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A system at filling factor2/3 could be a candidate for a quantum Hall ferromagnet at integer filling factor
of composite fermions. Using exact diagonalization with electrons on a torus we study the transition from
the singlet ground state to the polarized ground state at this filling and look for signatures of quantum Hall
ferromagnetism. Differences between the fractional and corresponding integer systems are emphasised.
Most interestingly, we find around the transition a low excited half-polarized state which might become the
ground state in the thermodynamical limit. We study its structure and compare it to the singlet and polarized
ground states. A new interpretation of the singlet state is suggested and comparison of the filling factors
2/3 and2/5 is presented. Adding magnetic inhomogeneities into the system we investigate the stability of
all the three involved states and the tendency to build up domains like in conventional ferromagnets.
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2 K. Výborný: Spin in fractional quantum Hall systems

Similar to superconductivity, thefractional quantum Hall effect[14, 79] is a unique field, where correla-
tions between electrons give rise to macroscopically well observable ground states which we would not
expect on the level of a Hartree-Fock approximation. The correlations are introduced by interelectronic
interaction and, contrary to atomic physics for instance, the quantization of single-electron energy levels is
a consequence of the strong magnetic field (Landau levels) and of the suppressed motion in the direction of
the field (quasi two-dimensional systems). The latter phenomenon leads to another unusual feature of the
fractional quantum Hall systems: the many-electron statesin a non-interacting system are highly (macro-
scopically) degenerate, since all electrons within one Landau level have the same energy. In particular, for
filling factors below one, where it is useful to be restrictedto the lowest Landau level,all many-electron
states have the same energy. Now, the effect of interactionsbetween electrons cannot be investigated by
perturbation theory, as there is no single ground state to start with or, in other words, there is no small
parameter in which we could expand the perturbation series.Since energy spacing between the many-body
states is zero, the interaction is never a small perturbation, regardless of how weak it is. This fact ren-
ders the fractional quantum Hall systems unique from the theoretical point of view and makes completely
novel types of quantum-mechanical ground states possible.The best known of these are the incompressible
quantum liquids.

Quantum Hall ferromagnetismwas one of the companions of theintegerquantum Hall effect (Subsect.
1.6). The observed long-range spin order can be explained byexchange energy gain in the ferromagnetic
state and hence Hartree-Fock models are sufficient to describe the ongoing physics. However, new ex-
perimental publications appeared in late nineties. Phenomena reminiscent of ferromagnetism have also
been observed in thefractionalquantum Hall regime, being most noticeable at filling factors2/3 and2/5
([45, 15]). In this situation, the Hartree-Fock approximation is no longer acceptable, the spin-ordered states
are highly correlated. This area is not very well explored. Instead of a lattice of spins which are all point-
ing in the same direction, here, we are dealing with itinerant electrons which are either in a fully polarized
or in a spin singlet state (Subsect. 2.1). Although both states are incompressible, their structure is quite
different [13].

How far can we extend the analogy between an Ising spin-lattice ferromagnet and fractional quantum Hall
systems where two ground states with different spin order compete with each other? This was the central
question of this thesis. There are several fundamental differences between these two systems. The latter
one is itinerant and the liquid-like ground state is stable only owing to correlations while, in a spin-lattice,
the electrons are spatially fixed and the ferromagnetism occurs also in classical systems with suitable
site-to-site coupling. By observing e.g. hysteresis in magnetotransport, experimentators have provided a
lot of evidence that the two phenomena are indeed very closely related [71, 70, 43], on the other hand,
observations without an analogy to usual Ising systems havebeen reported too [46].

Before we start the theoretical introduction, let us summarize the basic experimental facts. At filling
factors2/3 and2/5 two different ground states may appear. Depending on the ratio between the Zee-
man to Coulomb energy,EZ/EC , it is the fully spin polarized (EZ/EC → ∞) or the spin-singlet one
(EZ/EC → 0) [46]. This transition can be accomplished (a) by varying the electron density at a fixed
filling factor [36], (b) by tilting the magnetic field [16, 21]or (c) by applying hydrostatic pressure which
modifies the bulkg-factor [50].

When the two ground states are brought to degeneracy, transport experiments show hysteresis, time-
dependent resistance with Barkhausen jumps [11] (see Refs.above) and huge longitudinal magnetoresis-
tance [45] which is related to the spin polarization of the ion lattice of the hosting GaAs (NMR experiments
[44, 19]). These could be related to formation of spatial domains of the two ferromagnetic ground states,
even though surface acoustic wave experiments could not confirm this [20]. On the other hand, optical
experiments [46, 24], suggest that a half-polarized groundstate occurs near the transition.
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1 Theoretical basics

1.1 One electron in magnetic field

When the mutual interactions are left aside, electrons in a plane subject to homogeneous perpendicular
magnetic fieldB fill the macroscopically degenerate equidistant Landau levels (LLs) with energiesE =
(n + 1

2 )~ω, n = 0, 1, 2, . . . The degeneracy of all the levels is the same, and it increasesproportionally
to the magnetic field. Therefore, occupancy of the Landau levels, thefilling factor, depends both on the
number of electronsNe (per areaL2) and onB:

ν =
Ne/L

2

eB/h
=

Ne

L2/(2πℓ20)
=

Ne

(BL2)/(h/e)
=

Ne

Φ/Φ0
=

Ne

Nm
. (1)

Note that thisν, i.e. number of Landau levels occupied in the ground state isequal to theinversenumber
of magnetic flux quantaΦ0 = h/e per electron in the system (the second last expression in (1).

These facts can easily be obtained by solving the single-electron Schrödinger equation with Hamiltonian

H0 =
1

2m
(p + eA )2 , ∇× A = (0, 0, B) , (2)

a particularly nice and understandable example of this calculation is given by Murthy and Shankar [56].
Suitable energy and length units are the cyclotron energy~ω = ~eB/m and the magnetic length

√
~/eB

denoted byℓ0.

Let us now focus on the lowest Landau level. There areeB/h· states per unit area having the same energy
~ω/2 and infinitely many possibilities of constructing a basis ofthis space. Choosing the Landau (sym-
metric) gauge in (2) which is translationally symmetric in one direction (rotationally symmetric around the
origin) we are lead to the following bases

Landau:A = (0, Bx, 0) , ψky (x, y) = exp(−ikyy) exp[−(x+ ky)2/2ℓ20] , (3)

ky/(2π/L) = 0, 1, 2, . . .

symmetric:A =
1

2
(y,−x, 0) , ψm(z) = zm exp(−|z|2/4ℓ20) , m = 0, 1, 2, . . . (4)

Especially for the latter basis, formulae are often more transparent if we use a complex variablez = x+ iy
rather thanx, y separately to address the points in the plane.

1.1.1 Magnetic translations

A plane with perpendicular homogeneous magnetic field is obviously translationally invariant. However,
spatial translations applied to the Hamiltonian may alter the gauge even though they leave the magnetic
field unchanged. Operators which conserve also the gauge (and which therefore commute withH0) are
themagnetic translations[83, 84]. These operators will thus replace the ordinary translations applicable
to systems without magnetic field.

Magnetic translation operators depend on the choice of the gauge, in particular for the Landau gauge (3)

u = (u1, u2) : T (u ) = exp(−iuxy/ℓ
2
0)t(u ) , (5)

wheret(u ) is the ordinary translation operatorexp(iu · p /~). General explicit formula for any gauge can
be found e.g. in the article of Haldane and Rezayi [32].

Note, that ordinary and magnetic translations (5) coincidefor ux = 0, exactly as a wavefunction in the
form (3) remains unchanged up to a constant phase under the replacementy → y + uy. Foru = (ux, 0)
this is not the case and that is why we must resort tomagnetictranslations.
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1.2 What to do when Coulomb interaction comes into play

The quantum mechanical solution of one electron – or many non-interacting electrons in a plane subject to
a perpendicular magnetic field is at the root of the integer quantum Hall effect. The basic fact is that for
integer filling factors,any, even arbitrarily small excitation costs at least the energy ~ω. This gap renders
the ground state incompressible. The fractional quantum Hall effect cannot be explained in this picture.
For instance at filling factorν = 1/3, a non-interacting system has a manyfold degenerate groundstate, or,
some excitations cost zero energy (those which involve onlyrearrangement of electrons within the lowest
LL), and the ground state should be compressible. Today it iswell established that the effect is due to
electron-electron interactions which select among those states one special ground state and separate it by a
gap from the excitations.

Now, the Hamiltonian of the many-electron system consists of two terms: the kinetic energy (leading to
Landau level quantization) and the electron-electron interaction.

H =

Ne∑

i=1

p 2
i

2m
+

e2

4πε

1

2

∑

i6=j

1

|r i − r j |
(6)

Consider some particular filling factor,ν = 1/3 for example, and let us vary the magnetic field. Since
ν = n/(2πℓ20) = n/(eB/~), this implies changing the electron densityn simultaneously. The kinetic
energy will change proportionally to~ω ∝ B. The interaction energy on the other hand scales with
1/a ∝

√
B, as the mean electron-electron distancea is proportional to the magnetic lengtha =

√
1/n =√

1/(νeB/~) ∝ ℓ0 (for a more thorough discussion see Yoshioka [79], Chap. 4)

In the high field limit we can therefore expect the Coulomb interaction to be a small perturbation which
lifts the degeneracy of Landau levels. Looking for a (high-B) ground state at some particularν < 1 we can
therefore omit the higher Landau levels and study only states within the lowest Landau level. This model
gives qualitatively correct predictions (for highB) and the inclusion of the Landau level mixing leads only
to quantitative corrections (e.g. in the ground state energy, see Chakraborty and Pietiläinen [14]).

1.2.1 Ground states: analytical many-body wavefunctions

It is very surprising that even though we now handle amany-bodyHamiltonian (6), there are stillanalytic
(correlated) wavefunctions which describe the ground state at some special filling factors. The best known
example was suggested by R. B. Laughlin [48] earning him the Nobel Prize:

ΨL(z1, . . . , zn) = exp
(
− (|z1|2 + . . .+ |zn|2)/4ℓ20

) ∏
i<j

(zi − zj)
3 . (7)

There are several beautiful physical arguments why this wavefunction must be the ground state atν = 1/3
(in fact, an excellent approximation to it, see Subsec. 1.3). These are explained in other more detailed
publications [79] (Chap. 4), [14, 30]. Let us mention here only two basic ideas about the interpretation of
ΨL.

First, the(zi − zj)
3 term makes the Laughlin wavefunction isotropic and translationally invariant. More

detailed studies (density-density correlations, see Subsec. 2.1) suggest that it resembles a liquid. Second,
ΨL resemblesΨ1, the wavefunction of completely occupied lowest Landau level which is the same as (7),
only with (zi − zj)

3 replaced by(zi − zj). In fact,

ν = 1, GS:Ψ1 ∝
∏

i<j

(zi − zj)
×Πi<j(zi−zj)

2

−→ ν = 1
3 , GS:ΨL ∝

∏

i<j

(zi − zj)
3 .

Now consider a single electron in a stateψm(z) ∝ zm (4). If we pierce the system by an infinitely
thin solenoid atz0 and pass two magnetic flux quanta adiabatically through it, this state will evolve into
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ψm(z)(z− z0)2. This leads to the following interpretation. The Laughlin state is just the completely filled
lowest Landau level, but the constituent particles are electrons with two attached magnetic flux quanta
rather than bare electrons.

So far we have only spoken about the filling factorν = 1/3 and fully spin-polarized electrons. Generaliza-
tions of these concepts are possible also to systems where electrons are not fully spin polarized. Halperin
proposed the following WFs [35]

Φmm′n[z] =
∏

i<j≤N↑

(zi−zj)
m

∏

k<l≤N↓

(z′k−z′l)m′
∏

i≤N↑
k≤N↓

(zi−z′k)n
∏

i,j

exp(−|zi|2/4ℓ20) exp(−|z′j|2/4ℓ20)

(8)

with m,m′ odd. The state assumesN↑ (N↓) particles with spin up (down) andzi (z′j) describe their
positions. The filling factors of the two components are

ν↑ =
m′ − n

mm′ − n2
, ν↓ =

m− n
mm′ − n2

.

Thus, they describe a state at fillingν = ν↑ + ν↓ and polarizationp = (ν↑ − ν↓)/ν. For example, the
choicem = m′ = 3 andn = 2 leads to the total filling factor2/5 and zero spin polarization (ν↑ = νdn).

These analytical results will always be a good starting point for investigations going to regions where only
numerical methods are possible. Before continuing, however, it must be emphasised, that wavefunctions
in (7,8) are not the only analytical trial wavefunctions known in the lowest Landau level. A more detailed
review can be found in [17] (MacDonald and Girvin).

1.3 Other types of electron-electron interactions

A model of short-range interaction(SRI) in fractional quantum Hall systems is the main issue ofthis
section. We will explain how a general interactionV (r) between two particles within the lowest Landau
level (LL) can be represented by a set ofHaldane pseudopotentials{Vm} [30] and show how this concept
makes it easier to study different classes of interaction. In particular, this discussion will unveil under what
conditions the Laughlin wavefunction (7) becomes the exactmany-body ground state.

1.3.1 Two particles, magnetic field and a general isotropic interaction

Let us consider two negatively charged particles in a plane subjected to a perpendicular magnetic fieldB.
Assume that their interaction is described by a potential (energy)V (r) which depends only on their mutual
distance. Classically, when starting from rest, the particles would move along a straight line towards or
away from each other were it not for the magnetic field. The Lorentz force bends their trajectories and
makes them orbit around their centre-of-mass on a circular trajectory. In quantum mechanics, this circular
motion is quantized just as in case of an electron orbiting around a hydrogen nucleus.Roughly speaking,
only discrete separationsrm between the two particles are allowed. Interaction energies V (rm) = Vm

rather than the full formV (r), r ∈ (0;∞) fully determine the spectrum of a many-body system of particles
interacting viaV (r).

Let us now follow this idea in more detail and derive the precise claims. The Hamiltonian for two particles
reads

H =
1

2m
(p 1 + |e|A 1)

2 +
1

2m
(p 2 + |e|A 2)

2 + V (|r 1 − r 2|) . (9)

Following Laughlin [49], we write it as a sum of the centre-of-mass (CM) and relative parts [r CM =
(r 1 + r 2)/2, r rel = (r 1 − r 2)/

√
2]. WithoutV (rrel), both parts will be equivalent to a single particle in
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Erel =
~ω(i+ 1

2 )
−m~ω

i=0    1    2    3    4    5    6    7

n=0

n=1

n=2

i=0

i=1

i=2
i=3 i=3

i=0
i=1
i=2

LLL

1LL

2LL

V=0 V>0

m=    0    1    2    3    4    5    6    7 m=     0    1    2    3    4    5    6    7

Fig. 1: Spectrum of one particle confined to a plane subject toa perpendicular magnetic field or, equivalently, the
spectrum corresponding to the relative motion of two particles (Hrel). Left: without particle-particle interaction, the
two terms, ’harmonic oscillator’ (quantum numberi) and ’angular momentum’ (quantum numberm) combine into
degenerate Landau levels (quantum numbern). Right: interaction lifts the degeneracy. If the interaction potential is
small compared to the harmonic oscillator term (i.e.〈V 〉 ≪ ~ω), Landau levels are roughly preserved. The energy
levelsVm within the lowest Landau level (sorted according tom = 〈Lz/~〉) are then the Haldane pseudopotentials.

a plane in magnetic field. Hence, a Landau level index (N = nCM , n = nrel) and an angular momentum
(M = mCM ,m = mrel) will be attributed to both parts. Out of these,N is fixed to zero (two-particle state
within the lowest LL) andM is unimportant as it is merely tantamount to fixing the CM to some particular
position in the plane. Eigenstates of the relative part willbe sorted as shown in Fig. 1 on the left.

With V (rrel) included, the relative part reads

Hrel =
p2

rel

2m
+

1

8
~ω(rrel/ℓ0)

2 − 1

2
ωLz

rel
︸ ︷︷ ︸

Hrel,kin

+V (|r rel|) (10)

with Lz
rel denoting the (z-component of relative) angular momentum. This is the well known Fock-Darwin

form, the standard usage of which is to describe one particlein a magnetic field and confining potential
V . However, we will use it in a different way here: we considerV (r) to be weak, and for example a
repulsive∝ 1/r potential, compared to the parabolic term inHrel,kin. It is only our initial assumption that
the interaction is much weaker than the cyclotron energy,EC ≪ ~ω (Subsec. 1.2).

Owing to[Hrel, L
z
rel] = 0, the eigenstates ofHrel can still be classified by angular momentum. Moreover,

assuming the states of the lowest LL to have no admixtures from higher LLs (EC ≪ ~ω), the eigenstates

ψm
rel(r, ϕ) = exp(−imϕ) rm exp(−r2/4ℓ20) . (11)

will not depend onV (rrel) at all. This is a combined effect of theLz symmetry and the requirement of
analyticity (confinement to the lowest LL): angular part of the formexp(−imϕ) impliesψm(z) ∝ zm.

On the other hand, energies of these states will shift differently for differentm’s (Fig. 1, right). The
energy shift due to the interaction between particles isVm = 〈ψm

rel|V |ψm
rel〉 in a state with relative angular

momentumm. Sincerm = 〈ψm
rel|r|ψm

rel〉 = ℓ0
√

2m+ 1 we canroughlyestimateVm to beV (rm).

The operator of any weak (EC ≪ ~ω) interaction (in the lowest Landau level) can be then written in terms
of its spectral decomposition

V (rrel) =

∞∑

m=0

|ψm
rel〉Vm〈ψm

rel| .
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The spectrum and eigenstates of amany-bodysystem confined to the lowest Landau level andinteracting
by V (rrel) is thus completely determined by the discrete set of numbers{Vm}.
The quantities{Vm} are calledHaldane pseudopotentials. They were first introduced in [30] in the context
of interacting electrons on a sphere. Finally, we add two remarks.

Fermions and bosons.A careful reader may have noticed that we have spoken just about two particlesso
far. An additional constraint that e.g. (spatial part of the) wavefunction should be antisymmetric implies

ψrel(r 1, r 2) = −ψrel(r 2, r 1) ⇒ ψrel(r, ϕ) = −ψrel(r,−ϕ) .

Therefore, only the states withm odd (11) are allowed in the case of two electrons with the samespin
(where a symmetric spinor part implies an antisymmetric orbital part of the wavefunction). In other words:
only the values ofV1, V3, . . . are needed when we describe motion of fully spin polarized electrons.

Uniqueness.If V (r) is given, the pseudopotentialsVm are determined uniquely. However, the opposite is
not true: knowing only the values ofVm, we cannot reconstruct the full form ofV (r).

1.3.2 Particular values of Haldane pseudopotentials for the Coulomb interaction

The ideas above are not valid exclusively for the lowest Landau level.

Let us consider a numerical example for electrons in a plane,one of them located inarbitrary Landau level
n1 and another inn2. Their relative angular momentum bem. Given these three numbers, the state is
uniquely defined, up to the center-of-mass part of the wavefunction, as we have already stated. Assuming
interaction of the formV (q) (in the Fourier space), their interaction energy can be written as [60]

V n1,n2
m =

∫ ∞

0

qdqV (q)Ln1(q
2/2)Ln2(q

2/2)Lm(q2) exp(−q2) . (12)

TheLaguerre polynomialsare defined byLn(x) = (1/n!)[xne−x](n)ex . For the case of Coulomb inter-
action,V (q) = α/|q|, the integrals in (12) can be evaluated (easily and) analytically. Figure 2 shows their
values for the cases (a) both particles in the Lowest Landau level (n = 0), (b) both particles in the first
Landau level (n = 1) and (c) one in the lowest and one in the first Landau level.

For n1 = n2 = 0 the coefficientsVm decay monotonically with increasingm, exactly as the Coulomb
energy does with increasing distance. The non-monotonic structure ofVm for the case of particles in the
first Landau level is due to the additional structure of wavefunctions in higher Landau levels (e.g. a node
at r = 0 for n = 1).

1.3.3 Model interactions: hard core, hollow core

Why is a hard-core interaction (short-range interaction) important for the physics of the lowest Landau
level?

There are three reasons: (i) it is the strongest part of the Coulomb interaction, (ii) the Laughlin wavefunc-
tion is an exact (zero energy) gapped ground state for this interaction and (iii) the ground state changes
only little if the other terms of the Coulomb interaction areconsidered.

Let us discuss this in more detail. For the purposes of this paper, the short-range interaction (SRI) forspin
polarized electronsis defined by the Haldane pseudopotentials

short-range int. (spin polarized electrons):{V1, V3, V5, . . . } = {1, 0, 0, . . .} . (13)

For theCoulombinteraction, Fig. 2a,V1 is indeed the strongest pseudopotential.

On the other hand, considering the Laughlin wavefunction ofN particles (7), any pair of electrons in it
is in a state with relative angular momentumm = 3: owing to factors(zi − zj)

3. As there are no pairs
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Fig. 2: Values of Haldane pseudopotentialsVm for Coulomb-interacting electrons (a-c): between two particles (a) both
in the lowest Landau level,(n1, n2) = (0, 0), (b) both in the first Landau level,(n1, n2) = (1, 1), and (c) one in the
lowest and the second in the first Landau level,(n1, n2) = (1, 0). The pseudopotentials referring to electrons in a plane
(a,b,c) are ’universal’, those related to electrons on a torus (a,d) depend on its size (hereNm = 30, Subsec. 1.5.1).
Values of{Vm} chosen for as a model for short-range interaction in this work are shown in (d).

with angular momentumm = 1, the total energy of this state will beV1 · 0 + V3 · N(N − 1)/2 = 0
for SRI. Also, this state is rigid: any excitation of this state must remove the triple zero from some of the
electrons (leaving only a single zero required by antisymmetry) thereby creating some pairs withm = 1.
This implies a finite excitation gap.

These are analytical results. A surprising numerical result is that the many-body ground state changes only
slightly if other pseudopotentialsV3, V5, . . . are ’turned on’ up to their Coulomb values (Fig. 2a). This
has been confirmed by Haldane and Rezayi [33] (later also by others, e.g. [23]) by calculating the overlap
between the real ground state and the Laughlin state for different sets ofVm. It is also shown in [33] that if
V1 is lowered beyond some critical value (while keeping other pseudopotentials on their Coulomb values),
the gap collapses rendering the ground state compressible.These observations have been systematised
by Wójs and Quinn [75]: they argued that both Coulomb and short-range (13) interactions belong to the
same class ofsuperharmonicpseudopotentials where particles try to avoid lowm pair states, implying
the Laughlin ground state. A drastic change in the ground state occurs first when we leave the mentioned
class of interactions. The ’superharmonicity’ means roughly thatVm decays fast enough with growingm
[75]. The aforementioned collapse of the gap is then no longer surprising as the decreased value ofV1 will
eventually violate potentials superharmonicity betweenm = 1 and3.

An advantageous property of the interaction (13) is that it is effectively non-parametric, the only present
parameterV1 determines only the overall scaling of the energy scale within the lowest Landau level.

These results can be summarized by stating that the short-range interaction is the component of a realistic
interaction which determines almost completely the properties of theν = 1/m spin-polarized ground
states.

Obviously, for non-fully spin polarized systems it is not possible to keepV1 6= 0 only. Electrons with equal
spin are still closest in the statem = 1 (with energyV1), electrons of unlike spin however are closest in
the statem = 0 with energyV0. Such a model is obviously not as elegant as in the former case, it contains
two parametersV0, V1 whose ratio cannot be factored out of the Hamiltonian. An alternative might be the
potential

{V0, V1, V2, . . . } = {∞, 1, 0, 0, 0, . . .} . (14)

Another typical model potential presented by Haldane and Rezayi [34] was inspired by the low value of
V0 in the first Landau level compared to the lowest Landau level (Fig. 2). They suggested the hollow-core
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V0 V1 V2 V3 V4 V5

q0 (k = 0) 1 · 20 0 0 0 0 0
q2 (k = 1) 1 · 21 −1 · 21 0 0 0 0
q4 (k = 2) 2 · 22 −4 · 22 2 · 22 0 0 0
q6 (k = 3) 6 · 23 −18 · 23 18 · 23 −6 · 23 0 0
q8 (k = 4) 24 · 24 −96 · 24 144 · 24 −96 · 24 24 · 24 0

Table 1: Values of Haldane pseudopotentials correspondingto particle-particle interactions of the typeV (q) = q2k.
These values are additive, e.g.V (q) = − 1

2
q2 + 1 corresponds to the ’hollow core interaction’:{Vm} =

{0, 1, 0, 0, 0, . . .}.

potential
hollow-core interaction:{V0, V1, V2, . . . } = {0, 1, 0, 0, 0, . . .} .

and tried to explain the even-denominator fractional quantum Hall effect atν = 5
2 using this interaction.

1.3.4 An alternative definition of Haldane pseudopotentials

Haldane introduced the quantitiesVm originally for interacting electrons on a sphere [30]. In that case, or
for electrons in a plane,m can be identified with the relative angular momentum of the electron pair, having
in mind thatm is closely related to the average separation between the particles increases. In contrast to
that, rotational symmetry of the configuration space is loston a torus and angular momentum is no longer a
good quantum number. Here we will introduce an alternative definition of Haldane pseudopotentials which
is applicable also for particles on a torus [74].

First, recall that matrix elements of theCoulombinteraction on a torus can be conveniently evaluated in
Fourier space (Subsec. 1.5.3) where

V (r ) = e2/|r | ⇒ V (q ) = e2/|q | .

Second, consider a general (radial, bounded) interaction with its Fourier transformsV = V (|q |) and
expandV (|q |) into a Taylor series. Owing toV (r ) = V (−r ) = V (|r |), the series will be free of odd
powersq2k+1. Now, go back to the direct space and useF [f(r)](k) = (iq)kFf(r)

V (q) = ṽ0 + ṽ2q
2 + ṽ4q

4 + . . . ⇒ V (r) = ṽ0δ(r)− ṽ2∇2δ(r)+ ṽ4∇4δ(r)− . . . . (15)

The coefficients̃vi now fully characterize the particle-particle interaction. In an extension to the article of
Trugmanet al. [74], let us show how to translate them intoVm’s, i.e. interaction energy of the two-particle
state in a plane (or on a sphere) with relative angular momentumm.

For the evaluation ofVm = 〈ψm|V (r)|ψm〉, let us take the functionsψm
rel from the planar system, (11)

plus normalization. IfV (q) = q2k then

Vm = (−1)k

∫
dr2ψmψ

∗
m∇2kδ(r ) =

(−1)k

2mm!

[(
1

r

d

dr
r

d

dr

)k

r2me−r2/2

]

r=0

(16)

This is a unique prescription of how an interaction of the typeV (q) = q2k can be transcribed into the terms
of Vm. Table 1 contains these coefficients for several lowest powers ofq. Note thatVm = 0 for m > k.

In conclusion, an interaction potential defined by some particular set of values of Haldane pseudopotentials
Vm can be recalculated into the coefficientsṽi in (15) (Taylor series ofV (q)) using Table 1 or, more
generally using (16).
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Again, several remarks should be made.

(1) The expansion in (15), being first suggested by Trugman and Kivelson [74], looks unusual. In the
distributional sense, we say that a non-zero ranged potential V (r) can be written as a sum of terms with
’zero range’.

Instead of aδ-function imagine rather a sharp peaked functionδb, a Lorentzian of widthb, for instance.
Functions∇2kδb(r ) will then have ’the longer the range the higher thek is’: it is instructive to draw a
sketch of the first few functions(δb)(2k) and consider as ’range’ the position of the local extreme which is
the most distant from the origin. In this sense, (15) is an expansion ofV (q) in terms of ’increasing ranges’.

(2) When calculating the Coulomb matrix elements for particles on a torus (Subsec. 1.5.3), we do not use
the full functionV (q) but only its values in discrete ’lattice’ pointsq . This is obviously due to the periodic
boundary conditions. In particular,q = 0 is missing among these points.

Thus, we need not worry about the long-rangedness of the Coulomb potential,V (q → 0) → ∞ which
renders it unexpandable into a power series ofq. Instead of1/q we may imagine to have considered any
other polynomial inq which matches the values of1/q at the ’lattice’ points. Both interactions must lead
to the same results.

(3) Example:consider two electrons in the lowest Landau level interacting viaV (q) = αq2. Eigenstates
sorted according the to increasing value of the particle-particle distance〈r〉 may be indexed by an integer,
saym. The statem = 0 will have an energy of−α, the statem = 1 will have an energy ofα and all other
states (with larger interparticle separation) will have zero energy.

The state withm = 0 will have a symmetric wavefunction and will be thus prohibited for electrons with
equal spins. Thus there will be only one state with non-zero energy for this case and it is the state with the
lowest interparticle separation. The potentialV (q) = αq2 defines therefore a hard-core interaction.

1.3.5 Short-range interaction on a torus

The decomposition of the Coulomb interaction (in the lowestLL) into the set of Haldane pseudopotentials
has already been shown in Fig. 2. This is also the spectrum of two Coulomb-interacting particles on a
sphere.

Let us now consider a pair of particles on a torus, Fig. 2a. Theindexm is no longer the angular momentum
of the pair as this is not a good quantum number. The wavefunctionsψm

rel(z) ∝ zm exp(−|z|2/4ℓ20) in
(11) must be modified, in order to comply with the periodic boundary conditions.

In Fig. 3 we show some of the wavefunctions corresponding to the relative motion on a torus of size
Nm = 30 (= ab/2πℓ20, Subsec. 1.5.1). We will denote them simply byψm, m = 0, 1, . . . ,mmax and
skip all other indices which would be appropriate, e.g. to indicate that they depend on the size of the torus
(a×a). Even though these states are more complicated than those in (11), they can still be sorted according
to growing values ofrm = 〈ψm|r|ψm〉. It is not surprising that the statesψm for lowm (≪ Nm), Fig. 3b,
look very similar to the eigenstates of angular momentumm for infinite systems (11). First whenrm
becomes comparable to the system size, deviations from the circular form of|ψ|2 occur (middle column of
Fig. 3b). It is an intriguing property of the periodic boundary conditions that the states with very highm
look very similar to those with very lowm. If we fix one electron tor = (0, 0), then the second electron
orbits around(0, 0) at a distancerm in the stateψm, whereas in the stateψmmax−m it orbits around
(a/2, a/2) at the same distance. This can be seen by comparing the left and right columns of Fig. 3b.

Now, with ψm, as a substitute for the relative angular momentum eigenstates, we can define Haldane
pseudopotentials on a torus byVm = 〈ψm|V (rrel)|ψm〉. Their values (Fig. 3a) are almost equal toVm

in a plane, as long asψm is not affected by the periodic boundary conditions (Fig. 2a) i.e. for small
values ofm.

A reasonable model mimicking the short-range interaction keeps the first two energies of the spectrum in
Fig. 2, i.e. the pseudopotentialsV0, V1 at their ’Coulomb’ values while setting the other ones to zero.
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Fig. 3: Two-particle eigenstates of Coulomb-interacting particles in the lowest LL confined to a torus. States are
shown irrespective of the symmetry or antisymmetry of the wavefunction. Left: spectrum (horizontal axis has no
meaning: levels are ’randomly’ distributed into four groups in order to show degeneracies).Right: relative part of the
wavefunction,|ψm(r rel)|2, for several states. Here,r rel = 0 corresponds to the corner of the square (the four corners
are identical due to periodic boundary conditions). Some ofthese states resemble the eigenstates of relative angular
momentum, see text.

