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We compare quantum Hall systems at filling factors ν = 2 to ν = 2

3
and 2

5
, corresponding

to the exact filling of two lowest electron or composite fermion (CF) Landau levels. The two
fractional states are examples of CF liquids with spin dynamics. There is a close analogy between
the ferromagnetic (spin polarization P = 1) and paramagnetic (P = 0) incompressible ground states
that occur in all three systems in the limits of large and small Zeeman spin splitting. However, the
excitation spectra are different. At ν = 2, we find spin domains at half-polarization (P = 1

2
), while

antiferromagnetic order seems most favorable in the CF systems. The transition between P = 0 and
1, as seen when e.g. the magnetic field is tilted, is also studied by exact diagonalization in toroidal
and spherical geometries. The essential role of an effective CF–CF interaction is discussed, and the
experimentally observed incompresible half-polarized state is found in some models.

PACS numbers: 73.43.-f,71.10.Pm,75.10.Jm

I. INTRODUCTION

The long range spin order in quantum Hall systems at
integer filling factor can easily be explained in terms of
single electron Landau levels and it became common to
call these systems quantum Hall ferromagnets25 (QHF).
Electron-electron repulsive interaction, in particular ex-
change, is known to further stabilize the ferromagnetism.
Given the composite fermion (CF) mapping7, it was not
surprising that ground states (GS) with spin order were
found also at fractional filling factors which correspond
to integer filling factor of CFs. However, since the inter-
actions between CFs are different to the previous case,
it was not clear whether they promote or suppress the
ferromagnetism. Moreover, the interaction can be more
important in the fractional regime, and it might even
destroy the ferromagnetism, especially near a transition
between two GS of different order, because it cannot be
downscaled as in the integer regime for B → ∞. The
field of fractional QHF became particularly interesting
when signatures of states with intermediate polarization
were experimentally discovered near the transition.

The mentioned GS transition in systems at filling fac-
tor ν = n/(eB/h) = 2 occurs when the 0↑ and 1↓ Landau
levels (LL) cross8,38. This happens when we vary the ra-
tio of Zeeman and cyclotron energies (θ) as it is the case
with tilting the magnetic field B, changing the g–factor
or pumping the nuclear spins of the host lattice. The 0↓
LL is always full at filling factor two, while 1↓ and 0↑ is
full and empty for large θ and vice versa for small θ. The
GS is thus fully spin polarized in the first case and it is a
spin singlet in the second case. The stabilizing effect of
interactions implies that the transition between these two
spin–ordered states is abrupt without any intermediate
state when θ is varied.

The situation is different at filling factors ν = 2
5

and
2
3

which both correspond to filling factor ν∗ = 2 of com-

posite fermions (in the latter case, the effective magnetic
field acting on CFs points in opposite direction to B).
The crossing of 0↑ and 1↓ CF LLs is now induced by vary-
ing the ratio of Zeeman and Coulomb energy η ∝

√
B,

since the CF cyclotron energy (h̄ω∗
c ) is determined fully

by the electron–electron interaction if LL mixing is ne-
glected. Optical experiments by Kukushkin et al.28 con-
firmed the transition from P = 0 to P = 1 when η was in-
creased, but they also revealed a stable intermediate state
at P = 0.5. Experiments by Freytag et al.22 suggested
another intermediate state with P ≈ 0.8. On the other
hand, transport measurements24,26,27,35,36 showed huge
longitudinal magnetoresistance at the transition, which
was attributed to domain formation as an opposite to a
homogeneous incompressible quantum Hall state.

Possible stable half–polarized states in the context of
ν = 2

5
and 2

3
were then discussed by Apal’kov et al.20

(condensate of L = 1 excitons), Murthy31 using the
Hamiltonian theory32 of CF (quantum Hall crystals),
Mariani et al.29 and Merlo et al.30 (pairing of CFs similar
to superconductivity) and more recently also by Yang et

al.39 (unidirectional CDW of CF). Spin transitions and
instabilities were also studied in other QH systems in-
cluding ν = 2 (Giuliani et al.8), ν = 4/3 (one of the
authors38) or higher integer fillings (Rezayi et al.34).

The purpose of this article is primarily to compare sys-
tems of electrons and composite fermions at the same fill-
ing factor ν or ν∗ equal to two. We numerically investi-
gate the electrons at filling ν = 2 versus ν = 2

5
and 2

3
. We

show that even though the ground states are analogous,
the excitations are quite different. As a consequence,
physics of the paramagnet-ferromagnet transition is dis-
tinct in the two systems. A low-energy half-polarized
state with antiferromagnetic spin order is found at ν = 2

3
,

while domains of P = 0 and P = 1 are found at ν = 2.
Next we turn to the concept of composite fermions (CF).
It is demonstrated that the effective interaction between
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the CFs calculated near ν = 1
3

(or ν∗ = 1) leads to very

questionable results when applied to ν = 2
5
, 2

3
and we

discuss alternative approaches.

A. Exact diagonalization

Each Landau level (LL) is highly degenerate, in a given
area it can accommodate (maximum of) Nm electrons of
exactly the same energy. When studying the quantum
Hall ferromagnets (QHF), it happens frequently that N
particles, electrons or composite fermions, are to occupy
these states. In absence of interaction this yields a vast
number of degenerate N–particle states:

(

Nm

N

)

. With
particle–particle interaction switched on, no perturbation
theory is tractable, as it requires a unique ground state
to start with. The standard way to handle this problem
is to diagonalize the full Hamiltonian with respect to the
full basis of dimension (Nm

N
). The Hamiltonian comprises

primarily of the particle–particle interaction and the fun-
damental approximation made is that we consider a finite
system of N particles rather than an infinite one.

