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A two-dimensional electron system in a perpendicular magnetic field at filling factor 2/3 could be a candidate
for a quantum Hall ferromagnet at integer filling factor of composite fermions. Using exact diagonalization
with electrons on a torus we study the transition from the singlet ground state to the polarized ground state
at this filling and look for signatures of quantum Hall ferromagnetism. Differences between the fractional
and corresponding integer systems are emphasised. Most interestingly, we find around the transition a low
excited half-polarized state which might become the ground state in the thermodynamical limit. We study its
structure and compare it to the singlet and polarized ground states. A new interpretation of the singlet state is
suggested and comparison of the filling factors 2/3 and 2/5 is presented. Adding magnetic inhomogeneities
into the system we investigate the stability of all the three involved states and the tendency to build up
domains like in conventional ferromagnets.
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Similar to superconductivity, the fractional quantum Hall effect [13,79] is a unique field, where correlations

between electrons give rise to macroscopically well observable ground states which we would not expect on

the level of a Hartree-Fock approximation. The correlations are introduced by interelectronic interaction and,

contrary to atomic physics for instance, the quantization of single-electron energy levels is a consequence

of the strong magnetic field (Landau levels) and of the suppressed motion in the direction of the field (quasi

two-dimensional systems). The latter phenomenon leads to another unusual feature of the fractional quantum

Hall systems: the many-electron states in a non-interacting system are highly (macroscopically) degenerate,

since all electrons within one Landau level have the same energy. In particular, for filling factors below one,

where it is useful to be restricted to the lowest Landau level, all many-electron states have the same energy.

Now, the effect of interactions between electrons cannot be investigated by perturbation theory, as there is

no single ground state to start with or, in other words, there is no small parameter in which we could expand

the perturbation series. Since energy spacing between the many-body states is zero, the interaction is never

a small perturbation, regardless of how weak it is. This fact renders the fractional quantum Hall systems

unique from the theoretical point of view and makes completely novel types of quantum-mechanical ground

states possible. The best known of these are the incompressible quantum liquids.
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Quantum Hall ferromagnetism was one of the companions of the integer quantum Hall effect (Sect. 1.6).

The observed long-range spin order can be explained by exchange energy gain in the ferromagnetic state

and hence Hartree-Fock models are sufficient to describe the ongoing physics. However, new experimental

publications appeared in late nineties. Phenomena reminiscent of ferromagnetism have also been observed

in the fractional quantum Hall regime, being most noticeable at filling factors 2/3 and 2/5 ( [14,44]). In

this situation, the Hartree-Fock approximation is no longer acceptable, the spin-ordered states are highly

correlated. This area is not very well explored. Instead of a lattice of spins which are all pointing in the

same direction, here, we are dealing with itinerant electrons which are either in a fully polarized or in a spin

singlet state (Sect. 2.1). Although both states are incompressible, their structure is quite different [12].

How far can we extend the analogy between an Ising spin-lattice ferromagnet and fractional quantum

Hall systems where two ground states with different spin order compete with each other? This is the central

question addressed in this paper. There are several fundamental differences between these two systems.

The latter one is itinerant and the liquid-like ground state is stable only owing to correlations while, in

a spin-lattice, the electrons are spatially fixed and the ferromagnetism occurs also in classical systems

with suitable site-to-site coupling. By observing e.g. hysteresis in magnetotransport, experimentators have

provided a lot of evidence that the two phenomena are indeed very closely related [42,68,69], on the other

hand, observations without an analogy to usual Ising systems have been reported too [45].

Before we start the theoretical introduction, let us summarize the basic experimental facts. At filling

factors 2/3 and 2/5 two different ground states may appear. Depending on the ratio between the Zee-

man to Coulomb energy, EZ/EC , it is the fully spin polarized (EZ/EC → ∞) or the spin-singlet one

(EZ/EC → 0) [45]. This transition can be accomplished (a) by varying the electron density at a fixed

filling factor [35], (b) by tilting the magnetic field [15, 20] or (c) by applying hydrostatic pressure which

modifies the bulk g-factor [49].

When the two ground states are brought to degeneracy, transport experiments show hysteresis, time-

dependent resistance with Barkhausen jumps [10] (see Refs. above) and huge longitudinal magnetoresistance

[44] which is related to the spin polarization of the ion lattice of the hosting GaAs (NMR experiments

[18,43]). These could be related to formation of spatial domains of the two ferromagnetic ground states,

even though surface acoustic wave experiments could not confirm this [19]. On the other hand, optical

experiments [23,45], suggest that a half-polarized ground state occurs near the transition.

1 Theoretical basics

1.1 One electron in magnetic field

When the mutual interactions are left aside, electrons in a plane subject to homogeneous perpendicu-

lar magnetic field B fill the macroscopically degenerate equidistant Landau levels (LLs) with energies

E = (n + 1/2)�ω, n = 0, 1, 2, . . . The degeneracy of all the levels is the same, and it increases propor-

tionally to the magnetic field. Therefore, occupancy of the Landau levels, the filling factor, depends both

on the number of electrons Ne (per area L2) and on B:

ν =
Ne/L2

eB/h
=

Ne

L2/(2πℓ20)
=

Ne

(BL2)/(h/e)
=

Ne

Φ/Φ0
=

Ne

Nm
. (1)

Note that this ν, i.e. number of Landau levels occupied in the ground state is equal to the inverse number

of magnetic flux quanta Φ0 = h/e per electron in the system (the second last expression in (1).

These facts can easily be obtained by solving the single-electron Schrödinger equation with Hamiltonian

H0 =
1

2m
(p + eA )2 , ∇ × A = (0, 0, B) , (2)

a particularly nice and understandable example of this calculation is given by Murthy and Shankar [54].

Suitable energy and length units are the cyclotron energy �ω = �eB/m and the magnetic length
√

�/eB
denoted by ℓ0.
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4 K. Výborný: Spin in fractional quantum Hall systems

Let us now focus on the lowest Landau level. There are eB/h states per unit area having the same

energy �ω/2 and infinitely many possibilities of constructing a basis of this space. Choosing the Landau

(symmetric) gauge in (2) which is translationally symmetric in one direction (rotationally symmetric around

the origin) we are lead to the following bases

Landau: A = B(0, x, 0) , ψky (x, y) = exp(−ikyy) exp

[
− (x + ky)2

2ℓ20

]
,

ky

2π/L
= 0, 1, . . . (3)

symmetric: A = 1
2 B(y, −x, 0) , ψm(z) = zm exp

[
− |z|2

4ℓ20

]
, m = 0, 1, 2, . . . (4)

Especially for the latter basis, formulae are often more transparent if we use a complex variable z = x+ iy
rather than x, y separately to address the points in the plane.

1.1.1 Magnetic translations

A plane with perpendicular homogeneous magnetic field is obviously translationally invariant. However,

spatial translations applied to the Hamiltonian may alter the gauge even though they leave the magnetic

field unchanged. Operators which conserve also the gauge (and which therefore commute with H0) are

the magnetic translations [83,84]. These operators will thus replace the ordinary translations applicable to

systems without magnetic field.

Magnetic translation operators depend on the choice of the gauge, in particular for the Landau gauge (3)

u = (u1, u2) : T (u ) = exp

[
− i

uxy

ℓ20

]
t(u ) , (5)

where t(u ) is the ordinary translation operator exp(iu · p /�). General explicit formula for any gauge can

be found e.g. in the article of Haldane and Rezayi [31].

Note, that ordinary and magnetic translations (5) coincide for ux = 0, exactly as a wavefunction in the

form (3) remains unchanged up to a constant phase under the replacement y → y + uy . For u = (ux, 0)
this is not the case and that is why we must resort to magnetic translations.

1.2 What to do when Coulomb interaction comes into play

The quantum mechanical solution of one electron – or many non-interacting electrons in a plane subject to

a perpendicular magnetic field is at the root of the integer quantum Hall effect. The basic fact is that for

integer filling factors, any, even arbitrarily small excitation costs at least the energy �ω. This gap renders

the ground state incompressible. The fractional quantum Hall effect cannot be explained in this picture. For

instance at filling factor ν = 1/3, a non-interacting system has a manyfold degenerate ground state, or,

some excitations cost zero energy (those which involve only rearrangement of electrons within the lowest

LL), and the ground state should be compressible. Today it is well established that the effect is due to

electron-electron interactions which select among those states one special ground state and separate it by a

gap from the excitations.

Now, the Hamiltonian of the many-electron system consists of two terms: the kinetic energy (leading to

Landau level quantization) and the electron-electron interaction.

H =

Ne∑

i=1

p 2
i

2m
+

e2

4πε

1

2

∑

i �=j

1

|r i − r j |
(6)

Consider some particular filling factor, ν = 1/3 for example, and let us vary the magnetic field. Since

ν = n/(2πℓ20) = n/(eB/�), this implies changing the electron density n simultaneously. The kinetic

energy will change proportionally to �ω ∝ B. The interaction energy on the other hand scales with
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1/a ∝
√

B, as the mean electron-electron distance a is proportional to the magnetic length a =
√

1/n =√
1/(νeB/�) ∝ ℓ0, [79] (Chap. 4).

In the high field limit we can therefore expect the Coulomb interaction to be a small perturbation which

lifts the degeneracy of Landau levels. Looking for a (high-B) ground state at some particular ν < 1 we can

therefore omit the higher Landau levels and study only states within the lowest Landau level. This model

gives qualitatively correct predictions (for high B) and the inclusion of the Landau level mixing leads only

to quantitative corrections (e.g. in the ground state energy, see Chakraborty and Pietiläinen [13]).

1.2.1 Ground states: analytical many-body wavefunctions

It is very surprising that even though we now handle a many-body Hamiltonian (6), there are still analytic

(correlated) wavefunctions which describe the ground state at some special filling factors. The best known

example was suggested by R. B. Laughlin [47]:

ΨL(z1, . . . , zn) = exp

[
− |z1|2 + . . . + |zn|2

4ℓ20

]∏
i<j

(zi − zj)
3 . (7)

There are several physical arguments why this wavefunction must be almost exactly (Sect. 1.3 and

[13,29,79]) the ground state at ν = 1/3 and the two most important ones are to be mentioned.

First, the (zi − zj)
3 term makes the Laughlin wavefunction isotropic and translationally invariant. More

detailed studies (density-density correlations, see Sect. 2.1) suggest that it resembles a liquid. Second, ΨL

resembles Ψ1, the wavefunction of completely occupied lowest Landau level:

ν = 1, GS: Ψ1 ∝
∏

i<j

(zi − zj)
×Πi<j(zi−zj)

2

−→ ν = 1
3 , GS: ΨL ∝

∏

i<j

(zi − zj)
3 .

Now consider a single electron in a state ψm(z) ∝ zm (4). If we pierce the system with an infinitely

thin solenoid at z0 and pass two magnetic flux quanta adiabatically through it, this state will evolve into

ψm(z)(z − z0)
2. This leads to the following interpretation. The Laughlin state is just the completely filled

lowest Landau level, but the constituent particles are electrons with two attached magnetic flux quanta rather

than bare electrons.

So far we have only spoken about the filling factor ν = 1/3 and fully spin-polarized electrons. General-

izations of these concepts are possible also to systems where electrons are not fully spin polarized. Halperin

proposed the following WFs [34]

Φmm′n[z] =
∏

i<j≤N↑

(zi − zj)
m

∏

k<l≤N↓

(z′
k − z′

l)
m′
∏

i≤N↑
k≤N↓

(zi − z′
k)n
∏

i,j

exp

[
−

|zi|2 + |z′
j |2

4ℓ20

]
(8)

with m, m′ odd. The state assumes N↑ (N↓) particles with spin up (down) and zi (z′
j) describe their positions.

The filling factors of the two components are

ν↑ =
m′ − n

mm′ − n2
, ν↓ =

m − n

mm′ − n2
.

Thus, they describe a state at filling ν = ν↑ +ν↓ and polarization p = (ν↑ −ν↓)/ν. For example, the choice

m = m′ = 3 and n = 2 leads to the total filling factor 2/5 and zero spin polarization (ν↑ = νdn).

These suggestions yield good starting points for investigations going to regions where only numerical

methods can be applied, for details see MacDonald and Girvin in [16].
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Erel =
�ω(i + 1

2 )
−m�ω

i=0    1    2 3    4 5 6 7

n=0

n=1

n=2

i=0

i=1

i=2

i=3 i=3

i=0

i=1
i=2

LLL

1LL

2LL

V=0 V>0

m=    0    1    2    3    4    5    6    7 m=     0    1    2    3    4    5    6    7

Fig. 1 Spectrum of one particle confined to a plane subject to a perpendicular magnetic field or, equivalently,

the spectrum corresponding to the relative motion of two particles (Hrel). Left: without particle-particle inter-

action, the two terms, “harmonic oscillator” (quantum number i) and “angular momentum” (quantum number

m) combine into degenerate Landau levels (quantum number n). Right: interaction lifts the degeneracy. If the

interaction potential is small compared to the harmonic oscillator term (i.e. 〈V 〉 ≪ �ω), Landau levels are

roughly preserved. The energy levels Vm within the lowest Landau level (sorted according to m = 〈Lz/�〉)

are then the Haldane pseudopotentials.

1.3 Other types of electron-electron interactions

A model of short-range interaction (SRI) in fractional quantum Hall systems is the main issue of this

section. We will explain how a general interaction V (r) between two particles within the lowest Landau

level (LL) can be represented by a set of Haldane pseudopotentials {Vm} [29] and show how this concept

makes it easier to study different classes of interaction. In particular, this discussion will unveil under what

conditions the Laughlin wavefunction (7) becomes the exact many-body ground state.

1.3.1 Two particles, magnetic field and a general isotropic interaction

Let us consider two negatively charged particles in a plane subjected to a perpendicular magnetic field B.

