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A simple model of disorder in fractional quantum Hall systems is com-

bined with the standard exact diagonalisation technique. Electron-density-

-dependent gaps at filling factors 1/3, 2/3, 2/5, and 3/5 measured by acti-

vated transport can then be fitted with a single reasonable value of d which

has the meaning of the separation of ionized donors from the quasi-2D elec-

tron gas.

PACS numbers: 73.43.–f, 75.10.Jm, 72.10.Fk, 73.63.–b

1. Introduction

Incompressibility gaps of the fractional quantum Hall (FQH) states observed
in experiments are usually smaller than the ones calculated in ideal systems. Some
sources of the gap reduction can be estimated rather precisely (a finite thickness
of the quasi-2D electron gas, Landau level mixing) but one thing traditionally
remains poorly explored: the disorder. Stemming mostly from remote ionized
donors producing a long-range electric potential independent of magnetic field B,
some authors accounted for the disorder by a negative additive constant Ed of
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the order of several K. The transport activation energy as a function of B, i.e.
the electron density n, when the filling factor ν = n/(eB/h) is fixed, can be
fitted by ∆(B) [K] = 50EC

√
B[T] + Ed with a reasonable success [1]. Here, the

Coulomb energy EC of the corresponding excitation can be calculated by an exact
diagonalization including the gap reduction mechanisms mentioned above, and the
only fitting parameter remains |Ed| [2], which turns out to be smaller for higher
mobility samples in accord with common sense. It also used to be popular in
earlier works to take Ed = 0 and assume the disorder to reduce the value of EC

directly [3]. However, it is difficult to explain in this way why ∆ vanishes for
nonzero B, and we are also not aware of any detailed microscopic view supporting
this model.

Microscopical models of disorder employed the exact diagonalization (ED)
with a single impurity [4–6], a composite fermion picture [7], and topologically-
detected localized many-body states in the ED with many impurities [8]. While
substantially extending the theoretical understanding of the notion of incompress-
ibility in the FQH regime, the link to the experimental ∆(B) was not straightfor-
ward. The last mentioned work, however, is worth of special attention, not only
for its ingenious technique but also because it shows the way from the disorder-
reduced gap down to the experimentator-fancied quantity — the mobility. In this
communication we describe a simple single-impurity ED model which translates
the disorder-induced gap reduction, or better the critical field B0 at which the
incompressibility is switched on into another experimentally attainable quantity:
distance d to remote ionized donors. It provides a basis to understand experiments
on GaAs/GaAlAs heterostructures described in Ref. [1].

2. Model of the disorder

The exact diagonalization can handle arbitrary many- or single-body Hamil-
tonians at the cost of the restraint to small systems. We use a sphere with ≈
10 electrons and

H =
e2

4πε

∑

i<j

1
|ri − rj | +

∑

i

V (ri), VCoul(r) =
−e2

4πε
(|r|2 + d2)−1/2 (1)

with the constraint to the lowest Landau level. When the energies (EC) are ex-
pressed in the Coulomb units e2/(4πε`0) and the filling factor is fixed, the model
V = VCoul depends only on a single parameter d/`0. It has the meaning of an effec-
tive distance of a single remote ionized donor compared with the magnetic length
`0 =

√
h̄/eB. The crucial feature of this model is that with decreasing magnetic

field and constant d the effective impurity distance d/`0 diminishes and the effect
of the impurity becomes stronger. The charged-donor-model is not exceptional in
this respect, an alternative, VGauss(r) = V0 exp(−r2/σ2), will be mentioned in the
discussion.