Within Haldane’s model1, N electrons are confined to a
spherical surface of radius R. Dirac monopole of strength
2Q (in the units of elementary flux quantum, hc/e) in
the center acts as a source of radial (i.e., normal to the
surface) magnetic field B. Magnetic length scale ℓ0 =
√

hc/eB is simply related to 2Q and R by R2 = Qℓ2
0.

The lowest (0th) Landau level (LL) is a shell of an-
gular momentum l0 = Q and finite degeneracy g0 =
2l0 + 1 (with different orbitals distinguished by angu-
lar momentum projection m). Higher LL’s, labeled by
n > 0, have ln = Q + n and gn = 2ln + 1. Includ-
ing spin, the single-particle states on Haldane sphere
(called “monopole harmonics”)2 are uniquely denoted by
i = [n, m, σ]. The dependence of LL degeneracy gn on
the LL index n is a finite-size artefact of spherical geom-
etry, known to cause some inconvenience in calculations
involving different LL’s.

The integration of two-body interaction (Coulomb)
matrix elements 〈i, j|V |k, l〉 can be done analytically for
an ideally 2D system3. For finite width w of the electron
layer, a fixed density profile ̺w(z) can be used to model
the lowest subband in the normal direction, and the cal-
culation of 〈i, j|V |k, l〉 involves one-dimensional numer-
ical integration. These two-body matrix elements are
related with Haldane interaction pseudopotential (pair
interaction energy as a function of relative angular mo-
mentum R)4 through the Clebsch-Gordan coefficients.

A complication with the spherical geometry is the defi-
nition of the filling factor: ν = N/(2l0+γ). The “shift” γ
is a topological quantum number46 which is of the order
of one, independent on N but it need not be the same
for different states at the same value of ν. Thus, looking
for one particular state at a given filling factor, we must
also know its γ and adjust the value of l0 = Q properly
(simple 2l0 = N/ν may not work). Further implications
of this fact are discussed below (Sec. II A).

The torus geometry40,41, or rectangle (a by b) with
periodic boundary conditions23 (PBC), is characterized
by the number of single particle states Nm and aspect
ratio α = a : b. The area of the rectangle is fixed by
ab = 2πℓ2

0Nm
21. The filling factor is ν = N/Nm when

N electrons are put into the rectangle. The Haldane
pseudopotentials can be defined in this geometry, too,
albeit they no longer correspond to eigenstates of angular
momentum37.

The rotational symmetry of a sphere, implying the an-

gular momentum |~L| and its z–component Lz to be good
quantum numbers, is replaced by the invariance to mag-
netic translations in the rectangle with PBC (described
in detail by Haldane42). The corresponding good quan-
tum numbers are linear momentum along the sides of the
rectangle, kx and ky. These can take on discrete values19

kx = iku and ky = jkuα with i, j = 0,±1, . . . ,±[N/2]

and ku =
√

2π/(Nmα)/ℓ0 (note that this depends on the
filling factor42). The magnetic Brillouin zone is there-
fore rectangular and its size is grows with system size
(∝

√
Nm; Fig. 6 in Ref.37).

Conceptually, |~L| and Lz of the sphere correspond to

|~k| and ky on the torus. Indeed, the ED spectra from

both geometries mapped using |~L|/h̄ = |~k|R are in a good
quantitative agreement. However, the representations of
these symmetries do differ in finite systems. The rela-
tionship between the orbital degeneracy of a given level

and its |~k|/ku is non-trivial (nonmonotonous and Nm–
dependent), while there are always 2L + 1 degenerate
states for a level with total angular momentum L. More-
over, the orbital degeneracy on the torus, corresponding
to rotational symmetry in an infinite system, can easily
be lifted by displacing the aspect ratio α slightly from
one. We may expect that isotropic states (e.g. a single
quasiparticle on the background of an isotropic ground
state) will suffer less from the finite size when studied on
a sphere. Translationally invariant but anisotropic states
(such as a plane wave) will be better served on a torus.

B. Quantum Hall ferromagnets

The basic fact about quantum Hall systems is that in a
situation where N electrons have the freedom to occupy
N places (single–electron orbitals) out of 2N , the ground
state will be unique and it will possess long–range spin
order.

Such a situation typically occurs when two Landau lev-
els are degenerate. The best known example is ν = 1 at
zero Zeeman energy. Here, N = eB/h electrons (per
unit area) can choose any of 2eB/h single-electron states
available in the degenerate 0↑ and 0↓ Landau levels. The
electron-electron interaction implies43 a unique ground
state |Ψ〉 which is the completely filled 0↑ LL or any state
R|Ψ〉 where R is an arbitrary rotation of the total spin
[leading to an SU(2) symmetry of the GS]. The popu-
lar explanation of this effect is the tendency to maximize
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the gain in Coulomb exchange energy. All spins in the
ground state must be parallel to each other but the di-
rection can be arbitrary. This renders the ν = 1 system
to be called a Heisenberg ferromagnet.

Here we investigate another system. A different QHF
occurs at ν = 2 when 0↓ and 1↑ LL are degenerate as
it is the case when the cyclotron energy is equal to the
Zeeman splitting. The low lying 0↑ LL is completely
filled and it can be considered inert. The two crossing
levels then again dispose of 2eB/h single-electron states
to be occupied by eB/h electrons. This time, the ground
state is twofold degenerate and it consists either of the
completely occupied 0↓ LL or the completely occupied 1↑
LL (disregarding the occupied 0↑ LL). The Z2 symmetry
of the GS, regarding the inversion of all spins in the active
LLs, earned this system the name Ising QHF.