Assume that their interaction is described by a potential (energy) V (r) which depends only on their mutual

distance. Classically, when starting from rest, the particles would move along a straight line towards or away

from each other were it not for the magnetic field. The Lorentz force bends their trajectories and makes them

orbit around their centre-of-mass on a circular trajectory. In quantum mechanics, this circular motion is

quantized just as in case of an electron orbiting around a hydrogen nucleus. Roughly speaking, only discrete

separations rm between the two particles are allowed. Interaction energies V (rm) = Vm rather than the

full form V (r), r ∈ (0;∞) fully determine the spectrum of a many-body system of particles interacting via

V (r).
Let us now follow this idea in more detail. The Hamiltonian for two particles reads

H =
1

2m
(p 1 + |e|A 1)

2 +
1

2m
(p 2 + |e|A 2)

2 + V (|r 1 − r 2|) . (9)

Following [48], we write it as a sum of the centre-of-mass (CM) and relative parts [r CM = (r 1 + r 2)/2,

r rel = (r 1 − r 2)/
√

2]. Without V (rrel), both parts will be equivalent to a single particle in a plane in

magnetic field. Hence, a Landau level index (N = nCM , n = nrel) and an angular momentum (M = mCM ,

m = mrel) will be attributed to both parts. Out of these, N is fixed to zero (two-particle state within the

lowest LL) and M is unimportant as it is merely tantamount to fixing the CM to some particular position

in the plane. Eigenstates of the relative part will be sorted as shown in Fig. 1 on the left.

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org
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With V (rrel) included, the relative part reads

Hrel =
p2
rel

2m
+

1

8
�ω

(
rrel

ℓ0

)2

− 1

2
ωLz

rel

︸ ︷︷ ︸
Hrel,kin

+V (|r rel|) (10)

with Lz
rel denoting the (z-component of relative) angular momentum. This is the well known Fock-Darwin

form, the standard usage of which is to describe one particle in a magnetic field and confining potential V .

However, we will use it in a different way here: we consider V (r) to be weak, and for example a repulsive

∝ 1/r potential, compared to the parabolic term in Hrel,kin. It is only our initial assumption that the

interaction is much weaker than the cyclotron energy, EC ≪ �ω (Sect. 1.2).

Owing to [Hrel, L
z
rel] = 0, the eigenstates of Hrel can still be classified by angular momentum. Moreover,

assuming the states of the lowest LL to have no admixtures from higher LLs (EC ≪ �ω), the eigenstates

ψm
rel(r, ϕ) = exp(−imϕ) rm exp

[
− r2

4ℓ20

]
. (11)

will not depend on V (rrel) at all. This is a combined effect of the Lz symmetry and the requirement of

analyticity (confinement to the lowest LL): angular part of the form exp(−imϕ) implies ψm(z) ∝ zm.

On the other hand, energies of these states will shift differently for different m’s (Fig. 1, right). The

energy shift due to the interaction between particles is Vm = 〈ψm
rel|V |ψm

rel〉 in a state with relative angular

momentum m. Since rm = 〈ψm
rel|r|ψm

rel〉 = ℓ0
√

2m + 1 we can roughly estimate Vm to be V (rm).
The operator of any weak (EC ≪ �ω) interaction (in the lowest Landau level) can be then written in

terms of its spectral decomposition

V (rrel) =

∞∑

m=0

|ψm
rel〉Vm〈ψm

rel| .

The spectrum and eigenstates of a many-body system confined to the lowest Landau level and interacting by

V (rrel) is thus completely determined by the discrete set of numbers {Vm}, the Haldane pseudopotentials

[29].

An additional constraint that the wavefunction be antisymmetric implies

ψrel(r 1, r 2) = −ψrel(r 2, r 1) ⇒ ψrel(r, ϕ) = −ψrel(r, −ϕ) .

Therefore, only the states with odd m (11) are allowed in the case of two electrons with the same spin

(where a symmetric spinor part implies an antisymmetric orbital part of the wavefunction). Only the values

of V1, V3, . . . are needed when we describe motion of fully spin polarized electrons.

Finally, let us remark that if V (r) is given, the pseudopotentials Vm are determined uniquely. However,

the opposite is not true: knowing only the values of Vm, we cannot reconstruct the full form of V (r).

1.3.2 Particular values of Haldane pseudopotentials for the Coulomb interaction

Let us consider a numerical example for electrons in a plane, one of them located in arbitrary Landau level

n1 and another in n2 with relative angular momentum m. Then, the state is uniquely defined, up to the

center-of-mass part of the wavefunction, as we have already stated. Assuming an interaction of the form

V (q) (in the Fourier space), their interaction energy can be written as [58]

V n1,n2
m =

∫ ∞

0

q dqV (q)Ln1(
1
2 q2)Ln2(

1
2 q2)Lm(q2) exp(−q2) . (12)

The Laguerre polynomials are defined by Ln(x) = (1/n!)[xne−x](n)ex . For the case of Coulomb interac-

tion, V (q) = α/|q|, the integrals in (12) can be evaluated (easily and) analytically. Fig. 2 shows their values
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Fig. 2 Values of Haldane pseudopotentials Vm for Coulomb-interacting electrons (a-c): between two particles (a)

both in the lowest Landau level, (n1, n2) = (0, 0), (b) both in the first Landau level, (n1, n2) = (1, 1), and (c) one in

the lowest and the second in the first Landau level, (n1, n2) = (1, 0). The pseudopotentials referring to electrons in a

plane (a,b,c) are “universal”, those related to electrons on a torus (a,d) depend on its size (here Nm = 30, Sect. 1.5.1).

Values of {Vm} chosen for as a model for short-range interaction in this work are shown in (d).

for the cases (a) both particles in the Lowest Landau level (n = 0), (b) both particles in the first Landau

level (n = 1) and (c) one in the lowest and one in the first Landau level.

For n1 = n2 = 0 the coefficients Vm decay monotonically with increasing m, exactly as the Coulomb

energy does with increasing distance. The non-monotonic structure of Vm for the case of particles in the

first Landau level is due to the additional structure of wavefunctions in higher Landau levels. For example,

considering the two electrons, placing the maximum of one near to the node of another results into the

reduced value of V1 in Fig. 2b.

1.3.3 Model interactions: hard core, hollow core

There are three reasons why a hard-core (or short-range) interaction (SRI) is important for the physics of the

lowest Landau level. (i) It is the strongest part of the Coulomb interaction (V1 in Fig. 2a). (ii) The Laughlin

wavefunction is an exact (zero energy) gapped ground state for this interaction and (iii) the ground state

changes only little if the other terms of the Coulomb interaction are considered.

In this paper, the SRI for spin polarized electrons is defined by the Haldane pseudopotentials

short-range int. (spin polarized electrons): {V1, V3, V5, . . . } = {1, 0, 0, . . . } . (13)

Considering the Laughlin wavefunction of N particles (7), any pair of electrons in it is in a state with relative

angular momentum m = 3 owing to factors (zi−zj)
3.As there are no pairs with angular momentum m = 1,

the total energy of this state will be V1 · 0 + V3 · N(N − 1)/2 = 0 for SRI. Also, this state is rigid: any

excitation must remove the triple zero from some of the electrons leaving only a single zero required by

antisymmetry thereby creating some pairs with m = 1. This implies a finite excitation gap.

These are analytical results. A surprising numerical result is that the many-body ground state changes

only slightly if other pseudopotentials V3, V5, . . . are “turned on” up to their Coulomb values (Fig. 2a). This

has been confirmed by Haldane and Rezayi [22,32] by calculating the overlap between the real ground state

and the Laughlin state for different sets of Vm. It is also shown in [32] that if V1 is lowered beyond some

critical value while keeping other pseudopotentials on their Coulomb values, the gap collapses rendering the

ground state compressible. These observations have later been systematised [75]. It was argued that both

Coulomb and short-range (13) interactions belong to the same class of superharmonic pseudopotentials

where particles try to avoid low m pair states, implying the Laughlin ground state. A drastic change in the

ground state occurs first when we leave the mentioned class of interactions. The “superharmonicity” means
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roughly that Vm decays fast enough with growing m [75]. The aforementioned collapse of the gap is then no

longer surprising as the decreased value of V1 will eventually violate potentials superharmonicity between

m = 1 and 3.

An advantageous property of the interaction (13) is that it is effectively non-parametric, the only parameter

present, V1, determines only the overall scaling of the energy scale within the lowest Landau level.

This can be summarized by stating that the short-range interaction is the component of a realistic inter-

action which determines almost completely the properties of the ν = 1/m spin-polarized ground states.

For non-fully spin polarized systems it is not possible to keep V1 �= 0 only. Electrons with equal spin

are still closest in the state m = 1 (with energy V1), electrons with unlike spins however are closest in the

state m = 0 with energy V0. Such a model contains two parameters V0, V1 whose ratio cannot be factored

out of the Hamiltonian. An alternative might be the potential {V0, V1, V2, . . . } = {∞, 1, 0, 0, 0, . . .}.

Another model potential [33] was inspired by the low value of V0 in the first Landau level compared to

the lowest Landau level (Fig. 2). The hollow-core potential {V0, V1, V2, . . . } = {0, 1, 0, 0, 0, . . .} was used

in attempt to explain the even-denominator fractional quantum Hall effect at ν = 5
2 .

1.3.4 An alternative definition of Haldane pseudopotentials

Haldane introduced the quantities Vm originally for interacting electrons on a sphere [29]. In that case, or

for electrons in a plane, m can be identified with the relative angular momentum of the electron pair, having

in mind that m is closely related to the average separation between the particles increases. In contrast to

that, rotational symmetry of the configuration space is lost on a torus and angular momentum is no longer a

good quantum number. Here we will introduce an alternative definition of Haldane pseudopotentials which

is applicable also for particles on a torus [72].

First, recall that matrix elements of the Coulomb interaction on a torus can be conveniently evaluated in

Fourier space (Sect. 1.5.3) where

V (r ) =
e2

|r | ⇒ V (q ) =
e2

|q | .

Second, consider a general radial and bounded interaction with its Fourier transforms V = V (|q |) and

expand V (|q |) into a Taylor series. Owing to V (r ) = V (−r ) = V (|r |), the series will be free of odd

powers q2k+1. In the position space and using F [f(r)](k) = (iq)kFf(r) this implies

V (q) = ṽ0 + ṽ2q
2 + ṽ4q

4 + . . . ⇒ V (r) = ṽ0δ(r) − ṽ2∇2δ(r) + ṽ4∇4δ(r) − . . . . (14)

The coefficients ṽi fully characterize the particle-particle interaction. In an extension to [72], let us show

how to translate them into Vm’s, i.e. interaction energy of the two-particle state in a plane (or on a sphere)

with relative angular momentum m.

For the evaluation of Vm = 〈ψm|V (r)|ψm〉, let us take the functions ψm
rel from the planar system, (11)

plus normalization. If V (q) = q2k then

Vm = (−1)k

∫
dr2ψmψ∗

m∇2kδ(r ) =
(−1)k

2mm!

[(
1

r

d

dr
r

d

dr

)k

r2me−r2/2

]

r=0

(15)

This is a unique prescription of how an interaction of the type V (q) = q2k can be transcribed into the terms

of Vm. Table 1 contains these coefficients for several lowest powers of q. Note that Vm = 0 for m > k.

In conclusion, an interaction potential defined by some particular set of values of Haldane pseudopoten-

tials Vm can be recalculated into the coefficients ṽi in (14) (Taylor series of V (q)) using Table 1 or, more

generally using (15).

Again, several remarks should be made.
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10 K. Výborný: Spin in fractional quantum Hall systems

Table 1 Values of Haldane pseudopotentials corresponding to particle-particle interactions of the type

V (q) = q2k. These values are additive, e.g. V (q) = −q2/2+1 corresponds to the “hollow core interaction”:

{Vm} = {0, 1, 0, 0, 0, . . .}.

V0 V1 V2 V3 V4 V5

q0 (k = 0) 1 · 20 0 0 0 0 0

q2 (k = 1) 1 · 21 −1 · 21 0 0 0 0

q4 (k = 2) 2 · 22 −4 · 22 2 · 22 0 0 0

q6 (k = 3) 6 · 23 −18 · 23 18 · 23 −6 · 23 0 0

q8 (k = 4) 24 · 24 −96 · 24 144 · 24 −96 · 24 24 · 24 0

(1) The expansion in (14), being first suggested by Trugman and Kivelson [72], looks unusual. In the

distributional sense, we say that a non-zero ranged potential V (r) can be written as a sum of terms with

“zero range”.

Instead of a δ-function imagine rather a sharp peaked function δb, a Lorentzian of width b, for instance.

Functions ∇2kδb(r ) will then have “the longer the range the higher the k is”: it is instructive to draw a

sketch of the first few functions (δb)
(2k) and consider as “range” the position of the local extreme which is

the most distant from the origin. In this sense, (14) is an expansion of V (q) in terms of “increasing ranges”.

(2) When calculating the Coulomb matrix elements for particles on a torus (Sect. 1.5.3), we do not use

the full function V (q) but only its values in discrete “lattice” points q . This is obviously due to the periodic

boundary conditions. In particular, q = 0 is missing among these points.

Thus, we need not worry about the long-rangedness of the Coulomb potential, V (q → 0) → ∞ which

renders it unexpandable into a power series of q. Instead of 1/q we may imagine to have considered any

other polynomial in q which matches the values of 1/q at the “lattice” points. Both interactions must lead

to the same results.

(3) Example: consider two electrons in the lowest Landau level interacting via V (q) = αq2. Eigenstates

sorted according the to increasing value of the particle-particle distance 〈r〉 may be indexed by an integer,

say m. The state m = 0 will have an energy of −α, the state m = 1 will have an energy of α and all other

states (with larger interparticle separation) will have zero energy.

The state with m = 0 will have a symmetric wavefunction and will be thus prohibited for electrons with

equal spins. Thus there will be only one state with non-zero energy for this case and it is the state with the

lowest interparticle separation. The potential V (q) = αq2 defines therefore a hard-core interaction.

1.3.5 Short-range interaction on a torus

The decomposition of the Coulomb interaction in the lowest LL into the set of Haldane pseudopotentials has

already been shown in Fig. 2. This is also the spectrum of two Coulomb-interacting particles on a sphere.

Let us now consider a pair of particles on a torus, Fig. 2a. The index m is no longer the angular momentum

of the pair as this is not a good quantum number. The wavefunctions ψm
rel(z) ∝ zm exp(−|z|2/4ℓ20) in (11)

must be modified, in order to comply with the periodic boundary conditions.

In Fig. 3 we show some of the wavefunctions corresponding to the relative motion on a torus of size

Nm = 30 (= ab/2πℓ20, Sect. 1.5.1). We denote them by ψm, m = 0, 1, . . . , mmax and skip all other indices

which would be appropriate, e.g. to indicate that they depend on the size of the torus (a × a). Even though

these states are more complicated than those in (11), they can still be sorted according to growing values

of rm = 〈ψm|r|ψm〉. It is not surprising that the states ψm for low m (≪ Nm), Fig. 3b, look very similar

to the eigenstates of angular momentum m for infinite systems (11). First when rm becomes comparable

to the system size, deviations from the circular form of |ψ|2 occur (middle column of Fig. 3b). The states

with very high m look very similar to those with very low m. If we fix one electron to r = (0, 0), then
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Fig. 3 Two-particle eigenstates of Coulomb-interacting particles in the lowest LL confined to a torus. States

are shown irrespective of the symmetry or antisymmetry of the wavefunction. Left: spectrum (horizontal

axis has no meaning: levels are “randomly” distributed into four groups in order to show degeneracies).