Table 1 gives a prescription how to encode such an interaction intoV (q). We thus arrive at an interaction
potential defined byV (q) = 0.34q2 − 1.51 which is used throughout this work to model a short-range
interaction unless something else is explicitly stated.

1.4 Composite fermion theories

Let us recall the observation from Subsec. 1.2: three zeroesare bound to each electron in the Laughlin
stateΨL. A good way to see this is to fix the positions ofz2, . . . , zn and use the last ’free’ coordinatez1
to inspect (the zeros of) the wavefunction. One zero is required by the Pauli principle (whenz1 = z2, the
wavefunction must vanish), the others are ’voluntary’.

Whenever an electron goes once around a zero inΨL, the wavefunction acquires a phase equal to the
Aharonov-Bohm phase corresponding to one magnetic flux quantum. From this point of view, the Laughlin
state can be interpreted as theν = 1 state where two magnetic flux quanta are attached to each electron.
These objects (electron dressed by two flux quanta) are called composite fermions(CF). Note however that
the precise definition of a composite fermion may vary in different theories as will be explained below.

Intuitively, this concept explains the existence of a gapped ground state at filling factorν = 1/3. Originally,
there arethreeflux quanta per electron (1) and the huge Hilbert space of many-electron states in the lowest
Landau level is completely degenerate without interaction. In other words, we expect no gap without
interaction. If we now assume, that the Coulomb interactionleads to the formation of composite objects,
an electron andtwoflux quanta, then there remains onlyonefree flux quantum per CF. This in turn implies
the filling factor ofνCF = 1 for CF (1). We know that in this case the ground state of particles obeys
Fermi statistics (see comment [1]) and is gapped. If a Landaulevel is completely filled, then any, even
infinitesimal, excitation requires promoting at least one CF into a higher CF Landau level which costs the
finite energy≥ ~ωCF . Now let us describe some of the current composite fermion theories in a little more
detail.
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1.4.1 Chern-Simons transformation

Looking at the Laughlin wavefunction in the way sketched above, we might find it reasonable to incorporate
the flux attachment into the Hamiltonian.

The Chern-Simons (CS) transformation is just a gauge transformation of the magnetic field

a CS(r ) = αΦ0

∫
d2r1

ez × (r − r 1)

|r − r 1|2
Ψ†(r 1)Ψ(r 1) . (17)

It does not change the magnetic field (’gauge transformation’) felt by the electrons only owing to the fact
that two electrons cannot be simultaneously on the same place (see comment [2]). The price for this is
that the transformation is singular,a CS diverges forr = r i. The objectsΨ†(r ) are the one-electron field
operators andα is the number of attached magnetic fluxes.

After this transformation the full Hamiltonian

H =
1

2m

∫
d2rΨ†(r ) [−i~∇r + eA (r )− ea CS(r )]

2
Ψ(r ) (18)

contains – apart from one-particle terms – two-particle terms (those containinga CS) and also three-particle
termsΨ†(r )Ψ(r )Ψ†(r 1)Ψ(r 1)Ψ

†(r 2)Ψ(r 2) (they originate froma 2
CS). The CS transformation alone thus

does not really simplify the original Hamiltonian.

A mean field approximation can be made at this point where the density operatorΨ†(r 1)Ψ(r 1) in a CS

is replaced by the mean valuenS . We arrive at a single particle problem with an effective magnetic field
BCF = B − αφ0nS . In illustrative terms:

CS transf. mean field
a many-body system
atν = 1/3

−→ a very complicated many-
body problem atν = 1/3

−→ a simple one-particle
problem atν = 1

The final one-particle problem atν = 1 has a non-degenerate ground state, the lowest Landau level fully
occupied by CF. By means of this procedure we thus circumvented the original problem that the Coulomb
interaction must select the ground state out of the vast number of degenerate many-bodyν = 1/3 states
within the lowest LL.

A mean field approximation is not the only possible treatmentof the Hamiltonian (18). However, theories
beyond the mean field i.e. those treating fluctuations of the gauge field, are very complex [51].

Using the CS transformation we attach2s = α vortices (not zeroes) to each electron. In the mean field
approximation the problem is equivalent to non-interacting particles in reduced magnetic fieldBCF which
then corresponds to a filling factorνCF . It turns out that many of the experimentally observed fractionsν
(exceptions see in [59]) correspond to integerνCF . Let us conclude with an overview of relations between
quantities referring to electrons and to CF, cf. (1).

BCF = B(1 − 2sν) = B − 2snSΦ0 , ℓ∗ ≡ ℓCF =
ℓ0√

1− 2sν
, (19)

1

νCF
=

1

ν
− 2s , ν =

p

2sp+ 1
, (p, s integer).

1.4.2 Composite fermions̀a la Jain

Compared to the Chern-Simons transformation, Jain choosesto go in some sense the same path but in the
opposite direction [38, 39]. It starts with a wavefunction of particles (fermions) at integer fillingνCF = p,
attachess zeroes (notvortices) to each particle and, after projection into the lowest Landau level, it presents
the result as a trial wavefunction for the ground state at filling ν = p/(2sp + 1) (19). This procedure
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p↑ 1 2 3 −2 . . . 1 2 2 −1
p↓ 0 0 0 0 1 1 2 −1

p = p↑ + p↓ 1 2 3 −2 2 3 4 −2

ν = p/(2sp+ 1) 1
3

2
5

3
7

2
3

2
5

3
7

4
9

2
3

S/n
2 1 1 1 1 0 1

3
1
2 0

Table 2: The scheme of construction of Jain’s wavefunctionsfor CF with two flux quanta attached: examples of
composite fermion filling factors (p↑, p↓ are numbers of fully occupied spin up and spin down CF-Landaulevels) and
corresponding electronic filling factors.

reproduces exactly the Laughlin wavefunction and at other fractions it gives wavefunctions with very high
overlap with ground states calculated numerically by exactdiagonalization.

There are two central reasons why this approach is very popular. On one hand, it gives a simple single-
particle picture of what is going on in the highly correlatedmany-body problem. On the other hand, it
offers explicit formulae to work with since it is easy to write down a wavefunction ofp full Landau levels.
A very pleasant feature of this approach is that it allows to incorporate the spin of electrons easily [77].
Takep↑ of full Landau levels with spin up andp↓ of full Landau levels with spin down. These Landau
levels are then calledcomposite fermion Landau levels. The magnetic field felt by the CF, i.e. the field
corresponding to filling factorνCF = p is calledeffective magnetic fieldBeff . It is weaker than magnetic
fieldB corresponding to the electronic state atν (19).

Note, that the filling factors in (19) are all in rangeν < 1
2 . For 1

2 < ν < 1, Jainet al. [77] suggest the
idea ofantiparallel flux attachment: the effective fieldBeff is antiparallel to the real fieldB, however,
the additional flux quanta are added in parallel toB i.e. antiparallel toBeff . In terms of (19) this means
p→ −p or ν = p/(2sp− 1).

An example of candidates for ground states and their polarization provided by Jain’s composite fermion
theory is given in Tab. 2 (see Chakraborty [13] for a review regarding ground states with various spins).

1.4.3 Composite fermions̀a la Shankar and Murthy (Hamiltonian theory)

The Hamiltonian theory of FQHE (Shankar and Murthy [56]) builds on previous works of Jain and those
concerning the CS transformation, quoting words of its authors, it combines the strengths of the both
theories.

It provides a projected Hamiltonian of the lowest Landau level which scales only with the Coulomb inter-
action. In addition to each electron a new independent object is introduced: a pseudovortex. Its definition
on the level of commutation relations (Eq. 129 in [56]) assures, that if an electron goes around a pseu-
dovortex, it picks up the phase of2π 2s i.e. it has the same effect as an insertion of2s flux quanta. Note
however that it isnot a zero of the wavefunction. The projected Hamiltonian is written in coordinates
which are a combination of the electron and pseudovortex position (Eq. 138 in [56]). This combination is
then calledcomposite fermion coordinate.

For this Hamiltonian an ansatz for a ground state can be written down. At fillingν = p/(2sp+ 1), it is p
Landau levels filled with CF. It is then possible to evaluate their Hartree-Fock energies.

The first substantial success of this theory is that it produces the correct scaling of spectra within the lowest
Landau level (∝

√
B). Compared to Jain’s theory, it keeps track of the fact that the two fluxes (which sit

exactly at each electron in the Laughlin state) can be only loosely bound to electrons. This is owing to the
dynamical degree of freedom given to the pseudovortices. Onthe other hand, the electronic coordinates
are actually the only really independent ones, for instancein the Laughlin wavefunction, all the zeroes
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(zi − zj) are expressed in terms of electronic coordinates. Thus, theprice we must pay for the extension
of the Hilbert space is that we must perform a projection to the space of physical states at the end.

Nevertheless, this does not seem to be a substantial problemand thus the Hamiltonian theory is probably
the most advanced achievement in an effort to understand themany-body physics in the FQHE.

1.5 How to test the CF theory?

The concept of flux attachment (Sec. 1.4) provides a well-understandable model of the FQHE. However
transparent it seems at the first look, predictions based on it must be tested against a model which contains
less approximations. Exact diagonalization (ED) is a good choice for this purpose. In exchange for exten-
sive numerics to perform, the only substantial approximation of the method is to take a finite instead of an
infinite system.

The main part of this Section concerns the exact diagonalization (ED) [14]. It is definitely not the only
numerical method used in the context of the FQHE. Some numerics is at the end of nearly any method
as soon as many-body problems are concerned, be it a Hartree-Fock treatment of CFs or Monte Carlo
simulations of the Laughlin state mapped onto a one-component plasma. O

We take the complete many-body Schrödinger equation but confine the interacting electrons moving ac-
tually in an infinite plane onto a compact (i.e. finite-sized)surface, possibly without edges. The standard
choices are a sphere [30], a torus (square with periodic boundary conditions) [80] and a disc [48] (see
Yoshioka [79] for an overview). Although these manifolds are locally flat and therefore with growing
system size a convergence towards infinite-plane results can be expected, they all break some of the sym-
metries of the infinite plane. For instance, the sphere keepsthe angular momentum while the torus retains
the translational symmetry. In any case, the hope is that effects inflicted by the finite size can be separated
from those generic to a two-dimensional electron gas. Another usual yet not necessary approximation is
to neglect Landau level mixing, i.e. restriction to the lowest Landau level only. Also note, that there is a
long way from an ideal 2D system which study here, to the experimental reality (impurities, effective mass
approximation, finite thickness of the 2D electron gas etc.).

1.5.1 Torus boundary conditions

One possibility to model an infinite plane by a finite manifoldwithout edges is a rectangle with areaa · b
with periodic boundary conditions (PBC). Topologically, this is the same as a torus, although it is better to
stay with the former picture for the sake of twisted PBC, evenif we sometimes use the word ’torus’ as a
shortcut for this model.

What are the single particle states of the lowest Landau level in this case? Recall (3) where single-particle
states complying with translational symmetry alongy are given

ψ0,k′
y
(x′, y′) = exp(−ik′yy′) exp[−(x′ + k′y)2/2] ,

primed variables are in units of magnetic length,x′ = x/ℓ0, k′ = kℓ0. Periodic boundary conditions
alongy admit only discrete values ofk′y = (2πℓ0/b)j with j integer. The wavefunction is centered in the
x-direction aroundXj = kyℓ

2
0 and if we requireXj to lie within [0; a), we have0 ≤ −k′y < a/ℓ0. Thus,

up to a sign,

0 ≤ j < ab

2πℓ20
≡ m. (20)

Equation (1) withL2 = ab implies thatab/2πℓ20 is equal to the number of magnetic flux quanta (Φ/Φ0)
which pass through the rectangle and by virtue of (20) it mustbe an integer. This brings us to the central
insight thatthere is only a finite numberm = Nm of states in a square with periodic boundary conditions
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(subject to magnetic field and discarding all but the lowest Landau level) and that the size of the torus
(area in units ofℓ20) can be measured by the number of magnetic flux quantaNm penetrating the torus:
ab = 2πℓ20Nm.

Statesψ0,k′
y
(x′, y′) shown above are not periodic in thex direction and this can be accomplished by

periodic continuation:ψ(x, y)→ ψ(x, y)+ψ(x+a, y)+ . . . . The (non-normalized) single particle states
we will be dealing with are thus [80, 78, 81]

ϕj(x
′, y′) =

∞∑

k=−∞

exp

[
iy′(

j

m
+ k)ζ − 1

2

(
x′ − (

j

m
+ k)ζ

)2
]
, ζ =

√
a

b
· 2πm ,

j = 0, 1, 2, . . . ,m− 1 . (21)

These states constitute the single-particle basis of the lowest Landau level.

Twisted boundary conditions

Consider what happens if we require the modulus ofψ rather thanψ itself to be periodic, similar to
Bloch’s theorem. Thus, the wavefunction may acquire a non-trivial phase when going once around the
torus. Mathematically, this can be described using the magnetic translation operators (5)

T (aex)ψ = exp(iφx)ψ , T (bey)ψ = exp(iφy)ψ . (22)

Fixing phasesφx, φy, the correct (non-normalized) periodic single particle states are

ϕj(x, y) =

∞∑

k=−∞

exp(ikφx)t(kaex)︸ ︷︷ ︸
T (kaex)

exp(−iXjy/ℓ
2
0 + iφyy/b) exp[−(x−Xj)

2/2ℓ20] ,

Xj =
j

m
a , j = 0, 1, . . . ,m− 1 , (23)

wheret(ξex) is an ordinary translation, i.e. an operator transformingψ(x, y) intoψ(x+ξ, y). Forφx, φy =
0 the original result (21) is recovered. This choice ofφx, φy is also used throughout this work.

Interpretation ofφx, φy. By imposing the PBC we arrived at the statement that wavefunctions must be
centered (alongx) atXj = (a/m) · j, j = 0, 1, . . . There is noa priori reason for the pointx = X0 = 0 to
be more important thanx = X0.5 = (a/m) · 0.5 which is not among the just mentionedXj ’s. By varying
φx, the set{X0, X1, . . .} = (a/m){0, 1, . . .} is transformed into(a/m){0 + φx/2π, 1 + φx/2π, . . .}.
Thus, sweepingφx from 0 to 2π, we probe all points between0 anda in thex direction. Independently
on this, we may sweep through allky points in the interval[0; 2π/b] by changingφy. Thus,φx andφy are
analogous to lattice wavevectors within the first Brillouinzone in an ordinary periodic system defined by
ordinary rather than magnetic translations.

In summary, by considering only a finite system, we have onlym states to probe the whole plane (i.e.[0, a]
in x and[0, 2π/b] in y). Sweepingφx, φy from 0 to 2π we can access an arbitrary point in the plane.

Another interpretation ofφx, φy was given by Tao and Haldane [73] in terms of additional magnetic fluxes.
These come from two ideal anuloids (closed solenoids): one goes inside the torus and another around the
torus outside.(h/e)(φx,y/2π). It was also shown [32, 37] thatφx increasing linearly in time acts as a
homogeneous electric field inx direction.

General basis of single-particle states on a torus: complexcoordinates
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A precise discussion of one-particle states on a torus including the phasesφx, φy was first given by Haldane
and Rezayi [32]. They showed that the most arbitrary state is

ψ(x, y) = exp(− 1
2x

2) · exp(ikz)
m∏

l=1

ϑ1 (π(z − zl)/b|i)
︸ ︷︷ ︸

analytic

, z = x+ iy (24)

whereϑ1(u|τ) is an elliptic theta function ([29], p. 921),k is a real number in the range|k| < πm/b and
zi are some fixed complex numbers within the rectangle[0, a] × [0, b]. In the terminology of (23), these
states correspond to anyj and anyφx, φy . The most important things to know about the theta functionsare
that it is analytic, thatϑ1(z− zl|i) ∝ z− zl for |z− zl| → 0 and thatzl is its only zero in the rectangle. In
this form, it is also clear thatm is equal to the number of flux quanta in the elementary cell (the rectangle).
Going once around the rectangle, the wavefunction gathers aphase of2π× number of zero points inside.
That number is justm, each factor in (24) contributes by a single zero.

By choosing fixedφx, φy, there arisem possible choices for the values ofk andz0 =
∑

l zl, sayj =
0, 1, . . . ,m− 1. For each pair(k, z0) we can construct one function of the form (24) and the resultingm
functions will constitute a basis of the lowest Landau level, just as the basis in (23). There is naturally a
large freedom in choosing one particular basis. This happens by choosing some particular position of the
zero pointszl’s while observing the constraint onz0. The basis in (23) can be obtained from (24) by putting
the zeroes on a line,zl = i · bl/m+ j/ma and choosingk = (2π/b)j for the stateϕj with φx = φy = 0.
Even though it is by far not obvious in (23), Fig. 4 shows a 2D plot of one of such functions.

In principle, the wavefunctions in (24) are very similar to those obtained in the circular gauge (4) except
for substitutingz by ϑ1(z|i). This is a manifestation of the fact, that even on a torus, circular symmetry
is approximately preserved at short distances and deviations occur first whenϑ1(z|i) deviates fromz at
larger distances. One could say,ϑ1(z|i) is the functionf(z) = z adapted to the torus i.e. deformed to
comply with periodic boundary conditions.

On the other hand contrary to the infinite plane, each single-electron wavefunction on a torus has as many
zeroes as there are flux quanta passing through the torus.

1.5.2 Many-body symmetries on a torus

Center-of-mass

What changes if we considern-body states instead of single-particle ones [32]? Given the considered
Hamiltonian (33), the most obvious symmetry is the separation of center-of-mass and relative part of the
wavefunction

Ψ(z1, . . . , zn) = ΨCM (Z)ψrel , Z = z1 + . . .+ zn . (25)

The center-of-mass part is just a one-particle wavefunction. Hence it must have the form shown in (24).
Haldane and Rezayi [32] showed that it hasq zeroes in the region[0; a] × [0; b] for filling factor ν =
Ne/(qNe). Again as for single-particle states, there areq basis states forΨCM . Since the energy does not
depend on the center-of-mass position in a homogeneous system, these three states will lead to degenerate
many-body states, providedψrel remains the same.

This introduces a delicate topic. The electron density in a given state depends on the center-of-mass part
of the wavefunction. Different choices of bases in theq-fold i.e. threefold forν = 1/3, degenerate space
of center-of-mass wavefunctions may lead to aq-tuple of states with practically homogeneous density in
some cases or with quite strongly varying density in other cases (Fig. 5). This is true in spite of that we
always describe the same ground state subspace. Even worse,in homogeneous systems we often want to
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Fig. 4: One possible one-particle state on a torus pierced bythree flux quanta (i.e.m = 3).

study only the relative part of the wavefunction, which mustbe the same in all cases. If it is for example
the Laughlin wavefunction, we know that it leads to a homogeneous density. The central trouble is then
that the Hamiltonian eigenstates obtained by exact diagonalization containΨCM .

Relative-motion part of the wavefunction

The discussion in the previous paragraph is based on (magnetic) translations of the center-of-massTCM (u ).
In ann-body state, the translation of a single (i-th) particle (Subsect. 7.2 in [14]),ti(v ), can be split into a
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Fig. 5: Two different bases forΨCM , (a) and (b). At fillingν = 1/3 there are three allowed CM states on a torus.
They are labeledα, β, γ in this figure. For each element of each basis we show the modulus ofΨCM , the density of
the corresponding Laughlin state with six electrons, i.e. the stateΨCMΨL, and section of the density alongx and
alongy. Note the positions of the three zeroes in differentΨCM ’s (marked by the red arrows).
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translation of the center of massTCM ( 1
nv ) and a relative translationTrel,i(v − 1

nv ). Owing to the indis-
tinguishability of particles, the effect of the relative translationti(v ) on a particular many-particle state is
the same for anyi. We may thus omit the index and imaginei = 1, for instance.

Again, as in Bloch’s theorem, wavevectork r can be attributed to these relative translations [31]

Trel(v )ψ = exp(ik r · v )ψ . (26)

SinceTrel(v ) commutes with the Hamiltonian (33), the Hamiltonian eigenstates can be sorted according
to values ofk r. In Bloch’s theorem, the allowed translations are given by an arbitrary lattice vectorv . Not
all of them are allowed forTrel though [31].

This concept is very similar to a single particle in a periodic potential. However, there is no real periodic
potential in an infinite plane and we introduced one particular period artificially. The largest period possible
within our model is the size of the rectangle.

The Brillouin zone fork r is rectangular (Fig. 6) and itssizegrows with the size of the elementary cell. For
filling factor ν = p/q (p, q with no common divisor> 1) and number of flux quanta per cellNs = Nq,
the allowed values ofk r are

k rℓ0 =

√
2π

Nsλ
(s, t) , |s|, |t| ≤ N/2 and integer. (27)

The quantityλ is the aspect ratio. For the sake of comparison between systems of different sizes we will
sometimes use size-independent units fork r, wherek̃ r = (π, π) means the upper right corner of the
Brillouin zone, i.e.s = t = N/2.

It can be verified ([14], p. 169), that application of the operator

CDW:
∑

j

exp(iq · r i) , or SDW:
∑

j

S+
j exp(iq · r i) (28)

to an arbitrary state corresponding tok r increases its wavevectork r by q . On the other hand, the operator
(28) generates a charge-density wave (spin-density wave) with wavevectorq , as can be best verified by the
simple example of the Fermi gas. Isotropic states are supposed to havek r = 0.
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The wavevectork r for states on a torus is also related to the angular momentum of the corresponding
states on a sphere or on a disc,|k r| = (|L |/~)/R, whereR is radius of the sphere [30, 14]. The direction
of L (or alternativelyLz, for instance) is related to the direction ofk r: for example a plane wave going
around the equator specified by the wavevectork r will have L pointing to the pole andLz = ~|k r|R.
This correspondece allows to directly compare spectra for FQH states obtained for different boundary
conditions [33] and this, in turn, helps to sort out the finitesize effects.

Momentum

So far, we have introduced two sorts of translational symmetries of states on a torus. One of the center-of-
mass part of the wavefunction and another of the relative part. Since the corresponding magnetic translation
operators commute with the homogeneous Hamiltonian, it would, in principle, be possible to split the basis
of the whole lowest Landau level into several smaller bases and diagonalize in the subspaces separately.
Each basis would be characterized by a particular value ofk CM andk r.

This procedure can help to treat larger systems but it costs some extra effort to implement it and moreover
it is only possible in homogeneous systems. We will now discuss another of Hamiltonian’s symmetries,
described by a new quantum numberJ , which is a combination of the previous two. This symmetry is
preserved with a certain class of inhomogeneities and it canbe implemented straightforwardly. When
constructing the basis for a particular value ofJ , we only have to select the matching Slater determinants
(31) rather than to construct linear combinations of them.

The homogeneous Hamiltonian in the Landau gauge (i is the particle index,Vint is the Coulomb interaction
between particles)

H = Vint +
∑

i

Hi
0 , H0 =

1

2
~ω

[
− ∂2

∂x′2
+

(
−i ∂
∂y′

+ x′
)2

]
, (x′, y′) = (x/ℓ0, y/ℓ0)

conserves the total momentum iny direction. Due to the periodic boundary conditions allowedvalues ofky

are(2π/b)j, j = 0, 1, . . . ,m− 1. In ann-body state constructed as a Slater determinant of single-electron
statesϕji (21), the total momentum alongy is

(b/2π)Ky = (b/2π)

n∑

i=1

ki
y = j1 + . . .+ jn(mod m) ≡ J . (29)

Values ofJ thus range for instance from0 tom−1. It is useful to keep in mind, thatji is (up to the factor)
the point inx-direction at whichϕji is centered,Xji = (ji/m)a. Thus,J can also be interpreted as the
x-coordinate of the center-of-mass of then-electron state.

Without proof, let us now present the precise connection betweenJ and the wavevectors following from
TCM andTrel (i.e. k CM , k r). Let ν = p/q (p, q with no common divisor> 1) andm = Nq the number
of flux quanta per cell. An arbitraryJ can be decomposed into two parts

J = JCM ·N + Jrel , |Jrel| ≤ N/2 , JCM integer, (30)

i.e. Jrel is J moduloN andJCM is J divided byN . The quantityJrel is directly they-component ofk r,
more precisely,Jrel = t or Jrel = N/2− t in (27), the former forpq(n− 1) even, the latter forpq(n− 1)
odd [14].

JCM distinguishes states which differonly in the center-of-mass coordinate. By a successive application
of TCM to one stateΨ we can go through all possible values ofJCM = 0, 1, . . . , q − 1.

Each subspace with definiteJ contains states of all differentkr
x. SinceTrel by allowed translation vectors

commute with the total momentum alongy, it is in principle possible to split a basis corresponding to a
particularJ into subspaces withkr

xℓ0
√
N/2π = −N/2, . . .N/2. However, the basis state will no longer

have the simple form of antisymmetrized product states ofϕj (21).
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1.5.3 Exact diagonalization

Many interacting electrons in a rectangle with periodic boundary conditions can be described in the fol-
lowing way.

• Choose the number of flux quanta penetrating the rectangle (m). All allowed single-particle statesϕj

are those written in (21) or (23) for nontrivial boundary-condition phasesφx, φy. Their number ism.

• Construct all possible linearly independentn-particle states (for the given number of flux quanta
m). Most conveniently, these can be antisymmetrized products (Slater determinants) ofn statesϕji ,
denote them by

|j1 . . . jn〉 = a†j1 . . . a
†
jn
|0〉 . (31)

• The filling factor is thenν = n/m, cf. (1).

• Take an arbitrary many-body Hamilton operator and calculate its matrix elements in the basis|j1 . . . jn〉k,
k = 1, . . . , N . The dimension of the matrix isN =

(
n
m

)
.

• Diagonalize the Hamilton matrix. Eigenvalues are the totalenergiesEi, eigenvectorsv i = (v1
i , . . . , v

N
i )

are related to the many-body eigenstates by

H |ψi〉 = Ei|ψi〉 , |ψi〉 =
N∑

k=1

vk
i |(j1 . . . jn)k〉 . (32)

This procedure isexactif we consider a system where electrons in the lowest Landau level form a periodic
system. The approximation rests therefore in representingan infinite system by a periodic repetition of
a representative finite cell, a procedure which has been verysuccessfully applied in condensed matter
theory. Formulated in other words: the Hamiltonian is exactand all approximations are implemented by
the choice of the basis. The dimension of the matrix is finite by construction, no cutoff for one-particle
states is needed.

In the rest of this Subsection we present the particular formof the Coulomb matrix elements ([80] or [14],
Sect. 5.1).

The exact Hamilton operator in first and in second quantization is

H =
e2

4πε

∑

i<j

V (|r i − r j |) (33)

H =
∑

j

Wa†jaj +
∑

j1,j2
j3,j4

Aj1,j2,j3,j4a
†
j1
a†j2aj3aj4 ,

wherea†j create single-electron states. The latter expression assumes already periodic boundary conditions.
The first sum is the Madelung-type energy of the electron interacting with its own periodic images [12]

W = − e2

4πεℓ0

1√
2πm


2−

∑

l1,l1
(l1,l2)6=(0,0)

ϕ− 1
2

(
π(l21λ+ l22/λ)

)

 , ϕn(z) ≡

∫ ∞

1

dt e−zttn . (34)

If only the electrons were considered, this energy would diverge at least as
∑

n 1/n. To keep it finite, a
neutralizing positive background must be considered [12].
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Choosing the single-electron basis according to (21) or (23), the interaction matrix elements are

Aj1,j2,j3,j4 =
1

2

∫
dr 1dr 2ϕ

∗
j1(r 1)ϕ

∗
j2(r 2)V (|r 1 − r 2|)ϕj3 (r 2)ϕj4 (r 1) =

=
e2

4πεℓ0

1

2m

∑

qx=(2π/a)s
qy=(2π/b)t

s,t∈Z
(s,t)6=(0,0)

δ′j1+j2,j3+j4δ
′
s,j1−j4

V (q )

ℓ0
exp

[
−1

2
q 2ℓ20

]
× (35)

× exp [−2πit(j1 − j3)/m]× α(j1 + j2 − j3 − j4, φy) .

with both integrals taken over the rectangle[0; a]× [0; b]. Primed Kroneckerδ compares the two arguments
modulom. The last factorα is solely due to the boundary condition phaseφy

α(∆J, φy) = δJ,0 + δ∆J,m exp(iφy) + δ∆J,−m exp(−iφy) ,

and the matrix elements do not depend onφx, only the basis vectors|j1 . . . jn〉k do.

The periodic continuation of the Coulomb interaction in twodimensions is given by

4πε

e2
V (r ) =

1

|r |

∣∣∣∣
per

=
1

ab

∑

q

2π

|q | exp(iq · r ) , q =

(
2π

a
s,

2π

b
t

)
, s, t ∈ Z , (36)

hence the Fourier series ofV (r ) used in (35) hasV (q ) = 1/|q |.
The Hamiltonian (33) assumes spin-polarized particles. Its extension to particles which may have different
spin is straightforward, since the Coulomb interaction conserves spin [85],

H =
∑

j

Wa†jaj +
∑

j1,j2
j3,j4
σ,σ′

Aj1,j2,j3,j4a
†
j1σa

†
j2σ′aj3σ′aj4σ . (37)

operatorsa†jσ must be extended appropriately. They create a particle in stateϕj either with spin up or spin
down.

1.5.4 Symmetries and choices of bases

Regarding the structure of the basis of our choice (31) thereare two Hamiltonian symmetries which are
easy to use: conservation ofJ , total momentum alongy (29) and conservation of thez-component of the
total spinSz.

’Easy to use’ means here that the basis of the whole lowest Landau level in the form of Slater determinants
|(j1σ1 . . . jnσn)k〉 can be sorted into groups corresponding to particular values ofJ andSz.

Sorting according toJ splits the basis intom subspaces of approximately the same size≈ (m
n )/m. Util-

isation ofSz brings a smaller profit, since theSz = 0 subspace is larger than theSz = n/2 subspace by
a substantial factor of about( n

n/2 ) ≈ 2n−1/
√

2πn. The size of the largest group is then not simply the
number of all states divided by the number of subspaces.

Other symmetries of the homogeneous Hamiltonian would correspond to conservation of the total spinS2

and conservation ofkr
x (Subsect. 1.5.2). The eigenstates of these operators, however, are generally not

of the simple product form (31), but they are linear combinations of such states. More importantly, these
symmetries are gone if inhomogeneous systems are considered. However, suitably chosen inhomogeneities
can preserve the ’easy-to-use’ symmetries mentioned previously (Subsect. 3.1) while still lowering the total
symmetry of the Hamiltonian.

If the aim is to choosen as high as possible, then the largest accessible systems have about ten electrons. At
filling ν = 1/3 with J symmetry employed andSz = n/2, the basis counts 1 001 603 elements forn = 10
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andJ = 5. The largest bases used in this work contained5× 106 elements, extremely elaborate programs
can handle bases up to sizes about an order of magnitude larger [52]. An alternative to the classical exact
diagonalization is presented in Subsect. 1.5.5

Particle-hole symmetry

Particle-hole symmetry provides a mapping between systemsat fillings ν and1 − ν (spinless electrons)
or ν and2 − ν (spinful electrons). The mapping is exact provided Landau level mixing is absent. As
an illustrative example consider fully polarized electrons i.e. only the lowest LL with spin up is relevant,
lowest LL spin down and all higher LLs are so far in energy thatthey can be neglected. The spectra of
a ν = 1/3 and2/3 systems are identical up to a constant shift and the corresponding wavefunctions are
related by a simple transformation.