To make the 0↓ and 1↑ LL degenerate, the Zeeman
energy has to be adjusted properly to compensate the
difference in their Hartree–Fock selfenergies Σnσ (unlike
Σ0↓, the selfenergy Σ1↑ includes exchange with the com-
pletely filled 0 ↑ LL in addition to the cyclotron energy).
Throughout this article we will almost always work at
the degeneracy, hence Zeeman energy will be included
making energies of the two Z2 symmetric ground states
(S = 0 and S = N/2, when the occupied 0↑ LL is in-
cluded) equal. Experimental techniques to achieve this
situation (tilted magnetic field, g–factor reduced by hy-
drostatic pressure etc.) are summarized elsewhere37,44.

II. POLARIZATIONS FROM ZERO TO ONE

A. Calculation in terms of electrons

To study the transition between polarized and unpo-
larized ν∗ = 2 (ν = 2/3 and 2/5) Jain states on a sphere,
we have used the series of finite systems (N, 2Q) in which
these ground states occur and compared their energy
spectra for arbitrary spin configurations. The relation
between N and 2Q for these Jain states is obtained from
the condition of complete filling of two lowest composite
fermion (CF) shells at the effective magnetic monopole
strength 2Q∗ = 2Q − 2(N − 1). The ν = 2/5 and 2/3
states occur for 2Q∗ having the same or opposite sign to
2Q, respectively5,6.

Because g∗0 = 2Q∗+1 is different from g∗1 = 2Q∗+3, the
polarized and unpolarized ν∗ = 2 states occur in different
systems (N, 2Q), corresponding to N = g∗0 + g∗1 or 2g∗0 ,
respectively. As an unfortunate artefact of the spherical
geometry, the “shift” γ is thus different for the polarized
and unpolarized states of electrons, namely γ = 4 and 3
(at ν = 2/5) and γ = 0 and 1 (at ν = 2/3).

The fact that the pair of polarized and unpolarized
N -electron ν∗ = 2 (either ν = 2/5 or 2/3) states do
not occur at the same value of 2Q prevents transition
(on a sphere) from one to the other through a sequence
of spin-flips. Beginning from a polarized state and flip-
ping consecutive K = N/2 − 1 spins leads to the system
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FIG. 1: Excitation energy E as a function of electron spin po-
larization P , calculated on a sphere for N = 6 and 8 electrons,
at the values of 2Q corresponding to incompressible ν = 2/5
Jain states at P = 0 (a) or P = 1 (b).

containing two CF’s in the n∗ = 1 LL (so-called quasi-
electrons, QE’s) in addition to the unpolarized state of
N − 2 electrons. On the other hand, beginning from
an unpolarized state and flipping consecutive K = N/2
spins leads to the system containing two CF vacances
(called quasiholes, QH’s) in the polarized state of N + 2
electrons.

This discrepancy complicates calculation of the ground
state energy E at a fixed filling factor (ν = 2/5 or 2/3)
as a function of spin polarization P = (N↑ − N↓)/(N↑ +
N↓) = 2Sz/N . In contrast to torus geometry, it can-
not be simply calculated as the ground state energy for
fixed (N, 2Q) as a function of Sz. This forces one into
comparison of energies obtained for different N or 2Q
(problematic in small systems because the energies of
the QE’s and QH’s and of the underlying incompress-
ible Jain state scale differently with N , and because the
surface curvature R−1 affecting all interaction energies
depends on 2Q).

Therefore, we have calculated separately the energy as
a function of Sz for only up to a few spin flips away from
the polarized and from the unpolarized ν∗ = 2 state (this
corresponds to studying the behavior of E(P ) separately
at P < 1/2 and P > 1/2, and leaving the P ∼ 1/2 regime
unknown). Recall, however, that the goal is to find the
E(P ) curve at the Zeeman energy EZ = E′

Z for which
the polarized and unpolarized Jain states are degener-
ate, E(0) = E(1). Hence, in order to estimate E′

Z , one
has to know the energies of both polarized and unpolar-
ized Jain states corresponding to the same (N, 2Q). In
other words, one needs the estimate of E/N (energy per
electron) in both polarized and unpolarized Jain state in
small systems.

Let us explain how it is done on the example of ν = 2/5
and N = 8. To get E(P ) at small P we use finite-size cal-
culation of E(Sz) starting with the unpolarized Jain state
at 2Q = 17. In the CF picture of this state, 2Q∗ = 3,
g∗0 = 4, and the N = 8 CF’s fill completely the 0↑ and
0↓ LL’s. We calculate E(Sz) in the whole range of Sz.
At Sz = N/2, the ground state contains two QH’s in the
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FIG. 2: Same as Fig. 1, but ν = 2/3 and N = 8, 10.
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FIG. 3: E(P ) of the 2

5
and 2

3
systems on a torus. Here, the

singlet and polarized states occur in systems with the same
(N, Nm), so that the E(P ) dependence shown here is relevant
in the whole range of P . The 1/N → 0 extrapolated values
are displayed by ’S’ (sphere) and ’T’ (torus).

polarized Jain state, whose energy must be subtracted
to find E′

Z correctly. This is done easily by replacing the
calculated E(Sz = N/2) by the energy obtained for the
polarized Jain state at 2Q = 16, rescaled appropriately
by