Right: relative part of the wavefunction, |ψm(r rel)|2, for several states. Here, r rel = 0 corresponds to the

corner of the square (the four corners are identical due to periodic boundary conditions). Some of these states

resemble the eigenstates of relative angular momentum, see text.

the second electron orbits around (0, 0) at a distance rm in the state ψm, whereas in the state ψmmax−m it

orbits around (a/2, a/2) at the same distance, Fig. 3b (right).

With ψm, as a substitute for the relative angular momentum eigenstates, we can define Haldane pseu-

dopotentials on a torus by Vm = 〈ψm|V (rrel)|ψm〉. Their values (Fig. 3a) are almost equal to Vm in a

plane, as long as ψm is not affected by the periodic boundary conditions (Fig. 2a) i.e. for small values of m.

A reasonable model mimicking the short-range interaction keeps the first two energies of the spectrum

in Fig. 2, i.e. the pseudopotentials V0, V1 at their “Coulomb” values while setting the other ones to zero.

Table 1 gives a prescription how to encode such an interaction into V (q). We thus arrive at an interaction

potential defined by V (q) = 0.34q2 − 1.51 which is used throughout this work to model a short-range

interaction unless something else is explicitly stated.

1.4 Composite fermion theories

Let us recall the observation from Sect. 1.2 that three zeroes are bound to each electron in the Laughlin state

ΨL. A convenient way to see this is to fix the positions of z2, . . . , zn and use the last “free” coordinate z1

to inspect (the zeros of) the wavefunction. One zero is required by the Pauli principle (when z1 = z2, the

wavefunction must vanish).

Whenever an electron goes once around a zero in ΨL, the wavefunction acquires a phase equal to the

Aharonov-Bohm phase corresponding to one magnetic flux quantum. From this point of view, the Laughlin

state can be interpreted as the ν = 1 state where two magnetic flux quanta are attached to each electron.

These objects (electron dressed by two flux quanta) are called composite fermions (CF). Note however that

the precise definition of a composite fermion may vary in different theories.

Intuitively, this concept explains the existence of a gapped ground state at filling factor ν = 1/3.

Originally, there are three flux quanta per electron (1) and the huge Hilbert space of many-electron states

in the lowest Landau level is completely degenerate without interaction. In other words, we expect no gap

without interaction. If we now assume, that the Coulomb interaction leads to the formation of composite

objects, an electron and two flux quanta, then there remains only one free flux quantum per CF. This in turn

implies the filling factor of νCF = 1 for CF (1). We know that in this case the ground state of particles

obeys Fermi statistics (see comment [4]) and is gapped. If a Landau level is completely filled, then any,
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12 K. Výborný: Spin in fractional quantum Hall systems

even infinitesimal, excitation requires promoting at least one CF into a higher CF Landau level which costs

the finite energy ≥ �ωCF .

1.4.1 Chern-Simons transformation

Looking at the Laughlin wavefunction in the way sketched above, we might find it reasonable to incorporate

the flux attachment into the Hamiltonian.

The Chern-Simons (CS) transformation is a gauge transformation of the magnetic field

a CS(r ) = αΦ0

∫
d2r1

ez × (r − r 1)

|r − r 1|2
Ψ†(r 1)Ψ(r 1) . (16)

It does not change the magnetic field (“gauge transformation”) felt by the electrons only owing to the fact

that two electrons cannot be simultaneously on the same place (see comment [5]). The price for this is

that the transformation is singular, a CS diverges for r = r i. The objects Ψ†(r ) are the one-electron field

operators and α is the number of attached magnetic flux quanta.

After this transformation the full Hamiltonian

H =
1

2m

∫
d2r Ψ†(r ) [−i�∇r + eA (r ) − ea CS(r )]

2
Ψ(r ) (17)

contains – apart from one-particle terms – two-particle terms (those containing a CS) and also three-particle

terms Ψ†(r )Ψ(r )Ψ†(r 1)Ψ(r 1)Ψ
†(r 2)Ψ(r 2) (they originate from a 2

CS). The CS transformation alone thus

does not really simplify the original Hamiltonian.

A mean field approximation can be made where the density operator Ψ†(r 1)Ψ(r 1) in a CS is replaced

by the mean value nS . Thus, we arrive at a single particle problem with an effective magnetic field BCF =
B − αφ0nS . In illustrative terms:

CS transf. mean field

a many-body system

at ν = 1/3
−→ a very complicated

many-body problem at ν = 1/3
−→ a simple one-particle

problem at ν = 1

The final one-particle problem at ν = 1 has a non-degenerate ground state, the lowest Landau level being

fully occupied by CF. We thus circumvented the original problem that the Coulomb interaction must select

the ground state out of the vast number of degenerate many-body ν = 1/3 states within the lowest LL.

A mean field approximation is not the only possible treatment of the Hamiltonian (17). However, theories

beyond the mean field i.e. those treating fluctuations of the gauge field, are very complex [50].

Using the CS transformation we attach 2s = α vortices (not zeroes) to each electron. In the mean field

approximation the problem is equivalent to non-interacting particles in reduced magnetic field BCF which

then corresponds to a filling factor νCF . It turns out that many (but not all [57]) of the experimentally

observed fractions ν correspond to integer νCF . Let us conclude with an overview of relations between

quantities referring to electrons and to CF, cf. (1).

BCF = B(1 − 2sν) = B − 2snSΦ0 , ℓ∗ ≡ ℓCF =
ℓ0√

1 − 2sν
, (18)

1

νCF
=

1

ν
− 2s , ν =

p

2sp + 1
, (p, s integer).

1.4.2 Composite fermions à la Jain

Compared to the Chern-Simons transformation, Jain chooses to go in some sense the same path but in the

opposite direction [37,38]. It starts with a wavefunction of particles (fermions) at integer filling νCF = p,

attaches s zeroes (not vortices) to each particle and, after projection into the lowest Landau level, it presents
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Table 2 The scheme of construction of Jain’s wavefunctions for CF with two flux quanta attached: examples

of composite fermion filling factors (p↑, p↓ are numbers of fully occupied spin up and spin down CF-Landau

levels) and corresponding electronic filling factors.

p↑ 1 2 3 −2 . . . 1 2 2 −1

p↓ 0 0 0 0 1 1 2 −1

p = p↑ + p↓ 1 2 3 −2 2 3 4 −2

ν = p/(2sp + 1) 1/3 2/5 3/7 2/3 2/5 3/7 4/9 2/3

S/(n/2) 1 1 1 1 0 1/3 1/2 0

the result as a trial wavefunction for the ground state at filling ν = p/(2sp + 1) (18). This reproduces

exactly the Laughlin wavefunction and at other fractions it gives wavefunctions with very high overlap with

ground states calculated numerically by exact diagonalization.

There are two central reasons why this approach is very popular. On one hand, it gives a simple single-

particle picture of what is going on in the highly correlated many-body problem. On the other hand, it offers

explicit formulae to work with since it is easy to write down a wavefunction of p full Landau levels. A very

pleasant feature of this approach is that it allows to incorporate easily the spin of electrons [77]. Take p↑

of full Landau levels with spin up and p↓ of full Landau levels with spin down. These Landau levels are

then called composite fermion Landau levels. The magnetic field felt by the CF, i.e. the field corresponding

to filling factor νCF = p is called effective magnetic field Beff . It is weaker than the magnetic field B
corresponding to the electronic state at ν (18).

Note, that the filling factors in (18) are all in range ν < 1
2 . For 1

2 < ν < 1, Jain et al. [77] suggest the

idea of antiparallel flux attachment: the effective field Beff is antiparallel to the real field B, however, the

additional flux quanta are added in parallel to B i.e. antiparallel to Beff . In terms of (18) this means p → −p
or ν = p/(2sp − 1).

Examples of ground state candidates and their polarization provided by Jain’s composite fermion theory

are given in Table 2 (see [12] for a review regarding ground states with various spins).

1.4.3 Composite fermions à la Shankar and Murthy (Hamiltonian theory)

The Hamiltonian theory of FQHE (Shankar and Murthy [54]) builds on previous works of Jain and those

concerning the CS transformation, quoting words of its authors, it combines the strengths of the both

theories.

It provides a projected Hamiltonian of the lowest Landau level which scales only with the Coulomb

interaction. In addition to each electron a new independent object is introduced: a pseudovortex. Its definition

on the level of commutation relations (Eq. 129 in [54]) assures, that if an electron goes around a pseudovortex,

it picks up the phase of 2π 2s i.e. it has the same effect as an insertion of 2s flux quanta. Note however

that it is not a zero of the wavefunction. The projected Hamiltonian is written in coordinates which are a

combination of the electron and pseudovortex position (Eq. 138 in [54]). This combination is then called

composite fermion coordinate.

For this Hamiltonian an ansatz for a ground state can be written down. At filling ν = p/(2sp + 1), it is

p Landau levels filled with CF. It is then possible to evaluate their Hartree-Fock energies.

The first substantial success of this theory is that it produces the correct scaling of spectra within the

lowest Landau level (∝
√

B). Compared to Jain’s theory, it keeps track of the fact that the two fluxes (which

sit exactly at each electron in the Laughlin state) can be only loosely bound to electrons. This is owing to the

dynamical degree of freedom given to the pseudovortices. On the other hand, the electronic coordinates are
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14 K. Výborný: Spin in fractional quantum Hall systems

actually the only really independent ones, for instance in the Laughlin wavefunction, all the zeroes (zi −zj)
are expressed in terms of electronic coordinates. Thus, the price we must pay for the extension of the Hilbert

space is that we must perform a projection to the space of physical states at the end.

Nevertheless, this does not seem to be a substantial problem and thus the Hamiltonian theory is probably

the most advanced achievement in an effort to understand the many-body physics in the FQHE.

1.5 How to test the CF theory?

The concept of flux attachment (Sect. 1.4) provides a well-understandable model of the FQHE. However

transparent it seems at the first look, predictions based on it must be tested against a model which contains

less approximations. Exact diagonalization (ED) is a good choice for this purpose. In exchange for extensive

numerics to perform, the only substantial approximation of the method is to take a finite instead of an infinite

system.

The main part of this section concerns the exact diagonalization (ED) [13]. It is definitely not the only

numerical method used in the context of the FQHE. Some numerics is at the end of nearly any method

as soon as many-body problems are concerned, be it a Hartree-Fock treatment of CFs or Monte Carlo

simulations of the Laughlin state mapped onto a one-component plasma.

We take the complete many-body Schrödinger equation but confine the interacting electrons moving

actually in an infinite plane onto a compact (i.e. finite-sized) surface, possibly without edges. The standard

choices are a sphere [29], a torus (square with periodic boundary conditions) [80] and a disc [47] (see

Yoshioka [79] for an overview). Although these manifolds are locally flat and therefore with growing system

size a convergence towards infinite-plane results can be expected, they all break some of the symmetries

of the infinite plane. For instance, the sphere keeps the angular momentum while the torus retains the

translational symmetry. In any case, the hope is that effects inflicted by the finite size can be separated

from those generic to a two-dimensional electron gas. Another usual yet not necessary approximation is

to neglect Landau level mixing, i.e. restriction to the lowest Landau level only. Also note, that there is a

long way from an ideal 2D system which study here, to the experimental reality (impurities, effective mass

approximation, finite thickness of the 2D electron gas etc.).

1.5.1 Torus boundary conditions

One possibility to model an infinite plane by a finite manifold without edges is a rectangle with area a · b
with periodic boundary conditions (PBC). Topologically, this is the same as a torus, although it is better to

stay with the former picture for the sake of twisted PBC, even if we sometimes use the word “torus” as a

shortcut for this model.

What are the single particle states of the lowest Landau level in this case? Recall (3) where single-particle

states complying with translational symmetry along y are given

ψ0,k′
y
(x′, y′) = exp(−ik′

yy′) exp

[
− 1

2
(x′ + k′

y)2
]

,

primed variables are in units of magnetic length, x′ = x/ℓ0, k′ = kℓ0. Periodic boundary conditions along y
admit only discrete values of k′

y = (2πℓ0/b)j with j integer. The wavefunction is centered in the x-direction

around Xj = kyℓ20 and if we require Xj to lie within [0; a), we have 0 ≤ −k′
y < a/ℓ0. Thus, up to a sign,

0 ≤ j <
ab

2πℓ20
≡ m . (19)

Equation (1) with L2 = ab implies that ab/2πℓ20 is equal to the number of magnetic flux quanta (Φ/Φ0)

which pass through the rectangle and by virtue of (19) it must be an integer. This brings us to the central

insight that there is only a finite number m = Nm of states in a square with periodic boundary conditions
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(subject to magnetic field and discarding all but the lowest Landau level) and that the size of the torus

(area in units of ℓ20) can be measured by the number of magnetic flux quanta Nm penetrating the torus:

ab = 2πℓ20Nm.

States ψ0,k′
y
(x′, y′) shown above are not periodic in the x direction and this can be accomplished by

periodic continuation: ψ(x, y) → ψ(x, y) + ψ(x + a, y) + . . . . The (non-normalized) single particle states

we will be dealing with are thus [78,80,81]

ϕj(x
′, y′) =

∞∑

k=−∞

exp

[
iy′

(
j

m
+ k

)
ζ − 1

2

(
x′ −

(
j

m
+ k

)
ζ

)2
]

, ζ =

√
a

b
· 2πm (20)

with j = 0, 1, 2, . . . , m − 1. These states constitute the single-particle basis of the lowest Landau level.

Twisted boundary conditions. Consider what happens if we require the modulus of ψ rather than ψ itself

to be periodic, similar to Bloch’s theorem. Thus, the wavefunction may acquire a non-trivial phase when

going once around the torus. Mathematically, this can be described using the magnetic translation operators

(5)

T (aex)ψ = exp(iφx)ψ , T (bey)ψ = exp(iφy)ψ . (21)

Fixing phases φx, φy , the correct (non-normalized) periodic single particle states are

ϕj(x, y) =
∞∑

k=−∞

exp(ikφx)t(kaex)︸ ︷︷ ︸
T (kaex)

exp

[
− i

Xjy

ℓ20
+ iφy

y

b

]
exp

[
− (x − Xj)

2

2ℓ20

]
. (22)

where Xj = j
m a, j = 0, 1, . . . , m − 1 and t(ξex) is an ordinary translation, i.e. an operator transforming

ψ(x, y) into ψ(x + ξ, y). For φx, φy = 0 the original result (20) is recovered. This choice of φx, φy is also

used throughout this work.