Think of the lowest Landau level as of a 1D chain. The Landau gauge is particularly illustrative for this as
the one-electron states (3) are localised alongx. The basic idea of the particle-hole symmetry is that two
electrons at positionsi andj feel the same repulsive force as two holes at the same positions, i.e. when the
whole 1D chain is full and only ati andj electrons are missing.

Let us put this into mathematical terms. Leta†j be a creation operator of a single-electron state with
momentumky = 2πj/b, being therefore localised inx-direction aroundXj = kyℓ

2
0 (3). Assuming thatj

can take values0, . . . ,m− 1, particle-hole conjugatedn-body states are

a†j1 . . . a
†
jn
|0〉 (particles) ←→ aj1 . . . ajn |1〉 (holes), (38)

where|0〉 is an empty Landau level (vacuum) while|1〉 ≡ a†0 . . . a
†
m−1|0〉 is a completely filled Landau

level. For examplea†0a
†
2|0〉 ≡ | • · • · · ·〉 ←→ | · • · • • •〉 ≡ a0a2|1〉 = a†1a

†
3a

†
4a

†
5|0〉.

A straightforward calculation shows that matrices of a translationally invariant two-body operator̂A are
the same (up to a multiple of identity matrix and complex conjugation) in an arbitraryn-particle basis and
its conjugated(m− n)-electron basis. The only approximation we must concede is to neglect the Landau
level mixing.

Result of the calculation is the following. The diagonal terms of an operatorA in the particle basis and in
the hole basis fulfil

〈1|a†j1 . . . a
†
jn
A ajn . . . aj1 |1〉 =

m− 2n

m
〈1| A |1〉+ 〈0|aj1 . . . ajn A a†jn

. . . a†j1 |0〉 (39)

and the off-diagonal terms remain the same up to the complex conjugation.

Two cases are worth of special attention:

Thespectraof (fully polarized) systems atν = n/m andν = (m− n)/m are the same up to a shift

Ei
ν = Ei

1−ν + Ef (m− 2n)/m , (40)

whereEf is the energy of a completely filled (lowest) Landau level. This result does not depend on the
form of the interactionV (r). A nice demonstration of this formula is shown in Fig. 41b (see the comment
[3]).

Conjugated states (38) may have different values ofJ (30). For instance: form = 4, consider a three-
electron state|j1j2j3〉 = |013〉 and its particle-hole conjugate|j1〉 = |2〉. The former hasJ = 0 while the
latter hasJ = 2.

For thedensity-density correlation functiongΨ(r ) = 〈∑i<j δ(r − r i + r j)〉Ψ we get

gΨ(r ) =
m− 2n

m

(
1− exp(−r2/2ℓ20)

)
+ gΨ′(r ) , (41)
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whereΨ andΨ′ are arbitrary particle-hole conjugated states. Note thatgΨ′ refers toelectronsin the ’hole’
state. Correlations between holes inΨ′ are the same as those between electrons inΨ.

Note, thatg(r ) in (41) isnotdefined in the normalized formδ(r − r i + r j)/(n(n−1)). Also g(r ) of a full
Landau level may depend on system (finite-size) parameters,e.g. in a rectangle with periodic boundary
conditions, it depends on aspect ratio.

Let us mention that densities of particle-hole conjugated states are related bynΨ(r ) = m−nΨ′(r ), exactly
as we expect from the picture of a hole as a missing particle. The plus sign in (41) might look puzzling. At
the second glance, however,gΨ = n·n (schematically) and thereforegΨ′ = (1−n)·(1−n) = 1−2n+gΨ.

1.5.5 Density matrix renormalization group

Exact diagonalization as it has just been presented, boastsof taking the complete basis of the lowest Landau
level on a torus. As long as the low-energy states are considered, many of the basis states will be almost
absent in the product-state expansion (32). Especially those which place many electrons close to each other
and thus contribute with a large Coulomb energy. Leaving outsuch states from the basis will not affect the
calculated ground state noticeably while it reduces the matrix sizes.

Density matrix renormalization group (DMRG) is a systematic method to leave out irrelevant basis states.
Roughly, its basic idea is to successively enlarge the considered system and to use only the most important
n-particle states for calculating the(n+ 1)-particle ground state.

The idea was used originally for one-dimensional systems (areview in [64, 65]). Shibata and Yoshioka
[66, 67, 68, 69, 82] noticed that the single-electron basis of the lowest Landau levelis in principle one-
dimensional (23) and adapted this method as an extension of the exact diagonalization for studies of the
lowest Landau level. They were thus able to study systems with up to about 20 particles at fillings close to
ν = 1/3.

1.6 Quantum Hall Ferromagnets

Consider the situationν = 1 and vanishing Zeeman energy [26]. What is the ground state?

In the absence of Zeeman splitting, the lowest Landau levels(n = 0) for spin up and for spin down have
the same energy, thus, without interaction, there are2eB/h single-electron states available with energy
~ω/2, which is the lowest energy an electron can have in the presence of a magnetic fieldB. Filling factor
one means that onlyeB/h states (per unit area) are occupied. Hence there is a vast number of degenerate
many-electron ground states without interaction.

One of these states has the form

ΨH = Φ(z1, . . . , zn)|↑↑ . . . ↑〉 .

Antisymmetry ofΨH implies antisymmetry ofΦ, or in other wordsΦ vanishes when anyzi approaches
any zj. Each particle is surrounded by a correlation hole, cf. (45). Moreover, the stateΨH is the only
one (withν = 1 within the lowest Landau level) whose orbital part is fully antisymmetric, up toSU(2)
spin rotations. If we donot neglect the repulsive interaction between electrons, the ’optimal correlation
hole’ of the stateΨH will make its Coulomb energy lower than for any otherν = 1 state andΨH becomes
the absolute ground state even at zero Zeeman energy. The long-range order in spins (all are pointing in
the same direction) which are not localised at fixed positions, e.g. as it is in a spin lattice, rendersΨH

an itinerant ferromagnetic state. In the absence of the Zeeman splitting theν = 1 quantum Hall system
constitutes an example of a Heisenberg ferromagnet.

For Coulomb interaction, the energy cost of a single electron flip, which implies a violation of the anti-
symmetry ofΦ, can be evaluated analytically:E = (e2/εℓ0)

√
π/8 [26]. Quantitatively, this number is

comparable to the cyclotron energy~ω at magnetic fields in the range of few tesla in GaAs. The fully
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Fig. 7: Spectra of two examples of quantum Hall ferromagnets(exact diagonalization, Coulomb interaction, eight
electrons). The ferromagnetic ground state occurs in both cases atk r = 0 which is a necessary condition for the
state to be non-degenerate (in orbital degrees of freedom).See Fig. 8 for an explanation of the choice of Landau level
indices and spins of involved levels(n, σ).

polarized state then becomes the ground state stabilized bythe huge gain in exchange energy. A spec-
trum obtained by the exact diagonalization in a small systemis shown in Fig. 7a. In agreement with the
argumentation above, the ground state hasS = n/2 and it is well separated from excited states.

For the Pauli principle to apply (Φ vanishes aszi → zj), it is only important that all spins have the
samedirection, not that they are all pointing upwards. Thus, theν = 1 ground state is characterized by
full spin polarization (S = n/2) and arbitrarySz. All states(S−)kΨH , k = 0, 1, . . . n are degenerate
ground states. A finite Zeeman energy will lift this degeneracy and theν = 1 system will then have a
nondegenerate ground stateΨH , e.g.Sz = n/2 for B pointing in thez-direction.

Other types of integer quantum Hall ferromagnets are possible, but they all share the common scheme: two
degenerated Landau levels which provide2eB/h ’free places’ and onlyeB/h of them should be occupied.
Depending onwhich two Landau levels are degenerate, different types of ferromagnets can follow. A
classification of possible cases was given by Jungwirth and MacDonald [40].

Let us introduce one more example, theν = 2 QHF which turns out to be an Ising type ferromagnet (see
also Jungwirthet al. [41]). By changing the ratio between Zeeman and cyclotron energy,(n, σ) = (0, ↑)
and(1, ↓) Landau levels can be brought to coincidence (Fig. 8). Experimentally, this can be accomplished
either by changing theg-factor (it decreases with pressure [15] or by tilting the magnetic field [18] (cy-
clotron energy depends only on the component perpendicularto the 2DEG plane, Zeeman energy depends
on the total field). The low lying(0, ↓) Landau level is fully occupied (eB/h states) and can be taken as
inert. The remainingeB/h states (giving in totalν = 2) can be distributed among the2eB/h available
places of thetwo crossing Landau levels (Fig. 8). Contrary to theν = 1 QHF, there are only two ground
states now: either(0, ↑) is full or (1, ↓) is full (Fig. 7b). To obtain this result we should use the exact
diagonalization because of the large degeneracy present when interaction is switched off. However, the
fact that distributing the electrons between the(0, ↑) level and the(1, ↓) level costs extra energy (compared
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(0, ↑)
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(1, ↓)
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Fig. 8: Integer quantum Hall ferromagnets occur when two
crossing Landau levels should be only half-filled (2eB/h
free states,eB/h electrons to occupy them). Thick (thin)
grey levels indicate completely filled (empty) Landau lev-
els, the pair of black levels are the ’active’ ones. Despite
the large number of possibilities of how to distribute elec-
trons in the two levels, the Coulomb interaction selects (up
to degeneracy inSz) one state. Depending on which Lan-
dau level crossing is active, different types of ferromagnets
occur: Heisenberg type forν = 1, Ising type forν = 2, 3.

to placing all electrons into one of the levels), is probablya consequence of the fact that spin up orbitals
are not the same as spin down orbitals [40] as they lie in different Landau levels.

For a more detailed discussion of spectra of a Heisenberg andan Ising QHF (Fig. 7), see in Subsec. 2.3.3.

Quantum Hall ferromagnets which occur at integer filling factor have the advantage that they can often
be well described by Hartree-Fock models, at least as far as the ground state is considered. Even here,
exact diagonalization studies can sometimes unveil unexpected ground states, as shown by Nomura [58] in
bilayer systems (spin degree of freedom is substituted by pseudospin which refers to the two layers).

The principial question which is addressed in this thesis is, whether quantum Hall ferromagnetism can also
occur at fractional filling factors. Naively, one may expectthat phenomena occuring for electrons (integer
ν) would also occur for the CF (fractionalν). The Coulomb energy (of CF cyclotron energy) would take
over the role of the cyclotron energy within the integer QHF.A pleasing fact is that now the ratio of the
CF cyclotron energy and the Zeeman energy isB-dependent, so that the coincidence of the CF LL can be
induced just by adjustingB at a given filling factor. Experimentally, there are strong hints on the existence
of ferromagnetism even at fractional fillings [70, 22] and this work should contribute to the understanding
of these phenomena from the side of theory.

2 Structure of the incompressible states and of the half–polarized states

2.1 Basic characteristics of the incompressible ground states

Being interested in phenomena occurring at the transition between two incompressible ground states, the
spin-polarized and the singlet one, it is reasonable to get acquainted with these two ground states first.

In the very illustrative model of non-interacting composite fermions (NICF), introduced in Subsect. 1.4.2,
the ground state at electronic filling factorν = 2/3 = 2/(2 · 2 − 1) corresponds to two completely filled
composite fermion Landau levels (LL). If, in some particular situation, the CF cyclotron energy is smaller
than the Zeeman splitting, these will be then = 0, ↑, n = 1, ↑ CF Landau levels and the ground state will
be fully spin polarized, Fig. 9a. If the ratio between Zeemanand CF cyclotron energies is reversed, the
ground state hasn = 0, ↑, n = 0, ↓ CF Landau levels filled and is therefore a spin singlet, cf. comment
[4]. Here, the CFs are electrons with two flux quanta attachedantiparallel to the effective magnetic field
Beff [77], which leads to a minus sign in the denominator of the CF filling factor (19).

A similar situation, i.e. occurrence of two incompressibleground states, the singlet and the polarized one,
occurs also at filling factorν = 2/5. Here, the ground state can be interpreted as two filled CF LLs
where the two flux quanta were attachedparallel toBeff . Thus, these ground states should be completely
equivalent to the ground states atν = 2/3 within the NICF approximation.
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filling factors 2/3 and2/5 without Zeeman
splitting (short-range interaction, see Subsec.
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Fig. 9: Ground states at filling factors1/3, 2/5 and2/3 from the point of view of a composite fermion picture and the
exact diagonalization.

Let us compare this picture of an infinite two-dimensional system with a finite system treated exactly.
Looking at the exact spectra of aν = 2/3 and aν = 2/5 finite system, Fig. 9b, we readily recognize
ground states in theS = 0 and theS = N/2 sector which are well separated from excited states, as
compared to the typical level separation within the excitation spectrum or in subspaces with other values
of the total spin. Also, as the NICF model predicts, the spin singlet ground state (n = 0, ↑, n = 0, ↓) has
a lower energyE(S = 0) than the polarized one (n = 0, ↑, n = 1, ↑),E(S = N/2) if the Zeeman energy
is set to zero. Both ground states havek r = (0, 0) which corresponds toL = 0 in a system with circular
symmetry, Subsect. 1.5.2. Angular momentum equal to zero isin turn a property inevitable in any state
with no partially filled Landau levels, corresponding argumentation is analogous to the comment [4].

It should be emphasised at this place that however strong support for the NICF model these findings pro-
vide, they cannot be taken as a proof of its complete correctness. The interacting electrons cannotbe exactly
mapped tonon-interactingCFs and even the quality of the approximation is hard to control. Although the
NICF model gives correct answers to questions indicated above, there is no guarantee of correct answers
in other cases, especially at other filling factors. In the following, we will continue discussing properties
of both incompressible states atν = 2/3 and of those atν = 2/5 as calculated by exact diagonalization
and we will occasionally mention links to composite fermiontheories.

2.1.1 Densities and correlation functions

Having computed a many-particle wavefunction numericallyusually does not automatically mean that we
can say much about the nature of the state it describes. Very often, the only statement to be made is that the
state is highly correlated, or entangled. By this we mean that the state cannot be written as a single Slater
determinant [5], not even approximately, and thus its description goes far beyond any Hartree-Fock model.

In order to learn more about the state it is apt to evaluate expectation values of observables such as den-
sity or density-density correlation functions. In the firstquantization formalism these are the following
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operators

n(r ) =
∑

i

δ(r − r i) , g(r ) =
1

Ne(Ne − 1)

∑

i6=j

δ
(
r − (r i − r j)

)
, (42)

summations running over all particles in the system. For inhomogeneous systems it is also useful to
consider an unaveraged density-density correlation operator

g(r ′′, r ′) =
1

Ne(Ne − 1)

∑

i6=j

δ(r ′ − r i)δ(r
′′ − r j)

)
,

where an average overr ′′ gives (42). This is the probability density of finding a particle at placer’
provided there is a particle at placer ′′. The functiong(r ) is justg(r + r ′, r ′) averaged over allr ′, hence
g(r ) ∝ g(r + r ′, r ′) for homogeneous systems, i.e. both quantities are the same up to a proportionality
constant.

For not fully spin polarized states it is also useful to watchquantitiesn↑(r ) or g↑↓(r ) and its analogues
with other spin indices. For example

g↑↓(r ) =
1

Ne(Ne − 1)

∑

i6=j

δσi↑δσj↓δ
(
r − (r i − r j)

)
. (43)

The normalization of density and density-density correlation functions we chose in (42,43) is the following:
∫

drn(r ) = Ne ,

∫
dr g(r ) = 1 ,

∫
dr gσσ(r ) =

Nσ(Nσ − 1)

Ne(Ne − 1)
, σ ∈ {↑, ↓} , (44)

where integrals are taken over the whole system i.e. elementary cell.

As long as homogeneous systems are concerned we naturally expect density and also polarization to remain
constant. For the incompressible states this is true only upto finite size effects. The density shows a slight
modulation which decays rapidly as the system size is increased. Discussion of these effects which have
no relevance for the real infinite 2D system will be presentedlater, Subsec. 2.1.4.

In the following, byg(r) we meang(r ) with r = |r | for isotropic and homogeneous systems. Also, when-
ever we will speak about ’correlation functions’ we mean equal time density-density correlation functions.

Fully occupied Landau levels

The density-density correlation function can be analytically evaluated for a state withν = n fully occupied
Landau levels [42]. This is the ground state of non-interacting electrons at integer filling factor. For the
spin polarized case,

g(r) = 1− 1

n2
exp(−[(rkF )2/4n])

[
L1

n−1

(
(rkF )2

4n

)]2

. (45)

HereLα
n(x) are the associated Laguerre polynomials [6, 29]. In particular,

ν = 1 : gν=1(r) = 1−exp(−r2/2ℓ20) , ν = 2 : gν=2(r) = 1−exp(−r2/4ℓ20)·
1

4
[2−r2/4ℓ20]2 .

(46)

The Fermi wavevectorkF for a system subjected to a perpendicular magnetic field is defined askF in
exactly the same system (i.e. the same areal density of electrons) just with magnetic field switched off. In
this scheme

(kF ℓ0)
2 = 2ν , or kF =

√
2νℓ−1

0 . (47)
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Fig. 10: Density-density correlation in a free 2D electron gas and in magnetic field at integer filling factors (spin-
polarized electrons).

It is a pleasant news that by taking the limitν = n→∞ in (45) we obtain

gFS(r) = 1−
[

2

kF r
J1(kF r)

]2

, (48)

which is the correlation function of free electrons in two dimensions (Fermi sea). It should not be anything
else becauseν → ∞ with kF kept constant means thatB is decreased to zero at a given areal density of
electrons.

Filling factorν = 1/3

Provided Landau level mixing is absent and considering onlythe short-range interaction between parti-
cles (Sec. 1.3), the ground state at filling factorν = 1/3 is described by the Laughlin wavefunction
ΨL(z1, . . . , zn), (7). Up to my knowledge, noclosed[7] analytical expression of the correlation function
in this state is available. Only the short range behaviour can be determined analytically. For(z1−z2)→ 0,
|ΨL|2 vanishes proportional to(z∗1 − z∗2)3(z1 − z2)3 = |z1 − z2|6, henceg(r) = cr6 + o(r6) for r → 0.

Numerically,〈ΨL|g(r)|ΨL〉 can be evaluated by various Monte Carlo techniques, Fig. 11.These results
are closer to the thermodynamic limit, referring to larger numbers of particles, thang(r) which can be
obtained from exact diagonalization, Fig. 12. This is however only because we know an analytic WF
of the GS for arbitrarily large systems in this case,ΨL. Exact diagonalization can be performed only
for systems withNe . 10 electrons, but it is not necessary to know anything about theground state in
advance apart of that it lies in the lowest Landau level. Therefore, exact diagonalization provides us a way
to confirm thatΨL is indeed the ground state or a good approximation to it, e.g.for Coulomb-interacting
electrons. Note also that Figs. 12 refer to electrons on torus whereas Fig. 11 refers to the disc geometry.
Indeed, the correlation functions are very similar in both geometries, compare Fig. 12(b) and Fig. 11. This
fact supports the hypothesis that the corresponding states, ΨL on a disc and those on tori, are universal and
hence basically the same as the ground state in an infinite 2D system.

The correlation functiong(r ) in Fig. 12 is rather isotropic, at least on distances smallerthana/2. This
distinguishes the Laughlin state from a Wigner crystal (Subsect. 2.4.1) or a unidirectional charge density
wave in which some special directions exist, Subsect. 2.1.3. This fact motivates also the incompressible
liquid terminology. Regarding the distinction between liquids and gases, the difference is the strength
of interparticle interaction. Whereas negligible in gases, the interaction in liquids is strong compared to
kinetic energy. In the lowest Landau level, kinetic energy is zero, or better a constant~ω/2.

The first maximum ing(r) occurs atr1 ≈ 4.4ℓ0, Fig. 12b, and this separation can be taken as a typical
interparticle distance in the Laughlin state. This distance lies close to the mean interparticle distance
determined by the filling factor,rmean/ℓ0 =

√
2π/ν ≈ 4.35 (1).
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ν = 1
3 ν = 2

5 Water

Fig. 11: Left and middle: Correlation functions of the ground states of 50-60 particles at filling factors1/3 and
2/5 of the principal Jain’s sequence,ν = p/(2p + 1) (cf. Subsect. 1.4.2). The wavefunctions (WF) predicted by
composite fermion theory were taken (forν = 1/3 this is identical with the Laughlin WF) andg(r) was calculated by
a Monte Carlo method. Taken from Ref. [42].Right: correlation function between oxygen atoms in liquid water as an
example of a density-density correlation function in a well-known liquid (see text on p. 30). Results of both numerical
simulation and experiments are shown, see the original paper by Alleschet al. [9] for details.

After r1, oscillations ing(r) decay rapidly. The overall form ofg(r) in the Laughlin state clearly differs
from the correlation function of a free 2D Fermi gas (48). We will emphasise three aspects.

(i) Laughlin state, Fig. 12b: the first peak ofg(r) is relatively high, measured for instance by ratio
g(r1)/g(a/

√
2) & 1.1. Herea/

√
2 ≈ 10ℓ0 is the maximum interparticle distance in the considered fi-

nite system.

2D Fermi gas, Fig. 10: the first structure ofg(r) is about ten times weaker. Here, it is more appropriate to
watch the depth of the first minimum, see (ii).

(ii) 2D Fermi gas: all maxima (atri
FS) of g(r) have the same value,g(ri

FS) = 1. Laughlin state: the first
maximumg(r1) ≈ 1.1 (forNe →∞) is much higher than other maxima.

(iii) 2D Fermi gas:g(r) ∝ r2 for r → 0. This is purely the effect of Pauli exclusion principle. Mathemat-
ically, it comes from the antisymmetry of the wavefunctionΨ, in other words,Ψ is a Slater determinant.
Laughlin state:g(r) ∝ r6. This is a manifestation of correlations in the state, i.e. of the fact thatΨL

cannot be written as a single Slater determinant.g(r) ∝ r6 also means that any two electrons avoid being
close to each other very efficiently and this helps to minimize the Coulomb energy which is high at short
inter-particle distances [33], Subsect. 1.3.3.

Just as an illustration, a correlation functiong(r) of liquid water is shown in Fig. 11, right. Of course,
it is not possible to directly compare water and a 2D electrongas in the fractional quantum Hall regime.
Nevertheless, the pronounced structures ing(r) beyond the correlation hole in the Laughlin state, Fig. 11
left, are definitely more similar tog(r) of liquid water, Fig. 11, right, rather than tog(r) of a 2D Fermigas,
Fig. 10.

The Laughlin state, Fig. 12b, also differs from integer filling factor states apparently, Fig. 10. The latter
ones (i = 1, 2, . . .) namely have alwaysgν=i(r) ∝ r2 at r → 0. Also gν=i(r) has exactlyi− 1 maxima,
i.e. gν=1(r) is free of maxima.

This demonstrates the fact, that in theνCF = 1 composite fermion (CF) state, which is the model of the
ν = 1/3 electronic ground state (Sect. 1.4), theelectron-electroncorrelations are different to those in a
ν = 1 electronic state. This is a bit counterintuitive, since theCFs were created by adding two zeroes
to electronsin theν = 1 stateand we could have therefore expected that the electrons ’remained at their
original positions’ under this transformation. Figures 12b and 10 however show that even though the CF
density equals the electronic one the electron-electroncorrelationsare different in both states.
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The good match of the two curves as far as well beyond the first maximum
(≈ 6ℓ0) indicates that the isotropy on length scales< 6ℓ0 is not much
affected by the rectangular geometry (periodic boundary conditions).

Fig. 12: Correlation functions in the ground state ofNe electrons on a torus (square, length of sidesa = b, with
periodic boundary conditions) at filling factorν = 1/3. The functiong(r ) gives the probability of finding an electron
at positionr = (x, y) provided there is an electron sitting atr ′ = (0, 0). For a homogeneous system the choice ofr ′

does not influence the probability distribution of finding the second electron.

On ’intermediate length scales’ (1 to 5 magnetic lengths), the correlation function of the Laughlin state
g(r) in Fig. 12b can be strikingly well fitted by

c · [gFS(r)]3 , (49)

wheregFS(r) is the correlation function of a free 2D Fermi gas, (48). Herefore, we putkF ≈ 0.874ℓ−1
0

which is only by about7% more than what we would expect for filling factorν = 1/3, (47).

The quality of the match relies on the choice ofm = 3 for the exponent in Expr. 49 (forr → 0) and
on the fitting constantsc andkF (aroundr ≈ r1). The surprising fact is therefore only the good match
betweenr = 0 andr = r1. Also note that long-range (r ≫ r1) behaviour of expression (49) and ofg(r) of
the Laughlin state are different. This again emphasises thedifferences between the Laughlin state and the
Fermi gas. Expression (49) provides therefore only anotherrepresentation of the exchange hole, parallel
to approximate formulae given e.g. by Girvin [25].

In conclusion, we have seen that the correlation function ofthe correlatedν = 1/3 ground state (Fig.
11) has a strong first maximum (near to4.4ℓ0) and an unusual exchange holeg(r) ∝ r6. These features
distinguish the1/3 state from both free 2D Fermi gas and completely filled Landaulevels and indicate the
liquid-like andcorrelatednature of the Laughlin state.
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Filling factorν = 2/3

Provided the Landau level mixing is absent, the particle-hole symmetry in one Landau level gives a direct
relation (isomorphism) between Hilbert subspaces of fullypolarized states atν = 2/3 = 1 − 1/3 and
ν = 1/3, Subsect. 1.5.4. Owing to this relation eigenvectors of anyradial two-particle interaction are
exactly the same1 in both spaces and corresponding eigenvalues are identicalup to a constant shift.

The correlation function in thefully polarizedν = 2/3 ground state, Fig. 13a, is thus linked to the one of
the Laughlin WF by an analytical formula (41). For a system withNm flux quanta, i.e. having an area of
2πℓ20Nm, it reads

2/3Nm(2/3Nm − 1)gν=2/3(r ) = 1/3Nm(1/3Nm − 1)g1/3(r ) + 1/3N2
mgν=1(r ) . (50)

Theg(r) ∝ r6 short range behaviour is thus obscured by the second term.

1 In the following sense: Take an eigenvector forν = 1/3. This is a linear combination of Slater determinants from theν = 1/3
space. Replace each of them by its particle-hole counterpart and the resulting state from theν = 2/3 space is an eigenstate.
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The spin singletground state atν = 2/3 has a different character. Here, we can distinguish between
correlation functions for electrons of like spin,g↑↑(r ), and for electrons of opposite spin,g↑↓(r ), Fig. 13.
Neither of them bears any apparent resemblance to either theν = 2/3 or ν = 1/3 polarized ground states.
We should like to point out some of their particular features.

(i) The ring-like form ofg↑↓(r ) suggests that the state consists of pairs of particles with opposite spin with
average separationr↑↓ ≈ 3.3ℓ0.

(ii) There is a deep hole ing↑↓(r) around zero. This cannot be due to Pauli exclusion principle which
applies only to electrons of like spin, but rather solely dueto Coulomb repulsion. As a check (not presented
here), a comparison betweeng↑↓(r) in Fig. 13 and the ’lowest LL Pauli hole’gν=1(r) (46) reveals that
their forms are indeed different. Also note that the value ofg↑↓(0) is not exactly zero, it is several percent
of the maximal value ofg↑↓(r), Subsect. 2.1.2.

(iii) There is a well pronounced shoulder ing↑↑(r) aroundr ≈ 2ℓ0. It is very suggestive, how well this
shoulder can be fitted by the correlation function of a full lowest LL,gν=1(r), i.e. the lowest LL exchange
hole (46). This is shown in Fig. 16a.

This feature reminds of the relation between1/3 and1 − 1/3 systems (50). This is also supported by
the fact, that after the shoulder is subtracted [gν=1(r) times a constant], the remaining part ofg↑↑(r) is
g̃(r) ∝ r6 at short distances (Fig. 16a), just as it is the case in the1/3 Laughlin state. However, particle-
hole conjugation between filling factors1/3 and2/3 is applicable only for spin-polarized states.

(iv) The sum ofg↑↑(r) andg↑↓(r) properly scaled forNe → ∞ lies very close togν=1(r ) with ℓ0 sub-
stituted byℓ0

√
2, Fig. 15. Proper scaling means thatg↑↑(r) andg↑↓(r) should have the same norm, e.g.

equal to one, in sense of (44). With the current notation (43)this is true only forNe →∞.

Therefore, if spin is disregarded, the singlet ground stateatν = 2/3, created by magnetic fieldB, strongly
resembles the state of a completely filled lowest LL at magnetic fieldB/2.

Summary:the polarizedground state atν = 2/3 is the particle-hole conjugate of the Laughlin state at
ν = 1/3. The electronic correlation function of the2/3 state reproduces the liquid-like maximum at
r1 ≈ 4.4ℓ0 but theν = 1/3 broad exchange hole withg(r) ∝ r6 is hidden behind the lowest LL exchange
hole,gν=1(r).

The singletGS seems to consist of pairs of spin up and spin down electronswith characteristic size of
3.3ℓ0. Together with the sum rule, point (iv) above, this could be interpreted as thatNe electrons in the
singlet GS formNe/2 pairs, each with totalSz = 0 and these pairs form the same state asNe/2 fermions
atν = 1 in the ground state.

In particular, it should be emphasised that the singlet state cannotbe described as a mixture of two mutually
uncorrelatedν = 1/3 Laughlin liquids, one with spin up, another with spin down, as we could wrongly
infer from the picture of non-interacting composite fermions, see comment [8].

Filling factorν = 2/5
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This filling factor should be the counterpart toν = 2/3 within the CF picture. The two magnetic fluxes are
attached parallel rather than antiparallel to the effective magnetic field and in both cases the CF filling is
two (Sect. 1.4). In spite of this relation the density-density correlations between electrons show significant
differences.

The correlation hole of thepolarizedground state (Fig. 14a or Fig. 11, middle) is much broader for
ν = 2/5. The first maximum occurs in both systems (2/5 and2/3) at about the same distance≈ 4.1ℓ0, it
is however much better pronounced in the2/5 system and also more structure is present beyond the first
maximum here. Aroundr = 0 both systems followg(r) ∝ r2. However, whereasg(r) for ν = 2/3
is dominated by the ’exchange hole’, i.e.gν=1(r), cf. (50), the2/5 state has a much broader minimum
aroundr = 0.

These findings are not unexpected. Consider two systems of the same area2πℓ0Nm, one at fillings2/3
and2/5, respectively. The latter will be more diluted (’emptier’), since it contains only2/5Nm electrons,
compared to2/3Nm in theν = 2/3 system (1). Therefore, the correlation hole ing(r) can be broader in
the2/5 system. This conclusion is not a controversy of the CF picture, rather, it is a warning. By far not
all claims which are true for electronic Landau levels (e.g.ν = 2 state remains the same regardless of the
direction of the magnetic field) are true for composite fermions as well (it matters whetherBeff is pointing
parallel and antiparallel to the attached flux quanta).