√

16/17 to account for a different ℓ0. With such es-
timate of E′

Z we ignore all but the few values of E(Sz)
corresponding to the smallest Sz , and recalculate them
into E(P ) at small P . The result is plotted in Fig. 1a,
also showing weak finite-size effects (due to the g∗0 6= g∗1
discrepancy) at small P , confirmed by comparison with
the N = 6 calculation. The calculation of E(P ) at large
P goes analogously, starting with the polarized Jain state
at 2Q = 16, and with the energy of the unpolarized Jain
state needed for E′

Z obtained by rescaling the value at
2Q = 17 and Sz = 0. Again, as shown in Fig. 1b,
comparison of data for N = 6 and 8 confirms the size-
convergence. The same procedure has been carried out
for ν = 2/3, with the results plotted in Fig. 2a,b.

While the calculation on a sphere allowed us to find
E(P ) only at small or large P (and with some uncertainty
in the estimate of E′

Z), one conclusion seems established
despite finite-size problems: E(P ) at E′

Z increases when
P is either increased from 0 or decreased from 1. In
other words, E(P ) at small either P or 1 − P is larger
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FIG. 4: Energy per particle of the singlet state, the HPS and
the fully polarized state at ν = 2

3
. Different system sizes

are shown (N = 4 to 18 electrons), extrapolation to infinite
systems, 1/N → 0 (only solid points were used).

than E(0) = E(1), which would imply abrupt transition
between the polarized and unpolarized n∗ = 2 Jain states
as a function of EZ .

Contrary to the sphere, it is possible to scan the whole
range of P using calculations on a torus (square with
periodic boundary conditions). Choosing (N, Nm), the
number of electrons and magnetic flux quanta, the sector
of spin Sz corresponds to filling factor ν = N/Nm and
polarization P = Sz/(N/2).

The principal conclusion is to confirm the observations
made for a sphere: all states with intermediate polariza-
tion 0 < P < 1 are higher in energy than the polar-
ized (P = 1) and the singlet state (P = 0). Systems of
different sizes exhibit qualitatively the same behaviour
both at filling factor 2

5
and 2

3
, Fig. 3. On a quantita-

tive level and within the small systems accessible to ex-
act diagonalization, it seems unlikely that this situation
changes if we continue to larger systems. Nevertheless,
the ground state energies at P = 0, 1

2
and 1 extrapolated

to 1/N → 0, Fig. 4, give opposite predictions in this as-
pect: E(1

2
) > E(0) = E(1) on a torus while the oposite

was found on the sphere33. It is, however, important to
note that the extrapolation for E(1

2
) is based only on

two points. Moreover, it cannot be established reliably
whether all these points correspond to a realisation of the
same state in an infinite system37. On the other hand, it
is possible to speculate that the P = 1

2
state of ν = 2

3
is

more stable than other states with |P − 1
2
| < 1

2
, i.e. that

there may be a downward cusp at P = 1
2
, Fig. 3b.

B. Composite fermion calculation

In the composite fermion (CF) picture7, the ν = 2/3
and 2/5 fillings correspond to the same effective CF fill-
ing factor ν∗ = 2. The completely polarized (S = N/2
and P = 1) and unpolarized (S = P = 0) states are rep-
resented by simple single-particle configurations, with a
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pair of completely filled CF LL’s: 0↑ and either 1↑ or 0↓.
Stability of the corresponding four Jain states (ν = 2/3
or 2/5; P = 0 or 1) requires a splitting ∆ of the 1↑ and
0↓ LL’s, and their incompressibility is attributed to a
single-particle (cyclotron) CF gap h̄ω∗

c .

The intermediate polarizations (0 < P < 1) are pos-
sible for nearly degenerate CF self-energies Σnσ of the
1↑ and 0↓ LL’s (Sec. I.B). Whether such partially polar-
ized states indeed occur for some appropriate ∆ depends
on the CF–CF interactions within and between the two
partially filled CF LL’s. If they do, their many-CF wave-
functions, the CF–CF correlations, and possible incom-
pressibility (at least at some of the intermediate values of
P ) also depends completely on the CF–CF interaction.
Remarkably, the P = 1 to 0 (paramagnet-ferromagnet)
transition occurs directly for the electrons filling two LL’s
(ν = 2)8, but partially polarized states were suggested in
a mixed electron–CF system at ν = 4/338.

Interaction between two particles (e.g., electrons or
CF’s) in a pair of LL’s (n1, σ1) and (n2, σ2) is deter-
mined by Haldane pseudopotential V (R), defined as
pair interaction energy as a function of relative angular
momentum4. For a pair of identical CF’s in the same LL
(here, 0↓ or 1↑), the allowed R’s are odd integers. For
two CF’s distinguished by spin and/or LL index, R can
be odd or even. Assigning pseudospins ↑ and ↓ to the
CF LL’s 1↑ and 0↓, the CF dynamics within these two
levels is determined by a set of three pseudopotentials:
V↑↑(R) and V↓↓(R) for R = 1, 3, 5, . . . , and V↑↓(R) for
R = 0, 1, 2, . . . . Because V↑↑ and V↓↓ describe inter-
action in different LL’s, they are not equal. Hence, the
CF–CF interaction within these two LL’s is pseudospin-
asymmetric.