Interpretation of φx, φy . By imposing the PBC we arrived at the statement that wavefunctions must be

centered (along x) at Xj = (a/m) · j, j = 0, 1, . . . There is no a priori reason for the point x = X0 = 0 to

be more important than x = X0.5 = (a/m) · 0.5 which is not among the just mentioned Xj’s. By varying

φx, the set {X0, X1, . . .} = (a/m){0, 1, . . .} is transformed into (a/m){0 + φx/2π, 1 + φx/2π, . . .}.

Thus, sweeping φx from 0 to 2π, we probe all points between 0 and a in the x direction. Independently

on this, we may sweep through all ky points in the interval [0; 2π/b] by changing φy . Thus, φx and φy are

analogous to lattice wavevectors within the first Brillouin zone in an ordinary periodic system defined by

ordinary rather than magnetic translations.

In summary, by considering only a finite system, we have only m states to probe the whole plane (i.e.

[0, a] in x and [0, 2π/b] in y). Sweeping φx, φy from 0 to 2π we can access an arbitrary point in the plane.

Another interpretation of φx, φy was given by Tao and Haldane [71] in terms of additional magnetic

fluxes. These come from two ideal anuloids (closed solenoids): one goes inside the torus and another

around the torus outside. (h/e)(φx,y/2π). It was also shown [31,36] that φx increasing linearly in time acts

as a homogeneous electric field in x direction.

General basis of single-particle states on a torus: complex coordinates. A precise discussion of one-

particle states on a torus including the phases φx, φy was first given by Haldane and Rezayi [31]. They

showed that the most arbitrary state is

ψ(x, y) = exp(− 1
2 x2) · exp(ikz)

m∏

l=1

ϑ1

(
π

z − zl

b
|i
)

︸ ︷︷ ︸
analytic

, z = x + iy (23)
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Fig. 4 One possible one-particle state on a torus pierced by three flux quanta (i.e. m = 3). (a) Modulus.

(b) Phase.

where ϑ1(u|τ) is an elliptic theta function ( [28], p. 921), k is a real number in the range |k| < πm/b and

zi are some fixed complex numbers within the rectangle [0, a] × [0, b]. In the terminology of (22), these

states correspond to any j and any φx, φy . The most important things to know about the theta functions are

that it is analytic, that ϑ1(z − zl|i) ∝ z − zl for |z − zl| → 0 and that zl is its only zero in the rectangle. In

this form, it is also clear that m is equal to the number of flux quanta in the elementary cell (the rectangle).

Going once around the rectangle, the wavefunction gathers a phase of 2π× number of zero points inside.

That number is just m, each factor in (23) contributes by a single zero.

By choosing fixed φx, φy , there arise m possible choices for the values of k and z0 =
∑

l zl, say

j = 0, 1, . . . , m − 1. For each pair (k, z0) we can construct one function of the form (23) and the resulting

m functions will constitute a basis of the lowest Landau level, just as the basis in (22). There is naturally a

large freedom in choosing one particular basis. This happens by choosing some particular position of the

zero points zl’s while observing the constraint on z0. The basis in (22) can be obtained from (23) by putting

the zeroes on a line, zl = i · bl/m + j/ma and choosing k = (2π/b)j for the state ϕj with φx = φy = 0.

Even though it is by far not obvious in (22), Fig. 4 shows a 2D plot of one of such functions.

In principle, the wavefunctions in (23) are very similar to those obtained in the circular gauge (4) except

for substituting z by ϑ1(z|i). This is a manifestation of the fact, that even on a torus, circular symmetry is

approximately preserved at short distances and deviations occur first when ϑ1(z|i) deviates from z at larger

distances. One could say, ϑ1(z|i) is the function f(z) = z adapted to the torus i.e. deformed to comply

with periodic boundary conditions.

On the other hand contrary to the infinite plane, each single-electron wavefunction on a torus has as

many zeroes as there are flux quanta passing through the torus.

1.5.2 Many-body symmetries on a torus

Center-of-mass. What changes if we consider n-body states instead of single-particle ones [31]? Given

the considered Hamiltonian (32), the most obvious symmetry is the separation of center-of-mass and relative

part of the wavefunction

Ψ(z1, . . . , zn) = ΨCM (Z)ψrel , Z = z1 + . . . + zn . (24)

The center-of-mass part is just a one-particle wavefunction. Hence it must have the form shown in (23).

Haldane and Rezayi [31] showed that it has q zeroes in the region [0; a] × [0; b] for filling factor ν =
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Ne/(qNe). Again as for single-particle states, there are q basis states for ΨCM . Since the energy does not

depend on the center-of-mass position in a homogeneous system, these three states will lead to degenerate

many-body states, provided ψrel remains the same.

This introduces a delicate topic. The electron density in a given state depends on the center-of-mass part

of the wavefunction. Different choices of bases in the q-fold i.e. threefold for ν = 1/3, degenerate space

of center-of-mass wavefunctions may lead to a q-tuple of states with practically homogeneous density in

some cases or with quite strongly varying density in other cases (Fig. 5). This is true in spite of that we

always describe the same ground state subspace. Even worse, in homogeneous systems we often want to

study only the relative part of the wavefunction, which must be the same in all cases. If it is for example the

Laughlin wavefunction, we know that it leads to a homogeneous density. The central trouble is then that

the Hamiltonian eigenstates obtained by exact diagonalization contain ΨCM .

Relative-motion part of the wavefunction. The discussion in the previous paragraph is based on (mag-

netic) translations of the center-of-mass TCM (u ). In an n-body state, the translation of a single (i-th)

particle (Sect. 7.2 in [13]), ti(v ), can be split into a translation of the center of mass TCM (v /n) and a

relative translation Trel,i(v − v /n). Owing to the indistinguishability of particles, the effect of the relative

translation ti(v ) on a particular many-particle state is the same for any i. We may thus omit the index and

imagine i = 1, for instance.

Again, as in Bloch’s theorem, wavevector k r can be attributed to these relative translations [30]

Trel(v )ψ = exp(ik r · v )ψ . (25)

Since Trel(v ) commutes with the Hamiltonian (32), the Hamiltonian eigenstates can be sorted according

to values of k r. In Bloch’s theorem, the allowed translations are given by an arbitrary lattice vector v . Not

all of them are allowed for Trel though [30].

This concept is very similar to a single particle in a periodic potential. However, there is no real periodic

potential in an infinite plane and we introduced one particular period artificially. The largest period possible

within our model is the size of the rectangle.

The Brillouin zone for k r is rectangular (Fig. 6) and its size grows with the size of the elementary cell.

For filling factor ν = p/q (p, q with no common divisor > 1) and number of flux quanta per cell Ns = Nq,

the allowed values of k r are

k rℓ0 =

√
2π

Nsλ
(s, t) , |s|, |t| ≤ N/2 and integer. (26)

The quantity λ is the aspect ratio. For the sake of comparison between systems of different sizes we will

sometimes use size-independent units for k r, where k̃ r = (π, π) means the upper right corner of the

Brillouin zone, i.e. s = t = N/2.

It can be verified ( [13], p. 169), that application of the operator

CDW:
∑

j

exp(iq · r i) , or SDW:
∑

j

S+
j exp(iq · r i) (27)

to an arbitrary state corresponding to k r increases its wavevector k r by q . On the other hand, the operator

(27) generates a charge-density wave (spin-density wave) with wavevector q , as can be best verified by the

simple example of the Fermi gas. Isotropic states are supposed to have k r = 0.

The wavevector k r for states on a torus is also related to the angular momentum of the corresponding

states on a sphere or on a disc, |k r| = (|L |/�)/R, where R is radius of the sphere [13,29]. The direction

of L (or alternatively Lz , for instance) is related to the direction of k r: for example a plane wave going

around the equator specified by the wavevector k r will have L pointing to the pole and Lz = �|k r|R.

This correspondece allows to directly compare spectra for FQH states obtained for different boundary

conditions [32] and this, in turn, helps to sort out the finite size effects.
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Fig. 5 Two different bases for ΨCM , (a) and (b). At filling ν = 1/3 there are three allowed CM states on a torus.

They are labeled α, β, γ in this figure. For each element of each basis we show the modulus of ΨCM , the density of the

corresponding Laughlin state with six electrons, i.e. the state ΨCMΨL, and section of the density along x and along

y. Note the positions of the three zeroes in different ΨCM ’s (marked by the red arrows). (a) A basis leading to more

inhomogeneous densities. (b) A basis leading to less inhomogeneous densities.

Momentum. So far, we have introduced two sorts of translational symmetries of states on a torus. One

of the center-of-mass part of the wavefunction and another of the relative part. Since the corresponding

magnetic translation operators commute with the homogeneous Hamiltonian, it would, in principle, be

possible to split the basis of the whole lowest Landau level into several smaller bases and diagonalize in the

subspaces separately. Each basis would be characterized by a particular value of k CM and k r.

This procedure can help to treat larger systems but it costs some extra effort to implement it and moreover

it is only possible in homogeneous systems. We will now discuss another of Hamiltonian’s symmetries,

described by a new quantum number J , which is a combination of the previous two. This symmetry is
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Fig. 6 The first Brillouin zone for relative translations on the torus (square with periodic boundary conditions). Its

size depends on the number of particles in the system, cf. (26). At filling factor ν = p/q with Ne = Np particles (and

Nm = Nq fluxes), number of allowed k r-points is N2 and the upper right corner has k r = γ(π, π), γ =
√

N/2πq/ℓ0.

Different colours indicate points of different symmetry (or degeneracy number of a state with this k r in a homogeneous

system), the rightmost figure shows the limit of large N .

preserved with a certain class of inhomogeneities and it can be implemented straightforwardly. When

constructing the basis for a particular value of J , we only have to select the matching Slater determinants

(30) rather than to construct linear combinations of them.

The homogeneous Hamiltonian in the Landau gauge (i is the particle index, Vint is the Coulomb inter-

action between particles)

H = Vint +
∑

i

Hi
0 , H0 =

1

2
�ω

[
− ∂2

∂x′2
+

(
−i

∂

∂y′
+ x′

)2
]

, (x′, y′) = (x/ℓ0, y/ℓ0)

conserves the total momentum in y direction. Due to the periodic boundary conditions allowed values of ky

are (2π/b)j, j = 0, 1, . . . , m − 1. In an n-body state constructed as a Slater determinant of single-electron

states ϕji
(20), the total momentum along y is

b

2π
Ky =

b

2π

n∑

i=1

ki
y = j1 + . . . + jn(mod m) ≡ J . (28)

Values of J thus range for instance from 0 to m − 1. It is useful to keep in mind, that ji is (up to the factor)

the point in x-direction at which ϕji
is centered, Xji

= (ji/m)a. Thus, J can also be interpreted as the

x-coordinate of the center-of-mass of the n-electron state.

Without proof, let us now present the precise connection between J and the wavevectors following from

TCM and Trel (i.e. k CM , k r). Let ν = p/q (p, q with no common divisor > 1) and m = Nq the number of

flux quanta per cell. An arbitrary J can be decomposed into two parts

J = JCM · N + Jrel , |Jrel| ≤ 1
2 N , JCM integer, (29)

i.e. Jrel is J modulo N and JCM is J divided by N . The quantity Jrel is directly the y-component of k r,

more precisely, Jrel = t or Jrel = N/2 − t in (26), the former for pq(n − 1) even, the latter for pq(n − 1)
odd [13].

JCM distinguishes states which differ only in the center-of-mass coordinate. By a successive application

of TCM to one state Ψ we can go through all possible values of JCM = 0, 1, . . . , q − 1.

Each subspace with definite J contains states of all different kr
x. Since Trel by allowed translation vectors

commute with the total momentum along y, it is in principle possible to split a basis corresponding to a

particular J into subspaces with kr
xℓ0
√

N/2π = −N/2, . . . N/2. However, the basis state will no longer

have the simple form of antisymmetrized product states of ϕj (20).
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1.5.3 Exact diagonalization

Many interacting electrons in a rectangle with periodic boundary conditions can be described in the following

way.

• Choose the number of flux quanta penetrating the rectangle (m). All allowed single-particle states ϕj

are those written in (20) or (22) for nontrivial boundary-condition phases φx, φy . Their number is m.

• Construct all possible linearly independent n-particle states (for the given number of flux quanta m).

Most conveniently, these can be antisymmetrized products (Slater determinants) of n states ϕji
, denote

them by

|j1 . . . jn〉 = a†
j1

. . . a†
jn

|0〉 . (30)

• The filling factor is then ν = n/m, cf. (1).

• Take an arbitrary many-body Hamilton operator and calculate its matrix elements in the basis |j1 . . . jn〉k,

k = 1, . . . , N . The dimension of the matrix is N =
(

n
m

)
.

• Diagonalize the Hamilton matrix. Eigenvalues are the total energiesEi, eigenvectors v i = (v1
i , . . . , vN

i )
are related to the many-body eigenstates by

H|ψi〉 = Ei|ψi〉 , |ψi〉 =
N∑

k=1

vk
i |(j1 . . . jn)k〉 . (31)

This procedure is exact if we consider a system where electrons in the lowest Landau level form a periodic

system. The approximation rests therefore in representing an infinite system by a periodic repetition of a

representative finite cell, a procedure which has been very successfully applied in condensed matter theory.

Formulated in other words: the Hamiltonian is exact and all approximations are implemented by the choice

of the basis. The dimension of the matrix is finite by construction, no cutoff for one-particle states is needed.

In the rest of this subsection we present the particular form of the Coulomb matrix elements ( [80] or [13],

Sect. 5.1).

The exact Hamilton operator in first and in second quantization is

H =
e2

4πε

∑

i<j

V (|r i − r j |) (32)

H =
∑

j

Wa†
jaj +

∑

j1,j2
j3,j4

Aj1,j2,j3,j4a
†
j1

a†
j2

aj3aj4 ,

where a†
j create single-electron states. The latter expression assumes already periodic boundary conditions.