There is also a close relation between the polarized2/5 GS and the Laughlin1/3 state according to the CF
picture. The latter one corresponds to filling factor one, the former one to filling factor two of composite
fermions. Comparing these two states, we find a bit stronger structures in the density-density correlation
of theν = 2/5 GS and also the first maximum shifts to smaller distances (4.4ℓ0 at ν = 1/3 and4.1ℓ0 at
ν = 2/5). Both effects are quite similar to what happens when going from ν = 1 to ν = 2, cf. Figure
next to (46). Comparing theν = 2 and2/5 systems, we again (cf.ν = 1 and1/3) find much stronger
structures ofg(r) in the latter case, just as we expect for a liquid state.

Some marked differences occur also in thesinglet ground statesat both filling factors. At2/5, correlation
functionsg↑↑(r ) as well asg↑↓(r ) seem to be quite flat beyondrm ≈ 6ℓ0. We may speculate that the
same is true for the filling2/3, Fig. 14 (the shoulder ing↑↑ would probably have to be subtracted first),
but then the plateau would occur first beyond some larger distancerm which is not accessible by exact
diagonalization.

It is remarkable that after subtracting the shoulder fromg↑↑(r) of the2/3 singlet state (point (iii) in the
discussion of2/3), the rest̃g(r) is∝ r6 near tor = 0. This is the same behaviour as we find ing↑↑(r) of
the2/5 singlet state, see Fig. 16.

Correlations of unlike spins exhibit one clear maximum which is, as compared to2/3, slightly but percep-
tibly shifted to a bit largerr↑↓ ≈ 3.7ℓ0. This agrees with the above argument that2/5 systems are more
diluted than the2/3 ones, but quantitatively this shift is too small. It is only≈ 30% of what we would
naively expect from comparing the areal electron densities.

Finally, ther → 0 behaviour of the2/5 singlet state,g↑↓(r) ∝ r4 andg↑↑(r) ∝ r6, matches the behaviour
of the{3, 3, 2}-Halperin wavefunction (8) and thisΦ332[z] is in turn identical with the ground state wave-
function proposed by Jain’s theory, Subsect. 1.4.2. This isbecauseΦnn′m[z] lies completely in the lowest
LL and thus the last step of Jain’s procedure, namely the projection to the LLL, is out of effect. Seen from
the opposite direction: the singlet2/5 state corresponds to filling only the lowest CF LL spin up and spin
down.

Summary:From the viewpoint of composite fermion theories, thepolarized2/5 state (p = 2), Tab. 2, is
related both to the1/3 Laughlin state (p = 1) and2/3 polarized ground state (p = −2). The electron-
electron correlations in exactly diagonalized systems clearly support the former relation, the latter one (2/5
with 2/3) is however far from being obvious in this way.



adp header will be provided by the publisher 35

(a) Filling factor2/3. The shoulder atr ≈ 2ℓ0 is apparently
caused by a term proportional to1 − exp(−r2/2ℓ20), i.e.
gν=1(r), cf. (46), which contributes to the totalg↑↑(r). Af-
ter this term was subtracted, a local power analysis ofg↑↑(r)
has been performed.

0 0.05 0.1 0.15 0.2
r/a

-1

0

1

2

3

4

5

6

7

8

9

10

d 
ln

 g
(r

)/
d 

ln
 r

Short-range behaviour of g↑↑ (r), 2/5, S=0
N

e
/N

m
=8/20, S=0 ground state, section g(x,0)
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Fig. 16: Correlation of like spins,g↑↑(r ), of the singlet ground states at filling factors2/3 and2/5. Local power
analysis (51) shows, that both correlation functions are∝ r6 for r → 0; however, the shoulder in the state at filling
factor2/3 has to be subtracted first.

Neither is the analogy between2/5 and2/3 apparent for thesingletground state. Although similarities ex-
ist, perhaps most importantly pairing between electrons ofunlike spin, short range behaviour of correlation
functions is very different.

2.1.2 Ground state for Coulomb interaction and for a short-range interaction

Short-range interactions as they were introduced in Section 1.3 have a special significance for the FQHE.
It has been repeatedly emphasised that the Laughlin WF is on one hand anextremely goodapproximation
of the ground state of a Coulomb-interacting (CI) system while on the other hand, it is theexactground
state of electrons feeling only a short-range mutual interaction (SRI) as it was defined in section 1.3.
Consequently, it is very popular to say that a short-range interaction Hamiltonian captures the essential
physics of the FQHE by inducing the correct correlations in the ground state. By the correct correlations
we mean theΨ ∝ (zi − zj)

3 behaviour when two particles approach each other.

The SRI was used in most of the calculations presented in thiswork. This choice has been made for two
reasons. It brings better chances in finding analytical results like the Laughlin WF. Moreover we may
hope that the results in finite systems converge faster to thethermodynamical limit (N →∞) because the
electrons see only as far as their interaction reaches and thus – sooner than for a long-range interaction –
they will not ’realize’ anymore that they live on a torus and not in an infinite plane. Aim of the following
section is to show and discuss how the ground states atν = 2/3 change if the character of the interaction
changes.

The ground state energies for CI and SRI are naturally quite different. This is however for the largest part
only an unessential shift, a part of it is the missing Madelung constant (34). Under SRI an electron of
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course cannot interact with its own image in the neighbouring primitive cell. More importantly, the gap
energies are quite similar in both cases, Subsect. 3.2.1.

Since the density of the incompressible ground states should always be constant, up to finite size effects
to be discussed later, let us now focus on correlation functions. The three plots in Fig. 18 showg↑↑(r)
andg↑↓(r) of the singlet state andg(r) of the polarized state. In all three cases, the correlation functions
of the CI state and the SRI state are quite similar. Most apparent differences appear at large distances.
On a torus, the largest possible separation between two electrons isr = a/

√
2. On the other hand, the

correlation functions are very precisely identical for small r. This shows that, e.g. in the polarized GS, the
wavefunction contains the factor(zi− zj)

3 for CI as well as for SRI. In other words, the Laughlin state (as
the GS for SRI) describesexactlythe short-range behaviour of an incompressible state of even long-range
interacting electrons. Fig. 18 demonstrates that this is true (at least in a very good approximation) also for
other ground states where the analytical wavefunction is not available (e.g. the singlet GS).

In fact, for the singlet GS there is a tiny but perceptible difference ing↑↓(0) for the two types of interaction.
Sinceg↑↓(0) is almost zero, this observation suggests that a yet modifiedinteraction might lead to analytical
results,{V0, V1, . . .} = {∞, α, 0, 0, . . .} in terms of pseudopotentials, Sect. 1.3. Such an interaction
enforcesg↑↓(0) = 0, which is anyway almost fulfilled for the current SRI, and on the other hand it retains
the pleasant property of SRI in polarized systems, i.e. it isone-parametric.

There is yet another significant difference between SRI and CI which is not obvious in Fig. 18 at first
glance. The difference concerns the placement of zeroes in the wavefunction and we will concentrate on
theν = 1/3 ground state now (see Sec. 1.3).

In a general fermionic state, there must always be a zero bound to each electron in order to fulfil the Pauli
exclusion principle: two electrons (of the same spin) cannot be at the same point in space simultaneously,
ergoif z1 = zi then the wavefunction must vanish. Factors(zi− zj)

3 in the Laughlin state mean that there
are two extra zeroes exactly at the position of each electron. That is whyg(r) ∝ r6 for smallr’s, Fig. 17,
right and (51). For CI, the Laughlin WF is only anapproximationto the ground state. In the real ground
state, the one obligatory zero is still sitting on each electron and the two others are only near rather than
exactly on the top of the electron. In Fig. 17 we can even see how far they are on average. These two
extra zeroes are now mobile and their position depends on theposition of all other electrons. Note that this
distance depends on the system size [53].

Local power analysis

A comment is due on the way how the plots in Figs. 17,16 were obtained. It is basically a section ofg(r )
along one straight line going throughr = 0. This function was then transformed by

g(r) −→ d ln g(r)

d ln r
(51)

which gives a local degree of the polynomial behaviour. Let us give an two examples. Ifg(r) wereαrn

thend ln g(r)/d ln r = n. If g(r) ∝ (r − r0)n thend ln g(r)/d ln r = nr/(r − r0) → n for r ≫ r0. In
other words, if there is a dominantrn term ing(r), the quantity plotted in Fig. 12(b) gives the exponent. Of
course, it is only approximate except for the caseg(r) = αrn but it is quite easy to evaluate and moreover
it gives a global property of the wavefunction as compared tofixing electron positionsz2, . . . , zn and
examining the WF as a function ofz1 where results depend on where we fix the electronsz2, . . . , zn.

2.1.3 Some excited states

There is a rich variety of excitations to the incompressibleFQH states. For instance quasiholes, excitons
(quasihole-quasielectron pairs), charge density waves (CDW) or spin density waves (SDW), all of them
can be described analytically (at least to some extent), andthen of course all the rest of excitations which



adp header will be provided by the publisher 37

0 2 4
r/l

0

0

2

4

6

d 
ln

 g
(r

)/
d 

ln
 r

Coulomb

0 2 4
r/l

0

0

2

4

6

d 
ln

 g
(r

)/
d 

ln
 r

Short range

Fig. 17: The incompressible ground state atν = 1/3 (with ten electrons), Coulomb interaction (left) and a short-range
interaction (right). Section through the density-densitycorrelation functiong(r ) alongr = (x, x) is taken and the
’local degree’ of the polynomial behaviour is determined (see the text). While the local behaviour aroundr = 0 is
g(r) ∝ r6 for the SRI, indicating that there is exactly atriple (6 = 2 ·3) zero of the wavefunction on on each electron,
we can clearly see onlyonezero at each electron’s position for the Coulomb interaction, g(r) ∝ r2 and2 = 2 · 1.
However, going away fromr = 0, the ’local degree’ grows and beyond≈ 1.5ℓ0 it approaches the curve of the SRI
state. The conclusion is that one zero (the obligatory Pauliexclusion principle zero) is fixed to each electron (r = 0)
in the Coulomb state and the other two zeroes are only looselybound to the electron. First from distances& 1.5ℓ0 this
compound object looks like an electron with two attached fluxquanta.

has not been understood up to now. Following the introduction given around (28), we will now demonstrate
how to identify some of these excitations in spectra obtained by exact diagonalization at the example of
ν = 1/3.

Charge density waves

CDWs can be excited for example in the liquid GS atν = 1/3. Disregarding the possibility of spin flips
(as it may be reasonable when Zeeman energy is too high), it turns out that these are the lowest excitations.

In Fig. 19 spectra of several short-range-interactingν = 1/3 systems (tori of different sizes) are presented.
The horizontal axis is modulus ofk r, i.e. the ’crystallographick-vector’ described in Subsec. 1.5.2. The
Laughlin state hask r = 0 and a CDW of wavevectorQ excited from this state hask r = Q . Beware
however, that not every state which hask r 6= 0 must be a charge density wave! Apart from other possi-
ble periodic excitations, there are also basically nonperiodic excitations (e.g. quasiholes) and such states
are forced into periodicity only ’artificially’ by the periodic boundary conditions imposed in our exact
diagonalization model.

The lowest excitations in Fig. 19 form a well developed branchE(k r), which is usually calledmagnetoro-
ton branch, and other excited states form a quasicontinuum. The dispersion of the magnetoroton branch
can be calculated analytically in the single mode approximation. The original calculation by Girvinet al.
[27] for Coulomb interacting systems atν = 1/3 showed a well pronounced minimum inE(|k r|) of the
magnetoroton branch atk rℓ0 ≈ 1.4. In a short-range interacting system, shown in Fig. 19, the situation is
slightly different. Having reached its minimum value,E(|k r|) remains constant beyondk rℓ0 ≈ 1.4.

A point worth of emphasis is that the magnetoroton branch in Fig. 19 contains points (energies) from
exactly diagonalized systems ofdifferentsizes. This confirms our hope that these states are not bound to
some particular geometry of the elementary cell and that they appear also in an infinite system.
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Fig. 18: Correlation functions of the singlet and polarizedground states atν = 2/3: comparison between the Coulomb
and short-range interaction. The curves are identical for small r and slight deviations occur at longer scales. This is
another way to demonstrate that it is sufficient to consider short-range interaction in order to get (almost) correct
ground states under FQHE conditions.

Dealing with finite systems, we will always have only a finite,and usually quite small, number of allowed
values fork r (27). On the other hand, the more points ink r-space we can access, the better we can
recognise modes in exact diagonalization spectra, just like the magnetoroton branch in Fig. 19. Note also
the large space betweenk r = 0 and the next smallest|k r| ≈ 0.5ℓ−1

0 in Fig. 19 which corresponds to the
longest wavelength compatible with the periodic boundary conditions.

The traditional way to improve these limits (fewk r-points, too large smallest|k r| > 0) is to study larger
systems. This is however prohibitively difficult with exactdiagonalization. An alternative approach may
be to study systems with aspect ratiosλ = a : b slightly deviating from one. This allows us to deform
the lattice of allowedk r-points continuously (27 containsλ), and on the other hand, we can expect that
the states will not suffer from theslight asymmetry ina : b in line with the argument that these states
are not bound to any particular geometry of the elementary cell. This method is demonstrated in Fig.
19 by the blue points. The aspect ratio was varied from one up to 1.3. Since the energies of the CDW
states still lie well on the magnetoroton branch, we can conclude that this variation was still only a small
perturbation, i.e. acceptable for studying this branch. A more reliable critierion would be to check overlaps
of wavefunctions ata : b = 1 anda : b > 1.

Correlation functions of several states in the magnetoroton branch (Fig. 19) are shown in Fig. 20. The first
look atg(r ) (upper row in Fig. 20) may be sometimes not enough to distinguish their charge density wave
nature. The CDW is superimposed on the structure of the mother Laughlin state, which these states are an
excitation of. The periodic structure ofg(r ) is thus more clear if we subtract the corresponding correlation
function of the Laughlin state first, Fig. 20 lower row. We canfind three periods iny direction (horizontal
waves atx = 0, 0.3 and0.6) in the state A or 4 periods iny and one period inx in the state C, in agreement
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Fig. 20: Correlation functions of the ground state (Laughlin) and several CDW states which lie on the magnetoroton
branch of aν = 1/3 system with short-range interaction (eight electrons).Upper row: correlation functionsg(r ),
lower row: g(r ) of the CDW states from which the Laughlin stateg(r ) has been subtracted.

with their values of̃k r/k0 = k̃ r/(Nmπ/6). Note, that it is harder to distinguish the periodic structure in
thek̃ r = (0, π) state (B), which may be partly because this is a point of high symmetry ink̃ r-space, Fig. 6.

In conclusion, we have shown how (the best known type of) charge density wave states on a torus can be
identified in the exact diagonalization spectra and in correlation functions. Generally, we can expect that
charge density waves excited from incompressible liquid states will form branches inE(|k r|), provided
of course that their energy is not hidden in a quasicontinuumof other excited states. Correlation functions
show indeed the expected periodicity of a CDW superimposed on the structure of the ground state.

2.1.4 Finite size effects

Consider aν = 1/3 system with its exact GS written asΨL, the Laughlin wavefunction (WF), see (7).
Particle density in the stateΨL is very precisely constant provided we stay within the disc of radius
ℓ0
√

2π · 3N . The first striking observation is that the density of the ground state obtained from exact
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Fig. 21: Density of theν = 1/3 incompressible ground state as obtained in torus geometry for different system sizes.
The oscillations can be traced back to the centre-of-mass part of the wavefunction. As far as this effect is considered,
differences between Coulomb interaction and short-range interaction are small.

diagonalization varies quite strongly, Fig. 21. At the sametime we notice that the ground state, which is
claimed to be incompressible, hence non-degenerate, is actually triply degenerate.

Fortunately, this does not mean that finite size calculations are completely wrong. Both facts can be
attributed to the centre-of-mass part of the wavefunction (CMWF) which isnotpresent inΨL but is present
in numerical calculations, Subsec. 1.5.2. As far as isotropic states are considered, this seems to be the most
serious effect coming from the finite-sizedness of the system and in the following we will discuss its origin
and how it can be eliminated.

Centre-of-mass part of the wavefunction

The complete WF of the Laughlin state atν = 1/3 (for n particles) in the disc geometry (Subsec. 1.2,
1.5.1) might be

Ψ1/3(z1, . . . , zn) = F (Z) exp(−|Z|2/2ℓ20)︸ ︷︷ ︸
ΨCM (Z)

× exp
(
− (|z1|2 + . . .+ |zn|2)/4ℓ20

) ∏

i<j

(zi − zj)
3

︸ ︷︷ ︸
ΨL(z1,...,zn)

(52)

with Z = z1 + . . . + zn and for exampleF (Z) = Z3 or any other analytic function with three zeroes
Z1, Z2, Z3. The CMWFΨCM has the form (Sec. 1.5.1) of a WF for one particle somewhere inthe lowest
Landau level to which a single variableZ is attributed. In torus geometry, the WF must be changed in order
to comply with periodic boundary conditions (PBC) which amounts to replacing(Z − Zi) terms by theta
functions of the same argument, Subsec. 1.5.2. Example ofΨCM obtained from the numerically calculated
ground stateΨGS in a system with four particles is shown in Fig. 22a. The CM part was extracted from
the complete WF by the schemeΨCM (4∆) = Ψ(z1 + ∆, . . . , z4 + ∆)/Ψ(z1, . . . , z4)ΨCM (0). Note that
this result fully matches what we expect from analytic considerations,α in Fig. 5a.

If we calculate quantities like the density or correlation function in the stateΨ = ΨrΨCM , we evaluate
integrals of the type

nΨrΨCM (z) =

∫
dz1 . . .dzn|Ψr(z1, . . . , zn)|2|ΨCM (z1 + . . .+ zn)|2δ(z1 − z) . (53)
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(a) (b) (c) (d)

Fig. 22: Left to right: (1) |ΨCM (Z)|2, Z = z1 + z2 + z3 + z4 for one of the three degenerate ground states in a
4 particleν = 1/3 system and (2) the densityn(r ) of this state. (3)|Ψ1

CM (Z)|2 + |Ψ2
CM (Z)|2 + |Ψ3

CM (Z)|2 of
those three states and (4) the sum of their densities (divided by three). Note that the last density is nearly constant (as
it should be for the Laughlin state) and thus by adding up densities of the three states differing only in the CM part, we
eliminated the effect of the CM part of WF.

Recast in CM and relative variables, this integral is a multidimensional convolution ofΨCM and Ψr.
Assuming thatΨr is isotropic but non-constant which is true for the LaughlinWF, the functionn(z/4) can
be thus shown to have the same periodicity asΨCM (z). Less exactly but in more illustrative terms:n(z)
is basically a smeared|ΨCM (4z)|2. Note that this explains whyn(z) varies much stronger alongx than
alongy.

These considerations can be summarized in the following way. Even though e.g. the Laughlin state is
translationally invariant, the CM part of the wavefunctionwhich is always present in the exact diagonal-
ization studies, will cause the density to be inhomogeneous. Consider eigenstates ofJ . This determines
the form ofΨCM to be as in Fig. 22a, cf (30) the densityn(z) of anNe-electron state (a) will be1/Ne

periodic alongx, Fig. 21 or Fig. 22b, (b) will be1/3Ne periodic alongy, Fig. 22d, (c) will be modulated
much stronger alongx than alongy (compare scales in Fig. 22b and 22d) and (d) will rapidly converge to
a constant forNe →∞.

Similar ideas have first been presented by Haldane and Rezayi[32].

How to suppress the effect of the CM part of the WF

To suppress the effect of the CMWF it would be ideal to calculate the density as

nΨr(z) =

∫
dz1 . . . dzn|Ψr(z1, . . . , zn)|2δ(z1 − z)

rather than by (53). In other words, it would be nice if we could replaceΨCM (z1 + . . .+ zn) by a constant
in the numerically calculated wavefunctionΨrΨCM .

Even though we could numerically calculateΨCM and then calculate the density in the stateΨ/ΨCM , this
is technically quite labourious and requires numerical evaluation of (n− 1)-fold integrals. Instead we can
make a trick. Consider again the example of theν = 1/3 GS. The state is triply degenerated in the CM part
and the three differentΨ1,2,3

CM (as they come from ED in subspaces with sharpJ) have the pleasant property
that the sum of their squared moduli is nearly constant, or ina more restrained (and honest) terminology,
its variations are much weaker than those of individual|Ψi

CM |2, Fig. 22.

With this in mind we expect that the sumnΨ1
CMΨr

(z)+nΨ2
CMΨr

(z)+nΨ3
CMΨr

(z) will be a good approx-
imation tonΨr(z). The reader may check with Fig. 22 how well this is fulfilled.

Other finite size effects

Here, we will try to abstract from the effects due to the CM part of the calculated wavefunctions. Since the
operator for density-density correlation depends only on relative coordinates we expect thatg(r ) will be
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free of the finite size effects described in previous paragraphs. Since the curves forg(r ) obtained from the
ν = 1/3 ground state in systems of different sizes (Fig. 12b) match very well for |r| going at least to one
third of the elementary cell we may have good confidence in these results even within the scope of infinite
systems. In clear terms, we may believe thatg(r) of the infinite system is nearly the same asg(r) obtained
in a finite system (witha : b = 1) as far as up tor ≈ 0.35a.

Another type of finite size effects which are ’finer’ than those originating from the CM part of the WF is
shown in Fig. 22, the rightmost plot. The density plotted should be constant after averaging over the three
states degenerated in the CM part in the infinite system. The weak(1/Nm)-periodic structure (Nm = 12 in
Fig. 22) which we still observe reflects the quantization of one particle momenta by the PBC. One particle
can be localized only around one ofNm discrete set of points in thex-direction. This effect is the same
alongx andy, since we have lost the quantum numberJ (30), by averaging over the three states, belonging
to J = 2, 6, 10 in the present case. Note, how extremely small this finite size effect is.

2.1.5 Conclusion: yet another comparison to composite fermion models

For a large part we were concerned with theν = 1/3, 2/3 and 2/5 incompressible ground states in
this section. All these states, including their possible spin polarizations, can be described in terms of
Landau levels (LL) filled with composite fermions (CF), Fig.9a and Sec. 1.4. In particular, wavefunctions
suggested by Jain, Subsec. 1.4.2, are very close to the many-electron ground states calculated by exact
diagonalization, as it is demonstrated by comparing the wavefunctions calculated by the two approaches
in terms of overlaps which approach unity [77] or of correlation functions shown in this Section, Figs. 11,
12 and 14a.

However, we have seen in this Section that this picture is notas intuitive as someone may believe. Correla-
tion functions of states withp filled CF LLs are quite different from those of states withp filled electronic
LLs. Changing orientation of the effective magnetic field following from the CF LL ’quantization’ alters
the correlation functions drastically. It is hard to establish a relation between the ground states atν = 2/3
and2/5 on the level of comparing theelectroniccorrelation functions. We should also mention a discrep-
ancy in the CF model for theν = 2/3 polarized state. It is both a particle-hole conjugate to theν = 1/3
Laughlin state and a state with two filled CF Landau levels andeffective magnetic field antiparallel to the
real magnetic field or attached flux quanta. As Wu, Dev and Jain[77] noted already in their original work
about antiparallel flux attachment, these two approaches give two non-equivalent microscopic wavefunc-
tions. Surprisingly enough, both wavefunctions have high overlaps (≈ 0.99) with the polarized ground
state obtained by exact diagonalization [77]. Thus, eitherboth models are in fact indeed equivalent or this
result shows that even such high overlaps may be not enough toprove the correctness of a trial many-body
wavefunction.

Another point worth of notice is that the ’CF cyclotron energies’ (sometimes denoted by~ωCF ) extracted
from exact diagonalization with electrons are not quite thesame in2/3 and2/5 systems, Fig. 23, the
scaling factor5 : 3 makesBeff equal in both systems. In the picture of non-interacting CFs, only the
direction of the effective fieldBeff is reversed. Thus, ifBeff has the same modulus in both cases and
Zeeman energy vanishes thenEp(Ne = 8)− Eu(Ne = 8), i.e. the difference of energies of the polarized
and singlet GSs for 8-electron systems, should be equal to four times the CF cyclotron energy in the both
systems (cf. Fig. 9b). In the exact diagonalization spectraof Ne = 8 systems are regarded, the difference
of ~ωCF for ν = 2/3 and2/5 is small, about 5%, Fig. 23. However, the quantitative agreement becomes
worse when we attempt to extrapolate the energies to larger systems.

Also comparing2/5 to 2/3, differences in the lowest excitations from the polarized and singlet ground
states (energies, quantum numbers) are quite apparent, Fig. 23.

All these facts demonstrate that it can be misleading to think of the2/3 and2/5 states as of an exact copy
of Landau levels completely filled with electrons. Composite fermion models must be taken seriously since
they provide us with many very good predictions (explicite forms of wavefunctions, e.g.) but apart of that
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they are not exact, they fail to describe some phenomena likee.g. position of zeroes in Coulomb interacting
states, Subsect. 2.1.2, the analogy between electronic andCF Landau levels is sometimes weak. One of
the inherent problems not mentioned so far is the question ofmixing between CF Landau levels: whereas
LL mixing can be neglected for electrons in the limitB →∞, there is no such case for CFs.

The nature of many incompressible FQH states is therefore still not completely clear, for example the
ground states atν = 2/3 and2/5. Results in this Section indicate that the singlet states atthese filling
factors comprise of pairs of spin up and spin down electrons which we would not expect from the CF
analogy – at least not at first glance. Furthermore, in theν = 2/3 singlet with electron densityn, the↑ − ↓
pairs seem to form a state which could be constructed by taking a system with the lowest LL completely
filled with electrons of densityn/2 and then replacing each electron by an↑ − ↓ pair. This behaviour is
not observed in theν = 2/5 singlet. We may again conclude, that even though the2/5 and2/3 ground
states are very closely related on the level of composite-fermion theories, their electronic properties are
different. It can thus be misleading to extend our intuitionconcerning the (completely filled) electronic
Landau levels to states interpreted as (completely filled) composite fermion Landau levels.

2.2 The half–polarized states at filling factors2/3 and2/5

In the previous section we dealt with the spin singlet and polarized ground states at filling factors2/3
and2/5 and it was mentioned that it is the Zeeman splitting (or better,EZ/EC ∝

√
B) which determines

which of them is the actual ground state. It is the singlet state for vanishing Zeeman splitting (low magnetic
fields) or the polarized state if the Zeeman term dominates (limit B → ∞). All this can be understood
within the composite fermion concept, Fig. 9a, where we evenobtain the prediction that there is adirect
transition (crossing) between these two ground states at some critical value ofEZ/EC or equivalently, at
some critical magnetic fieldBC , if we sweep magnetic field and keep the filling factor constant, cf. also
Sect. 3.

However, experiments by Kukushkin et al. [46] indicate thatthis picture may be incomplete. They suggest
that some exactly half-polarized state becomes a stable ground state in the vicinity ofBC . In this Section
we will describe one candidate for such a half-polarized state ground state and discuss its properties.

2.2.1 Ground state energies by exact diagonalization

At first glance, spectra of homogeneous small finite systems with Coulomb interaction (Sect. 3, Fig. 48)
do not suggest any intermediate state at the transition. Thepicture is quite different when short-range
interaction is considered. In an interval of magnetic fieldsaroundBC the GS is a state with total spin equal
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extrapolation of the GS energies to infinite systems (1/N → 0). Right: The energy-versus-magnetic field diagram for
extrapolated ground state energies. This indicates that even then the HPS will be a ground state close to the transition.

toNe/4, Fig. 24a, i.e. a half-polarized state (HPS). This holds forall system sizes accessible to numerical
calculation and, by extrapolating energies to1/N → 0, Fig. 24b, it seems to hold also for infinite systems.

It is probably only through the finiteness of the system that ahalf polarized ground state did not appear in
Coulomb interacting systems (Fig. 48). The SRI systems may be less sensitive to this generical drawback
of exact diagonalization models. On the other hand, SRI models predict wrong values ofBC (see Subsec.
3.2.1) and thus the scheme presented in Fig. 24a must be checked in systems with Coulomb interaction.

Considering Coulomb-interacting systems, the scheme suggested in Fig. 24a is supported by extrapolations
of GS energies performed by Niemelä, Pietiläinen and Chakraborty [57] in spherical geometry, Fig. 25a,
and it is not supported by analogous calculations on a torus presented here, Fig. 25b. We would like to
stress that the extrapolation of the energy of the HPS is based only on two points, the third point (Ne = 4)
in Fig. 25b, is not very reliable, Subsec. 2.2.3. Therefore the question of whether the HPS becomes the
absolute GS or not remains basically open until exact diagonalizations of larger systems become possible.

Nonetheless let us assume in this Section that a half-polarized state can indeed lower its energy sufficiently
so as to become the absolute ground state. We will therefore focus on theS = Ne/4 sector of systems
at filling factor 2/3, and also at2/5 in Subsec. 2.2.5. Studies were mostly focused on the SRI states
where it is easier to identify the best candidate for the half-polarized ground state. Its Coulomb-interacting
counterpart is discussed later, in Subsec. 2.2.6.

By convention a half-polarized state with 12 (8) electrons will consist of 9 (6) electrons with spin up
(majority spin) and 3 (2) electrons with spin down (minorityspin).

2.2.2 Identifying the HPS in systems of different sizes

Provided some particular physical half-polarized state GS∞is the ground state in an infinite system, we
may ask what its realizations in finite systems of different sizes are. Vice versa: given the half-polarized
states calculated in a system ofNe = 12 (4, 8. . . ) electrons, which state corresponds to GS∞? In this way
we can think of states which ’correspond to each other’ in systems of different sizes. The trouble is, of
course, that we do not know GS∞.

Regarding the computational capacity available, we could studyν = 2/3 systems with 4, 8 and 12 particles,
the next larger system,Ne = 16, would require diagonalization in spaces of dimension manyhundred
million. It seems likely that the analogues to GS∞are the GSs inNe = 12 andNe = 8 systems (GS12,
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Fig. 25: Extrapolation1/N → 0 of the GS energies for Coulomb interacting systems on a sphere and on a torus at
ν = 2/3.

GS8) and that it is a low lying excited state (st03) in the smallest system,Ne = 4. In the following,
reasons for this are proposed.

(i) GS12 and GS8 belong to the same symmetry class defined by the ’crystallographick r ’ (27). They have
both k̃ r = (π, π), i.e. they lie in the ’corner of the Brillouin zone’ (Fig. 6, Subsec. 1.5.2). This is also
closely related to the fact that both GS12 and GS8 are non-degenerate.

(ii) The states GS12 and GS8 are well separated from excitations within theS = Ne/4 sector and the
energy of the lowest excitation is similar,0.01 (e2/εℓ0), in systems of different size, Fig. 26.

(iii) Though not completely identical, the inner structureof GS12 and GS8 is very similar as seen by the
correlation functions, Fig. 27.

(iv) The GS of theNe = 4 system has a lower symmetry than the formerly described states. Looking
for a state of inner structure (correlation functions) similar to the one of GS12 and GS8 within the sector
k̃ r = (π, π), we find remarkable similarities with the second excited state (’st03’, marked in Fig. 26),
Subsec. 2.2.3. However, we should bear in mind that forNe = 4 there is only a single electron with
reversed spin in other words the system is indeed extremely small. A consequence is for example that
g↓↓(r) ≡ 0. Relevance of such states with respect to infinite systems isthus doubtful.