Knowing V is the key to understanding the CF dy-
namics in partially filled shells. The correlations have
particularly simple form when V (R) is dominated by one
coefficient. In this case, the particles interacting through
V (R) tend to avoid the corresponding high-energy pair
state4. More generally, the correlations depend only on
the anharmonic contribution to V (R), where the har-
monic dependence means V linear in average squared dis-
tance

〈

r2
〉

, which corresponds to a roughly linear V (R)9.

The three CF–CF pseudopotentials, V↑↑, V↓↓, and
V↑↓, are known quite well for electron systems near
ν = 1/3, where they describe interactions among Laugh-
lin QE’s10 or reversed-spin QER’s11,12. At long range
(large R) these pseudopotentials must be consistent
with Coulomb repulsion of two fractional charges, −e/3.
At short range they can be obtained from finite-size
calculations13,14,15,16 and show features revealing the CF
internal structure. Radial charge distributions of QE and
QER’s are presented in Fig. 5a. They were calculated nu-
merically from the exact eigenstates of 10 electrons, and
they are normalized to

∫

̺(r)rdr = 1/3 (in the length
units of ℓ0). Comparison with the electron charge profiles
plotted in the inset shows that, except for the reduced
QE/QER charge, the CF’s and electrons in their lowest
LL’s are very similar (QER and LL0 in Fig. 5a,b), while
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FIG. 5: (a) Radial charge distributions of QER and QE at
ν = 1/3, i.e., of the CF’s in the lowest and first excited LL.
(b) Same for the electrons. (c) CF–CF interaction pseudopo-
tentials at ν = 1/3.
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FIG. 6: (a) Energy per particle, ε = E/N , as a function of
CF spin polarization P , calculated for N = 14 and 15 CF’s at
ν∗ = 2 using effective CF–CF interactions of Fig. 5; curves –
parabolic fits. (b) Anharmonic coefficient α/4 = ε/P (P − 1)
for 12 ≤ N ≤ 14 (same units). (c) Same as (a) but using fill-
dependent CF–CF interactions corresponding to a variable
CF charge (see text); curves – polynomial fit.

the CF’s and electrons in their excited LL’s are quite dif-
ferent (QE and LL1 in Fig. 5a,b). In Fig. 5(c) we plot
the QE–QE, QE–QER, and QER–QER pseudopotentials
obtained by combining the short-range data from exact
diagonalization and the electron–electron parameters at
long range. These are the effective interactions that we
used in numerics at ν∗ = 2. We also removed the (arti-
ficial) discrepancy between the degeneracy of 0↑ and 0↓
CF LL’s on a sphere by considering a pair of LL shells
with the same angular momentum l.

The computation consisted of the exact diagonaliza-
tion of the V = [V↑↑, V↓↓, V↑↓] interaction hamiltonian,
separately for each combination of N↑ and N↓ (CF num-
bers in the two LL’s) giving N ≡ N↑ + N↓ = 2l + 1,
i.e., corresponding to ν∗ = 2. Note that because the
length of pseudospin is not conserved by V , a separate
diagonalization is required for each pseudospin projection
Sz = (N↑ − N↓)/2, corresponding to different polariza-
tions P = 2Sz/N of the CF system [or (1 + P )/2 of the
whole electron state].

The result is the dependence of energy on polariza-
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tion, E(P ), tilted (by adding the appropriate linear Zee-
man term E′

ZSz ∝ P ) to the E(0) = E(1) situation. In
Fig. 6a we compare the data for two largest CF numbers
we have used, N = 14 and 15. For only one spin flip
away from P = 0 or 1, the ground state at each N is
a single spin-wave. For more than one spin flip, regular
dependence of energy on K/N ∼ P rather than on K is
evident. In this (P ∼ 1/2) regime, E at each P scales
roughly linearly with N , and the excitation energy per
particle ε(P ) = E(K/N)/N becomes a convergent char-
acteristic of the macroscopic system. The convergence
with increasing the system size is evident, with a contin-
uous E(P ) curve emerging for N → ∞. The data are
polarization-symmetric, E(P ) = E(1−P ), reflecting the
particle–hole symmetry at a half-filling of a pair of shells
(note that E(0) = E(1) is equivalent to Σ0↑ = Σ1↓).

The ε(P ) curve determines dependence of the ground
state polarization P on the Zeeman gap in tilted-field ex-
periments. To calculate P (EZ), one must find the mini-
mum of the total energy (per particle) including a linear
Zeeman term, ε(P ) − P (EZ − E′

Z)/2. Clearly, only the
convex points of ε(P ) can become ground states at the
appropriate EZ . A special case is a convex parabola,
ε(P ) = α/4 · P (P − 1), leading to a linear dependence,
P (EZ) = 1/2 + (EZ −E′

Z)/α, with P varying between 0
and 1 over the EZ range of length α.

Fig. 6a show that ε(P ) indeed is nearly parabolic, so
in Fig. 6a we plotted α(P ) = ε(P )/P (P −1) to study the
anharmonic contribution. Only the result for N = 12 (α
having a local maximum at P = 1/2) agrees with the
earlier calculation20, also showing a downward cusp of
ε(P ) at the half-polarization. Such cusp would lead to
an inflexion or a plateau in P (EZ) around E′

Z .
The emergence of a plateau would imply that the sys-

tem is not affected by infinitesimal variation of the gap ∆,
i.e., that it is incompressible and should exhibit quantum
Hall effect. However, our calculations for larger systems
seem to invalidate the prediction of a plateau, showing
disappearance of the downward cusp in ε(P ) for N > 12.
In Fig. 6c this is seen as transition from a local maximum
to a local minimum in α(P ) at P = 1/2. Remarkably, in
experiment, the partially polarized states were only ob-
served over a narrow polarization range around P = 1/2,
implying a well developed plateau in P (EZ), in disagree-
ment with the CF calculation.