The first sum is the Madelung-type energy of the electron interacting with its own periodic images [11]

W = − e2

4πεℓ0

1√
2πm


2 −

∑

l1,l1
(l1,l2)�=(0,0)

ϕ− 1
2

(
π(l21λ + l22λ

−1)
)

 , ϕn(z) ≡

∫ ∞

1

dt e−zttn . (33)

If only the electrons were considered, this energy would diverge at least as
∑

n 1/n. To keep it finite, a

neutralizing positive background must be considered [11].
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Choosing the single-electron basis according to (20) or (22), the interaction matrix elements are

Aj1,j2,j3,j4 =
1

2

∫
dr 1dr 2ϕ

∗
j1(r 1)ϕ

∗
j2(r 2)V (|r 1 − r 2|)ϕj3(r 2)ϕj4(r 1)

=
e2

4πεℓ0

1

2m

∑

qx=(2π/a)s
qy=(2π/b)t

s,t∈Z

(s,t)�=(0,0)

δ′
j1+j2,j3+j4δ

′
s,j1−j4

V (q )

ℓ0
exp

[
− 1

2
q 2ℓ20

]
(34)

× exp [−2πit(j1 − j3)/m] × α(j1 + j2 − j3 − j4, φy) .

with both integrals taken over the rectangle [0; a]× [0; b]. Primed Kronecker δ compares the two arguments

modulo m. The last factor α is solely due to the boundary condition phase φy

α(∆J, φy) = δJ,0 + δ∆J,m exp(iφy) + δ∆J,−m exp(−iφy) ,

and the matrix elements do not depend on φx, only the basis vectors |j1 . . . jn〉k do.

The periodic continuation of the Coulomb interaction in two dimensions is given by

4πε

e2
V (r ) =

1

|r |

∣∣∣∣
per

=
1

ab

∑

q

2π

|q | exp(iq · r ) , q =

(
2π

a
s,

2π

b
t

)
, s, t ∈ Z , (35)

hence the Fourier series of V (r ) used in (34) has V (q ) = 1/|q |.
The Hamiltonian (32) assumes spin-polarized particles. Its extension to particles which may have different

spin is straightforward, since the Coulomb interaction conserves spin [85],

H =
∑

j

Wa†
jaj +

∑

j1,j2
j3,j4
σ,σ′

Aj1,j2,j3,j4a
†
j1σa†

j2σ′aj3σ′aj4σ . (36)

operators a†
jσ must be extended appropriately. They create a particle in state ϕj either with spin up or spin

down.

1.5.4 Symmetries and choices of bases

Regarding the structure of the basis of our choice (30) there are two Hamiltonian symmetries which are

easy to use: conservation of J , total momentum along y (28) and conservation of the z-component of the

total spin Sz .

“Easy to use” means here that the basis of the whole lowest Landau level in the form of Slater determinants

|(j1σ1 . . . jnσn)k〉 can be sorted into groups corresponding to particular values of J and Sz .

Sorting according to J splits the basis into m subspaces of approximately the same size ≈ (m
n)/m.

Utilisation of Sz brings a smaller profit, since the Sz = 0 subspace is larger than the Sz = n/2 subspace

by a substantial factor of about ( n
n/2) ≈ 2n−1/

√
2πn. The size of the largest group is then not simply the

number of all states divided by the number of subspaces.

Other symmetries of the homogeneous Hamiltonian would correspond to conservation of the total spin

S2 and conservation of kr
x (Sect. 1.5.2). The eigenstates of these operators, however, are generally not

of the simple product form (30), but they are linear combinations of such states. More importantly, these

symmetries are gone if inhomogeneous systems are considered. However, suitably chosen inhomogeneities

can preserve the “easy-to-use” symmetries mentioned previously (Sect. 3.1) while still lowering the total

symmetry of the Hamiltonian.

If the aim is to choose n as high as possible, then the largest accessible systems have about ten electrons.

At filling ν = 1/3 with J symmetry employed and Sz = n/2, the basis counts 1 001 603 elements for

n = 10 and J = 5. The largest bases used in this work contained 5 × 106 elements, extremely elaborate

programs can handle bases up to sizes about an order of magnitude larger [51]. An alternative to the classical

exact diagonalization is presented in Sect. 1.5.5
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Particle-hole symmetry. Particle-hole symmetry provides a mapping between systems at fillings ν and

1 − ν (spinless electrons) or ν and 2 − ν (spinful electrons). The mapping is exact provided Landau level

mixing is absent. As an illustrative example consider fully polarized electrons i.e. only the lowest LL with

spin up is relevant, lowest LL spin down and all higher LLs are so far in energy that they can be neglected.

The spectra of a ν = 1/3 and 2/3 systems are identical up to a constant shift and the corresponding

wavefunctions are related by a simple transformation.

Think of the lowest Landau level as of a 1D chain. The Landau gauge is particularly illustrative for this

as the one-electron states (3) are localised along x. The basic idea of the particle-hole symmetry is that two

electrons at positions i and j feel the same repulsive force as two holes at the same positions, i.e. when the

whole 1D chain is full and only at i and j electrons are missing.

Let us put this into mathematical terms. Let a†
j be a creation operator of a single-electron state with

momentum ky = 2πj/b, being therefore localised in x-direction around Xj = kyℓ20 (3). Assuming that j
can take values 0, . . . , m − 1, particle-hole conjugated n-body states are

a†
j1

. . . a†
jn

|0〉 (particles) ←→ aj1 . . . ajn
|1〉 (holes), (37)

where |0〉 is an empty Landau level (vacuum) while |1〉 ≡ a†
0 . . . a†

m−1|0〉 is a completely filled Landau

level. For example a†
0a

†
2|0〉 ≡ | • · • · · ·〉 ←→ | · • · • • •〉 ≡ a0a2|1〉 = a†

1a
†
3a

†
4a

†
5|0〉.

A straightforward calculation shows that matrices of a translationally invariant two-body operator Â are

the same (up to a multiple of identity matrix and complex conjugation) in an arbitrary n-particle basis and

its conjugated (m − n)-electron basis. The only approximation we must concede is to neglect the Landau

level mixing.

Result of the calculation is the following. The diagonal terms of an operator A in the particle basis and

in the hole basis fulfil

〈1|a†
j1

. . . a†
jn

A ajn
. . . aj1 |1〉 =

m − 2n

m
〈1| A |1〉 + 〈0|aj1 . . . ajn

A a†
jn

. . . a†
j1

|0〉 (38)

and the off-diagonal terms remain the same up to the complex conjugation.

Two cases are worth of special attention:

The spectra of (fully polarized) systems at ν = n/m and ν = (m − n)/m are the same up to a shift

Ei
ν = Ei

1−ν + Ef
m − 2n

m
, (39)

where Ef is the energy of a completely filled (lowest) Landau level. This result does not depend on the form

of the interaction V (r). A nice demonstration of this formula is shown in Fig. 40b (see the comment [6]).

Conjugated states (37) may have different values of J (29). For instance: for m = 4, consider a three-

electron state |j1j2j3〉 = |013〉 and its particle-hole conjugate |j1〉 = |2〉. The former has J = 0 while the

latter has J = 2.

For the density-density correlation function gΨ(r ) = 〈
∑

i<j δ(r − r i + r j)〉Ψ we get

gΨ(r ) =
m − 2n

m

(
1 − exp(− r2

2ℓ20
)
)

+ gΨ′(r ) , (40)

where Ψ and Ψ′ are arbitrary particle-hole conjugated states. Note that gΨ′ refers to electrons in the “hole”

state. Correlations between holes in Ψ′ are the same as those between electrons in Ψ.

Note, that g(r ) in (40) is not defined in the normalized form δ(r − r i + r j)/(n(n − 1)). Also g(r ) of a

full Landau level may depend on system (finite-size) parameters, e.g. in a rectangle with periodic boundary

conditions, it depends on aspect ratio.

Let us mention that densities of particle-hole conjugated states are related by nΨ(r ) = m − nΨ′(r ),
exactly as we expect from the picture of a hole as a missing particle. The plus sign in (40) might look puzzling.

At the second glance, however, gΨ = n·n (schematically) and therefore gΨ′ = (1−n)·(1−n) = 1−2n+gΨ.
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1.5.5 Density matrix renormalization group

Exact diagonalization as it has just been presented, boasts of taking the complete basis of the lowest Landau

level on a torus. As long as the low-energy states are considered, many of the basis states will be almost

absent in the product-state expansion (31). Especially those which place many electrons close to each other

and thus contribute with a large Coulomb energy. Leaving out such states from the basis will not affect the

calculated ground state noticeably while it reduces the matrix sizes.

Density matrix renormalization group (DMRG) is a systematic method to leave out irrelevant basis states.

Roughly, its basic idea is to successively enlarge the considered system and to use only the most important

n-particle states for calculating the (n + 1)-particle ground state.

The idea was used originally for one-dimensional systems (a review in [62,63]). Shibata and Yoshioka

[64–67,82] noticed that the single-electron basis of the lowest Landau level is in principle one-dimensional

(22) and adapted this method as an extension of the exact diagonalization for studies of the lowest Landau

level. They were thus able to study systems with up to about 20 particles at fillings close to ν = 1/3.

1.6 Quantum Hall Ferromagnets

Consider the situation ν = 1 and vanishing Zeeman energy [25]. What is the ground state?

In the absence of Zeeman splitting, the lowest Landau levels (n = 0) for spin up and for spin down have

the same energy, thus, without interaction, there are 2eB/h single-electron states available with energy

�ω/2, which is the lowest energy an electron can have in the presence of a magnetic field B. Filling factor

one means that only eB/h states (per unit area) are occupied. Hence there is a vast number of degenerate

many-electron ground states without interaction.

One of these states has the form

ΨH = Φ(z1, . . . , zn)|↑↑ . . . ↑〉 .

Antisymmetry of ΨH implies antisymmetry of Φ, or in other words Φ vanishes when any zi approaches

any zj . Each particle is surrounded by a correlation hole, cf. (44). Moreover, the state ΨH is the only one

(with ν = 1 within the lowest Landau level) whose orbital part is fully antisymmetric, up to SU(2) spin

rotations. If we do not neglect the repulsive interaction between electrons, the “optimal correlation hole”

of the state ΨH will make its Coulomb energy lower than for any other ν = 1 state and ΨH becomes the

absolute ground state even at zero Zeeman energy. The long-range order in spins (all are pointing in the same

direction) which are not localised at fixed positions, e.g. as it is in a spin lattice, renders ΨH an itinerant

ferromagnetic state. In the absence of the Zeeman splitting the ν = 1 quantum Hall system constitutes an

example of a Heisenberg ferromagnet.

For Coulomb interaction, the energy cost of a single electron flip, which implies a violation of the

antisymmetry of Φ, can be evaluated analytically: E = (e2/εℓ0)
√

π/8 [25]. Quantitatively, this number is

comparable to the cyclotron energy �ω at magnetic fields in the range of few tesla in GaAs.The fully polarized

state then becomes the ground state stabilized by the huge gain in exchange energy. A spectrum obtained

by the exact diagonalization in a small system is shown in Fig. 7a. In agreement with the argumentation

above, the ground state has S = n/2 and it is well separated from excited states.

For the Pauli principle to apply (Φ vanishes as zi → zj), it is only important that all spins have the same

direction, not that they are all pointing upwards. Thus, the ν = 1 ground state is characterized by full spin

polarization (S = n/2) and arbitrary Sz . All states (S−)kΨH , k = 0, 1, . . . n are degenerate ground states.

A finite Zeeman energy will lift this degeneracy and the ν = 1 system will then have a nondegenerate

ground state ΨH , e.g. Sz = n/2 for B pointing in the z-direction.

Other types of integer quantum Hall ferromagnets are possible, but they all share the common scheme:

two degenerated Landau levels which provide 2eB/h “free places” and only eB/h of them should be

occupied. Depending on which two Landau levels are degenerate, different types of ferromagnets can

follow. A classification of possible cases was given by Jungwirth and MacDonald [39].
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Fig. 7 Spectra of two examples of quantum Hall ferromagnets (exact diagonalization, Coulomb interaction, eight

electrons). The ferromagnetic ground state occurs in both cases at k r = 0 which is a necessary condition for the

state to be non-degenerate (in orbital degrees of freedom). See Fig. 8 for an explanation of the choice of Landau level

indices and spins of involved levels (n, σ). (a) The ν = 1 QHF: (0, ↑) and (0, ↓) levels are active, the rest is empty.

A Heisenberg ferromagnet. The SU(2) spin symmetry is manifest in the degeneracy of all possible Sz states for one

given S. (b) The ν = 2 QHF: (0, ↑) and (1, ↓) levels are active, (0, ↓) is full and treated as inert, the rest is empty.

An Ising ferromagnet. The Z2 symmetry implies that only Sz and −Sz levels are degenerate; S is no good quantum

number. Ground state energy was shifted to zero.

Let us introduce one more example, the ν = 2 QHF which turns out to be an Ising type ferromagnet (see

also Jungwirth et al. [40]). By changing the ratio between Zeeman and cyclotron energy, (n, σ) = (0, ↑) and

(1, ↓) Landau levels can be brought to coincidence (Fig. 8). Experimentally, this can be accomplished either

by changing the g-factor (it decreases with pressure [14] or by tilting the magnetic field [17] (cyclotron

energy depends only on the component perpendicular to the 2DEG plane, Zeeman energy depends on the

total field). The low lying (0, ↓) Landau level is fully occupied (eB/h states) and can be taken as inert. The

remaining eB/h states (giving in total ν = 2) can be distributed among the 2eB/h available places of the

two crossing Landau levels (Fig. 8). Contrary to the ν = 1 QHF, there are only two ground states now: either

(0, ↑) is full or (1, ↓) is full (Fig. 7b). To obtain this result we should use the exact diagonalization because

of the large degeneracy present when interaction is switched off. However, the fact that distributing the

electrons between the (0, ↑) level and the (1, ↓) level costs extra energy (compared to placing all electrons

into one of the levels), is probably a consequence of the fact that spin up orbitals are not the same as spin

down orbitals [39] as they lie in different Landau levels.

For a more detailed discussion of spectra of a Heisenberg and an Ising QHF (Fig. 7), see in Sect. 2.3.3.

Quantum Hall ferromagnets which occur at integer filling factor have the advantage that they can often

be well described by Hartree-Fock models, at least as far as the ground state is considered. Even here,

exact diagonalization studies can sometimes unveil unexpected ground states, as shown by Nomura [56] in

bilayer systems (spin degree of freedom is substituted by pseudospin which refers to the two layers).