2.2.3 Inner structure of the half-polarized states

Focus of this part will be the correlation functions of the states GS12 and GS8 and a brief comment will be
made onNe = 4 states. As mentioned above and as the kind reader may verify in Fig. 27, GS12 and GS8
look indeed similar.

GS12 and GS8 match in all three spin-resolved correlation functions,g↑↑(r ), g↑↓(r ), g↓↓(r ), Fig. 27. The
match is especially good (quantitative) on short distances, r . 3ℓ0. This suggests that states GS12 and
GS8 are not bound to some particular system size and we can thus hope that if we could make the system
larger, they would eventually develop into the GS∞.

Differences between correlation functions of GS12 and GS8 at longer distancesr are understandable, given
the normalization (44). TheNe = 12 system is ’larger’ than theNe = 8 one, yet the integral

∫
drg(r ) must

be the same. Perhaps the most apparent difference between various correlation functions is whether they
have a maximum or a minimum ’in the middle’ (6ℓ0 or 8ℓ0 in Fig. 27). In ideal case, a strong maximum
occurs wheng(r) is monotoneous in an infinite system while a minimum, or a weakmaximum following
a foregoing minimum, means thatg(r) has some structure, one or more maxima for finiteri. In reality,
however, the former behaviour occurs also whenri is larger than the finite system size. A manifestation of
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this is seen ing↑↑(r), Fig. 27. The flat maximum atri ≈ 5ℓ0, followed by a minimum, observed for the
Nm = 18 torus does not occur for the smaller system (Nm = 12). Looking only at the smaller system we
could have wrongly concluded that the correlation functionis almost structureless.

Some further points are worth of notice.

(i) g↑↓(r) is suppressed nearly to zero atr = 0 in spite of the missing Pauli principle, only on account of
the repulsive interaction. It displays strong maxima around r ≈ 3.4ℓ0.

(ii) Even though by far not identical,g↑↑(r) andg↓↓(r) are similar to each other. The clear shoulder around
r ≈ 2ℓ0 seems to stem from the ’exchange hole’ (of the LLL)gν=1(r) = 1 − exp(−r2/2ℓ20), see (45).
After subtracting a suitably scaled functiongν=1(r) the shoulder completely disappears and the remaining
parts of bothg↑↑(r) andg↓↓(r) are∝ r6 close tor = 0, Fig. 28 and discussion below.

(iii) Up to a high precision the sum ofg↑↑(r), g↓↓(r) andg↑↓(r) (with appropriate scaling, see Fig. 15 for
explanation) is identical withgν=1(r), however withℓ0 replaced by

√
2ℓ0. Not shown here.

Let us now turn to the smallest system whereS = Ne/4 states may occur (atν = 2/3), i.e. Ne = 4.
Figure 27 shows correlation functions of the lowest two states in the sector of̃k r = (π, π). Out of these,
the second state (i.e.st03) seems to be analogous toS = Ne/4 GS’s in the two larger systems (Ne = 8,
12): g↑↑(r) is again a sum of the ’correlation hole’ and a function∝ r6, g↑↓(r) shows a peaked structure
with maximum around2.8ℓ0 (both of these features are missing for the lower statest02). However, as
mentioned above, theNe = 4 system is too small for a reliable study ofS = Ne/4 states (g↓↓(r) ≡ 0).

Back to the GS12 (called HPS here), it is very interesting to study the ’∝ r6 part’ (P6P) of the like-spins
correlation functions,g↑↑(r), g↓↓(r). What we mean by ’P6P’ is the rest after we subtract the ’lowest LL
correlation hole’, i.e. thegν=1(r) part causing the shoulder ingσσ(r) aroundr ≈ 2ℓ0, curve A in Fig.
28a,b.
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One of many facts we can extract from Fig. 28 is that P6P/ ↑↑ [refering tog↑↑(r)] and P6P/ ↓↓ are similar
but not identical. For example, they both exhibit a peaked structure but the first maxima do not coincide,
they occur at5.0ℓ0 and5.8ℓ0 for P6P/ ↑↑ and P6P/ ↓↓, respectively (curves B and D in Fig. 28a).

Let us compare the P6P/ ↓↓ of the HPS with P6P/↓↓ of the singlet incompressible2/3 GS, curves B and C
in Fig. 28a). Match of these two is very good up tor ≈ 4ℓ0, the absence of the peak at5.8ℓ0 in the singlet
state could be due to smallness of the system where the singlet state was determined (Ne = 10). It might
appear in the next larger system,Ne = 12, cf. similar situation in Fig. 27.

On the other hand, P6P/↑↑ of the HPS seems to resemble the singlet state less than P6P/↓↓ of the HPS. The
form of P6P/↑↑ seems to be not very different from the one of the correlationfunction of the Laughlin1/3
state, Fig. 12b, whose first maximum occurs however already at r = 4.4ℓ0 (curves D and E in Fig. 28b).
In any case, P6P/↑↑ of the HPS matches bettergν=1/3(r), i.e. the Laughlin state, than P6P of theν = 2/3
singlet state. Here we mean especially behaviour on ranges. 3ℓ0.

Last but not least, the correlations between unlike spins are also very similar in the singlet state and in the
HPS, Fig. 28c, in particular positions of the maxima differ by as little as0.1ℓ0 (both are aroundr ≈ 3.4ℓ0).

2.2.4 Discussion

Findings presented above suggest that theν = 2/3 half-polarized ground state in short-range interacting
systems is a gapped state in which the singlet and polarized incompressible states coexist. Below, some
key points regarding the HPS are summarized.

Symmetry and energy

Both in eight- and twelve-electron systems, the ground state hask̃ r = (π, π). This is one of two points
of the highest symmetry in thek r-space, another one isk r = (0, 0), Fig. 6. In particular, the ’highest
symmetry’ means that thisk r-point is not related to any other point by a symmetry operation in thek r-
space corresponding to relative translations, Sec. 1.5.2.This in turn implies that states with̃k r = (π, π) or
(0, 0) – and only such states – are non-degenerate, except for center-of-mass and incidental degeneracies.
Together with the relatively large lowest excitation energy ∆(Ne = 8, 12) from both GS12 and GS8 (10%
of the gap of the Laughlin state, Fig. 26) , this suggests thatthe ground state is gapped. Also the relation
∆(Ne = 8) < ∆(Ne = 12) speaks in favour of this hypothesis. If the gap were to vanishin an infinite
system, we would expect the lowest excitation energy to decrease with system size. Naturally, we must
be careful, since we can compare systems of only two different sizes and the function∆(Ne) may be
non-monotonous. On the other hand,∆(Ne = 12) ≈ 0.01 (e2/εℓ0) is much larger than a typical level
separation between excited states, Fig. 26 and for a mere finite size effect, this gap seems too large.

In spite of the similarities to the singlet and polarized incompressible ground states,k̃ r clearly distinguishes
HPS from these two states, since they have bothk̃ r = (0, 0). Also in spherical geometry, where|k̃ r| ∝ L
(end of Subsec. 1.5.2), these incompressible states haveL = 0 while the HPS hasL = S, whereS is the
total spin [57]. Thus, even though we showed that the HPS could be gapped, it is of different nature than
the singlet and polarized ground states. Meaning of this different symmetry is however not clear.

It would be interesting to study this state in a system with hexagonal elementary cell [31] which was
unfortunatelly out of the scope of this work. This geometry is nearer to an isotropic 2D system than a
torus (it has a six-fold rather than a four-fold rotational symmetry) while it is still compatible with plane
waves (in CDWs). Most importantly, there is only one point ofthe highest symmetry in this geometry and
a straightforward question is whether or not the HPS will maintain its high symmetry.

Inner structure again

Features of the HPS described by points (i-iii) in Subsec. 2.2.3 are actually strikingly similar to those of
the incompressible singlet state atν = 2/3. Investigation of theg↑↑(r) after the ’shoulder’ was subtracted
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(P6P/↑↑) suggests again some relation to the Laughlin state which isthe particle-hole conjugate to the
polarized incompressible state atν = 2/3.

Especially manifest is the hint at pairing between unlike spins, the maximum around3.4ℓ0 in g↑↓(r). On
the other hand, the shoulder in correlation functions of like spins seems to be rather a manifestation of
filling factor> 1

2 , since it occurs also for other states at fillingν = 2/3 (than just for the singlet, polarized
and half-polarized GS) and it does not occur at fillingν = 2/5 < 1

2 , Subsec. 2.2.5. It suggests that some
ν = 2/3 states with less than full polarization can be interpreted in terms of holes rather than electrons
even though particle-hole symmetry applies only for fully polarized states, Subsec. 2.1.1.

In the following Sections we will continue investigating the half-polarized states at filling factor2/3 by
other methods and continue discussing the hypothesis of coexisting singlet and polarized states. First,
however, we look at two different minor issues.

2.2.5 Half-polarized states at fillingν = 2/5

At filling 2/5, the situation is much less transparent than at filling2/3. First, only systems with four and
eight particles are accessible to exact diagonalization, the twelve particle system implies matrix dimensions
in the order of hundreds of millions. Second, the spectrum ofthe eight particle system in theS = Ne/4
sector is quite different from that of a2/3 system, Fig. 29:

(i) the ground state lies at a different point in thek r-space,(0, 0), than the2/3-HPS having̃k r = (π, π).

(ii) The excitation energy from this GS is very small, less than a third of that one of the2/3 HPS.

(iii) The symmetry of the low excited states is lower than forNe = 8, 2/3 system.

Regarding the possibility that within the 8 electron calculations it is not thelowestenergy half-polarized
state atν = 2/5 to be the counterpart of the HPS atν = 2/3, there are two2/5 states displayed in Fig. 30:
(a) the one with the lowest energy inS = Ne/4 sector and (b) the lowest state with the same symmetry as
the2/3 HPS, i.e.k̃ = (π, π).

Similarly, as for theν = 2/3 states, the2/5 HPS bear features of the polarized and singlet ground states.
Let us regard the state in Fig. 30a:

(i) Nearr = 0 the functionsg↓↓ (minority spin),g↑↓ andg↑↑ (majority spin) are∝ r6, r4 andr2, respec-
tively. In this respect,g↓↓ andg↑↓ resemble the singlet state andg↑↑ resembles the polarized state.

(ii) Up to the first maximum,g↑↑ of the HPS is the same as in the polarized state, but shifted byabout0.2ℓ0
outwards. Positions of the first maxima mismatch slightly more (by0.4ℓ0). The strong maximum in the
centre of the cell is not present in the HPS.

(iii) g↑↓ of the HPS and the singlet GS match very well even beyond the first maximum. Positions of the
maxima are identical,r ≈ 3.5ℓ0. On contrary to the previous point, there is another maximumin the centre
of the cell in the HPS state and nothing in the singlet state, indicating that the similarity between the singlet
and the HPS has certain limits.

(iv) g↓↓ of the HPS and the singlet GS also match very well up tor ≈ 4ℓ0. Then there is a deep minimum
in the HPS which is absent in the singlet GS.

Turning to the state (b), we might say that it is less alike to the singlet state. The minimum ing↓↓ is much
deeper than for state (a), the first maximum ing↑↓ does not match the maximum seen in the singlet state.
On the other hand,g↑↑ seems to be more similar to the polarized state.

Lowest excitations in the high symmetry sectors show even less similarities to the singlet and polarized
GSs, especiallyg↓↓ is quite dissimilar beyond ther ≈ 0 range and maxima ing↑↓ match less well.

In conclusion, if there is a counterpart to the2/3 HPS at filling2/5 at all, we may expect it to be the state (a)
(the absolute GS), even though hints for this are not very convincing. Again, this suggests that differences
between filling factors2/3 and2/5 are not only of quantitative nature (gap energies, for instance) but
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may be as substential as existence or non-existence of some particular ground state, which isnota bene
completely unexpected on the level of non-interacting CF picture.

2.2.6 Short-range versus Coulomb interaction

Let us conclude with observations regarding the Coulomb- and short-range-interacting (SRI) systems in
the sector of half-polarized states.

The spectra do not look very similar, Fig. 2.2.6a. However, the absolute ground states have in both cases
the same symmetry, they lie in the same point of thek space.

The Coulomb and SRI ground states in the largest system available,Ne = 12, have very similar structure.
The correlation functionsg↑↑ andg↑↓ match nicely whileg↓↓ show some differences between the CI and
SRI states. In spite of this, the overlap between the two states is as large as95%. This allows for the
following conclusions
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Fig. 31: Half-polarized states in Coulomb interacting systems.

(a) The two states ’correspond to each other’. (b) The short-range part of the interaction seems to be
essential for this state (very similar as for the Laughlin state). (c) Deviations ing↓↓ (minority spin) might
come from the fact that spin-down electrons are very far separated from each other (they have an effective
filling of only ν = 1

6 ). Thus the long-range part of the interaction substantially influences their motion.

InNe = 8 systems, the most likely analogue to theNe = 12 ground state is the state♦, Fig. 2.2.6a. This is
the lowest 8-electron state with the same symmetry (value ofk̃ r) as theNe = 12 ground state. Correlation
functions of the two states (8- and12-electron ones) match reasonably, Fig. 31(b). Compare alsowith
differences betweenNe = 8 andNe = 12 short-range ground states, Fig. 27.

Among the excited states the level order is often modified, comparing theNe = 12 Coulomb and short-
range systems. When trying to assign CI to corresponding SRIstates, calculating overlap between two
states seems to be a more reliable tool than comparing correlation functions.

In summary, in spite of differences in the excitation spectrum, the half-polarized ground states of Coulomb
and short-range systems seem to correspond to each other. Differences in the excited states and in the
correlations between the minority spin electrons indicatethat the definition of the short-range interaction
should be improved when we study the half-polarized states.Since the minority spin electrons are relatively
far from each other, non-zero values of higher pseudopotentials (Vm, m > 1, Subsect. 1.3.5) should
probably be considered.

2.3 In search of the inner structure of states: response to delta impurities

Now that some candidates for the half-polarized ground state at filling2/3 have been introduced we wish
to look at them more closely and learn more about their inner structure. The ultimate goal of such efforts
can be to propose trial wavefunctions just as the Laughlin wavefunction at fillingν = 1/3. Even though
this has not been accomplished, the results presented belowshed some light on relations between the
half-polarized state and the singlet and polarized incompressible states.
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(a) Density response: incompressible- or com-
pressible-like. Note that density integrated over
the hatched area remains unchanged for the in-
compressible system when the inhomogeneity is
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(b) δ-line impurity of
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(c) Two possible ways of how a response
to an inhomogeneity can change with
system size; different lines in one sketch
refer to the same state in systems of dif-
ferent sizes.

Fig. 32:δ-line inhomogeneity and sketches of possible resulting effects.

As a probing tool, the homogeneous states are subjected to aδ-line impurity and response in density and
polarization is observed. In first quantization,

Himpurity =

Ne∑

i=1

W (r i) , W (x, y) = δ(x− x0) (54)

This inhomogeneity profile (Fig. 32) was chosen since it is compatible with the torus symmetry. For studies
of point-like impurities, spherical geometry is more suitable since it preserves the rotational symmetry, cf.
references in Subsec. 2.3.1. Theδ-line form is particularly apt to unveil a tendency of the state to build
plane charge or spin density waves. We should keep in mind, that due to the restriction to the lowest
Landau level, even aδ-like potential has an effective cross section ofℓ0 [61].

As we are dealing with spinful electrons, inhomogeneities can be principially of four distinct types:

HEI = W (r) · (δσ↑ + δσ↓) , HMI,↑ = W (r) · δσ↑ ,
HMI = W (r) · (δσ↑ − δσ↓) , HMI,↓ = W (r) · δσ↓ , (55)

where the functionW (r) describes the spatial form of the impurity, Fig. 32 shows theform ofW (r) chosen
in the present study. It is important to note that these impurities fail to conserveS2 but they do conserve
Sz. Also, owing to the form ofW (r ) = W (x), they conservek r

y and thus alsoJ (30) and they spoil only
the k r

x-symmetry. This is very convenient from the computational point of view as matrix sizes remain
tractable. From the physical point of view, this inhomogeneity is a soft tool which does not completely
destroy the high symmetry of the studied states. For example, it allows us to stay in theSz = Ne/4 sector
when we study the half-polarized states.

The first type (HEI , electric impurity) is an ordinary non-magnetic impurity or external electric potential.
The magnetic impurity (HMI ) favours particles with correct spin (↓, if W (r) > 0) and costs energy for
particles with wrong spin (↑ in this case). The last two types describe an impurity which is seen only by
one group of spins. In case that a system consists of two separated subsystems, one of spin up particles and
another of spin down particles, these impurities allow to test only one of them without directly disturbing
the other one.

Note that some inhomogeneity types in (55) may be redundant,depending on the state we apply them to.
For instance, the effect ofHMI,↑ andHMI,↓ must be the same up to a sign for all states in theSz = 0
sector.

Before we turn to the exact diagonalization results, let us briefly think about what types of responses can be
expected. Most importantly, consider the difference between compressible and incompressible states. As
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a classicalcompressiblesystem imagine a playground of fixed size filled with a gas of negatively charged
footballs of densityn(r), 〈n(r)〉 = N . A negative impurity atr = 0 will repel the gas causingn(0) < N ,
Fig. 32a right. Beyond some distancerh, the density will reach a constant level again and this levelwill be
slightly higher than the original density,N + δ = n(r ) > N , |r | > rh, so that the constraint〈n(r )〉 = N
remains preserved. Some charge has been depleted away from the impurity, thereby compressing slightly
the gas in the rest of the system. If the depleted charge equals the charge of the impurity, the charge
distribution (charge of the footballs plus charge of the impurity) in the system will remain constant in spite
of non-constantn(r ) and the gas particles far away fromr = 0 will not ’see’ the impurity anymore. This
is the case of idealscreening.

A classicalincompressibleliquid, for example again charged footballs, will not reactat all, because it
cannot change its density. Even though particles of the liquid feel repulsion fromr = 0, the density will
remain constantn(r) = N . We can also encounter a different behaviour, Fig. 32a (left). Though the
density decreases directly atr = 0, an oscillatory structure develops inn(r), so that the integral density in
the region|r | < rh remains as it was without the impurity. The density then alsoremains at its original
valueN beyondrh. This is a non-ideal incompressible behaviour: at very short distances, the density can
vary slightly, but averaged over distances ofrh (or larger), the density remains constant. Also, since no net
charge was depleted from the region|r | < rh, the impurity iscompletely unscreenedon distances larger
thanrh.

Compressible-like response as shown in Fig. 32a can be combined with quantum interferences (Friedel
oscillations) and it is also possible to think of some overscreening effect which would lead to an oscillatory
n(r). This means the sole fact thatn(r) exhibits oscillations does not necessarily have to imply incom-
pressibility. A more reliable criterion is that the integral density over|r | < rh remains the same with and
without impurity. This procedure is delicate in finite systems whererh can be comparable to the system
size.

The last Figure, 32c, shows two possible ways of how responses change with system size. The right panel
suggests that the state is not fixed to a particular size of thefinite system and especially we could expect
oscillations with periodr1 also in an infinite system. On the contrary, the left panel shows a state with no
intrinsic length scale and e.g. the width of the peak is related to the (finite) size of the particular system.

Now, let us proceed to fractional quantum Hall states.

2.3.1 Electric (nonmagnetic) impurity

The effect of electric impurities on incompressible groundstates has been under investigation since the
early times of the fractional quantum Hall effect. The main reason is that some disorder is needed for the
integer quantum Hall effect to be observable, but on the other hand, too strong disorder will destroy the
effect [79]. For the fractional quantum Hall effect, two of the basic questions were, (i) how strong impurity
potentials may be so that they do not destroy the gap and (ii) how does it change the ground state. Basic
studies with the Laughlin state were performed as early as in1985 [61, 86, 27].

Since the exact diagonalization is limited to finite, and in fact quite small, systems, it is very delicate to put
forward statements about the infinite 2D electron gas. Therefore, when we use the word ’incompressible’
we mean rather ’incompressible-like’ in terms of Fig. 32. Infact, the main purpose of the following
Subsections is to see how the polarized and singlet state respond to impurities in afinite systemand later to
compare them to the half-polarized state again in afinite system. We will focus onshort-range interacting
systems here.

The Laughlin state or the fully polarized2/3 state

The fully polarizedν = 2/3 state is a particle-hole conjugate to theν = 1/3 Laughlin state in a homo-
geneous system, Subsect. 1.5.4. In this part we will study the latter state. Strictly taken, the particle-hole



54 K. Výborný: Spin in fractional quantum Hall systems

symmetry is lost when an arbitrary impurity is considered since the Hamiltonian is no longer translationally
invariant. Differences between theν = 1/3 and2/3 polarized states are however small if the impurity is
weak. In particular, for inhomogeneities considered in this paragraph, it has been checked numerically that
n(x)−Ne are almost the same for the two states. Moreover, the largerNe, the smaller are the differences.

The response of aν = 1/3 system to an impurity of the form (54), aδ-line alongy, is shown in Fig. 33.
Different curves show the ground state densityn(x) in systems of different sizes (Ne = 4 to 10 particles).
The repulsive impurity is always located atx = 0 and it is weak, its strength is∼ 10% of the gap. These
results agree very well with the densities presented by Zhang et al. [86], who considered aδ rather than
a δ-line impurity, though forNe = 4 systems only. Comparison between rectangular, spherical and disc
geometry showed, in all cases, very similar behaviour [86].Note also that findings in Fig. 33 assume
short-range interaction whereas [86, 61] considered Coulomb interaction.

Results in Fig. 33a support the conclusions of Zhang and Rezayi. The oscillatory response ofn(x) is
size-independent and it has a periodr1 ≈ 2.5ℓ0. The response, measured byn(0), doesnot vanish with
increasing system size but it decays with distance from the impurity. Comparingn(x) in Fig. 33a to the
model cases in Fig. 32a, we may tend to classify the Laughlin state as an incompressible one. Incompress-
ibility of the Laughlin state is locally not perfect, otherwisen(x) would remain constant, at least in infinite
systems. However, if some net charge were accumulated even in a larger region (of the orderrh) around
x = 0, we would expectn(x) at large distances to be consistently higher than the no-inhomogeneity value
n(x) ≡ Ne. Recall the differenceN to N + δ in Fig. 32a. If just a unit charge is depleted from the
impurity, thenδ = 1/N . In infinite systems, the differenceδ will vanish, but data in Fig. 33a come from
rather small systemsN ≤ 10 whereδ is not negligible. This is not seen in Fig. 33a.

Zhanget al. suggest that the observed response is a local charge densitywave (28), a strong argument
supporting this idea is given in point (iv) below. Under thisview, it is not surprising that the response to a
δ-line shown in Fig. 33(a) is very similar to the response to aδ-peak studied by Zhang. Only the envelope
function, not the wavelength depends on the particular formof the exciting impurity.

We should again add several comments:

(i) oscillations observed inn(x), Fig. 33a, are not related to Friedel oscillations which appear in the Fermi
gas. This is where a sharp Fermi surface exists giving rise tointerferences, just as in correlation functions
of a free Fermi gas, Subsec. 2.1.1.

(ii) small wiggles on theNe = 4 density in Fig. 33a are due to the center-of-mass (CM) part ofthe
wavefunction. Being a finite size effect, they fall off rapidly with system size as we indeed see in Fig. 33a,
Subsec. 2.1.4.

(iii) the ground state of the homogeneous system is triply degenerate in the CM part, Subsec. 2.1.4. This
degeneracy is lifted by the inhomogeneity, but energy differences between these three states remain much
smaller than their separation from the lowest excited states for the inhomogeneity strength considered [86].

The responsen(x) of any of the three states depends slightly on the position ofthe impurity within the
elementary cell, but this dependence and also differences among the three states in energy and inn(x)
quickly vanish with increasing system size. In Fig. 33a always the impurity giving the strongest response
in n(x) was chosen.

(iv) Period of oscillations: As Rezayi and Haldane [61] note, numerical calculations as in Fig. 33 agree
with results of the single mode approximation proposed by Girvin et al. [27]. The linear response function
χ(q) (in theν = 1/3 Laughlin state) is dominated by the magnetoroton collective mode aroundq0ℓ0 ≈ 1.4.
Would it beχ(q) = δ(q− q0), the density response to a point impurity potential would ben(r) ∝ J0(q0r).
This density profile looks like damped oscillations with thefirst node atr = 1.7ℓ0.

Regarding a more realistic profile ofχ(q), this estimate forn(r) is a very good approximation ton(x) in
Fig. 33a.
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density alongx is plotted.

As the purpose of the present work was to study systems with spin, we will now continue to spin sin-
glet states atν = 2/3. Some quite new results for theν = 1/3 Laughlin state have been achieved
by Müller [53].

The singlet state

The2/3 singlet ground state shows basically the same signs of incompressibility as the polarized state. The
period of the density oscillations incurred by aδ-line impurity is almost the same (r1 ≈ 2ℓ0), and also in
terms of classification of Fig. 32a, the singlet state shows an incompressible-like behaviour, cf. discussion
of the polarized state. The striking feature of the singlet state is, that the strength of the response is about
an order of magnitude less than in the polarized state. Thus in an8-electron system, the density response
is ’hidden’ under the center-of-mass oscillations, Fig. 33b.

This strong difference between the singlet and polarized ground states is unexpected since ’incompress-
ibility’ gaps of both states are similar.

This hints at unusual stability of the singlet state with respect to charged inhomogeneities. In terms of
perturbation theory, this is not due to energetic reasons but rather owing to small matrix elements ofHEI

between the ground state and excited states. Energy of the first excited state, however, decreases when
impurities are present and thus, in spite of the quite stabledensity of the GS, the gap will eventually
collapse.

Regarding the response in systems of different size, we find aconsiderable attenuation when going from
eight to ten-electron systems, Fig. 33b. Nevertheless we assume that the response remains finite even in the
thermodynamic limit. To support this hypothesis, a fact worth of emphasis is that theNe = 8 (10) singlet
state occurs in systems withNm = 12 (15) flux quanta, i.e. with system areaA = 2πℓ20Nm (1). These are
the two smallest systems considered in Fig. 33a. For the these two systems we also observe a considerable
attenuation of then(x) response when going from theNe = 4 toNe = 5 state, Fig. 33a, and this reduction
in response is definitely only a finite size effect. As close asthis analogy is, observations presented in Fig.
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33b are not conclusive and an investigation of the singlet state in a larger system (Ne = 12) would be
needed.

Let us just briefly mention, that non-magnetic impurities have no effect on the polarization of the singlet
ground state.

2.3.2 Magnetic impurity in incompressible2/3 states

As far as spin polarized states are considered, magnetic impurities (55) cannot have any other effect than
the electric impurities do. Therefore only the2/3 singlet ground state will be discussed here as the half-
polarized states deserve to be considered separately, Subsec. 2.3.4.

Considering thedensity, Fig. 34a, we find a yet weaker response than for non-magneticimpurities, Fig.
33b. The response reminds of an incompressible system, in terms of Fig. 32a, and may remain finite in the
thermodynamic limit, cf. discussion of non-magnetic impurities.

Polarizationn↓(x)/n(x) behaves quite differently, Fig. 34b: the response is large and it looks compress-
ible. Again in terms of Fig. 32a. In particular, note that thepolarizationn↓(x)/n(x) in Fig. 34b approaches
≈ 0.51 as we go ’far away’ from the impurity, i.e. a different value than the polarization in the homoge-
neous case,0.5.. Electrons with ’correct spin’ (↑) accumulate around the impurity,n↓(0)/n(0) drops from
the homogeneous value (0.5) by as much as by5%, whereas the average polarization off the impurity
slightly increases so as to keep the overall average value0.5 as required bySz = 0. This behaviour differs
strongly from the density response, Fig. 34b.

It should also be noted that both density and polarization are here much less system-size dependent than in
the case of non-magnetic impurities.

These are quite remarkable findings. It seems that the singlet state islocally much more ’incompressible’
than the polarized state. On the other hand, the singlet state is relatively easily polarizable which is partic-
ularly striking when compared to the weak response in the density. If we assume the density in Fig. 33b
to be the response of two independent liquids, then the polarization in Fig. 34b should be (i) smaller by
a factor of five forNe = 8 than what is observed and (ii) considerably smaller forNe = 10 compared to
theNe = 8 case. This again contradicts the picture of two uncorrelated 1/3 Laughlin liquids, one spin up,
another spin down, which we could wrongly infer from the viewof filled composite fermion LLs. Remind,
however, that it is in fact not the claim of CF theories, that particles ofn = 0, ↑ andn = 0, ↓ CF LLs are
uncorrelated.

2.3.3 Integer quantum Hall ferromagnets

A brief introduction to integer quantum Hall ferromagnets (QHF) was given in Subsec. 1.6. It is instructive
to keep in mind the scheme of Landau levels, Fig. 8.

Here we will focus on theSz = 0 sector in prototypes of Ising and Heisenberg QHFs with neglected LL
mixing. These states (Sz = 0) are analogues of the half-polarized states at filling2/3, the explanation
follows. Disciples of CF teachings deem theν = 2/3 ground states to haveνCF = 2 completely filled
CF LLs, Fig. 9b. Transitions between the singlet and polarized GSs occur, when the(n, σ) = (0, ↓) CF
LL crosses the(1, ↑) CF LL. It is then plausible to neglect the low lying(0, ↑) CF LL and look only at the
two crossing CF Landau levels. The two ferromagnetic Ising states – the singlet, and polarized electronic
GS atν = 2/3 – correspond toall CFs placed in the(0, ↓), and(1, ↑) CF LL, respectively, compare to
Fig. 7b. Hence the half-polarized state (ν = 2/3) corresponds to half-filled(0, ↓) and half-filled(1, ↑).
Disregarding the fully occupied(0, ↑) CF LL, i.e. counting only particles in the two crossing CF LLs(in
totalNe CFs), the ferromagnetic Ising states areSz = ±Ne/2 and the ’half-half’ state isSz = 0.

In this Subsection we study the same situation as the one occuring at theν = 2/3 ground state transition
(within the picture of crossing CF LLs) but forelectronicLandau levels, i.e. with electrons instead of
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Fig. 34: Singlet2/3 ground state for an attractive magnetic impurityHMI,↑ (55) in the form of aδ-line (alongy).
Normalized density and polarization alongx are plotted.

composite fermions. We therefore study aν = 1 system with spin degree of freedom, where spin down
(spin up) electrons lie in then = 0 (n = 1) Landau level, respectively, and we disregard the fully occupied
(0, ↑) level. The physical system we model herewith has thusν = 2. Technically, this requires only
implementing modified values of pseudopotentials, Fig. 2. Without electron-electron interaction, these
two Landau levels are set to equal energy so as to model the LL crossing. Mixing to the fully occupied
(0, ↑) LL as well as to all higher LLs is neglected, since all these levels are well separated from the two
crossing levels.

Heisenberg QHFs are not related toν = 2/3 and we investigate them just for the sake of comparison
between Ising- and some other type of QHF. In the integer QHE regime, Heisenberg QHF occurs e.g.
when(0, ↑) and(0, ↓) LLs cross (andν = 1) as it is the case for instance at vanishing Zeeman splitting.
With CFs, this happens atν = 1/3, i.e. νCF = 1, Fig. 9b.