C. Composite fermions with fill-dependent charge

We found notable qualitative disagreement between
the numerical results obtained (i) in terms of CF’s at
ν∗ = 2 and (ii) in terms of electrons at ν = 2/3 or 2/5.
The first approach allows for studying fairly large systems
and is free of the troubling artificial g∗0 6= g∗1 asymmetry
on a sphere. However, the results obtained using the lat-
ter, more direct approach appear more consistent in both
used geometries. The main conclusion, too, seems estab-
lished despite finite-size effects: the absence of a ground

state of intermediate polarization between P = 0 and 1.
While the experiment28 indicates a stable half-polarized
quantum Hall state in apparent contradiction with ap-
proach (i), the (suggested earlier20) agreement with ap-
proach (ii) is also not convincing in view of our numerics
for larger systems and different geometries.

The most questionable assumption in using the CF
model is that the interactions among the CF’s at ν∗ = 2
can be described by a set of three two-body pseudopo-
tentials, independent of the filling of 0↑ and 0↓ CF LL’s.
Consequently, these pseudopotentials are estimated at
ν = 1/3, for the QE–QE, QE–QER, and QER–QER pairs
(i.e., with only two CF’s present in the 0↑ or 0↓ LL).
Such approach was proven successful only for polarized
systems with QE fillings merely up to νQE = 1/3 (corre-
sponding to 1/3 ≤ ν ≤ 4/11)17. On the other hand it is
well-known that the form of an actual electron excitation
represented by a CF depends on the filling factor. For
example, charge of a Laughlin QE at ν = 1/3 is −e/3,
while charge of QH at ν = 2/5 is only e/5.

This implies (significant) reduction of all three CF–
CF pseudopotentials when going from ν = 1/3 to 2/5,
demonstrated earlier for polarized systems14,15. Clearly,
the pseudopotentials determined at ν = 1/3 cannot be
used at ν = 2/5 with great confidence (note, however,
that we have checked that the results are quite insensitive
to the model V ’s used, as long as they retain qualitative
behavior at short range). But more importantly, it prob-
ably also invalidates the concept of using fixed two-body
pseudopotentials V↑↑, V↓↓, and V↑↓, which are indepen-
dent of the filling of each of the two CF LL’s (at least in
the whole range between the empty and full shell). While
the electron system at ν = 2/3 or 2/5 may well be cor-
rectly represented by a two-pseudospin fluid of CF’s with
two-body forces, the polarization-dependence of the ef-
fective CF–CF pseudopotentials must probably be taken
into account when modelling the P ∼ 1/2 regime.

As a test, we allowed for a very simple dependence of
the CF–CF interactions on P . We assummed a linear
dependence of the charge qσ carried by a CF with pseu-
dospin σ = ↑ or ↓ on the partial filling νσ of its LL (with
qσ = 1/3 and 1/5 at N = 0 and g∗, respectively). For
interaction pseudopotentials we took V P

σσ′ = qσqσ′Vσσ′ ,
with Vσσ′ shown in Fig. 5c. The assumption that only
the scale of V depends on the LL filling (with the struc-
ture unaffected) is justified by the comparison of V in
polarized ν = 1/3 and 2/5 states14.

The E(K) calculated in this way and plotted in Fig. 6b
shows opposite (concave vs. convex) behavior to Fig. 6a
obtained ignoring fill-dependence of V . Again, the values
at only a few spin flips away from P = 0 or 1 scale best
with N and K, but a convergent ε(P ) = E(K/N)/N
curve emerges around P = 1/2. Note that though the
CF particle-hole pairs become charged for q↑ 6= q↓, this
artefact does not affect the interesting regimes of P = 0
or 1 (exactly) or P ∼ 1/2.

The contrast between E(K) shown in Figures 6a and b
is an obvious warning that the CF–CF interactions used
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so far to model ν∗ = 2 may have been not exact enough.
To the best of our knowledge, the fact that quasiparti-
cles (of e.g. ν = 2/5) around P = 0 and around P = 1
might have different charge and hence different interac-
tions, has not been previously considered. Although the
exact particular form of the interaction, V P

σσ′ , chosen in
Fig. 6b, does not describe correctly ν∗ = 2 in the whole
range of P , it does show that models of CF–CF interac-
tions used in earlier works (assuming all quasiparticles to
have the same charge for all values of P ) may have given
qualitatively incorrect predictions. In order to determine
whether E(1

2
) is larger or smaller than E(0) = E(1), cor-

rect CF–CF interaction must be found.

III. POLARIZATION ONE HALF

Owing to the Z2–symmetry of the ground state (GS),
it is customary to call the systems at ν = 2 an Ising–type
quantum Hall ferromagnet34 (QHF). Regarding only the
ground state, the ν∗ = 2 (ν = 2

5
, 2

3
) systems fall into

the same category. Despite this, there are substantial
differences between the integer and fractional systems.
Most importantly, the possible onset of domain formation
in the integer systems is replaced by an antiferromagnetic
ordering in the systems at fractional filling.

When the two ferromagnetic GS’s are degenerate, the
complete spectrum of the ν = 2 system, Fig. 7b, is sym-
metric under the spin inversion. While Heisenberg fer-
romagnets, have a spin-wave with vanishing energy at
k → 0 as the lowest excitation, Fig. 7a, the first excited
state of a ν = 2 system has a single spin flip at a finite
wavevector k, Fig. 7b. This is in line with Goldstone the-
orem which requires a continuous symmetry of the GS,
which is SU(2) in the former case.