The principial question which is addressed in this thesis is, whether quantum Hall ferromagnetism can

also occur at fractional filling factors. Naively, one may expect that phenomena occuring for electrons

(integer ν) would also occur for the CF (fractional ν). The Coulomb energy (of CF cyclotron energy) would

take over the role of the cyclotron energy within the integer QHF. A pleasing fact is that now the ratio of the

CF cyclotron energy and the Zeeman energy is B-dependent, so that the coincidence of the CF LL can be

induced just by adjusting B at a given filling factor. Experimentally, there are strong hints on the existence

of ferromagnetism even at fractional fillings [21,68] and this work should contribute to the understanding

of these phenomena from the side of theory.
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Fig. 8 Integer quantum Hall ferromagnets occur when two cross-

ing Landau levels should be only half-filled (2eB/h free states, eB/h
electrons to occupy them).Thick (thin) grey levels indicate completely

filled (empty) Landau levels, the pair of black levels are the “active”

ones. Despite the large number of possibilities of how to distribute

electrons in the two levels, the Coulomb interaction selects (up to de-

generacy in Sz) one state. Depending on which Landau level crossing

is active, different types of ferromagnets occur (columns left to right):

Heisenberg type for ν = 1, Ising type for ν = 2, 3.

2 Structure of the incompressible states and of the half–polarized states

2.1 Basic characteristics of the incompressible ground states

Being interested in phenomena occurring at the transition between two incompressible ground states, the

spin-polarized and the singlet one, it is reasonable to get acquainted with these two ground states first.

In the very illustrative model of non-interacting composite fermions (NICF), introduced in Sect. 1.4.2,

the ground state at electronic filling factor ν = 2/3 = 2/(2 · 2 − 1) corresponds to two completely filled

composite fermion Landau levels (LL). If, in some particular situation, the CF cyclotron energy is smaller

than the Zeeman splitting, these will be the n = 0, ↑, n = 1, ↑ CF Landau levels and the ground state will be

fully spin polarized, Fig. 9a. If the ratio between Zeeman and CF cyclotron energies is reversed, the ground

state has n = 0, ↑, n = 0, ↓ CF Landau levels filled and is therefore a spin singlet, cf. comment [3]. Here,

the CFs are electrons with two flux quanta attached antiparallel to the effective magnetic field Beff [77],

which leads to a minus sign in the denominator of the CF filling factor (18).

A similar situation, i.e. occurrence of two incompressible ground states, the singlet and the polarized

one, occurs also at filling factor ν = 2/5. Here, the ground state can be interpreted as two filled CF LLs

where the two flux quanta were attached parallel to Beff . Thus, these ground states should be completely

equivalent to the ground states at ν = 2/3 within the NICF approximation.

Let us compare this picture of an infinite two-dimensional system with a finite system treated exactly.

Looking at the exact spectra of a ν = 2/3 and a ν = 2/5 finite system, Fig. 9b, we readily recognize ground

states in the S = 0 and the S = N/2 sector which are well separated from excited states, as compared

to the typical level separation within the excitation spectrum or in subspaces with other values of the total

spin. Also, as the NICF model predicts, the spin singlet ground state (n = 0, ↑, n = 0, ↓) has a lower energy

E(S = 0) than the polarized one (n = 0, ↑, n = 1, ↑), E(S = N/2) if the Zeeman energy is set to zero.

Both ground states have k r = (0, 0) which corresponds to L = 0 in a system with circular symmetry,

Sect. 1.5.2. Angular momentum equal to zero is in turn a property inevitable in any state with no partially

filled Landau levels, corresponding argumentation is analogous to the comment [3].

It should be emphasised at this place that however strong support for the NICF model these findings

provide, they cannot be taken as a proof of its complete correctness. The interacting electrons cannot be

exactly mapped to non-interacting CFs and even the quality of the approximation is hard to control.Although

the NICF model gives correct answers to questions indicated above, there is no guarantee of correct answers

in other cases, especially at other filling factors. In the following, we will continue discussing properties of

both incompressible states at ν = 2/3 and of those at ν = 2/5 as calculated by exact diagonalization and

we will occasionally mention links to composite fermion theories.
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Fig. 9 Ground states at filling factors 1/3, 2/5 and 2/3 from the point of view of a composite fermion picture and the

exact diagonalization. (a) Systems at filling factors ν = 1/3, 2/3 and 2/5 correspond to νCF = 1, 2 and 2 within the

non-interacting CF picture. The composite fermions (CF) are electrons with two magnetic flux quanta attached parallel

(for ν = 1/3, 2/5) or antiparallel (for ν = 2/3) to the effective magnetic field Beff (but always parallel to the real

external field B). When Zeeman splitting is increased, crossings between CF Landau levels occur and spin polarization

of the ground state changes. (b) Energy levels of 8 particles on a torus at filling factors 2/3 and 2/5 without Zeeman

splitting (short-range interaction, see Sect. 1.3). Note the large excitation energies (related to the incompressibility gaps)

for the ground states at S = 0 and S = 4, as compared to other inter-level separations.

2.1.1 Densities and correlation functions

Having computed a many-particle wavefunction numerically usually does not automatically mean that we

can say much about the nature of the state it describes. Very often, the only statement to be made is that the

state is highly correlated, or entangled. By this we mean that the state cannot be written as a single Slater

determinant, not even approximately, and thus its description goes far beyond any Hartree-Fock model.

In order to learn more about the state it is apt to evaluate expectation values of observables such as

density or density-density correlation functions. In the first quantization formalism these are the following

operators

n̂(r ) =
∑

i

δ(r − r i) , ĝ(r ) =
1

Ne(Ne − 1)

∑

i �=j

δ
(
r − (r i − r j)

)
, (41)

summations running over all particles in the system. For inhomogeneous systems it is also useful to consider

an unaveraged density-density correlation operator

ĝ(r ′′, r ′) =
1

Ne(Ne − 1)

∑

i �=j

δ(r ′ − r i)δ(r
′′ − r j)

)
,

where an average over r ′′ gives (41). This is the probability density of finding a particle at place r’ provided

there is a particle at place r ′′. The function ĝ(r ) is just ĝ(r + r ′, r ′) averaged over all r ′, hence g(r ) ∝
g(r + r ′, r ′) for homogeneous systems, i.e. both quantities are the same up to a proportionality constant.

For not fully spin polarized states it is also useful to watch quantities n̂↑(r ) or ĝ↑↓(r ) and its analogues

with other spin indices. For example

ĝ↑↓(r ) =
1

Ne(Ne − 1)

∑

i �=j

δσi↑δσj↓δ
(
r − (r i − r j)

)
. (42)
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Fig. 10 Density-density correlation in a free 2D electron gas and in magnetic field at integer filling factors

(spin-polarized electrons).

The normalization of density and density-density correlation functions we chose in (41,42) is the following:
∫

dr n(r ) = Ne ,

∫
dr g(r ) = 1 ,

∫
dr gσσ(r ) =

Nσ(Nσ − 1)

Ne(Ne − 1)
, σ ∈ {↑, ↓} , (43)

where integrals are taken over the whole system i.e. elementary cell.

As long as homogeneous systems are concerned we naturally expect density and also polarization to

remain constant. For the incompressible states this is true only up to finite size effects. The density shows

a slight modulation which decays rapidly as the system size is increased. Discussion of these effects which

have no relevance for the real infinite 2D system will be presented later, Sect. 2.1.4.

In the following, by g(r) we mean g(r ) with r = |r | for isotropic and homogeneous systems. Also,

whenever we will speak about “correlation functions” we mean equal time density-density correlation

functions.

Fully occupied Landau levels. The density-density correlation function can be analytically evaluated for

a state with ν = n fully occupied Landau levels [41]. This is the ground state of non-interacting electrons

at integer filling factor. For the spin polarized case,

g(r) = 1 − 1

n2
exp

(
− (rkF )2

4n

)[
L1

n−1

(
(rkF )2

4n

)]2
. (44)

Here Lα
n(x) are the associated Laguerre polynomials [7,28]. In particular,

ν = 1 : gν=1(r) = 1−exp

(
− r2

2ℓ20

)
, ν = 2 : gν=2(r) = 1−exp

(
− r2

4ℓ20

)
· 1

4

[
2− r2

4ℓ20

]2
(45)

The Fermi wavevector kF for a system subjected to a perpendicular magnetic field is defined as kF in

exactly the same system (i.e. the same areal density of electrons) just with magnetic field switched off. In

this scheme

(kF ℓ0)
2 = 2ν , or kF =

√
2νℓ−1

0 . (46)

It is a pleasant news that by taking the limit ν = n → ∞ in (44) we obtain

gFS(r) = 1 −
[

2

kF r
J1(kF r)

]2
, (47)

which is the correlation function of free electrons in two dimensions (Fermi sea). It should not be anything

else because ν → ∞ with kF kept constant means that B is decreased to zero at a given areal density of

electrons.
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ν = 1
3 ν = 2

5 Water

Fig. 11 Left and middle: Correlation functions of the ground states of 50-60 particles at filling factors 1/3 and 2/5
of the principal Jain’s sequence, ν = p/(2p + 1) (cf. Sect. 1.4.2). The wavefunctions (WF) predicted by composite

fermion theory were taken (for ν = 1/3 this is identical with the Laughlin WF) and g(r) was calculated by a Monte

Carlo method. Taken from [41]. Right: correlation function between oxygen atoms in liquid water as an example of a

density-density correlation function in a well-known liquid (see text on p. 30). Results of both numerical simulation

and experiments are shown, see the original paper by Allesch et al. [8] for details.

Filling factor ν = 1/3. Provided Landau level mixing is absent and considering only the short-range

interaction between particles (Sect. 1.3), the ground state at filling factor ν = 1/3 is described by the

Laughlin wavefunction ΨL(z1, . . . , zn), (7). Up to my knowledge, no closed [2] analytical expression

of the correlation function in this state is available. Only the short range behaviour can be determined

analytically. For (z1 − z2) → 0, |ΨL|2 vanishes proportional to (z∗
1 − z∗

2)3(z1 − z2)
3 = |z1 − z2|6, hence

g(r) = cr6 + o(r6) for r → 0.

Numerically, 〈ΨL|g(r)|ΨL〉 can be evaluated by various Monte Carlo techniques, Fig. 11. These results

are closer to the thermodynamic limit, referring to larger numbers of particles, than g(r) which can be

obtained from exact diagonalization, Fig. 12. This is however only because we know an analytic WF of the

GS for arbitrarily large systems in this case, ΨL. Exact diagonalization can be performed only for systems

with Ne � 10 electrons, but it is not necessary to know anything about the ground state in advance apart

of that it lies in the lowest Landau level. Therefore, exact diagonalization provides us a way to confirm

that ΨL is indeed the ground state or a good approximation to it, e.g. for Coulomb-interacting electrons.

Note also that Figs. 12 refer to electrons on torus whereas Fig. 11 refers to the disc geometry. Indeed, the

correlation functions are very similar in both geometries, compare Fig. 12(b) and Fig. 11. This fact supports

the hypothesis that the corresponding states, ΨL on a disc and those on tori, are universal and hence basically

the same as the ground state in an infinite 2D system.

The correlation function g(r ) in Fig. 12 is rather isotropic, at least on distances smaller than a/2. This

distinguishes the Laughlin state from a Wigner crystal (Sect. 2.4.1) or a unidirectional charge density wave

in which some special directions exist, Sect. 2.1.3. This fact motivates also the incompressible liquid termi-

nology. Regarding the distinction between liquids and gases, the difference is the strength of interparticle

interaction. Whereas negligible in gases, the interaction in liquids is strong compared to kinetic energy. In

the lowest Landau level, kinetic energy is zero, or better a constant �ω/2.

The first maximum in g(r) occurs at r1 ≈ 4.4ℓ0, Fig. 12b, and this separation can be taken as a

typical interparticle distance in the Laughlin state. This distance lies close to the mean interparticle distance

determined by the filling factor, rmean/ℓ0 =
√

2π/ν ≈ 4.35 (1).

After r1, oscillations in g(r) decay rapidly. The overall form of g(r) in the Laughlin state clearly differs

from the correlation function of a free 2D Fermi gas (47). We will emphasise three aspects.
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Fig. 12 Correlation functions in the ground state of Ne electrons on a torus (square, length of sides

a = b, with periodic boundary conditions) at filling factor ν = 1/3. The function g(r ) gives the probability

of finding an electron at position r = (x, y) provided there is an electron sitting at r ′ = (0, 0). For a

homogeneous system the choice of r ′ does not influence the probability distribution of finding the second

electron. (a) Ne = 10. Due to the absence of circular symmetry on the torus, g(r ) is in general not only a

function of r = |r |. For |r | ≪ a, g(r ) is however quite isotropic, Fig. 12b inset. The first electron is sitting

at the corner, the four corners are identical owing to the periodicity. The lower plot differs from the upper

one only by a finer z-scale which highlights the structures in g(r ) at larger distances. (b) Section of g(r )

for Ne = 5, 8, 9, 10-electron ground states along r = (x, x); the perfectness of match to g(r) in Fig. 11

gives us a feeling how little the ground state is affected by the finiteness of the system. It is noteworthy that

g(r) can be astonishingly well fitted by the [gFS(r)]3 (47) up to distances beyond the first maximum (up to

vertical scaling, only kF must be fitted, see the text). Inset: sections along diagonal and side of the square,

i.e. g(x/
√

2, x/
√

2) and g(x, 0) for the Ne = 10 system. The good match of the two curves as far as well

beyond the first maximum (≈ 6ℓ0) indicates that the isotropy on length scales < 6ℓ0 is not much affected

by the rectangular geometry (periodic boundary conditions).

(i) Laughlin state, Fig. 12b: the first peak of g(r) is relatively high, measured for instance by ratio

g(r1)/g(a/
√

2) � 1.1. Here a/
√

2 ≈ 10ℓ0 is the maximum interparticle distance in the considered finite

system.

2D Fermi gas, Fig. 10: the first structure of g(r) is about ten times weaker. Here, it is more appropriate

to watch the depth of the first minimum, see (ii).

(ii) 2D Fermi gas: all maxima (at ri
FS) of g(r) have the same value, g(ri

FS) = 1. Laughlin state: the first

maximum g(r1) ≈ 1.1 (for Ne → ∞) is much higher than other maxima.

(iii) 2D Fermi gas: g(r) ∝ r2 for r → 0. This is purely the effect of Pauli exclusion principle. Mathe-

matically, it comes from the antisymmetry of the wavefunction Ψ, in other words, Ψ is a Slater determinant.