We will first briefly discuss homogeneous states in these QHF systems and then we will turn to their
response to magnetic inhomogeneities (δ-lines).

Ising quantum Hall ferromagnet

There are two degenerate ground states of an Ising ferromagnet: both withS = Ne/2, oneSz = Ne/2 and
anotherSz = −Ne/2. In general, excited states are no eigenstates toS2 as a consequence of the omission
of the fully occupied(0, ↑) level and may only be classified according toSz. They are all situated well
above the ground states, Fig. 7b, and their energy grows withNe/2− |Sz|. In the following we will only
speak aboutSz = 0 states. The wholeSz = 0 sector is quite high in the complete spectrum. Unlike for a
Heisenberg ferromagnet there is nothing like aS = Ne/2, Sz = 0 ground state for an Ising ferromagnet.

Low lying Sz = 0 states of the considered Ising QHF are apparently arranged into a flat dispersion branch,
Fig. 35a. For a fully occupied Landau level,J ’coincides’ withk r

y. Precisely,k r
y = (Ne/2−J)

√
2π/Nm

for Ne even in the sense of (27). Centre-of-mass degeneracy is absent. The anomalous form of the branch
in aNe = 8 system, seems to be of finite-size origin, sinceNe = 10, 12 and 14 spectra are all similar.
States of the lowest branch havek̃ r of the form(2πn/Ne, 0), n = 0,±1, . . . , Ne/2, or (0, 2πn/Ne). This
is in agreement with the symmetry betweenx andy (square elementary cell). It shows that rotational
symmetry is absent in the low energy sector – otherwise we would observe also states with̃k r = (kx, ky),
kx, ky 6= 0. The lowest branch flattens and becomes well separated from excited states with increasing
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Fig. 35: Half-polarized states (Sz = 0) of an Ising quantum Hall ferromagnet.ν = 2

system size, and the minimum energy remains atk̃ r = (0, 0). Also, other branches develop, the second
lowest branch is described bỹk r = (πn/Ne,±2π/Ne) (plus thex-y symmetric partner) and minimum
energy at points(π,±2π/Ne), see theNe = 12 spectrum in Fig. 35a. Apart from these branches an
isolatedk̃ r = (0, 0) state is present (shown in gray in Fig. 35a) and it is hidden within the branch. We can
hypothesise that this state becomes the absolute ground state i.e. gets separated from the lowest branch in
sufficiently large systems.
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Fig. 36: Half-polarized states (Sz = 0) of a Heisenberg quantum Hall ferromagnet.ν = 1

The flat branch is reminiscent of results of Rezayi2 et al. [63] and could correspond to domain states, i.e.
stripes alongx or y with alternating spin polarization, in a system which does not prefer any particular
domain size. The origin of the highly symmetric isolated (gray in Fig. 35a) state is unknown.

As it can be expected, low lying states have homogeneous density and it is true even for the whole lowest
branch, as an example we show density in the ground state (k r = 0), Fig. 35b. The anticipated domains
would probably be visible first in correlation functions. States in the second lowest branch show unidirec-
tional charge density waves.

In summary, in a homogeneousν = 2 Ising QHF we observe

(i) a flat branch of low lying states, which could become degenerate in infinite systems, Fig. 35a. This first
branch probably consists of stripe domains – or spin densitywaves – of all possible wavelengthsλ = a/n,
n = 0, 1, . . .Ne/2 just as in the system studied in [63]. Contrary to isotropic states (like Laughlin liquid),
the wave must be parallel to one side of the square elementarycell.

(ii) second branch with pronounced dispersion, which couldbe a charge density wave

(iii) continuum of excited states above the two branches and

(iv) another state, with high symmetry,k r = (0, 0), which lies among the states of the lowest branch.

Heisenberg quantum Hall ferromagnet

The situation here is quite different from the Ising ferromagnets. The Hamiltonian (Coulomb interaction
projected to the lowest Landau level) conserves the total spin S and it even commutes withS+ andS−

which changeSz while keeping the length of the total spin. The ground state is fully polarized,S = Ne/2,
but itsz-component of spin is arbitrary, Fig. 7b.

Looking at the sectorSz = 0, Fig. 36b, the lowest state is thus the ferromagneticS = Ne/2 state. Other
low-energy states form again a branch,k̃ r = (±πn/Ne, 0) and (0,±πn/Ne), n = 0, . . . , Ne/2 (x-y
symmetry present, rotational symmetry absent). Contrary to the Ising QHF, this branch does not seem to
flatten. States in the branch fulfilS = Ne/2 − n: the ferromagnetic (ground) state is polarized and going
up the branch, the polarization decreases. In this respect,the excitations of the lowest branch markedly

2 The cited work concerns the situation when the lowest and thethird Landau levels of different subbands cross. Rezayiet al.
had first to show that this system is an Ising QHF. See subsection 1.6 for more details. In theSz = 0 sector of his system

Rezayiet al. found a multiply (almost) degenerate ground state withk̃ r just of the sequence(2πn/Ne, 0), similar as we see
in Fig. 35a forNe = 12.
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differ from spin density waves. What we observe in the Heisenberg QHF are most likely states withn
weakly interacting spin waves which were observed under thesame conditions on a sphere by Wójs and
Quinn [76].

Half-polarized QHF states and magnetic impurity

If a homogeneous state cannot be established and domains formation is more favourable, then no particular
domain size is preferred. This is the central message of the following paragraph and it applies to both Ising
and Heisenberg QHFs described at the beginning of Subsection 2.3.3.

The two systems were subjected to aδ-line magnetic inhomogeneity, just as the incompressible singlet
ground state in Subsec. 2.3.2. However, QHF systems and incompressible liquid states atν = 1/3 or 2/3
behave quite differently. Looking at a QHF and comparing theresponse in systems of different sizes, we
observe no intrinsic length scale, Fig. 37. Rather, the formof the response reflects the size of the system
(cf. the left panel of Fig. 32c). This statement applies bothto the Ising, Fig. 37b, and the Heisenberg
QHF, Fig. 37a, where we show the polarization of the energetically lowest state in a system subject to the
inhomogeneity.

It is also interesting to study thedensityof the disturbed QHF states. The density of the Heisenberg QHF
remains almost unchanged (it is constant) unlike the density of the Ising QHF state, Fig. 35b right. This
is understandable. Whereas in the Heisenberg QHF spin up andspin down one-particle states have exactly
the same wavefunction, both spin up and spin down states are from the lowest Landau level, this is not the
case for the Ising QHF. In that case, spin up and spin down states come from different Landau levels. Thus,
even when the magnetic impurity shuffles the spin up and spin down particles somehow in the Heisenberg
QHF, the density does not change.

Finally, we comment on densities in the inhomogeneous states in the Ising QHF. Results shown in Fig. 35b
belong to quite small systems (12 particles at most). In the largest system studied, we observe a maximum
in the density direct at the position of the impurity (x = 0) and the maximum approaches the value of
density in a homogeneous system. With some imagination thisallows for a hypothesis that – if domains
are formed in an infinite system – the density will be inhomogeneous close to the domain boundary while
remaining homogeneous inside a domain. However, we would have to study larger systems to confirm this
speculation.

2.3.4 The half-polarized states

The inner structure of the half-polarized (S = Ne/4) ground state at filling2/3 is investigated in this
Subsection. We will argue that this state (assuming short-range interaction) resembles rather the incom-
pressible singlet and polarized ground states atν = 2/3 than the Ising quantum Hall ferromagnet in the
Sz = 0 sector as described in Subsection 2.3.3.

In this Subsection, by half-polarized ground states we meanthe 8- and 12-electronS = Ne/4 states GS8
and GS12 as introduced in Sec. 2.2, cf. correlation functions in Fig.28.

The ground state in a homogeneous system has a nearly constant density (oscillations due to the center-of-
mass part wavefunction are less than0.1% in the 12-electron system). This changes when a weakδ-line
magnetic impurity alongy is applied. Not only the polarization but also thedensitybecomes inhomoge-
neous, Fig. 38. The first minima ofn(x) are at the same positionr1 ≈ 2.2ℓ0 in the two system sizes
considered and decaying oscillations are likely to follow at larger distances. Comparing the two system
sizes in Fig. 38a, we find a much weaker response in the larger system, but this still does not have to imply
a vanishing response in an infinite system, cf. discussion ofthe singlet state in Subsec. 2.3.1.

Unlike the Ising quantum Hall ferromagnet discussed in Subsect. 2.3.3, the half-polarized states seem to
have an intrinsic length scale inn(x) (of the order ofr1), Fig. 38a. It is remarkable that thisr1 matches
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Fig. 37: Different quantum Hall ferromagnets (QHF), half-polarized states: polarization response to a magneticδ-line
impurity in systems of 8 and 12 particles.

quite well the position of the first maximum in the density of the Laughlin state (1/3) responding to an
impurity, Fig. 33.

Contrary to the density, thepolarizationdoes not show an intrinsic length scale as positions of the first
minima inNe = 8 andNe = 12 systems mismatch considerably, Fig. 38b. However, the polarization
response here differs from the behaviour of the singlet state, Fig. 34b. Rather, Fig. 38b suggests that
n↓(x)/n(x) → 0.75 as we go away from the impurity for the half-polarized states. This behaviour was
classified as ’incompressible’ in Fig. 32a.

These observations suggest that the presence of an impuritywill not lead to a splitting of the state into two
domains (one with spin up, second with spin down), which we could expect for Ising QHF, Fig. 37. It
seems that an impurity will rather change the polarization of the system only locally, in an ’incompress-
ible manner’, Fig. 32a. The density response has the same characteristic length scale as the singlet and
polarizedν = 2/3 ground states and such a length scale is absent in the polarization in agreement with
behaviour of the singlet state, Fig. 34b.

A state withSz = Ne/4 comprises of14Ne electrons with spin down (’minority spins’) and34Ne electrons
with spin up (’majority spins’). Since the two populations are not balanced, we may gain extra information
by speaking to them separately. The simplest concept, assuming non-interacting electrons, would be that
HMI,↓,HMI,↑ andHMI (55) give rise to responses in ratio14 : 3

4 : 1. Very roughly, this is indeed the case.
Heights of the central peak (x = 0) for these three types of inhomogeneities are indeed approximately
in this ratio, both for the density and for the polarization,Fig. 39. In the following we will discuss
investigations with spin-dependent perturbations in moredetail.

Let us separate the density of majority and minority spins, Fig. 40. We will argue that the half-polarized
state withNe electrons consists of two coexisting and weakly interacting liquids:Ne/2 electrons in a fully
polarized liquid (withSp

z = Ne/4) andNe/2 electrons in aSu
z = 0 state. Minority spins are thus present

only in theSu
z = 0 liquid whereas majority spins occur in both of them. Concentrate on Fig. 40c.

(i) Minority spins (↓) react almost equally toHMI,↑ and−HMI,↓. They reflect only changes in the
Su

z = 0 liquid and there are as many up as down spins in it. In fact, theHMI,↑ impurity influences also the
polarized liquid component, but we cannot see it in the density of minority spins provided the two liquids
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Fig. 39: Half-polarized ground state (S = Ne/4) responding to aδ-line magnetic impurity. Different impurity types
are considered:HMI ,HMI,↑ andHMI,↓ (55).

do not interact appreciably. The combined effect ofHMI,↑ −HMI,↓ causes a response of about the sum
of these two.

(ii) Majority spins (↑) react differently toHMI,↑ and−HMI,↓. We should keep in mind thatn↑ reflects
changes in both (polarized andSu

z = 0) liquids. The latter impurity inflicts changes only on theSu
z = 0

part, whereas the former impurity acts on both liquids. If both liquids would have the same sensitivity to
the considered impurities, we could expect responses in ratio 4 : 3 : 1 (HMI toHMI,↑ toHMI,↓). The fact
that responses observed in Fig. 40c (measured by the height of the central maximum) are in ratio3 : 2 : 1
could be an indication that the polarized liquid is less sensitive than theSu

z = 0 liquid.
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Fig. 40: The same as Fig. 39, but the density is decomposed into the density of majority spins (n↑) and minority spins
(n↓). By attractive (repulsive) is meant that theδ-impurity atx = 0 is attractive (repulsive) for the majority spin.

(iii) Note also, that responses are the same (up to an inversion) for attractive and repulsive impurities, Fig.
40a and 40b, provided the impurities are weak.

Studies of the eight electron half-polarized state, Fig. 40b is not in conflict with this interpretation, re-
sponses in densities are quantitatively different though.However, we should be cautious in drawing strong
conclusions as these systems with primitive cell of size12 flux quanta correspond to the smallest system
(Ne = 4) considered in Fig. 33 (ν = 1/3 state plus an impurity) and in that case finite size effects are
already very strongly pronounced. Thus, the twelve electron system can be considered as the smallest
system with finite size effectsnotplaying a major role.

Conclusion

The hypothesis of the coexistence of the spin singlet and polarized liquids in the half-polarized states
(HPS) seems to be supported. We have pointed out some similarities between the HPS and the former two
incompressible states. In contrast, response to magnetic impurities seems to be different for the HPS and
the Ising quantum Hall ferromagnet (in theSz = 0 sector) which would be the direct counterpart of the
HPS if composite fermions are substituted by electrons.

In general, it is not very surprising that electronic systems (ν = 2 Ising QHF) differ strongly from the CF-
counterparts. We have already seen this in correlation functions in Subsec. 2.1.1. However, the observed
differences seem to be too deep to allow us to establish a relation between QHF states and the half-polarized
states introduced in Sec. 2.2.

2.4 Deforming the elementary cell

In this Section we discuss another way of how to investigate fractional quantum Hall states. We will exactly
diagonalizeν = 1/3 andν = 2/3 systems in elongated rectangular elementary cells. The dimensions are
a by b, the aspect ratio is thusa : b > 1. The area of the rectangle is always kept constant,ab = 2πℓ20Nm

(1), and therefore

ab = 2πℓ20Nm , ⇒ a = ℓ0
√

2πNmλ , b = ℓ0
√

2πNm/λ , λ = a : b . (56)

What can we expect? In the first approximation, we would say (i) nothing happens for an isotropic state
such as theν = 1/3 Laughlin liquid and (ii) crystalline or wave-like states will change both in energy



64 K. Výborný: Spin in fractional quantum Hall systems

-3.45

-3.40

-3.35

-3.30

-3.25

-3.20

-3.15

-3.10

-3.05

 1  2  3  4  5  6  7  8  9  10 11 12 13 14

E
ne

rg
y

aspect ratio

ր տ

(a) Coulomb interaction (1/3).

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1  2  3  4  5  6

E
ne

rg
y

Aspect ratio

Ne/Nm=12/12
Ne/Nm=8/12

(b) Short-range interaction (2/3). Blue
crosses mark the energy of a full Landau
level. See the comment [3] for details.

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 1  2  3  4  5  6

E
ne

rg
y

Aspect ratio

polarized
singlet

half pol.

(c) Polarized, singlet and
half-polarized states atν =
2/3. Overview.

Fig. 41: Spin polarized eight electrons at filling factor1/3 and2/3. Energy of the lowest states versus aspect ratio of
the primitive cell. An overview of the polarized, singlet and half-polarized states in the same scale is presented in the
last panel.

and in density. The reason is, that structures in homogeneous liquid states (as for example in correlation
functions in Subsec. 2.1.1) are intrinsic and not incurred by the finite system size. Consequently, we
expect the liquid state to change neither their energy nor their correlation functions, at least not on short
distances, ifa : b is slightly varied. On the other hand, an integer multiple ofthe period of a wave-like or
crystalline state must be necessarily equal toa and/orb, hence by varying the aspect ratio we force it to
change its period. In a classical crystal this means compression, or better deformation, since total ’volume’
ab remains constant, and we expect it to cost energy.

This investigation ofν = 2/3 systems was partly motivated by the work of Rezayiet al. [63] who
investigated one particular type integer quantum Hall ferromagnet. Their exact diagonalization on a torus
showed anNm-fold nearly degenerate ground state and the authors arguedthat these states comprised of
stripes of alternating spin polarization (Subsec. 2.3.3) oriented parallel to one side of the rectangle, for
examplea. As they varied the aspect ratio, the states still remained degenerate, and their energyE(λ)
changed proportional tob. In fact, the degeneracy even improved: the small energy differences between
theNm states dropped. This was a strong argument for the stripe order, since thendE(λ)/db can be
interpreted as energy per unit length of an interface between a spin up and spin down stripe.

2.4.1 Incompressible ground states

As usual, we will start withν = 1/3, being probably the best understood system. This will also be the
only case where we will discuss Coulomb interacting systems, in the rest we will stay with short-range
interacting systems.

Coulomb versus short-range interaction:ν = 1/3

The spectrum of a Coulomb-interacting system has a quite rich structure, Fig. 41a. The ground state energy
exhibits several minima as a function of the aspect ratio of the elementary cell. In fact even more structure
seems to appear in larger systems, as far as it could be inferred from comparing6, 8 and10 electron
systems. In the following, we will show that this structure occurs mainly due to the long-range part of the
Coulomb potential, it should be possible to describe it mainly by the Hartree part of the total energy or
simply that it is due to formation of charge density waves (CDW) resembling Wigner crystals. Differences
between Wigner crystals and CDWs are discussed below. In fact, energy of the states in question, Fig.
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3 ≈ 2.31.

Fig. 42: Charge density waves resembling Wigner crystal states are among the lowest excitations in a Coulomb in-
teracting1/3 system. Their energy is minimized (as a function of aspect ratio) when the elementary cell matches the
crystal geometry. Correlation functions in eight-electron systems are shown, length ofx- andy-sides corresponds to
the particular aspect ratio.

42, will contain strong exchange contributions. Nevertheless, these states are very similar to theclassical
states which minimize the Coulomb energy. In a second step, we will discuss how correlations (and energy
due to correlations) depend on the aspect ratio, Fig. 41b.

In order to understand the the aspect-ratio dependence of energy of the Coulomb-interacting ground state,
let us focus on two low excited states marked by arrows in Fig.41a. These two states are just the CDWs
mentioned above and they look almost like Wigner crystals: one hexagonal, another square, as density-
density correlation shows, Fig. 42. It is then not surprising that the energy of such states is minimal, when
the aspect ratio matches its geometry. For eight electrons considered here, this happens for3 4d : 2d = 2 and
4d : (2

√
3/2d) = 4

√
3/3 for the square and hexagonal crystal, respectively. Perhaps the most apparent

difference between a CDW and an (unpinned) Wigner crystal isthat for the latter state we expect the
correlation function to drop almost to zero between the ’lattice sites’ and this is not the case here, Fig.
42. The reason is that at filling factorν = 1/3, the system is too densely populated, or mean interparticle
distance is too small,rmean/ℓ0 =

√
2π/ν ≈ 4.35 (1) to allow the electron density (or correlation function)

to vanish between two sites. Remember that an electronwithin the lowest Landau levelcannot be localized

3 d is the ’lattice constant’.



66 K. Výborný: Spin in fractional quantum Hall systems

 0

 0.5

 1

 1.5

 0  0.5  1
 0

 0.5

 1

(a) Aspect ratio1.00.

 0

 0.5

 1

 1.5

 0  0.5  1
 0

 0.5

 1

(b) Aspect ratio2.00.

 0

 0.5

 1

 1.5

 0  0.5  1
 0

 0.5

 1

(c) Aspect ratio2
√

3 ≈ 3.46.

Fig. 43: Evolution of the Laughlin state with aspect ratio ofthe elementary cell (Coulomb interaction). Correlation
functions are shown.

more strongly than on a length scale of the order of unity (magnetic lengthℓ0). Even if we assembled a
hexagonal Wigner crystal atν = 1/3, the wavefunctions at neighbouring sites would strongly overlap and
it is then more favourable for the electrons to retain some features of the Laughlin correlations. As a result
we obtain a CDW (or a ’strongly correlated crystal’ [47]) like the state in Fig. 42b. At lower filling factors,
rmean/ℓ0 is larger and Wigner crystal states become possible. This can be interpreted as a quantum phase
transition from liquid to solid as the filling factor is decreased and the extensive studies in this field suggest
the critical valueν ≈ 1

7 , see Sec. 5.7 in Chakraborty [14] for a review.

The ground state (GS) energy reflects these geometrical conditions. This state also minimizes its energy
when the square crystal can easily be formed, but at short distances it strictly preserves the liquid-like
correlations, Fig. 43. It is isotropic at short distances, in Fig. 43b, the ring corresponding to the first
maximum is circular and not deformed into an oval for instance, Fig. 42, and alsog(r) ∝ r6 (not obvious
in Fig. 43). It seems plausible that the increase of GS energyarounda : b ≈ 3, Fig. 41a, is due to the loss
of isotropy at shorter distances. The ring of the first maximum in g(r) disappears, Fig. 43c, the feature
g(r) ∝ r6 however remains. It is important to know, that unlike the energy, thestructure(correlation
functions) of the ground state is quite insensitive to the type of interaction (Coulomb or short-range).

Let us now proceed to short-range interacting states. The crystalline states disappear from the realm of
low-energy excitations. The ground state energy is completely independent on aspect ratio, it is zero, Fig.
41b. Energies of fully polarized2/3 states displayed therein are equal to those of1/3-systems up to a
constant shift. This constant depends on aspect ratio, but the dependence is imperceptible up toa : b ≈ 4
(for 4 electron system). In fact, the ground state is rigid inthe following sense: a state can have zero energy
only if there are three zeroes on the position of each electron in the wavefunction. The wavefunction is
completely determined by this condition together with the confinement to the lowest Landau level. It is
even surprising, that given how strictly determined the ground state is, it once resembles a liquid (for
a : b ≈ 1) and another time a CDW state (larger aspect ratios), Fig. 43c.

Assuming fully spin polarized electrons,2/3 and1/3 systems (e.g.8/12 and4/12) are particle-hole conju-
gated. Thus, spectra of these systems are identical up to a constant energy shift, which is just the Coulomb
(or short-range interaction) energy of a completely filled lowest Landau level. Note that this energyvaries
with aspect ratio (both for Coulomb and for short-range interaction). The common statement that interac-
tion energy of a full LL is a constant is valid in a broad range of aspect ratios, but not everywhere. In Fig.
41b, this holds up toa : b < 4, Subsect. 1.5.4. This is shown in Fig. 41b. Theν = 1/3 Laughlin state
has zero energy for any aspect ratio (not shown), the2/3 ground state energy is then just the Hartree-Fock
energy of a completely filled Landau level. Beyonda : b ≈ 4, this energy is no longer constant, indicating
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Fig. 44: Low lying states at filling2/3 under vanishing Zeeman splitting versus aspect ratio of theprimitive cell. Note
that energy of the singlet ground state remains about constant for aspect ratios. 1.4 in the larger system.

that the deformation of the elementary cell becomes pathologic and beyond this point (at latest), the model
no longer describes a 2D system but rather an effective 1D system.

Considera/b ≫ 1. Then theNe electrons are located on a very thin cylinder [62] of length∝
√
a/b

(area of the cylinder is fixed by filling factor,ab = 2πNm) and single electron states resemble ’rings on a
pole’. The mean distance between electrons is then∝

√
a/b/Ne and Coulomb energy is then proportional

to (a/b)−1/2. The increase of the ground state energy for very large aspect ratios, Fig. 41a, is due to the
repulsion between an electron and its own periodic image in the ’short-direction’.

Excited states are sensitive to deformation of the elementary cell even more. Energy levels group into
branches beyonda/b ≈ 2, Fig. 41b. Keeping in mind the transition towards an effective 1D model,
these branches can be attributed to 0, 1, 2, etc. pairs of ’rings on a pole’ sitting at neighbouring sites. In
illustrative terms, there is no longer enough room for two electrons to be positioned in ’vertical’ direction
(alongy axis, i.e. the shorter side of the elementary cell) except when they freeze into a crystal.

In conclusion, going beyond aspect ratio∼ 2 (in aNm = 12 system) the system cannot be taken as a
faithful model for an isotropic infinite system.

The singlet state

The singlet ground state is apparently more sensitive to varying the aspect ratio. Its energy changes at much
smaller deformation than that of the polarized state, Fig. 41c. However, comparison between systems of
different sizes shows that its energy is also constant, provided that the aspect ratio is not much larger than
one and the system is large enough, Fig. 44. This is another hint at isotropy of the state. A crystalline state
responds more strongly to a change ofa/b, since this is in principle an attempt to compress the lattice in
one direction while expanding it in the other direction. Recall just the CDW states inν = 1/3 systems
marked by arrows in Fig. 41a.

This is in agreement with a direct observation of correlation functions, Fig. 45. In particular, the ring
structure ing↑↓(r) (or maximum atr0 ≈ 3.4ℓ0) remains preserved even for aspect ratiosa : b ≈ 3, Fig. 45
right. This is similar to how the ring structure of the first maximum was preserved in the deformedν = 1/3
Laughlin state, Fig. 43b. Also, looking atg↑↑(x) andg↑↓(x) in the deformed singlet state, thesumof these
two seems to remain constant beyondr0 even in deformed systems, in spite ofg↑↓(x) decreasing beyond
x = r0. This was just the conclusion ina : b = 1 systems, Fig. 15, and it suggests that the singlet state
did not change much even in a quite strongly deformed system (a : b . 3). Moreover, this finding allows
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Fig. 46: Half-polarized states (S = Ne/4) at filling 2/3 versus aspect ratio. States with next larger spin are well above
(out of scale here).

us to use deformed systems to study what happens on slightly larger distances than distances accessible in
a square cell of a fixed area because maximum distance betweentwo electrons in a deformed elementary
cell, 1

2ℓ0
√

2πNm(λ+ 1/λ), grows with increasingλ.

Regarding the energy, which seems to react more sensitivelyto deformations than the correlation functions,
the following speculation seems plausible. If the singlet state is a liquid of↑ − ↓ pairs of characteristic
sizer0 ≈ 3.4ℓ0, Subsec. 2.1.1, it ought to be more sensitive to aspect ratiovariations than the Laughlin
state just because such a pair in theν = 2/3 singlet state is larger than a single electron in theν = 1/3
Laughlin state.

2.4.2 Half-polarized states

The half-polarized states can be expected to suffer severely under the finite size of the system. A system
with eight electrons contains only two electrons with minority spin. Contrary to fully polarized systems
(where eight particles is already fair enough), it is thus the smallest system withS = Ne/4 where many-
body effects can be studied.

Let us compare how systems of two different sizes respond to varying aspect ratio. In an eight-electron
system, Fig. 46a, there are four low lying states: the groundstate ata/b = 1 with k̃ r = (π, π), a (0, 0)
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state which becomes the ground state ata/b > 1.5 and a pair of degenerate states,(0, π) and(π, 0) (k̃ r

is defined in Subsec. 1.5.2). The former two states are isotropic (and lie in high symmetry points of
the Brillouin zone), the other two are spin-density waves inx andy direction, judging by the correlation
functions (not shown). Moving away from aspect ratio one, degeneracy of the latter two is lifted – just as
the90 deg rotational symmetry of the elementary cell is broken – and the wave alongx (the longer side)
becomes energetically more favourable. It is quite conspicious that this state evolves parallel to the(π, π)
state for aspect ratios above≈ 1.4. For these values ofa : b, the inner structure of these two states seems
to be very similar, too.

In the low-energy sector, a(0, 0) state is absent in a 12-electron system, Fig. 46b. In other respects,
however, the situation is quite similar to the smaller system. There is a well-separated(π, π) ground state
in a square cell and this state becomes nearly degenerate with a(0, π) state for aspect ratios& 1.4. Also,
the energy of these two states decreases with increasing aspect ratio and eventually reaches its minimum.
In contrast to the smaller system, the minimum occurs later,ata : b ≈ 2.4 (Fig. 46b) compared to≈ 1.6
in Fig. 46a, but this occurs also for the incompressible states, e.g. the singlet atν = 2/3 (Fig. 44a vs Fig.
44b). The correlation functions of these two states,(0, π) and(π, π), are similar to those of the(0, π) and
(π, π) states in the eight-electron system (not shown).

Now turn to the correlation functions of the(0, π) and (π, π) states in a 12-electron system, Fig. 47.
Both states are quite isotropic, for a square elementary cell, first at a very close look, we find a slightx
versusy anisotropy in the(0, π) state. However, already under slight variation of the aspect ratio, stripe
structures parallel to the shorter side evolve (a : b = 1.2, Fig. 47a). In this respect, both states look quite
similar, Fig. 47 (or compare Figs. 47a and 47b), and we shouldstress that the differences in the correlation
functions between the isotropic (ata : b = 1) and the wave-like state (a : b = 1.8) are very large, both in
isotropy/anisotropy and in the short-range behaviour, Fig. 47c. This is in a strong contrast to the behaviour
of the incompressible states, e.g. the Laughlin state whichpreserves lot of its original isotropy even at
a : b ≈ 2, Fig. 43.

These observations suggest the following interpretation.The half-polarized ground state atν = 2/3 is an
isotropic state which however inclines to the formation of aspin-density wave. The wave has the shortest
period allowed by the number of electrons, i.e. it resemblesan antiferromagnetic ordering (↑↓↑↓ . . . rather
than↑↑↓↓ . . . , for instance) as the correlation functions in the rightmost column in Fig. 47a suggest.
Since there are just three↓-electrons in the system, we expect two stripes (the third↓-electron is just at the
origin) in g↓↓(x, 0) in the case of↑↓↑↓ . . . ordering. In more detail, see Fig. 47d: the minima/maxima
in g↑↑(x, 0) match well with the maximum/minima ing↑↓(x, 0). In other words, spin up is followed by
spin down. However, the amplitude of oscillations ing↓↓(x, 0) is moderate, Fig. 47c, and hence we should
rather classify the state as a ’spin density wave’ than e.g. astate with stripe domains of alternating spin
polarization.

On the basis of the present investigation, it is not clear whether in a large enough system, this spin wave
state is the ground state, a low-energy excitation or it is degenerate with the isotropic ground state. Even
though the GS ata : b > 1 (spin wave) has a lower energy than the isotropic state ata : b = 1, Fig. 46b,
this does not say much about which state would be the ground state in a larger system. We saw a similar
situation for theν = 1/3 Laughlin state, Fig. 41a, or the singletν = 2/3 state, Fig. 44. The energy of the
ground state was not at its minimum ata : b = 1, yet the isotropic (a : b = 1) state is probably the real
ground state in the thermodynamic limit. The question how todecide which state – isotropic or anisotropic
– will be preferred in infinite systems remains open, but comparison between systems of more different
sizes could be very helpful.

2.4.3 Conclusions

It has been demonstrated that isotropic states like the fully polarized or singlet incompressibleν = 2/3
ones tend to be insensitive to slight deformations. The response was observed in the energy of the state
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and in its correlation functions, where we saw that especially the short-range behaviour remains basically
unchanged. The insensitivity improves with increasing thesystem size (number of particles). We also
registered some differences between the singlet and polarized state. In systems of equal size (area) the
former state was disturbed by smaller deformations. This agrees with our previously mentioned hypothesis
(Subsec. 2.1) that the singlet ground state consists of pairs of electrons with unlike spin. Since the typical
size of such a pair was rather large (3.4ℓ0), the singlet state will suffer under the finite size of the system
more than the polarized state where the ’relevant particles’ are still electrons whose size is aboutℓ0. Imag-
ine filling a container once with ten tennis balls (∼ polarized state) or with five footballs (∼ singlet state).
Slightly deforming the container will probably affect the latter system stronger.