The corresponding full spectra of the ν∗ = 2 systems,
Fig. 8, do not have any obvious structure resembling
the one of ν = 2, Fig. 7b. The spin–inversion sym-
metry is missing, Sz = 3.0 and Sz = 1.0 states have
different energies, Fig. 8. No definite prediction can be
made about the spin of the lowest excitation. Perhaps
most importantly, the ν = 2

3
and 2

5
spectra look very

differently, Fig. 8a,b, except for the GS at k = 0 and
its gap. This is markedly at odds with the picture of
non-interacting composite fermions according to which
the spectra should be the same after rescaling to equal
effective magnetic length.

Let us now concentrate on the sector of Sz correspond-
ing to equal number of up and down spins in the active
Landau levels. For ν = 2

3
, 2

5
using the ED with electrons

this means Sz = N/4 and for ν = 2 with the low–lying
0↓ level neglected, it is Sz = 0.

The spectrum of a ν = 2 system has a clear structure,
Fig. 9a. A (2N − 2)–tuplet of states distinguished by

~kr/ku = (0,±i) or (±i, 0) , i = 0, 1, 2, . . . , N/2, (1)

is separated from higher excited states. Rezayi et al.34
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FIG. 7: Spectra of (a) ν = 1 and (b) ν = 2 quantum Hall
ferromagnets. Eight electrons on a torus. The complete de-
generacy of Sz = −S,−S + 1, . . . , S levels (a) corresponds to
a Heisenberg ferromagnet, the degeneracy of Sz and −Sz only
(b) is proper to an Ising ferromagnet.
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l 0
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Sz=4  0
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FIG. 8: Full spectrum of eight electrons at ν = 2

3
and 2

5
(hence

both ν∗ = 2) on a torus with Zeeman energy adjusted so that
the fully polarized and spin-singlet incompressible states are
degenerate. To be compared with ν = 2, Fig. 7b.

identified this group as a state with two (Ising) domains
in different system of the same type.

The easiest way to see this is in the spin-
resolved density-density correlation functions45. Another
possibility34 is to replace the square in our model by a
rectangle with periodic boundary conditions while keep-
ing its area fixed, Fig. 10. A group of N states quickly
detaches from the (2N − 2)-tuplet, once the aspect ratio
α = a : b of the rectangle exceeds ≈ 1.2. These states

have ~kr/ku = (±i, 0), i = 0, 1, 2, . . . , N/2, their degener-
acy improves with increasing α and the energy changes
roughly proportional to 1/

√
α ∝ b. It is very sugges-

tive that the change of energy is mostly due to changing
length of the domain walls which are likely to be oriented
along the shorter side of the rectangle.

This method of investigation is particularly useful for
small systems. It is not possible to distinguish the
(2N − 2)-tuplet in a N = 6 system (ν = 2), because its
degeneracy is far from being perfect, so that it is mixed
up with higher excited states, Fig. 9b. A minute varia-
tion of the aspect ratio, however, separates the N -tuplet
of states with domains oriented parallel to b, Fig. 10a.
The energy cost of a domain wall per magnetic length
obtained for both system sizes in Fig. 10 is the same,
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0.042e2/4πεℓ0.
The ν = 2

3
system has again a rather different spec-

trum of the Sz = N/4 sector, Fig. 9c,d compared to
Fig. 9a,b. No similar grouping of states is obvious. On
the other hand, because six electrons should be in the
inactive CF LL in the N = 12 system for instance,
we should also keep in mind a comparison between the
(N, Nm) = (12, 18) and (6, 6) spectra, Fig. 9c and 9b. In
both systems, the lowest energy states form a loose group
(the marked states in Fig. 9bc). This group is separated
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FIG. 11: Energies of the HPS under varying aspect ratio
(Coulomb interaction, 2

3
). (a) N = 8, (b) N = 12.

from other states by 0.01 (Fig. 9c) and 0.04e2/4πεℓ0

(Fig. 9b) what is slightly more than differences between
energies within the group. The states can be classified

by their momentum ~kr/ku: these are (±2, 0), (3, 0) for
ν = 2 and (±2, 0), (3, 0), (3, 3) for ν = 2

3
plus their x − y

symmetric states. For ν = 2, these states belong to the
(2N − 2)–tuplet of the single–domain state.

The ~kr/ku = (3, 3) state of ν = 2
3
, Fig. 9c, as the

only clear difference between Fig. 9c and b, cannot be
just a finite size artefact. Under a slight squeeze, the
2
3

systems reveal a clearly different behaviour compared

to ν = 2. The ~kr/ku = (3, 3) state (marked by A in
Fig. 11b) quickly becomes the absolute ground state of

the system, together with the ~kr/ku = (0, 3) state (B in
Fig. 11b). These two states react to the squeezing very
similarly within the range 1.3 < α < 2.3. With some
experience from ν = 2 systems, Fig. 10, this range of α
may correspond to the lifting of the x − y degeneracy
while still preserving the 2D character of the system (α
not too far from one). An N -tuplet similar to the inte-
ger filling systems (Eq. 1) does not appear as far as for
α < 3. Even though such grouping is possible for larger
aspect ratios, their eventual relevance would have to be
supported by some strong external anisotropy justifying
the large aspect ratio chosen for the model.