Laughlin state: g(r) ∝ r6. This is a manifestation of correlations in the state, i.e. of the fact that ΨL

cannot be written as a single Slater determinant. g(r) ∝ r6 also means that any two electrons avoid being

close to each other very efficiently and this helps to minimize the Coulomb energy which is high at short

inter-particle distances [32], Sect. 1.3.3.
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Just as an illustration, a correlation function g(r) of liquid water is shown in Fig. 11, right. Of course,

it is not possible to directly compare water and a 2D electron gas in the fractional quantum Hall regime.

Nevertheless, the pronounced structures in g(r) beyond the correlation hole in the Laughlin state, Fig. 11

left, are definitely more similar to g(r) of liquid water, Fig. 11, right, rather than to g(r) of a 2D Fermi gas,

Fig. 10.

The Laughlin state, Fig. 12b, also differs from integer filling factor states apparently, Fig. 10. The latter

ones (i = 1, 2, . . .) namely have always gν=i(r) ∝ r2 at r → 0. Also gν=i(r) has exactly i − 1 maxima,

i.e. gν=1(r) is free of maxima.

This demonstrates the fact, that in the νCF = 1 composite fermion (CF) state, which is the model of

the ν = 1/3 electronic ground state (Sect. 1.4), the electron-electron correlations are different to those in

a ν = 1 electronic state. This is a bit counterintuitive, since the CFs were created by adding two zeroes

to electrons in the ν = 1 state and we could have therefore expected that the electrons “remained at their

original positions” under this transformation. Figures 12b and 10 however show that even though the CF

density equals the electronic one the electron-electron correlations are different in both states.

On “intermediate length scales” (1 to 5 magnetic lengths), the correlation function of the Laughlin state

g(r) in Fig. 12b can be strikingly well fitted by

c · [gFS(r)]3 , (48)

where gFS(r) is the correlation function of a free 2D Fermi gas, (47). Herefore, we put kF ≈ 0.874ℓ−1
0

which is only by about 7% more than what we would expect for filling factor ν = 1/3, (46).

The quality of the match relies on the choice of m = 3 for the exponent in Expr. 48 (for r → 0) and

on the fitting constants c and kF (around r ≈ r1). The surprising fact is therefore only the good match

between r = 0 and r = r1. Also note that long-range (r ≫ r1) behaviour of expression (48) and of g(r) of

the Laughlin state are different. This again emphasises the differences between the Laughlin state and the

Fermi gas. Expression (48) provides therefore only another representation of the exchange hole, parallel to

approximate formulae given e.g. by Girvin [24].

In conclusion, we have seen that the correlation function of the correlated ν = 1/3 ground state (Fig. 11)

has a strong first maximum (near to 4.4ℓ0) and an unusual exchange hole g(r) ∝ r6. These features

distinguish the 1/3 state from both free 2D Fermi gas and completely filled Landau levels and indicate the

liquid-like and correlated nature of the Laughlin state.

Filling factor ν = 2/3. Provided the Landau level mixing is absent, the particle-hole symmetry in one

Landau level gives a direct relation (isomorphism) between Hilbert subspaces of fully polarized states at

ν = 2/3 = 1− 1/3 and ν = 1/3, Sect. 1.5.4. Owing to this relation eigenvectors of any radial two-particle

interaction are exactly the same1 in both spaces and corresponding eigenvalues are identical up to a constant

shift.

The correlation function in the fully polarized ν = 2/3 ground state, Fig. 13a, is thus linked to the one

of the Laughlin WF by an analytical formula (40). For a system with Nm flux quanta, i.e. having an area of

2πℓ20Nm, it reads

2
3 Nm( 2

3 Nm − 1)gν=2/3(r ) = 1
3 Nm( 1

3 Nm − 1)g1/3(r ) + 1
3 N2

mgν=1(r ) . (49)

The g(r) ∝ r6 short range behaviour is thus obscured by the second term.

The spin singlet ground state at ν = 2/3 has a different character. Here, we can distinguish between

correlation functions for electrons of like spin, g↑↑(r ), and for electrons of opposite spin, g↑↓(r ), Fig. 13.

Neither of them bears any apparent resemblance to either the ν = 2/3 or ν = 1/3 polarized ground states.

We should like to point out some of their particular features.

1 In the following sense: Take an eigenvector for ν = 1/3. This is a linear combination of Slater determinants from the ν = 1/3
space. Replace each of them by its particle-hole counterpart and the resulting state from the ν = 2/3 space is an eigenstate.
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Fig. 13 The ν = 2/3 ground states shown in their correlation functions. Section along the diagonal of the square

elementary cell is shown, i.e. g(r) = g(x/
√

2, x/
√

2) and systems of different sizes are compared. (a) The polarized

state. (b) The spin-singlet state: correlation between unlike spins (left) and like spins (right).
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positions in systems of different sizes. (a) The polarized state. (b) The spin-singlet state: correlation between unlike

spins (left) and like spins (right).

(i) The ring-like form of g↑↓(r ) suggests that the state consists of pairs of particles with opposite spin

with average separation r↑↓ ≈ 3.3ℓ0.

(ii) There is a deep hole in g↑↓(r) around zero. This cannot be due to Pauli exclusion principle which

applies only to electrons of like spin, but rather solely due to Coulomb repulsion. As a check (not presented

here), a comparison between g↑↓(r) in Fig. 13 and the “lowest LL Pauli hole” gν=1(r) (45) reveals that

their forms are indeed different. Also note that the value of g↑↓(0) is not exactly zero, it is several percent

of the maximal value of g↑↓(r), Sect. 2.1.2.

(iii) There is a well pronounced shoulder in g↑↑(r) around r ≈ 2ℓ0. It is very suggestive, how well this

shoulder can be fitted by the correlation function of a full lowest LL, gν=1(r), i.e. the lowest LL exchange

hole (45). This is shown in Fig. 16a.

This feature reminds of the relation between 1/3 and 1 − 1/3 systems (49). This is also supported by

the fact, that after the shoulder is subtracted [gν=1(r) times a constant], the remaining part of g↑↑(r) is

g2(r) ∝ r6 at short distances (Fig. 16a), just as it is the case in the 1/3 Laughlin state. However, particle-hole

conjugation between filling factors 1/3 and 2/3 is applicable only for spin-polarized states.

(iv) The sum of g↑↑(r) and g↑↓(r) properly scaled for Ne → ∞ lies very close to gν=1(r ) with ℓ0
substituted by ℓ0

√
2, Fig. 15. Proper scaling means that g↑↑(r) and g↑↓(r) should have the same norm, e.g.

equal to one, in sense of (43). With the current notation (42) this is true only for Ne → ∞.

Therefore, if spin is disregarded, the singlet ground state at ν = 2/3, created by magnetic field B,

strongly resembles the state of a completely filled lowest LL at magnetic field B/2.
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Fig. 15 Different density-density correlation functions in the ν = 2/3 singlet state seem to be related to

each other: g↑↓(r )+g↑↑(r ) (properly normalized, see text) is very similar to the function 1−exp(−r2/4ℓ20),

the density-density correlation in a full Landau level with ℓ0
√

2 in the place of ℓ0.

Summary: the polarized ground state at ν = 2/3 is the particle-hole conjugate of the Laughlin state

at ν = 1/3. The electronic correlation function of the 2/3 state reproduces the liquid-like maximum at

r1 ≈ 4.4ℓ0 but the ν = 1/3 broad exchange hole with g(r) ∝ r6 is hidden behind the lowest LL exchange

hole, gν=1(r).

The singlet GS seems to consist of pairs of spin up and spin down electrons with characteristic size of

3.3ℓ0. Together with the sum rule, point (iv) above, this could be interpreted as that Ne electrons in the

singlet GS form Ne/2 pairs, each with total Sz = 0 and these pairs form the same state as Ne/2 fermions

at ν = 1 in the ground state.

In particular, it should be emphasised that the singlet state cannot be described as a mixture of two

mutually uncorrelated ν = 1/3 Laughlin liquids, one with spin up, another with spin down, as we could

wrongly infer from the picture of non-interacting composite fermions, see comment [1].

Filling factor ν = 2/5. This filling factor should be the counterpart to ν = 2/3 within the CF picture.

The two magnetic fluxes are attached parallel rather than antiparallel to the effective magnetic field and in

both cases the CF filling is two (Sect. 1.4). In spite of this relation the density-density correlations between

electrons show significant differences.

The correlation hole of the polarized ground state (Fig. 14a or Fig. 11, middle) is much broader for

ν = 2/5. The first maximum occurs in both systems (2/5 and 2/3) at about the same distance ≈ 4.1ℓ0, it

is however much better pronounced in the 2/5 system and also more structure is present beyond the first

maximum here. Around r = 0 both systems follow g(r) ∝ r2. However, whereas g(r) for ν = 2/3 is

dominated by the “exchange hole”, i.e. gν=1(r), cf. (49), the 2/5 state has a much broader minimum around

r = 0.

These findings are not unexpected. Consider two systems of the same area 2πℓ0Nm, one at fillings 2/3
and 2/5, respectively. The latter will be more diluted (“emptier”), since it contains only 2/5Nm electrons,

compared to 2/3Nm in the ν = 2/3 system (1). Therefore, the correlation hole in g(r) can be broader in

the 2/5 system. This conclusion is not a controversy of the CF picture, rather, it is a warning. By far not

all claims which are true for electronic Landau levels (e.g. ν = 2 state remains the same regardless of the

direction of the magnetic field) are true for composite fermions as well (it matters whether Beff is pointing

parallel and antiparallel to the attached flux quanta).
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There is also a close relation between the polarized 2/5 GS and the Laughlin 1/3 state according to the

CF picture. The latter one corresponds to filling factor one, the former one to filling factor two of composite

fermions. Comparing these two states, we find a bit stronger structures in the density-density correlation

of the ν = 2/5 GS and also the first maximum shifts to smaller distances (4.4ℓ0 at ν = 1/3 and 4.1ℓ0 at

ν = 2/5). Both effects are quite similar to what happens when going from ν = 1 to ν = 2, cf. Figure next

to (45). Comparing the ν = 2 and 2/5 systems, we again (cf. ν = 1 and 1/3) find much stronger structures

of g(r) in the latter case, just as we expect for a liquid state.

Some marked differences occur also in the singlet ground states at both filling factors. At 2/5, correlation

functions g↑↑(r ) as well as g↑↓(r ) seem to be quite flat beyond rm ≈ 6ℓ0. We may speculate that the same is

true for the filling 2/3, Fig. 14 (the shoulder in g↑↑ would probably have to be subtracted first), but then the

plateau would occur first beyond some larger distance rm which is not accessible by exact diagonalization.

It is remarkable that after subtracting the shoulder from g↑↑(r) of the 2/3 singlet state (point (iii) in the

discussion of 2/3), the rest g̃(r) is ∝ r6 near to r = 0. This is the same behaviour as we find in g↑↑(r) of

the 2/5 singlet state, see Fig. 16.

Correlations of unlike spins exhibit one clear maximum which is, as compared to 2/3, slightly but

perceptibly shifted to a bit larger r↑↓ ≈ 3.7ℓ0. This agrees with the above argument that 2/5 systems are

more diluted than the 2/3 ones, but quantitatively this shift is too small. It is only ≈ 30% of what we would

naively expect from comparing the areal electron densities.

Finally, the r → 0 behaviour of the 2/5 singlet state, g↑↓(r) ∝ r4 and g↑↑(r) ∝ r6, matches the

behaviour of the {3, 3, 2}-Halperin wavefunction (8) and this Φ332[z] is in turn identical with the ground

state wavefunction proposed by Jain’s theory, Sect. 1.4.2. This is because Φnn′m[z] lies completely in the

lowest LL and thus the last step of Jain’s procedure, namely the projection to the LLL, is out of effect. Seen

from the opposite direction: the singlet 2/5 state corresponds to filling only the lowest CF LL spin up and

spin down.

Summary: From the viewpoint of composite fermion theories, the polarized 2/5 state (p = 2), Table 2,

is related both to the 1/3 Laughlin state (p = 1) and 2/3 polarized ground state (p = −2). The electron-

electron correlations in exactly diagonalized systems clearly support the former relation, the latter one (2/5
with 2/3) is however far from being obvious in this way.

Neither is the analogy between 2/5 and 2/3 apparent for the singlet ground state. Although similarities

exist, perhaps most importantly pairing between electrons of unlike spin, short range behaviour of correlation

functions is very different.

2.1.2 Ground state for Coulomb interaction and for a short-range interaction

Short-range interactions as they were introduced in Sect. 1.3 have a special significance for the FQHE. It

has been repeatedly emphasised that the Laughlin WF is on one hand an extremely good approximation of

the ground state of a Coulomb-interacting (CI) system while on the other hand, it is the exact ground state

of electrons feeling only a short-range mutual interaction (SRI) as it was defined in Sect. 1.3. Consequently,

it is very popular to say that a short-range interaction Hamiltonian captures the essential physics of the

FQHE by inducing the correct correlations in the ground state. By the correct correlations we mean the

Ψ ∝ (zi − zj)
3 behaviour when two particles approach each other.

The SRI was used in most of the calculations presented in this work. This choice has been made for

two reasons. It brings better chances in finding analytical results like the Laughlin WF. Moreover we may

hope that the results in finite systems converge faster to the thermodynamical limit (N → ∞) because the

electrons see only as far as their interaction reaches and thus – sooner than for a long-range interaction –

they will not “realize” anymore that they live on a torus and not in an infinite plane. Aim of the following

section is to show and discuss how the ground states at ν = 2/3 change if the character of the interaction

changes.

The ground state energies for CI and SRI are naturally quite different. This is however for the largest

part only an unessential shift, a part of it is the missing Madelung constant (33). Under SRI an electron
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Fig. 16 Correlation of like spins, g↑↑(r ), of the singlet ground states at filling factors 2/3 and 2/5. Local power

analysis (50) shows, that both correlation functions are ∝ r6 for r → 0; however, the shoulder in the state at filling

factor 2/3 has to be subtracted first. (a) Filling factor 2/3. The shoulder at r ≈ 2ℓ0 is apparently caused by a term

proportional to 1 − exp(−r2/2ℓ20), i.e. gν=1(r), cf. (45), which contributes to the total g↑↑(r). After this term was

subtracted, a local power analysis of g↑↑(r) has been performed. (b) Filling factor 2/5. Local power analysis near to

r = 0. Noise at very small distances is purely due to numerical inaccuracies: values of g(r) are already very small

there.

of course cannot interact with its own image in the neighbouring primitive cell. More importantly, the gap

energies are quite similar in both cases [73].