What has just been described is readily seen in Fig. 1a showing the full
spectra of ν = 2/5 with ten electrons. The many-body states can be distinguished
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Fig. 1. (a) In the presence of a charged impurity, the spectra of a ν = 2/5 system

depend on the single parameter d/`0. (b) The gap gradually decreases with lowering

d/`0 and vanishes near d/`0 = 2 both for ν = 2/5 and ν = 1/3. (c) A different model

of the impurity, VGauss(r) with constant height and variable width σ, leads to a similar

result: the gap gradually decreases with lowering σ/`0.

by the z-component of the angular momentum (M) because the impurity placed
at the north pole of the sphere retains the axial symmetry. The homogeneity of
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the system (d/`0 = 20) is first broken, the gap decreases (d/`0 = 3) and finally
vanishes at d/`0 ≈ 2. The sizes of the gap for this one and other filling factors
are shown in Fig. 1b. While a similarity between 2

5/ 3
5 or 1

3/2
3 is not surprising

(nearly particle–hole symmetry), it is remarkable that gaps of the 1/3 and 2/5
states vanish at almost the same value of d/`0 ≈ 2.

The data in Fig. 1b can be recalculated into the experimentally measured
gap ∆(B) and with a single unknown parameter d. We now refer to measurements
reported in previous work [1] but now extended from ν = 1/3 to some other filling
factors, Fig. 2a. Trying to fit the critical field B0 of the incompressibility onset
(e.g. B0 ≈ 4.0 T for the 2/5 state in Fig. 2a) the d/`0 = 2 condition implies
d ≈ 25 nm. Nevertheless, we fail to reproduce the notable difference between 2/5
and 3/5 gaps, Fig. 2a, in this manner.

Fig. 2. (a) Gaps at various filling factors determined experimentally from the activated

transport (details in [1]). (b) Calculated no spin-flip gaps in the presence of a single

charged impurity.

At this point, we unsheathe the finite thickness of the quasi-2D system which
effectively softens the electron–electron interaction on short distances. While this
circumstance somehow diminishes the gap, the crucial point is that the thickness
depends on the electron density, and thus the filling factor, w ≈ 30 nm/(Bν)1/3

(Eq. (4) in [1]): similar to a parallel-plate capacitor, the higher n, the stronger the
electric field and hence the more squeezed the electron gas. The otherwise almost
particle–hole (PH) symmetric states thus become notably split, Fig. 2b.

3. Discussion

Although we have suggested above that the gaps, which vanish at nonzero
B0, can be understood in terms of remote charged impurities, it is not the sole
alternative. The magnetic length can be compared not only with a “vertical”
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length scale (d) but also with a lateral scale, σ, and the result is qualitatively
similar. As the magnetic field and σ/`0 decreases, while V0 is constant, the gap is
reduced and may close. The benchmark calculation with five electrons at ν = 1/3
on a torus, Fig. 1c, suggests that this is the case for V0 >∼ 0.5 in the Coulomb units.
Physically, such situation could occur as a consequence of host lattice defects or
interface/surface roughness and if the relevant potentials were sufficiently short-
-ranged, the gap could even restore at yet lower magnetic fields as it is exemplified
at 3`0 > σ in Fig. 1c. A more detailed discussion of this model is presented
elsewhere and we should only keep in mind that the results in Fig. 2 cannot be
taken as an evidence for a particular type of disorder in the experiment.

So far we have considered only excitations without spin flips. However, spin
flips may occur [1], in particular for ν = 1/3 and B <∼ 10 T for the sample shown
in Fig. 2a. Given this circumstance, can we rely on explaining parallel courses of
∆(B) only using the disorder argument as in Fig. 2b?

The first step to understand this are the comparable energies for spin-waves
at 1

3 and 2
3 (≈ 0.045, and 0.035 Coulomb units in the long-wave vector limit) in

disorder-free systems. Because of the absent particle–hole symmetry of not-fully-
-polarized ν and 1− ν states [6], this is a nontrivial result.

We have not performed any calculations with disorder and spin flips yet.
The disorder will affect energies of different excitations differently, depending on
the many-body correlations manifested in the size and structure of relevant quasi-
particles. One can nevertheless speculate that the differences will be small because
the charge densities of for example quasielectron with or without spin flip [9] do
not interact too differently with V (r) of Eq. (1).

In conclusion, the presented model of the disorder provides a possibility to
interpret the measured onset of incompressibility gap at different filling factors
using a single disorder-related parameter (remote donors to the heterointerface
distance, d ≈ 15 nm). This model could be valid also for spin-flip excitations,
likely to occur in the experiments, but this remains to be tested numerically.
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