Going from smaller to larger systems, Fig. 11a and 11b,

it seems indeed possible that the two states, ~kr/ku =
(0, N/2), (N/2, N/2) become the lowest states with Sz =

N/4 when the x−y symmetry is lifted. Namely, ~kr/ku =

(0, 2), (2, 2) for N = 8 and ~kr/ku = (0, 3), (3, 3) for N =
12 do and kx/ku = 2 and 3 are the maximal kx-values in
the finite system with N = 8 and 12 electrons.

Albeit distinguished by ~kr, the two states (A,B in
Fig. 11b) look very similar in their spin–resolved density–
density correlation functions

g↑↑(~r) = 〈δ(~r1 − ~r2 − ~r)δσ1↑δσ2↑〉 ,

as shown in Fig. 12c,e. Other combinations of spins not
shown in Fig. 12 (↓↓, ↑↓) also confirm this conclusion.
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FIG. 12: Correlation functions g(~r) = g(x, y) of the ~kr/ku =
(3, 3) half-polarized state (A in Fig. 11b). Under slight varia-
tion of the aspect ratio α = a : b, the conditional probability
g↑↑(~r) indicates antiferromagnetic ordering (a,b,c), confirmed
by g↓↓ and g↑↓, (d). The state B from Fig. 11b has a very
similar structure (e).

We observe for both states two vertical stripes (maxima)
in g↑↑(~r), g↓↓(~r) together with the two complementary
stripes (minima) in g↑↓(~r), Fig. 12d. This could mean
that six electrons in the active CF Landau levels align an-
tiferromagnetically, ↑↓↑↓↑↓ following the elongated side
of the elementary cell.

IV. DISCUSSION AND SUMMARY

With near degeneracy of 0↓ and 1↑ CF LL’s, quantum
Hall ferromagnet of ν∗ = 2 is a unique system: (i) two
different incompressible CF liquids form for P=0 and 1;
(ii) low-energy excitations of both liquids involve spin;
(iii) experiment suggests another liquid at P=1/2; (iv)
in the P=1/2 liquid interactions among CF’s play cru-
cial role (unlike at P=0 or 1 where incompressibility is
due to LL filling and the interactions are not important).
All together, (v) the concept of incompressible states of
correlated CF’s at these fillings appears even more fas-
cinating than in the states discovered more recently at
ν = 4/11 or 3/818, due to additional spin freedom.

The comparison of the experimental evidence with
our various numerical calculations demonstrates the lack
of understanding of the microscopic origin of the half-
polarized quantum Hall states. Yet, it appears very dif-
ficult to model these states in finite-size numerics.

In the electron calculation, large Hamiltonian dimen-

sions make exact calculation of the P = 0 state very com-
plicated already for N > 8. For N = 8 only two spin flips
separate P = 0 or 1 from P = 1/2 (the first one being
simply a spin-wave), which might not be enough to cap-
ture physics of the correlated P ∼ 1/2 regime. Moreover,
calculations on a sphere suffer from the g∗0 6= g∗1 artefact
that further complicates interpretation of the results in
this geometry.

In the CF calculation, the result strongly depends on
the choice of effective CF–CF interactions, which are not
known with near enough accuracy. This problem does
not appear in the understanding of Jain states corre-
sponding to filled CF LL’s (provided these interactions
are weaker than h̄ω∗

c ), but here it is essential. In the CF
picture, one particle or hole in a CF LL represents differ-
ent electronic excitations depending on the filling of a CF
shell. These excitations are only known in some special
cases, when they correspond to e.g., Laughlin QE’s or
QER’s (in an empty CF LL) or Jain QH’s (in a full CF
LL). Consequently, although it seems plausible that the
low-energy dynamics of the electron states corresponding
to partially filled CF LL’s is generally well described by
two-body effective CF–CF interactions, their pseudopo-
tentials are not well known.

It seems that electron calculations in larger systems
(preferably in toroidal geometry) are needed for under-
standing of the occurrence and incompressibility of half-
polarized ν = 2/5 and 2/3 states. More advanced exact
diagonalization as well as Monte Carlo methods must
be considered. On the other hand, further experimental
studies are much needed in view of possible insight into
the nature of CF–CF interactions.

In summary, at the level of present computational ca-
pacity, the calculations for toroidal and spherical geome-
try in Sec. IIA indicate that the ferromagnet-paramagnet
transitions both at ν = 2/3 and 2/5 are abrupt. This
applies to homogeneous and isotropic systems. The
antiferromagnetically ordered states at polarization one
half (Sec. III) could in principle, however, become the
absolute ground state near the transition if a suitable
anisotropy or inhomogeneity in the system is present.
These states also constitute probably the best demon-
stration of marked differences between the fractional and
integer QHF. In the latter case, the system splits into
two equally large domains (↑↑↑↓↓↓).
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K. Výborný. cond-mat/0603451, 2006, to appear in Ann.
Phys. (Leipzig).

38 A. Wójs and J.J. Quinn. Phys. Rev. B., 65:201301, 2002.
39 Shi-Jie Yang, Yu Yue, and Zhu Bang-Fen. cond-

mat/0508245, 2005.
40 D. Yoshioka. Phys. Rev. B., 29:6833, 1984.
41 D. Yoshioka, B.I. Halperin, and P.A. Lee. Phys. Rev. Lett.,

50:1219, 1983.
42 F.D.M. Haldane. Phys. Rev. Lett., 55(20):2095, 1985.
43 S.M. Girvin. cond-mat/9907002, 1999.
44 T. Chakraborty. Adv. Phys., 49:959, 2000.
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