Investigation of the half-polarized state revealed that while the state is isotropic in a square cell, it tends to
build a unidirectional spin density wave for aspect ratios not far from one. In this regime, it also becomes
degenerate withoneother state. Correlation functions of the both states (in deformed elementary cells) are
quite similar to each other. We suggested that these states have an antiferromagnetic ordering in agreement
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with both correlation functions and wavevectors of these two states,̃k r = (0, π) and(π, π). The question
which state (isotropic or spin wave) is the real ground statein an infinite system remained unanswered.

2.5 Summary and comparison to other studies

2.5.1 The incompressible states: the polarized and the singlet ones

We studied various properties of the fractional quantum Hall states with spin degree of freedom at filling
factors1/3, 2/3 and2/5: correlation functions, response to magnetic and non-magneticδ-line impurities
or to deformation of the elementary cell. Briefly summarized:

(i) The results are in agreement with the concept of incompressibility of these states and also (in the case
of ν = 1/3) with some earlier studies, e.g. [86].

(ii) Even though these states can be imagined as composite fermion systems with integer filling, the analogy
to Landau levels completely filled withelectronscan often be misleading. For instance electrons of unlike
spin are strongly correlated in theν = 2/3 singlet state while they are completely uncorrelated in aν = 2
singlet state.

(iii) We inferred pairing of spin up and spin down electrons in theν = 2/3 singlet state. In the spin-
unresolved density-density correlations, this state looks as if the two electrons in each pair were located
exactly at the same position and the pairs then formed aν = 1 state. This conclusion was not possible
for theν = 2/5 singlet state thereby highlighting differences between fillings2/5 and2/3 which are very
closely related within composite fermion theories.

2.5.2 Half-polarized states

We identified a highly symmetric half-polarized state at filling factor2/3 whichcouldbecome the absolute
ground state in a narrow range of Zeeman energies (or magnetic fields). Such a state is completely unex-
pected in mean-field composite fermion theories. Extendingearlier studies with exact diagonalization on
a sphere we showed that extrapolating the energy of this state from finite size exact diagonalizations to the
thermodynamic limit is problematic and the question whether the half-polarized state really becomes the
absolute ground state remains open.

Investigations on this state both for short-range and Coulomb interacting systems showed strong similar-
ities to the incompressible singlet and polarized states atν = 2/3. Consequently, we suggested that the
singlet and the polarized state coexist within the half-polarized state. The statemightbe gapped for short-
range interacting electrons but even if yes, it is probably not gapped for Coulomb interacting systems.
These differences in spectra accentuate the fact that extrapolations to infinite systems should be taken with
extreme caution. It also means, that the definition of the short-range interaction should be reconsidered.
The model may be an oversimplified if we study the half-polarized states since the mean distance between
two minority spin electrons is rather large, higher pseudopotentials should also be taken into account.

The half-polarized state forms a pronounced spin-density wave, or antiferromagnetic order, when anisotropy
is introduced from outside (deformation of the elementary cell) but we could not conclude whether this
spin-wave will be more energetically favourable than the isotropic form in much larger systems.

2.5.3 Half-polarized states: other studies

Let us first briefly recall other suggestions which appeared since Kukushkinet al. presented their exper-
iment showing a plateau of the polarization at the value of one half. All works mentioned below can be
applied both to filling factor2/3 and2/5 in principle. Unless necessary, we will not distinguish between
these two cases.
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Ganpathy Murthy [54] was attracted by the idea that correlations favour either the spin singlet or the fully
polarized state. At the point where the two ground states cross (recall Figures 24 and 9a), electrons could
prefer to form a translationally non-invariant state consisting of regularly alternating areas of (locally)
singlet and (locally) polarized states arranged into a partially polarized density wave (PPDW). He argues
that this structure ought to have square rather than a hexagonal symmetry. The energy of the PPDW state is
evaluated within the Hamiltonian theory of composite fermions [56] and it is shown that the PPDW state is
stable (against one-particle excitations) and lower in energy than the (homogeneous) singlet and polarized
states. The period of the density wave should be2

√
πℓ∗ (19) which is7.93ℓ0 for filling 2/5 and6.14ℓ0 for

2/3. Charge modulation in the wave should be quite weak (in the order of1%).

Apal’kov, Chakraborty, Niemelä and Pietiläinen [10] object that the energy of the PPDW is too high and
claim that a homogeneous Halperin state in the two crossing CF Landau levels (see below) should have
a lower energy. Without invalidating the following results, this estimation seems to be however incorrect
[55]. As the mentioned Halperin state cannot account for thehalf-polarized states, Apal’kovet al. suggest
another candidate for the half-polarized state, a non-symmetric excitonic liquid. They consider only the
’active levels’ meaning the two CF Landau levels which cross. These (two) levels have total filling of
one, i.e., there are onlyNm electrons forNm places in the↑ level andNm places in the↓ level. By
convention, they define a↑-particle as an ’electron’ and a missing↓-particle as a ’hole’; an ’electron’-
’hole’ pair is an ’exciton’ and a pair of a↓-particle and a missing↑-particle is ’vacuum’. Owing to the
constraintN↑ + N↓ = Nm, one-particle states can be mapped onto a system consistingsolely of ’vacua’
and ’excitons’. The partial filling factorN↓/Nm ∈ [0; 1] then gives simultaneously the polarization and
the number of ’excitons’ (byNm). Note, that ’excitons’ are bosons by virtue of an integer spin.

From this viewpoint, theν = 1 quantum Hall ferromagnet (being described by the Halperin(1, 1, 1) state)
is a Bose condensate of excitons. In that case, all the excitons are non-interacting and have zero angular
momentumL. This is most easily seen by the fact thatg↑↓(0) = 0. On an ’electron’ (↑ particle), there is no
↓ particle, i.e. thereis a ’hole’. In an exciton (hydrogen atom), the only wavefunctions withψ(r = 0) 6= 0
are those withL = 0. On the other hand,g↑↓(0) = 0 follows from the fact that the Halperin state
has maximum polarization and thus the spatial part of the wavefunction must be totally antisymmetric.
Apal’kov et al. suggest that the half-polarized state atν = 2/3 or 2/5 could be a condensate of excitons
with L = 1 for which they call it nonsymmetric.

To support this idea, they perform exact diagonalizations in aν = 1 system with several model interactions
which are meant to describe the two – active – crossing CF Landau levels. These interactions are derived
from the Coulomb potential with suppressed short-range component, probably (without justification) with
the intention to describe interacting composite fermions.Stability of the half-polarized state is substanti-
ated by showing that the energy versus polarization curve has a downward cusp at half-polarization. On
the other hand,g↑↓(0) 6= 0 in the half-polarized state indicates that the ’excitons’ do not haveL = 0. The
particular value ofL = 1 is demonstrated by other means.

Finally, the idea of Eros Mariani [51] should be presented. Parallel to the previous two works, the two
’active’ crossing CF Landau levels are considered. An assumption is made that they both have a partial
filling of 1/2 rendering (after asecondChern-Simons transformation) two Fermi seas of ’free’ composite
fermions (of second generation). Marianiet al. show that interaction of these objects with fluctuations
of the gauge field leads to an attractive effective interaction between particles with opposite spin and
momentum. In analogy to superconductive pairing, this implies a gapped ground state. An estimation of
the gap is given.
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2.5.4 What are the half-polarized states then?

Presently, it is not clear which (if any) of the candidates proposed in the previous subsection describes
the half-polarized reality. As Murthy correctly mentions,the final answer should be given by exact diag-
onalization of a large enough system. Unfortunatelly, we dispose of systems not larger than12 particles.
Nonetheless let us compare the candidates with what was presented earlier in this chapter.

The downward cusp in energy-versus-polarization dependence cannot be assured by the calculations pre-
sented here. However, if the lowest half-polarized state indeed becomes the absolute ground state at the
transition between the singlet and polarized state (see extrapolations in Fig. 25), the cusp is likely to be
present. In the other case, it will turn into an upward cusp, as the calculated spectra suggest.

Results presented here indicate, that the half-polarized ground state (2/3) has(k̃ r
x, k̃

r
y) = (π, π) and that

it shows similarities to the singlet and polarized ground states (Fig. 27). In particularg↑↓(0) ≈ 0, which
is in contrast with the model of a nonsymmetric exciton liquid (cf. the correlation functions in [10]).
Comparison between short-range interaction and Coulomb half-polarized states (Fig. 2.2.6) suggest that,
similar to the Laughlin state, the short-range part of the interaction plays the major role. From this point,
the model discussed by Apal’kovet al. [10] seems to be more appropriate rather for some other systems.

Positioning of the half-polarized state out of the centre ofthe Brillouin zone could be an indication that
it is indeed a standing wave. This is also supported by spectral properties when the elementary cell is
deformed, Fig. 46. The two lowest states becoming degenerate at aspect ratios larger than1.4 could be
a charge/spin-density wave (note also the correlation functions, Fig. 47). The fact, that the energy of the
ground state lowers with increasing aspect ratio could indicate that this state is more stable than an isotropic
one. However, caution is advised here, since the singlet incompressible ground state does the same, Fig.
44, while its isotropic form is the true ground state.

Theory of the ’superconductive’ pairing was not addressed so far. Comparisons on the level of correlation
functions, possibly ink r-space, are in principle possible, but quite complicated because of the two Chern-
Simons transformations involved.

3 Quantum Hall Ferromagnetism atν = 2/3?

Like the previous Chapter, this Chapter also starts from thefact that there are two distinct ground states at
filling factor 2/3: a spin-singlet and a fully polarized one. Their structure was studied in Chapter 2 and
we also interpreted them in terms of composite fermions, Fig. 9a. Whichever of these two becomes the
absolute ground state depends on the Zeeman splitting whichfavours spins aligned parallel to magnetic
field. The singlet state is the lowest in energy for vanishingZeeman splitting. However, increasing the
Zeeman splitting, its energy remains unchanged while the energy of the fully spin polarized state decreases
and eventually this other state becomes the absolute groundstate. This simplest scenario, sweeping the
Zeeman energy while magnetic field is kept constant, is not very usual, albeit it is experimentally possible
[50]. However, even if we simply sweep the magnetic field (andkeep constant fillingν = 2/3 which
requires a simultaneous change of the electron density), the Coulomb energy of the singlet state changes
∝
√
B and that is slower than the Zeeman energy of the polarized state in the limit of largeB. Therefore,

the qualitative discussion above is still valid. The total energy bilance of the two ground states (in SI units)
is thus

polarized: Ep(B) =
e2

4πεℓ0
EC

p − gµBNeB = −|Cp|
√
B − |Dp|B ,

singlet: Es(B) =
e2

4πεℓ0
EC

s = −|Cs|
√
B ,
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Fig. 48: Energies of low lying states atν = 2/3 in a homogeneous Coulomb-interacting system with Zeeman field:
transition from an incompressible singlet ground state to afully polarized incompressible ground state. Different
numbers of particles in a square with periodic boundary conditions are considered, the scenario is however the same
in all cases.

whereNe is the number of particles andEC
p > EC

s are the total Coulomb energies in unitse2/4πεℓ0 (as
calculated by exact diagonalization, for example; not per particle). Obviously,Ep(B) < Es(B) for B
large enough. What the critical fieldBc is, where both energies are equal, depends on(EC

p − EC
s )/Ne.

This quantity is accessible only numerically and depends onNe although we may hope that it stays nearly
constant for largeNe.

Figure 48 demonstrates this singlet to polarized transition for 4, 6, 8 and10 Coulomb-interacting electrons
on a torus. Note that the energy units in Fig. 48,e2/(4πεℓ0) ∝

√
B, change with magnetic field. In these

units, the potential (Coulomb) energy of all states stays constant (singlet state) and Zeeman energy scales
as∝ e2/(4πεℓ0) ·

√
B.

A close look at Fig. 48 shows that the magnetic fieldBc, at which the ground state transition takes place,
varies non-monotonically. However, an extrapolation of energies of the two ground states to1/N → 0
allows for a rough estimate ofBc ≈ 7 T in an infinite system, Subsect. 2.2. This is in quite good
agreement with experiments [45], even though in some samplesBc as low as≈ 2 T was observed [46, 70].
This could be due to deviations from an ideal 2D system, Subsect. 3.1.

In the following we want to show that the existence of the spinstructures and the formation of domains are
of central interest for the understanding of the ground state transitions.

The ground state is always either a singlet or fully polarized in a homogeneous system. The energies
of these two states are equal at the transition. This is similar to an Ising ferromagnet, if we label the
polarized state by pseudospin up and the singlet state by pseudospin down. In an infinite system at non-
zero temperature, the Ising ferromagnet prefers a state with domains, some with (pseudo)spin up, others
with spin down, to the two homogeneous states. First becauseentropy of the former is higher [41] and
second because the total magnetization of a domain state is approximately zero while, locally, most spins
are parallel to their neighbours thereby minimizing the energy of magnetic stray fields [11]. None of these
two mechanisms was included in the studied model of aν = 2/3 system. Nevertheless, the question
was addressed how the system responds if such a domain-inducing mechanism is modeled by a magnetic
inhomogeneity. Will the ground state split into regions of different spin polarization? With this question in
mind, the inhomogeneity should prefer the singlet ground state in one part and the polarized ground state
in another part of the system.

From the experimental side, there are quite strong hints at ferromagnetism, mentioned in the introduction.
Hysteresis, saturation (in time) of magnetoresistance, Barkhausen jumps etc. hint at ferromagnetic states
with domain structure near the transition point. Intentionof the present study is to support this interpreta-
tion.
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Fig. 49: An idea of how to enforce domains at the crossing of singlet and polarized ground states ofν = 2/3. An
average Zeeman field is chosen so that the both homogeneous states have the same energy. Modulation of the Zeeman
field prefers the singlet state ’in the middle’ and the polarized state ’at the edges’ (note however the periodic boundary
conditions).

3.1 Attempting to enforce domains by applying a suitable magnetic inhomogeneity

This and the following sections will be concerned with various attempts to induce the formation of domains
close to the transition point. At the beginning we must discuss (i) how to enforce domains, what to add
to the Hamiltonian, which form of inhomogeneity and (ii) howto detect them, which quantities should be
observed.

3.1.1 First attempt: the simplest scenario

The simplest scenario is sketched in Fig. 49. In the homogeneous case, the Hamiltonian consists of two
terms

H = HCoul +HZeeman =
e2

4πε

∑

i<j

1

|r i − r j |
+

∑

j

g0µBBσ
j
z , (57)

the Coulomb interaction and the Zeeman term. If the Coulomb energy is fixed, the energies of the two
incompressible ground states can be shifted with respect toeach other by varying the Zeeman term. IfB
is fixed atB = Bc (i.e. the two ground state have the same energy), the Zeeman energy can be still varied
by means of theg factor. Decreasingg slightly, the singlet state will become the absolute groundstate,
increasingg the polarized state will prevail.

The idea of a ’domain-enforcing’ inhomogeneity is to the turn the constantg into g(xj) = g0 + g1(xj) in
(57) andg(x) > g0 in one part of the system whereasg(x) < g0 in another.

Or, speaking in terms of Fig. 48: we slightly modulate the magnetic fieldB and in one part of the system
we considerB > Bc while in anotherB < Bc. By slightly we mean that only the spin degree of freedom
is affected, not the orbital. This is an approximation.

The full Hamiltonian to consider is thus

H = HCoul +HZeeman +HMI , (58)

HMI =
∑

j

g1(xj)µBBσ
j
z , 〈ϕi|HMI |ϕj〉 = δijEMI






i = 0, 1, . . . , 1
4Nm : 1

i = 1
4Nm + 1, . . . , 3

4Nm : −1

i = 3
4Nm + 1, . . . , Nm : 1
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Fig. 50: Response of a ten-electron system to a weak (EMI = 0.002) magnetic inhomogeneity of the form given in
(58). No sings of domain formation observed: the transitionstate does not respond stronger than the incompressible
states.

where|ϕj〉 is a one-particle state localized aroundx = (j/Nm)a, cf. (21). This roughly corresponds to
g1(x) having a ’rectangular wave’ form (g1 = 1 for 0 < x < 1

4a and 3
4a < x < a andg1 = −1 for

1
4a < x < 3

4a).

The basic results of this model are: the ground states slightly change in accord with the inhomogeneity
and nothing peculiar happens near the transition. As we sweep the magnetic field throughB = Bc, even
in the presence of a weak inhomogeneity, the singlet state evolves ’smoothly and monotonously’ into the
polarized state, without any remarkable intermediate states.

Typical results are shown in Fig. 50. A magnetic inhomogeneity (58) was applied to a ten-electron
Coulomb-interacting system and its strengthEMI was chosen to be∼ 10% of the incompressibility gap.
Regarding the ground states and the gap, the spectrum remains virtually unchanged. Fig. 56a shows a
comparison of the spectra between homogeneous and inhomogeneous systems. Looking now at the singlet
and polarized ground states, we find a spatially varying spinpolarization1n↑(x)/n(x), Fig. 50a. However,
the mean values of the polarization still remains at0.5 (1) as it was in the homogeneous singlet (polarized)
state, Fig. 50a, leftmost (rightmost) inset. The polarization of the ’transition state’ has a mean value of
0.75, i.e. just in the middle between the polarized and the singlet state. This is not surprising, since the
’transition state’ was taken to be a symmetric linear combination of the two crossing states (see Subsect.
3.1.2). What is more interesting, is thevariation of the polarization around the mean value, Fig. 50b: in
this point, the ’transition state’ lies just between the singlet and polarized states. Contrary to what we ob-
serve in Fig. 50a (middle inset), formation of domains near the transition would mean that the polarization
of the transition state should vary between0.5 and1.

It could be that the system is simply too small for domains to evolve near the transition. On the other hand,
this does not seem to be the case, since the response to the inhomogeneity does not grow with increasing
system size but rather stays about the same, Fig. 50c.

The particular parameters of the model presented in Fig. 50 could have been chosen unluckily so that
domains could not evolve. Let us therefore discuss the inhomogeneousν = 2/3 systems more thoroughly.

1 Throughout this Chapter, we will refer top(x) = n↑(x)/n(x) as to polarization. In the literature, another definition ismore
common,P (x) = [n↑(x) − n↓(x)]/n(x), both quantities are, however, equivalent:P (x) = 2p(x) − 1.
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3.1.2 Turning crossing into anticrossing: inhomogeneous inplane field

At B = BC there is actually a crossing between the singlet and polarized ground states, Fig. 50a, rendering
the transition jump-like just as in a homogeneous system. For the transition state (the middle curve in Fig.
50b), we took a fifty-fifty linear combination of these two ground states. One could say, the transition
occurs in an infinitesimally small interval of magnetic fieldaroundBc.

In a realistic system, the transition is unlikely to happen all simultaneously in the whole system. Two
mechanisms causing a more continuous transition in a finite interval ofB are conceivable:

(i) weak inhomogeneities: The spectrum (as a function ofB) looks basically the same as in Fig. 50a,but
there is an anticrossing atB ≈ BC .

(ii) strong inhomogeneities: The energy gap between the pair of the crossing ground states and the ex-
cited states atB = Bc (Fig. 50a) is reduced compared to the incompressibility gaps of the singlet and
polarized ground states far away fromBC , i.e. forB → 0 andB → ∞. Under influence of stronger in-
homogeneities, it could be that some originally excited state (or more states) become ground state around
B ≈ BC while singlet and polarized incompressible states remain lowest in energy only far away from
BC . If this turns out to be the case, it could be that more states (possibly of differentSz) can be mixed by
the inhomogeneity, eventually rendering the ground state compressible.

In this Subsection we will discuss the former possibility, the latter will be the topic of Subsect. 3.1.3.

The ground state transition in Fig. 50a is a crossing even in the presence of the magnetic inhomogeneity
HMI (58) because the symmetry ofHMI is too high and it does not mix the two crossing ground states.In
particular,[HMI , S

2] 6= 0 but [HMI , S
z] = 0 and the singlet state|S〉 hasSz = 0 whereas the polarized

state|P 〉 is Sz = Ne/2. ConsequentlySz|S〉 = 0 andSz|P 〉 = (Ne/2)|P 〉, therefore〈P |HMI |S〉 =
(Ne/2)−1〈P |SzHMI |S〉 = (Ne/2)−1〈P |HMISz|S〉 = 0. The inhomogeneityHMI mixes states with
differentS but only those with equalSz. The fully polarized ground state (S = Ne/2, Sz = Ne/2) has
also anSz = 0 counterpart, since the homogeneous Hamiltonian commutes with spin lowering operator.
This state, however, is a highly excited state atB ≈ BC , since its Zeeman energy is zero.

Which terms added to the Hamiltonian can break this symmetryand what will then be the response of the
ground state?

Weak (inhomogeneous) inplane magnetic fields will have the desired effect. This scenario is not unlikely
to occur in a realistic system. It merely means, that the extra fluctuating magnetic field which interacts
only with the spins, is not pointing exactly in the directionof the (strong) external magnetic field causing
the Landau level quantization. The existence of such symmetry-breaking inhomogeneities is very likely in
realistic systems, although they might be very weak e.g. hyperfine interaction with nuclear spins.

Let us consider a Hamiltonian with inplane magnetic inhomogeneities (IMI) of the form

H = HCoul +HZeeman +HMI +HIMI , (59)

HIMI =
∑

j

g0µBBx(xj)σ
j
x , 〈ϕi|HIMI |ϕj〉 = δijEIMI





i = 1
4Nm : 1

i = 3
4Nm : −1

otherwise: 0

The main claim of this Subsection is that weakHIMI only opens an anticrossing at the ground state
transition. In other words, the relevant states still basically form a two-level system comprising of the
(slightly disturbed) singlet and polarized ground states.The width of the anticrossing grows with increasing
strength of the inplane field inhomogeneity,EIMI . As to the width we refer either by the level splitting,
Fig. 51b, or by the range of magnetic field where〈Sz〉 noticeably changes, Fig. 56.

This fact is best demonstrated in Fig. 51. Inhomogeneities are weak there (compared to both incompress-
ibility gapsEP

g ≈ ES
g ), i.e. EMI , EIMI ≪ Eg, and the spectrum remains almost unchanged, Fig. 51a.

The energy levels of the inhomogeneous system (points) are almost equal to the energies in a system free
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Fig. 52: Inplane magnetic inhomogeneity (IMI) turns the crossing between the singlet ground state and the polarized
ground state, Fig. 51a, into an anticrossing. The cross-over between the two ground states can be observed either in
the spectrum or in〈Sz〉 of the ground state asB is swept throughBc.

of impurities (lines). Only directly atB ≈ BC an anticrossing opens and the level separation∆E grows
with increasingEIMI (EMI is kept constant), Fig. 51b. Even for a quite strong inplane inhomogeneity (of
the order ofEg), the level splitting remains small (≪ Eg). The reason for this is simple:HIMI couples
only states which differ by±1 in Sz, since it is a one-particle operator (allowing for only one spin flip at
once). Thus, a coupling of the two ground states occurs for aNe = 8 system first in the fourth order of
perturbation theory (Ne = 8 impliesSz = 4 for fully polarized system). This interpretation fully agrees
with the finding∆E ∝ (EIMI)

4, Fig. 51b. We can therefore expect that, for an inhomogeneity of constant
strength, the level splitting will vanish exponentially atN →∞ as long asEIMI is much smaller than the
gap atB ≈ BC .

Another view at the crossing forEIMI 6= 0 is presented in Fig. 52. If we focus on the ground state and
sweepB throughBC , we may observe how〈Sz〉 (or 〈S〉) of the ground state smoothly passes from0 to
Ne/2 = 4. The transition observed in this way (i.e.〈Sz〉 ≈ 2 = Ne/4) coincides with the transition
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Fig. 53: Stronger MI’s bring another ground state into play (Sz = 1) and the transition from the singlet to the polarized
ground state becomes more gradual.
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observed in the spectrum (the ’anticrossing region’), Fig.52a,b. The largerEIMI , the smoother the
transition and the broader the range ofB in which the transition occurs, Fig. 52c.

So as to conclude: most importantly, an inplane magnetic inhomogeneity (IMI) transforms the ground state
transition into an anticrossing. This effect should fade away for larger systems (Ne ≫ 1). We also remark,
that the IMI shifts the transition pointBC to lower fields, Fig. 52c, but this effect seems to be rather small
for inhomogeneity strength not exceeding the incompressibility gap.

3.1.3 Strong inhomogeneities

In the following we suppress the inplane inhomogeneities again and let us study stronger perpendicular
inhomogeneities of the form (58).

If the strength of the ’rectangular wave’ impurity becomes comparable to the gap atB ≈ BC ,EMI ≈ Eg,
the situation at the ’singlet-to-polarized’ transition changes dramatically. The excitation gap closes and
many states of different spin polarizations crowd around the ground state. Even at zero temperature and
in spite of lack of anticrossings of states with differentSz (i.e. Sz is a good quantum number again), the
transition becomes more gradual, when measured bySz of the ground state, Fig. 53c.

Primarily, this is owing to theS = 1 state which profits best from the inhomogeneity. Keeping in mind
its value ofk r = (1.07, 0)ℓ−1

0 , this state seems to be a spin density wave inx-direction pinned by the
inhomogeneity potential. It is also important that states with other spins are very near to it.

ThisT = 0 transition can be again smoothened by an inplane inhomogeneity, as shown in Fig. 54. Here,
the transitionSz = 0→ 1 becomes much more gradual than the transitionSz = 1→ 4. Reason for this is
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Fig. 55: Destruction of the singlet state by very strong magnetic inhomogeneities: the system splits into two domains,
one with spin up, another with spin down and the electrons avoid the ’interface region’ (minima in the density).

again that the inplane inhomogeneity couples directly onlystates with∆Sz = ±1. Other quantities than
justSz (e.g. polarization) are shown in Fig. 56.

A strong magnetic inhomogeneity has also another quite pronounced feature: the singlet-polarized ground
state transitionBC shifts to higher magnetic fields, Fig. 53. This effect is considerably stronger than the
shift to lower fields in case of the inplane inhomogeneity (Fig. 52). Origin of this shift to higherB is the
decreasing energy of the singlet ground state, Fig. 53 or Fig. 55d.

Let us look at this issue more closely. IncreasingEMI , there is no apparent transition (crossing) in the
ground state of theSz = 0 sector (not shown). The total spin of the ground state increases smoothly from
zero and saturates aroundS ≈ 1.6 for EMI ≈ 0.02, Fig. 55d. Beyond this point, the label ’singlet ground
state’ becomes inappropriate. At such values ofEMI , the polarization achieves the maximum variation
between zero and one, Fig. 55a. The eight electrons, four with spin up, four with spin down, split into
two nearly independent groups: the spin up (down) electronsgather in the region whereg1(x) is positive
(negative), see (58). Such a state where e.g. no spin up electrons occur in the ’wrong region’ (Fig. 55c,
EMI = 0.02) is no longer even remotely related to the homogeneous incompressible state, even though
it hasSz = 0. Rather, we could interpret it as twoν = 1/3 systems living next to each other: one with
spin up, another with spin down. The strong spatial variation of density in this system, Fig. 55b, indicates
that electrons try to avoid the ’interface region’; an alternative point of view is to compare the ’spin-down
domain region’ (seen in the polarization, Fig. 55a) with thedensity of spin down electrons, Fig. 55c.
However, we must always be aware that we investigate only a finite system which is too small to observe
the ’inside’ of a domain where we expect the density to be constant. In a sufficiently large system, the
maximum in Fig. 55c should spread into a plateau. Therefore,also conclusions about the interface region
must be interpreted with caution.

3.1.4 Quantities to observe

Polarization is the most natural quantity to study when looking for domains of polarized and singlet states.
Nevertheless, it could be useful to search for other observables as they might bring some more information
on what is happening in the states.

Here, we suggest to study thelocal expectation values (or densities) of otherwise ’global’ operators such
asSz or S2. These are defined by

Sx,z(r ) = Sx,z ⊗ n(r ) , S2(r ) = S2 ⊗ n(r ) , where n(r ) =

Ne∑

i=1

δ(r − r i)
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Fig. 56: Response to strong inhomogeneity of the form in (59). EMI = 0.02, EIMI = 0.005.

and they should be plotted in the formSz(r )/n(r ). Their meaning is the following: Imagine ann-electron
state which is an equal-weight superposition of two states:one localized in the region0 < x < a/2 which
is fully spin polarized (S1 = n/2) and another localized ina/2 < x < a which is a spin singlet. This state
is Sz = n/4, yet itsSz(x)/n(x) is equal ton/2 or 0 in the two respective regions.

What these quantities reveal is demonstrated in the case of astrong magnetic inhomogeneity, both per-
pendicular and inplane, Fig. 56. The low-energy part of the spectrum does not change considerably, Fig.
56a, even though the singlet state is separated almost completely into a spin-up and a spin-down domain
by the inhomogeneity, seen in the polarization, Fig. 56b. Note that again the states near the transition have
smaller variations in the polarization than the ’inhomogeneous singlet-state’.

The lower two plots of Fig. 56b showSz(x)/n(x) andSx(x)/n(x). Obviously,Sz stays quite constant
with x, at least on the scale ranging fromSz = 0 (singlet) toSz = 4 (fully polarized). Albeit polarization
(or relative density of spin down electrons) varies strongly, Sz(x) remains nearly constant. This indicates
that the state does not really separate into domains of locally different Sz. Observation of the quantity
S2(x) (not shown) points in the same direction.

Local expectation values ofSx indicate that states near the transition are more susceptible to inplane
inhomogeneities. At anyB, this response is much stronger than for perpendicular inhomogeneities. The
following picture explains this behaviour: if we imagine a ’classical’ spin vector pointing inz-direction
and accept that it fluctuates by a small angle∆ϕ, thenSz ∝ cos∆ϕ ≈ 1 whereasSx ∝ sin ∆ϕ ≈ ∆ϕ.

3.1.5 Different geometries of the inhomogeneity

Disregarding entropy, it is unlikely that a domain state will be the ground state in a homogeneous system.
If it is an excitation we can hope to encourage it energetically by including a suitable inhomogeneity like
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Fig. 57: Response of the singlet to various weak magnetic inhomogeneities. The inhomogeneity is similar to the one
in (58) but it divides the system into two areas (stripes) of various ratios (6 : 6 through2 : 10) or it consists of two
stripes with size3 : 3 : 3 : 3.

HMI in (58). However, we do nota priori know what ’suitable’ means. So far, we divided the system into
two equalparts byHMI .

How the singlet state responds to inhomogeneities of different forms is shown in Fig. 57. Different lines
correspond to the ’rectangular wave’ inhomogeneities withdifferent ratios of the ’plus’ and ’minus’ parts.
All these inhomogeneities are thus a single stripe of various width (per elementary cell) parallel toy .

Also, response toHMI consisting of two stripes is shown (i.e. ’rectangular wave’with half period).

Responses are basically very similar to each other and it seems by having focused onHMI of the form of
(58) we did not choose a particularly clumsy one. One particularly interesting information which can be
extracted from Figure 57 is that the polarization response is always at least an order of magnitude larger
than in the density,10% against0.3% in the present case. This confirms the conclusion of Subsection
2.3.2: even though singlet incompressible states try to maintain constant density, they can be fairly easily
polarized.

