Left: N=8
�c=0.60�.

FIG. 11. �Color online� Energies of the half-polarized state un-
der varying aspect ratio �Coulomb interaction, 2

3 �. �a� N=8 and �b�
N=12.
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that six electrons in the active CF Landau levels align anti-
ferromagnetically, ↑↓ ↑ ↓ ↑↓, following the elongated side of
the elementary cell.

IV. DISCUSSION AND SUMMARY

With near degeneracy of 0↓ and 1↑ CF LL’s, the quantum
Hall ferromagnet of �*=2 is a unique system: �i� two differ-
ent incompressible CF liquids form for P=0 and 1, �ii� low-
energy excitations of both liquids involve spin, �iii� experi-
ment suggests another liquid at P=1/2, and �iv� in the
P=1/2 liquid interactions among CF’s play a crucial role
�unlike at P=0 or 1 where incompressibility is due to LL
filling and the interactions are not important�. All together,
�v� the concept of incompressible states of correlated CF’s at
these fillings appears even more fascinating than in the states
discovered more recently at �=4/11 or 3/8,46 due to addi-
tional spin freedom.

The comparison of the experimental evidence with our
various numerical calculations demonstrates a lack of under-
standing of the microscopic origin of the half-polarized
quantum Hall states. Yet it appears very difficult to model
these states in finite-size numerics.

In the electron calculation, large Hamiltonian dimensions
make exact calculation of the P=0 state very complicated
already for N	8. For N=8 only two spin flips separate
P=0 or 1 from P=1/2 �the first one being simply a spin
wave�, which might not be enough to capture physics of the
correlated P
1/2 regime. Moreover, calculations on a
sphere suffer from the g0

*�g1
* artifact that further compli-

cates interpretation of the results in this geometry.

In the CF calculation, the result strongly depends on the
choice of effective CF-CF interactions, which are not known
with near enough accuracy. This problem does not appear in
the understanding of Jain states corresponding to filled CF
LL’s �provided these interactions are weaker than ��c

*�, but
here it is essential. In the CF picture, one particle or hole in
a CF LL represents different electronic excitations depending
on the filling of a CF shell. These excitations are only known
in some special cases, when they correspond to, e.g., Laugh-
lin QE’s or QER’s �in an empty CF LL� or Jain QH’s �in a
full CF LL�. Consequently, although it seems plausible that
the low-energy dynamics of the electron states corresponding
to partially filled CF LL’s is generally well described by
two-body effective CF-CF interactions, their pseudopoten-
tials are not well known.

It seems that electron calculations in larger systems �pref-
erably in toroidal geometry� are needed for understanding of
the occurrence and incompressibility of half-polarized
�=2/5 and 2/3 states. More advanced exact diagonalization
as well as Monte Carlo methods must be considered. On the
other hand, further experimental studies are much needed in
view of possible insight into the nature of CF-CF interac-
tions.

In summary, at the level of present computational capac-
ity, the calculations for toroidal and spherical geometry in
Sec. II A indicate that the ferromagnet-paramagnet transi-
tions both at �=2/3 and 2/5 are abrupt. This applies to ho-
mogeneous and isotropic systems. The antiferromagnetically
ordered states at polarization one-half �Sec. III� could in
principle, however, become the absolute ground state near
the transition if a suitable anisotropy or inhomogeneity in the

FIG. 12. �Color online� Correlation functions g�r��=g�x ,y� of the k�r /ku= �3,3� half-polarized state �A in Fig. 11�b��. Under slight variation
of the aspect ratio �=a :b, the conditional probability g↑↑�r�� indicates antiferromagnetic ordering �a�,�b�,�c�, confirmed by g↓↓ and g↑↓ �d�.
The state B from Fig. 11�b� has a very similar structure �e�.
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system is present. These states also constitute probably the
best demonstration of marked differences between fractional
and integer QHF’s. In the latter case, the system splits into
two equally large domains �↑↑ ↑ ↓ ↓ ↓ �.

Note added in proof. The authors regret to have omitted a
reference to Brey and Tejedor 47 who used a microscopic
Hartree-Fock calculation to determine the energy of a do-
main wall in a system of filling factor two. Their value
�0.0448 Coulomb units per magnetic length� is very close to
our result given in Section III..
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