A good example of the influence of the form of the inhomogeneity are the half-polarized states, Fig. 58.
The lowest level in theS = 2 sector is six-fold degenerate (factor of three from the centre-of-mass and
factor of two from the relative part). The two states are mirror images of each other with respect to the
diagonal of the elementary cell. We split them into two groupsJ = 2, 6, 10 andJ = 0, 4, 8 (within each
group the states differ only by the center-of-mass part) andsubject each group to one-stripe and two-stripe
inhomogeneities, Fig. 57c.

One group (J = 2, 6, 10) responds strongly to the two-stripeHMI and is left almost unchanged by the
one-stripeHMI , upper row in Fig. 58b. Nearly the opposite is true for the other group. It gives a clear
picture of the structure of these states. They are spin density waves with two periods in one direction
and one period in another direction. This is in full agreement with the spin-spin correlation functions,
not shown here. The conclusion is also underlined by the markedly lowered energy of theJ = 2 state
when it is addressed by the two-stripe inhomogeneity, Fig. 58a. This is a practical demonstration of one
spin-density-wave state selected by an impurity from a degenerate manifold.
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Fig. 58: The half-polarized states (S = 2) and their response to a magnetic inhomogeneity of the form of one or two
stripes.

3.1.6 Transition at nonzero temperature

Regardless of how intensely we try to help an eventual domainstate to become the ground state, it may
still be, that it is hidden among the excitations. Thereforewe may try to take the excited states into account
by means of thermal averaging.

The strong impurity mode (EMI = 0.02) was chosen for this study. Three-fold degeneracy in center-
of-mass of the incompressible ground states is lifted. The level splitting is however still smaller than the
incompressibility gap, compare the black and grey points inthe upper plot of Fig. 56a aroundB = 10 T.

Various temperatures were considered:kT ≪ Eg means than we do not average even over all states of
the originally degenerate triple. Knowing thatEg means the gap energy atB → 0 orB → ∞, the other
temperatures shown in Fig. 59 are self-explaining.

Judging by polarizationn↓(x)/n(x), the state at the transition approaches a situation which wecould call
’domain’. In the middle (x/a ≈ 0.5), the polarization drops to zero and only spin up electrons are present.
In the other region (x/a ≈ 0 ≡ 1), polarization is about0.5, meaning that the number of spin up as spin
down electrons in this area is the same.

We should note though that an inhomogeneity which is strong enough to produce such nice ’domains’ is
also strong enough to change the originally incompressiblesinglet state completely, Fig. 59a. In other
words, the response of the system at the transition is still weaker than the response of the singlet state. This
manifests that spontaneous build-up of domains is not very likely within this model.
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In the following Section we will try to suggest slightly different models which may put us on the trace of
states which exhibit nontrivial behaviour at the transition between the incompressible singlet and polarized
ground states.

3.2 Systems with short range interaction

As far as the transition between singlet and polarized ground state is concerned, the most obvious feature of
theν = 2/3 Coulomb-interacting systems is the energy ’gap’ which separates the two degenerate ground
states from excited ones even at the very crossing, Figs. 60a, 48. In the previous section we demonstrated
that this picture may change when fairly strong magnetic inhomogeneities are applied, Fig. 53. We can
cause a similar drastic change by replacing the Coulomb by the short-range interaction, Fig. 60b.

Let us first concentrate on the calculated spectrum of thehomogeneoussystem with short-range interaction,
Fig. 60b. Again, we observe a gapped ground state with maximum spin and zero spin in the limit of
B → ∞ andB → 0, respectively. In between, states with different spins become the absolute ground
states. Aforemost, it is the half-polarized state (S = 2), although states with other spins (S = 1 and 3) are
not very far. Alternatively, this can be expressed by theB-dependence of the spin of the ground state, Fig.
61a.

The half-polarized states have been extensively discussedin Sec. 2.1 where they were studied as ’zero-
temperature candidates’ for the ground state in homogeneous systems. However, since inhomogeneities
couple the ground state to the excited states, the properties of the lowest-lying state will not be determined
solely by the those of the ground state.

Spectral properties of the short-range interacting (SRI) system subjected to a ’perpendicular’ magnetic in-
homogeneity (58) are summarized in Fig. 61. In a similar fashion as for the Coulomb-interacting systems,
states with other spins become the absolute ground state in some range of the magnetic field, Fig. 53. This
is also manifested in the expectation value of spin (orSz) of the system even at nonzero temperatures.
Most significant is still the ’half-polarized’ plateauSz(B) ≈ 2, Fig. 61d.

After this introduction let us look at the inhomogeneous states themselves. Their properties are highlighted
especially in comparison to the Coulomb interacting (CI) states. When subjected to a ’rectangular cosine’
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Fig. 60: Spectrum of a homogeneous system with Zeeman splitting (8 electrons,ν = 2/3).
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Fig. 61: Spectrum and the expectation value of the spin in theground state in short-range interacting systems (eight
electrons).

magnetic impurity, those CI states showed a smooth monotonous transition from the singlet to the polarized
state. The singlet was most strongly affected by the inhomogeneity, the polarized state was not affected
at all, it was frozen by its symmetry. The polarized state hasall spins up,Sz = Ne/2. Since magnetic
inhomogeneity of the form in (58) preservesSz, it does not couple the polarized state with any states which
contain spin down electrons, since such a state must haveSz < Ne/2. The transition state was just in the
middle. This is the finding both atT = 0, Fig. 50b, and at temperature low enough to average only over
the three degenerate states of the homogeneous system, Fig.62a.

The SRI systems give a different view. The response to the inhomogeneity is slightly stronger at the
transition than in the singlet state, Fig. 62a, inset. This is not very surprising given that there are quite
many states near the ground state in the transition region. At slightly higher temperature where we average
over about 10 states in the singlet and polarized limit, the distinction between Coulomb and short-range
interacting systems weakens, Fig. 62b.

Regarding Figure 62, it should be stressed once again, that the ’transition states’ for the Coulomb and the
short-range interaction have completely different character. In the former case, this state is basically a



86 K. Výborný: Spin in fractional quantum Hall systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Short range

singlet
trans.
polar.

-0.4
-0.2

 0
 0.2
 0.4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Coulomb

-0.4
-0.2

 0
 0.2
 0.4

(a) ’Low’ temperature.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Short range

singlet
trans.
polar.

-0.4
-0.2

 0
 0.2
 0.4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Coulomb

-0.4
-0.2

 0
 0.2
 0.4

(b) Slightly higher temperature.

Fig. 62: Short-range interacting system with strong inhomogeneity, (58),EMI = 0.02: polarization in the singlet
sector, around the transition and in the polarized sector, cf. spectrum in Fig. 61c. Insets show how polarizations
fluctuate around anticipated mean values (0.5, 0.25 and0 for the singlet, transition and polarized state).

superposition of the singlet and the polarized states, whereas it is a half-polarized state (Sz = Ne/4) for
the SRI.

It seems we are on the track of the domain build-up here. In an ideal case, we would expect negligibly af-
fected singlet and polarized states while the polarizationof the transition state varies between 0 (polarized
domain) and 0.5 (singlet domain). In real systems, we are still very far from such behaviour as the dif-
ference between polarizations of the singlet and transition state is quite small. Nevertheless, the direction
seems correct, in contrast to the Coulomb interacting systems. We may therefore conclude:

(i) If nontrivial effects at the transition are expected, there must be more states involved than just the
singlet and polarized ground states; (ii) it is likely that the half-polarized states play a major role; (iii) at
low temperatures inhomogeneous states as in Fig. 62b can be observed simultaneously with a plateau in
Sz(B), Fig. 61d.

The last point is a consequence of the fact that not only the ground state but also the lowest excited states
haveSz = 2 in a part of the transition region, Fig. 60b.

3.2.1 Comments on the form of the short-range interaction

For a short-range interaction, the form described in Subsect. 1.3.5, Fig. 2d was chosen. The basic idea
there was to keep the pseudopotentialsV0 andV1 at their normal values while setting the others to zero.
V0 andV1 give the energy of two interacting particles in the state with angular momentum 0 and1. These
are the states with smallest and second smallest interparticle separation possible and only the latter one is
accessible if the particles have the same spin.

As far as incompressible liquid states are concerned, not much happens during such ’pseudopotential en-
gineering’. The best measure for this are directly the density-density correlation functions, Fig. 18. The
good match between correlation functions of Coulomb- and short-range-interacting states agrees with the
common claim that their energy is determined mostly by effects occurring at short distances. Also excita-
tion energies remain essentially unchanged as long as ’zeromomentum’ states are considered (as opposed
to charge or spin density waves).

What strongly changes is the energy difference between the polarized and singlet state: it is0.0632 for
Coulomb and0.3693 for short-range interaction in an eight-electron system, with zero Zeeman energy.
This happens because the average Coulomb potentials felt byelectrons in a singlet state and in a spin
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polarized state differ. Roughly, we take the average over set {V0, V1, 0, 0, . . .} in the former case (all
m’s allowed) and over{V1, 0, 0, . . .} in the latter case (only oddm’s allowed). This is a fundamental
problem. The requirement of equal averages is not compatible with preserving the ratio ofV0 andV1 as
in a Coulomb interacting system. We would have to use higher Haldane potentials to achieve this, losing
thereby the simplicity of the definition of short-range interaction. Therefore, with short-range interactions,
we must be very cautious whenever we compare absolute energies of states with different spins (and thus
parity properties of the wavefunction). Namely, position of the singlet-polarized transition depends directly
on the energy difference of the singlet and polarized groundstate, Sec. 3.

This difficulties apply to spectra in this subsection, Fig. 61, 60b. Fortunatelly, the polarizations in Fig. 62
do not suffer from this, provided that half-polarized states indeed become the absolute ground state some-
where around the transition.

3.3 Systems with an oblong elementary cell

So far in this Chapter, we have only considered square elementary cellsa by a so far. If we somehow
e.g. by means of a magnetic inhomogeneity, manage to split such a system into two domains of the same
size, this will bea/2 by a, cf. Fig. 57c. Consequently, the spin singlet and spin polarized states which we
expect to appear in these domains would necessarily have to be deformed as in a cell of aspect ratio1 : 2.
In principle, this could even suppress the formation of suchdomains or at least shift them to higher excited
states. The energy of any of the two incompressible ground states depends on aspect ratio (the stronger
the smaller the system is), Subsect. 2.4.1. There is no reason to expect that the energy of a domain wall
between two such states is constant. In the following Section we will investigate systems in a rectangular
cell with aspect ratio2 : 1 which have the possibility of splitting into two square domains. All results in
this Section refer to Coulomb interacting systems.

3.3.1 Overview of the transition: which states play a part

Going from square elementary cell to aspect ratio1 : 2, the overall view of the transition changes. The
crossing between singlet and polarized incompressible states is no longer well separated from excited
states, Fig. 63.

Similarly, as for short-range interaction, states with different spin appear near the transition: most promi-
nentlyS = 1 andS = 2. Again, Figs. 53, 61, these states are promoted by the perpendicular magnetic
inhomogeneities in the form of a ’rectangular wave’, Fig. 64. A consequence of this is a gradual change
of the spin in the ground state as we sweep magnetic field (or simply increase Zeeman energy). Here, we
should point out the difference between the present case andthe Coulomb interacting system in a square
elementary cell, Fig. 53. For an oblique elementary cell, (i) theS = 1 state becomes the absolute ground
state near the transition even in homogeneous systems. (ii)A much weaker inhomogeneity is needed to
make theS = 2 state the absolute ground state in some range of the magneticfield. Fig. 64c shows that
EMI = 0.004 is sufficient for this to happen in a2 : 1 system, whileEMI = 0.02 is not strong enough for
a square elementary cell, Fig. 53c.

By changing the elementary cell geometry we support possible domain states, but it is adequate to ask how
much the incompressible singlet and polarized states are affected by this procedure. The inner structure of
these states under elementary cell variations was addressed in Subsect. 2.4.1 and we saw indications that
the states are liquid like (and very similar to the original states from square elementary cell) even at aspect
ratio1 : 2. However, overlaps between the square-cell and deformed states are noticeably below unity and
hence their behaviour is not representative if we are interested in infinite homogeneous systems. Recall,
that the square-cell polarized state is extremely close to the Laughlin state (overlaps≈ 99%).
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Fig. 63: Spectra of homogeneous eight electron systems (with Zeeman splitting) for square and oblong elementary
cell.

asp.1 : 1, hmg. asp.2 : 1, hmg. asp. 2 : 1, EMI =
0.004

Sz = 0 GS 0.713 0.976
Sz = Ne/2 GS 0.750 0.9996

Table 3: Incompressible ground states (polarized and singlet) in an eight-electron system. Overlaps between states ina
square elementary cell, oblong elementary cell and oblong elementary cell with intermediate magnetic inhomogeneity.
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Fig. 64: Spectra andSz of the ground state in a system with oblique rectangular elementary cell (aspect ratio2 : 1,
eight electrons). Magnetic inhomogeneities (58) of different strengths are considered.
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Fig. 65: ’Domains’ imprinted by a magnetic inhomogeneity oftype ’rectangular wave’ into a system with oblong
rectangular elementary cell (aspect ratio2 : 1). The strength of the inhomogeneity is about 20 % of the gap inthe limit
B → 0 (in particularEMI = 0.004). Plotted quantities are averaged over the three states which were degenerate in
the homogeneous system (in the center-of-mass part).

3.3.2 States at the transition

The following paragraph deals with he central result of the investigations on systems with aspect ratio
2 : 1. The low-energy states near the transition (S = 1 andS = 2 in Fig. 64) respond very strongly to
a ’rectangular wave’ magnetic inhomogeneity, Fig. 65 (the middle two lines). Already for intermediate
strength of the inhomogeneity like15% of the singlet incompressibility gap in a square cell, polarization
varies between≈ 0.5 and≈ 0.05, Fig. 65a (values of0.5 and0 would mean a state withSz = 0 and
Sz = Ne/2, respectively). Equivalently, Fig. 65b shows that (a) the density of spin down electrons drops
below25% of its average value in the spin polarized region and (b) spinup and spin down densities are
balanced up to10% variations in the ’spin singlet region’. At the same time, variations of the total density
remain small (less than5%), but there is a clear deficit of electrons in the ’polarized region’, Fig. 65c.

In order to check that the inhomogeneity is not too strong (’destructive’) compared to the Coulomb inter-
action responsible for the formation of the incompressibleground states (far away fromBc), we should
observe the incompressibleS = 0 andS = Ne/2 states, Fig. 65. For both of them, responses are much
weaker than for the transition states.

Let us now concentrate exclusively to the half-polarized states and try to analyze their nature. Observe first
the homogeneous system near the transition, Fig. 66 and focus on the half-polarized sector (Sz = Ne/4 =
2) with one particular value ofJ , Subsect. 1.5.2. The low lying states show pronounced spin structures
and, moreover, several distinct types of spin structures appear in the low energy part of the spectrum.
This is heralded by different values ofk r which are(0, 0), (±1, 0) and(2, 0) for the lowest three states
(st01,st02+st03, st04, the middle pair is degenerate) and the different spin structures can be seen best
in the density-density correlation of minority spin,g↓↓(r ), Fig. 67. Half-polarized states contain six spins
up and two spins down here, which we choose to call majority and minority spins respectively.

The lowest state looks isotropic as far as the rectangular elementary cell allows, the other two (st02+st03
andst04) are different kinds of spin density waves in the ’long direction’ (x). Keeping in mind that these
states are energetically close to each other as compared to incompressibility gaps atν = 2/3 in a square
elementary cell, for example, we can indeed expect stronglymodulated polarization in response to suitable
not very strong inhomogeneities. Polarizations in Fig. 65 were a good demonstration of this prediction.
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Fig. 67: Density-density correlations (g↓↓, i.e. minority spin) in the lowest half-polarized states. Coulomb interaction,
a homogeneous system, aspect ratio2 : 1.

This leads us to the question what types of spin structures can be imprinted into these states. Are they com-
pletely ’soft’ or are some particular structures preferred? An answer is given by polarizations in response
to various types of inhomogeneities, Fig. 68. Briefly summarized: a variety of spin structures is possible
but ’periodic’ structures are preferred. Among the ’periodic’ structures, the largest period available is pre-
ferred. This means one stripe or just the ’domains’ as in Fig.65. By periodic we mean commensurate with
the elementary cell period, for instance a ’rectangular wave’ in contrast to a delta peak since otherwise, any
structure is periodic in our system due to periodic boundaryconditions.

Looking only at polarizations, Fig. 68a, responses to all types of inhomogeneities considered here seem to
be the same (in strength) within a factor of two. However, a closer look reveals some differences between
those which are ’periodic’ and the others, Fig. 68b. The one-stripe and two-stripe inhomogeneities mix
mostly only the lowest four states: (sum of squares of) projections of the inhomogeneous state to states
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State hmg. one stripe two stripes δ-peak

Energy -4.2656 -4.2713 -4.2695 -4.2439
st01 1 -0.82 -0.92 -0.04
st02 0 -0.51 0.00 0.03
st03 0 0.21 0.00 0.07
st04 0 0.03 0.22 0.64

cummul.Σ(〈·|·〉)2 1 0.98 0.90 0.41

(b) Projections of the inhomogeneous ground states to the lowest four homoge-
neous states (in Fig. 67).

Fig. 68: Half-polarized state and different forms of inhomogeneity. Strength of the inhomogeneity is the same in all
cases,EMI = 0.004.

st01-st04 give in these cases≥ 90%. It seems that a one-stripe structure, or domain state in Fig. 65,
stems from thek r = (±1, 0) states (st02+st03) and the two-stripe structure comes from thek r = (2, 0)
state (st04). In both cases, however, projections to the lowest state (st01) remain high.

A different situation occurs for ’non-periodic’ structures like a delta peak. Inhomogeneous states are then
’constructed’ in the main from states which were originallyenergetically higher in a homogeneous system.
Such states (e.g. with a delta peak in the polarization) onlyhave a strong projection to thek r = (2, 0) state
(st04), but still more than50% of weight comes from higher states, Fig. 68b.

This scheme, ’periodic-welcome, others-less welcome’, isconfirmed also in terms of energy. While the
’periodic’ states (one- and two-stripes) profit energetically from the inhomogeneity, the delta-peak state is
shifted to higher energy, Fig. 68b.

Finally, the following conclusion about theν = 2/3 system near the transition seems to be possible. The
softening against magnetic inhomogeneities of different forms, as observed in Fig. 65a, stems not only
from the spectral properties of the system (small level spacing, Fig. 66) but also from the fact that more
different (inner) spin structures occur among the low lyingstates. States belonging to a single value ofS
(e.g.S = Ne/4) are capable of generating a response as shown in Fig. 65a.

3.3.3 What is inside the domains?

We will now only consider the ’one-stripe’ inhomogeneity, in sense of Fig. 57, which has lead us to the
states with polarization varying almost between zero and one half, Fig. 65. In other words, we could
distinguish between two domains of about equal areas in thatstate: one, with only spin up electrons
and another with as many spin up as spin down electrons, whereby the total density is spatially nearly
constant. Now we are interested in the inner structure of these domains. One of the aims of this thesis
was to find side-by-side domains comprising of the incompressible singlet and incompressible polarized
states. Unfortunately, the results presented in this Subsection cannot conclusively answer whether the
states discussed in the previous Subsection are of this typeor not. Also, it would be surprising if they
could in the view of the small systems (eight electrons) we study. One of the reasons why studies of finite
systems on a torus or on a sphere were so successful was that these models contain no edges. On contrary,
there are ’edges’ in the state with ’domains’: the domain walls. Nevertheless, these results provide at least
some basis for comparing the inside of the domains to the incompressible states and, in particular, highlight
some differences between these two.



92 K. Výborný: Spin in fractional quantum Hall systems

As a probing tool we chose density-density correlation functions. As we are dealing with inhomogeneous
states, we must useg(r , r 0) ∝ 〈δ(r 1 − r )δ(r 2 − r 0)〉 rather thang(r ) ∝ 〈δ(r 1 − r 2 − r )〉. The former
quantity is the conditional probability to find an electron at r given there is an electron atr 0 and we will
separately address the cases when both electrons have spin up or when they both have spin down. By
convention, majority electrons are spin up (expected to be present in both domains) and minority electrons
are spin down (absent in the fully polarized domain).

Roughly, we can say that the eight electrons are organized infour vertical stripes: two in the polarized and
two in the unpolarized domain. For instance, if we catch a majority spin electron in the left stripe in the
polarized domain, we will see another quite sharply localized (majority spin) electron in the same stripe
and two delocalized electrons in the other stripe of the polarized domain, Fig. 69c. In the unpolarized
domain, we will see the two majority electrons distributed nearly equally among the two stripes.

Similarly, if we pin a majority spin electron in one stripe ofthe unpolarized domain, Fig. 69a, we find
another (majority spin) electron in the same stripe. Four electrons in the polarized domain are distributed
homogeneously to the two stripes. We will see almost the samepicture with minority spin electrons, if
we catch aminorityspin electron at the same place. Naturally, we will see almost nothing in the polarized
domain, Fig. 69b.

Summary.In eight electron systems, the domain states comprise of four vertical stripes (i.e. parallel to
the short side of elementary cell), each occupied by two electrons. In the polarized domain, each stripe
contains two electrons separated byb/2, and the two stripes can ’freely slide’ besides each other. Stripes of
the unpolarized domain are preferentially occupied by electrons of the same spin and both spins (majority
and minority) seem to be equivalent: schematically〈↑↑ |L〈↓↓ |R + 〈↓↓ |L〈↑↑ |R. The domains seem to be
rather independent. For instance, regardless of where, within the unpolarized domain, we pin the majority
spin electron, the density of electrons seen in the polarized domain does not change much.

It should be emphasised that although the stripe structure is well pronounced in conditional probabilities,
the density varies only weakly, Fig. 65c. But, even so, it contains indications of the four stripes. This
structure suggests that the interior of any of the domains israther anisotropic and this is quite distinct
from the liquid states atν = 2/3 (polarized and singlet, Fig. 13) where at least the first maximum in
g(r ) occurs for allr with |r | = r1 (Subsect. 2.1.1) and not only in thex- or y-direction. The study of
finite size effects comparing the averaged and non-averagedcorrelation functions suggests that for liquid
states, the anisotropy of non-averaged correlation functions should be much smaller than what we observe
in Fig. 69. On the other hand, the results shown in Fig. 69 refer to a state which is inhomogeneous and
strongly influenced by the aspect ratio being far from unity.A more thorough study of the non-averaged
correlation functions in systems of various aspect ratios and comparison to systems of different sizes is
therefore necessary to allow more definite conclusions.

3.3.4 Comment on homogeneous half-polarized states

It should be mentioned that the half-polarized state we study here is not the same as the half-polarized
states discussed in Sect. 2.2.

The lowest state here, in an elongated elementary cell, hask r = (0, 0), whereas the half-polarized ground
state in a square cell hask r = (2, 2), Sect. 2.2. These are the two inequivalent points of the highest
symmetry.

In the present system (aspect ratio2 : 1) all low lying half-polarized states belong to thek r
y = 0 sector.

States with other values ofk r
y lie well above the four discussed statesst01-st04, the lowest of these other

states has an energy of−4.240, cf. the spectrum on the left in Fig. 66. Being interested in the states low in
energy we may therefore stay restricted to the sectork r

y = 0. This is a pleasant fact since there is no need
to consider inhomogeneities of very low symmetry (implyinghandling larger Hilbert spaces).
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Fig. 69: Half-polarized state with intermediate magnetic inhomogeneity (’rectangular wave’,EMI = 0.004), non-
averaged density-density correlation functions.

Also note that a spatially fixed inhomogeneity couples the relative and center-of-mass (CM) coordinates.
At filling ν = 2/3 there are three possible CM states on a torus, which however remain mutually decoupled
owing to the high symmetry of the inhomogeneity. The chosen sectorJ = 0 corresponds to a combination
of k r

y = 0 sector and the one CM state, which leads to the lowest energy.Differences to other CM states
are, however, not too large.

3.4 Summary of studies on the inhomogeneous systems

Perhaps the most important conclusion of this Chapter is that the two incompressible ground states at
ν = 2/3, the polarized and the singlet one, alone are not enough to create a state with ’domains’, i.e.
regions of polarization zero, corresponding toSz = 0, existing side-by-side with regions of polarization
one. We have demonstrated this in Subsection 3.1. When a ’domain-inducing’ magnetic inhomogeneity
is applied, the singlet ground state is more strongly affected than states near the transition. This claim
remained true for different types of magnetic inhomogeneities, for different quantities used to detect the
domains (apart from the polarization, also forSz(x), Sx(x), etc.) and also for non-zero temperature.

Different conclusions apply when more than just the polarized and the singlet ground states are present
in the low-energy sector. We have demonstrated, that near the transition, the gap could actually close in
several different situations. In the present study, this happens for very strong magnetic inhomogeneities
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(Subsect. 3.1.3), for systems with an elongated elementarycell (Sect. 3.3) and for short-range interacting
systems (Sect. 3.2). The states which closed the gap always belong to an intermediate value of spin,
most prominent are those withS = 1 andS = 2 and since we considered only eight-electron systems,
the latter value of spin corresponds to the half-polarized sectorS = Ne/4. These states are considerably
softer against magnetic inhomogeneities than the incompressible singlet and polarized states. On one hand,
this fact follows from a small level spacing in the low energysector when the gap closes. However, the
magnetic inhomogeneities were also found to have large (∼ 0.1) matrix elements between most of the low
lying states.

The states with the strongest tendency to form domains i.e. the ’softest’ states, were found in systems
with Coulomb interaction and an elongated elementary cell.Near the transition, even a moderately strong
magnetic inhomogeneity (weaker than the incompressibility gap) was enough to make the polarization
approach the values corresponding to the singlet and polarized states inside the domains. For these domain
states, we have investigated the ’inside’ of the domains by means of non-averaged correlation functions,
Subsect. 3.3.3. We could not yet confirm that the domains comprise of an incompressible liquid but this
system defintely deserves a more detailed study. Especiallyin this case, a comparison with larger systems
would be very helpful.

4 Conclusions

Fractional quantum Hall systems at filling factorsν = 2/3 and2/5 have been studied numerically by
means of exact diagonalization techniques on a torus. In both systems, the existence of two different
ground states is well established: one is fully spin polarized, another is a spin singlet and they are both
strongly correlated. All four states can be visualised as composite fermion systems at integer filling factor
(νCF = 2). A transition between these two ground states can be induced by changing the Zeeman energy
while keeping the filling factor constant, Chapter 3.

At the beginning of Chapter 2, we investigated the polarizedand the singlet incompressible ground states
in terms of their density-density correlation functions. First, we highlighted the fact that – even if these
states wereexactlydescribed by some composite fermion model – the inner structures of the ground states
at ν = 2/3 and2/5 differ strongly from the inner structure of a state comprising of two fully occupied
Landau levels. In other words, in a composite-fermion state(e.g.νCF = 2), the correlations between the
electronsare different than in a corresponding electronic state (ν = 2). A more important result is, however,
that the electronic correlations differ strongly also between theν = 2/3 and2/5 states themselves. This is
surprising, since both filling factors map to the same fillingfactor of composite fermions (νCF = 2) and
only the orientation of the effective field is different. Study of the correlation functions allowed to suggest
a new interpretation of the singletν = 2/3 ground state. The electrons move along in pairs of opposite
spins and the pairs form a state equivalent to a fully occupied lowest Landau level. This conclusion does
notapply to theν = 2/5 singlet ground state.

The central focus of the present work was on the low-energy states occurring near the transition between
the singlet and the polarized ground states. Some experimental results indicate that another ground state
distinct from the two ground states already mentioned couldexist near the transition [46]. In Sections 3.4
and 2.2 we found several arguments in favour of a half-polarized state (S = Ne/4) becoming the absolute
ground state in a narrow range of the magnetic field. The systems available to exact diagonalization were
however too small to allow for an unswerving prediction. Twocandidates for the half-polarized ground
state were identified. In Section 2.2 we concentrated on the ’isotropic candidate’. A study of its inner
structure (correlation functions) combined with an investigation of the response to probing magnetic inho-
mogeneities (Sect. 2.3) produced results resembling both the singlet and polarized incompressible ground
state. A hypothesis that both these states coexist within the half-polarized state has been presented.
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Calculations with elongated rectangular elementary cells(Sect. 2.4) suggested another candidate for the
half-polarized ground state: a spin-density wave along thelonger side of the elementary cell. A comparison
between two systems of different size indicated that this state has the shortest period allowed by the finite
size of the considered system (e.g. one third of the length ofthe cell for a state which contains three
minority spins). Based on the present calculations it is notpossible to decide which of the two candidates
(if any) evolves into the ground state of an infinite system.

At ν = 2/5, no obvious analogue to the half-polarized state atν = 2/3 was found.

Employing magnetic inhomogeneities to enforce domains of different spin polarization near the transition
at ν = 2/3 (Chapter 3) we found that no signs of domain formation occur unless the energy gap closes.
The loss of incompressibility could however still be compatible with the experimental observation of a
plateau of polarization one half during the transition. It is enough if there are many states withS = Ne/4
and no (or only few) states with other values ofS in the low-energy sector (Sect. 3.2).

The ’best’ candidates for domain states were found to appearin systems with an elongated rectangular
cell. The fundamental idea here was that the elementary cellwith aspect ratio2 : 1 is divided by the
inhomogeneity into two square parts which could be more convenient for the formation of isotropic states
(the singlet and the polarized incompressible liquid). Examination of the domain state however showed that
the inside of the domains does not resemble the incompressible ground states atν = 2/3. Nevertheless, a
more detailed study is necessary here, since systems with aspect ratio far from unity can suffer more from
finite size effects than what was demonstrated in Sect. 2.1.

At the very end, I would like to acknowledge Daniela Pfannkuche for her support during my PhD stud-
ies and many fruitful discussions, Benjamin Krüger, Philip von Ende and OndřeǰCertı́k for some of the
calculations presented here and Matti Manninen for his hospitality in the period when this work was be-
ing completed. Finally, I am much obliged to a group of my colleaugues who carefully read the very
long manuscript and helped to substantially improve both its contents and language: Frank Hellmuth, Rob
Knapik, Katrin Malessa, Christian Müller, Michael Prouza, Arek Wójs and Jan Zemen.
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[57] K. Niemelä, P. Pietiläinen, and T. Chakraborty.Physica B, 284:1717, 2000.
[58] K. Nomura. Various broken symmetries in two–component quantum Hall systems. PhD thesis, Department of

Basic Science, University of Tokyo, Japan, 2003.
[59] W. Pan, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. Baldwin, and K.W. West.Phys. Rev. Lett., 90:016801,

2003.
[60] R. E. Prange and S. M. Girvin.The Quantum Hall Effect. Springer, Berlin, 1987.
[61] E.H. Rezayi and F.D.M. Haldane.Phys. Rev. B., 32:6924, 1985.
[62] E.H. Rezayi and F.D.M. Haldane.Phys. Rev. B., 50:17199, 1994.
[63] E.H. Rezayi, T. Jungwirth, A.H. MacDonald, and F.D.M. Haldane.Phys. Rev. B., 67:201305(R), 2003.
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