Since the density of the incompressible ground states should always be constant, up to finite size effects

to be discussed later, let us now focus on correlation functions. The three plots in Fig. 18 show g↑↑(r) and

g↑↓(r) of the singlet state and g(r) of the polarized state. In all three cases, the correlation functions of

the CI state and the SRI state are quite similar. Most apparent differences appear at large distances. On a

torus, the largest possible separation between two electrons is r = a/
√

2. On the other hand, the correlation

functions are very precisely identical for small r. This shows that, e.g. in the polarized GS, the wavefunction

contains the factor (zi − zj)
3 for CI as well as for SRI. In other words, the Laughlin state (as the GS for

SRI) describes exactly the short-range behaviour of an incompressible state of even long-range interacting

electrons. Fig. 18 demonstrates that this is true (at least in a very good approximation) also for other ground

states where the analytical wavefunction is not available (e.g. the singlet GS).

In fact, for the singlet GS there is a tiny but perceptible difference in g↑↓(0) for the two types of

interaction. Since g↑↓(0) is almost zero, this observation suggests that a yet modified interaction might

lead to analytical results, {V0, V1, . . .} = {∞, α, 0, 0, . . .} in terms of pseudopotentials, Sect. 1.3. Such an

interaction enforces g↑↓(0) = 0, which is anyway almost fulfilled for the current SRI, and on the other hand

it retains the pleasant property of SRI in polarized systems, i.e. it is one-parametric.

There is yet another significant difference between SRI and CI which is not obvious in Fig. 18 at first

glance. The difference concerns the placement of zeroes in the wavefunction and we will concentrate on

the ν = 1/3 ground state now (see Sect. 1.3).

In a general fermionic state, there must always be a zero bound to each electron in order to fulfil the Pauli

exclusion principle: two electrons (of the same spin) cannot be at the same point in space simultaneously,

ergo if z1 = zi then the wavefunction must vanish. Factors (zi − zj)
3 in the Laughlin state mean that there

are two extra zeroes exactly at the position of each electron. That is why g(r) ∝ r6 for small r’s, Fig. 17,

right and (50). For CI, the Laughlin WF is only an approximation to the ground state. In the real ground
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short-range interaction (right). Sect. through the density-density correlation function g(r ) along r = (x, x)

is taken and the “local degree” of the polynomial behaviour is determined (see the text). While the local

behaviour around r = 0 is g(r) ∝ r6 for the SRI, indicating that there is exactly a triple (6 = 2 · 3) zero

of the wavefunction on on each electron, we can clearly see only one zero at each electron’s position for the

Coulomb interaction, g(r) ∝ r2 and 2 = 2 · 1. However, going away from r = 0, the “local degree” grows

and beyond ≈ 1.5ℓ0 it approaches the curve of the SRI state. The conclusion is that one zero (the obligatory

Pauli exclusion principle zero) is fixed to each electron (r = 0) in the Coulomb state and the other two

zeroes are only loosely bound to the electron. First from distances � 1.5ℓ0 this compound object looks like

an electron with two attached flux quanta.

state, the one obligatory zero is still sitting on each electron and the two others are only near rather than

exactly on the top of the electron. In Fig. 17 we can even see how far they are on average. These two extra

zeroes are now mobile and their position depends on the position of all other electrons.

Local power analysis. A comment is due on the way how the plots in Figs. 17,16 were obtained. It is

basically a section of g(r ) along one straight line going through r = 0. This function was then transformed

by

g(r) −→ d ln g(r)

d ln r
(50)

which gives a local degree of the polynomial behaviour. Let us give an two examples. If g(r) were αrn then

d ln g(r)/d ln r = n. If g(r) ∝ (r − r0)
n then d ln g(r)/d ln r = nr/(r − r0) → n for r ≫ r0. In other

words, if there is a dominant rn term in g(r), the quantity plotted in Fig. 12(b) gives the exponent. Of course,

it is only approximate except for the case g(r) = αrn but it is quite easy to evaluate and moreover it gives

a global property of the wavefunction as compared to fixing electron positions z2, . . . , zn and examining

the WF as a function of z1 where results depend on where we fix the electrons z2, . . . , zn.

2.1.3 Some excited states

There is a rich variety of excitations to the incompressible FQH states. For instance quasiholes, excitons

(quasihole-quasielectron pairs), charge density waves (CDW) or spin density waves (SDW), all of them can

be described analytically (at least to some extent), and then of course all the rest of excitations which has

not been understood up to now. Following the introduction given around (27), we will now demonstrate
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Fig. 18 Correlation functions of the singlet and polarized ground states at ν = 2/3: comparison between

the Coulomb and short-range interaction. The curves are identical for small r and slight deviations occur at

longer scales. This is another way to demonstrate that it is sufficient to consider short-range interaction in

order to get (almost) correct ground states under FQHE conditions.

how to identify some of these excitations in spectra obtained by exact diagonalization at the example of

ν = 1/3.

Charge density waves. CDWs can be excited for example in the liquid GS at ν = 1/3. Disregarding the

possibility of spin flips (as it may be reasonable when Zeeman energy is too high), it turns out that these

are the lowest excitations.

In Fig. 19 spectra of several short-range-interactingν = 1/3 systems (tori of different sizes) are presented.

The horizontal axis is modulus of k r, i.e. the “crystallographic k-vector” described in Sect. 1.5.2. The

Laughlin state has k r = 0 and a CDW of wavevector Q excited from this state has k r = Q . Beware however,

that not every state which has k r �= 0 must be a charge density wave! Apart from other possible periodic

excitations, there are also basically nonperiodic excitations (e.g. quasiholes) and such states are forced into

periodicity only “artificially” by the periodic boundary conditions imposed in our exact diagonalization

model.

The lowest excitations in Fig. 19 form a well developed branch E(k r), which is usually called mag-

netoroton branch, and other excited states form a quasicontinuum. The dispersion of the magnetoroton

branch can be calculated analytically in the single mode approximation. The original calculation by Girvin

et al. [26] for Coulomb interacting systems at ν = 1/3 showed a well pronounced minimum in E(|k r|) of

the magnetoroton branch at k rℓ0 ≈ 1.4. In a short-range interacting system, shown in Fig. 19, the situation

is slightly different. Having reached its minimum value, E(|k r|) remains constant beyond k rℓ0 ≈ 1.4.

A point worth of emphasis is that the magnetoroton branch in Fig. 19 contains points (energies) from

exactly diagonalized systems of different sizes. This confirms our hope that these states are not bound to

some particular geometry of the elementary cell and that they appear also in an infinite system.

Dealing with finite systems, we will always have only a finite, and usually quite small, number of allowed

values for k r (26). On the other hand, the more points in k r-space we can access, the better we can recognise

modes in exact diagonalization spectra, just like the magnetoroton branch in Fig. 19. Note also the large
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Fig. 19 The ground state (at k = 0) and low excitations in SRI fully polarized ν = 1/3 systems of different

sizes (4-10 electrons). Energy plotted against the |k r|, see Sect. 1.5.2. To be able to study more points in

k space, systems of different sizes are compared and also systems with aspect ratios slightly varying from

one, see text. Note the well pronounced magnetoroton branch. Note that energies calculated in systems of

different sizes lie on the same branch indicating that these states are not much system-size-dependent (and

therefore relevant even in infinite systems). The correlation functions for three states lying on this branch

(A,B,C) are depicted in Fig. 20.

space between k r = 0 and the next smallest |k r| ≈ 0.5ℓ−1
0 in Fig. 19 which corresponds to the longest

wavelength compatible with the periodic boundary conditions.

The traditional way to improve these limits (few k r-points, too large smallest |k r| > 0) is to study larger

systems. This is however prohibitively difficult with exact diagonalization. An alternative approach may be

to study systems with aspect ratios λ = a : b slightly deviating from one. This allows us to deform the

lattice of allowed k r-points continuously (26 contains λ), and on the other hand, we can expect that the

states will not suffer from the slight asymmetry in a : b in line with the argument that these states are not

bound to any particular geometry of the elementary cell. This method is demonstrated in Fig. 19 by the

blue points. The aspect ratio was varied from one up to 1.3. Since the energies of the CDW states still lie

well on the magnetoroton branch, we can conclude that this variation was still only a small perturbation, i.e.

acceptable for studying this branch. A more reliable critierion would be to check overlaps of wavefunctions

at a : b = 1 and a : b > 1.

Correlation functions of several states in the magnetoroton branch (Fig. 19) are shown in Fig. 20. The first

look at g(r ) (upper row in Fig. 20) may be sometimes not enough to distinguish their charge density wave

nature. The CDW is superimposed on the structure of the mother Laughlin state, which these states are an

excitation of. The periodic structure of g(r ) is thus more clear if we subtract the corresponding correlation

function of the Laughlin state first, Fig. 20 lower row. We can find three periods in y direction (horizontal

waves at x = 0, 0.3 and 0.6) in the state A or 4 periods in y and one period in x in the state C, in agreement

with their values of k̃ r/k0 = k̃ r/(Nmπ/6). Note, that it is harder to distinguish the periodic structure in

the k̃ r = (0, π) state (B), which may be partly because this is a point of high symmetry in k̃ r-space, Fig. 6.

In conclusion, we have shown how (the best known type of) charge density wave states on a torus can

be identified in the exact diagonalization spectra and in correlation functions. Generally, we can expect that

charge density waves excited from incompressible liquid states will form branches in E(|k r|), provided

of course that their energy is not hidden in a quasicontinuum of other excited states. Correlation functions

show indeed the expected periodicity of a CDW superimposed on the structure of the ground state.
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Fig. 21 Density of the ν = 1/3 incompressible ground state as obtained in torus geometry for different

system sizes. The oscillations can be traced back to the centre-of-mass part of the wavefunction. As far as

this effect is considered, differences between Coulomb interaction and short-range interaction are small. (a)

Inhomogeneous density in an Ne = 4 system. (b) Comparison between systems of different sizes. Note the

scaling of the x axis.

2.1.4 Finite size effects

Consider a ν = 1/3 system with its exact GS written as ΨL, the Laughlin wavefunction (WF), see (7).

Particle density in the state ΨL is very precisely constant provided we stay within the disc of radius

ℓ0
√

2π · 3N . The first striking observation is that the density of the ground state obtained from exact

diagonalization varies quite strongly, Fig. 21. At the same time we notice that the ground state, which is

claimed to be incompressible, hence non-degenerate, is actually triply degenerate.

Fortunately, this does not mean that finite size calculations are completely wrong. Both facts can be

attributed to the centre-of-mass part of the wavefunction (CMWF) which is not present in ΨL but is present

in numerical calculations, Sect. 1.5.2. As far as isotropic states are considered, this seems to be the most

serious effect coming from the finite-sizedness of the system and in the following we will discuss its origin

and how it can be eliminated.
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Centre-of-mass part of the wavefunction. The complete WF of the Laughlin state at ν = 1/3 (for n
particles) in the disc geometry (Sect. 1.2, 1.5.1) might be

Ψ1/3(z1, . . . , zn) = F (Z) exp(−|Z|2/2ℓ20)︸ ︷︷ ︸
ΨCM (Z)

× exp
(

− (|z1|2 + . . . + |zn|2)/4ℓ20
)∏

i<j

(zi − zj)
3

︸ ︷︷ ︸
ΨL(z1,...,zn)

(51)

with Z = z1 + . . . + zn and for example F (Z) = Z3 or any other analytic function with three zeroes

Z1, Z2, Z3. The CMWF ΨCM has the form (Sect. 1.5.1) of a WF for one particle somewhere in the lowest

Landau level to which a single variable Z is attributed. In torus geometry, the WF must be changed in order

to comply with periodic boundary conditions (PBC) which amounts to replacing (Z − Zi) terms by theta

functions of the same argument, Sect. 1.5.2. Example of ΨCM obtained from the numerically calculated

ground state ΨGS in a system with four particles is shown in Fig. 22a. The CM part was extracted from the

complete WF by the scheme ΨCM (4∆) = Ψ(z1 + ∆, . . . , z4 + ∆)/Ψ(z1, . . . , z4)ΨCM (0). Note that this

result fully matches what we expect from analytic considerations, α in Fig. 5a.

If we calculate quantities like the density or correlation function in the state Ψ = ΨrΨCM , we evaluate

integrals of the type

nΨrΨCM
(z) =

∫
dz1 . . .dzn|Ψr(z1, . . . , zn)|2|ΨCM (z1 + . . . + zn)|2δ(z1 − z) . (52)

Recast in CM and relative variables, this integral is a multidimensional convolution of ΨCM and Ψr.

Assuming that Ψr is isotropic but non-constant which is true for the Laughlin WF, the function n(z/4) can

be thus shown to have the same periodicity as ΨCM (z). Less exactly but in more illustrative terms: n(z)
is basically a smeared |ΨCM (4z)|2. Note that this explains why n(z) varies much stronger along x than

along y.

These considerations can be summarized in the following way. Even though e.g. the Laughlin state is

translationally invariant, the CM part of the wavefunction which is always present in the exact diagonalization

studies, will cause the density to be inhomogeneous. Consider eigenstates of J . This determines the form of

ΨCM to be as in Fig. 22a, cf (29) the density n(z) of an Ne-electron state (a) will be 1/Ne periodic along

x, Fig. 21 or Fig. 22b, (b) will be 1/3Ne periodic along y, Fig. 22d, (c) will be modulated much stronger

along x than along y (compare scales in Fig. 22b and 22d) and (d) will rapidly converge to a constant for

Ne → ∞.

Similar ideas have first been presented by Haldane and Rezayi [31].

How to suppress the effect of the CM part of the WF. To suppress the effect of the CMWF it would be

ideal to calculate the density as

nΨr (z) =

∫
dz1 . . .dzn|Ψr(z1, . . . , zn)|2δ(z1 − z)

rather than by (52). In other words, it would be nice if we could replace ΨCM (z1 + . . . + zn) by a constant

in the numerically calculated wavefunction ΨrΨCM .

Even though we could numerically calculate ΨCM and then calculate the density in the state Ψ/ΨCM ,

this is technically quite labourious and requires numerical evaluation of (n−1)-fold integrals. Instead we can

make a trick. Consider again the example of the ν = 1/3 GS. The state is triply degenerated in the CM part

and the three different Ψ1,2,3
CM (as they come from ED in subspaces with sharp J) have the pleasant property

that the sum of their squared moduli is nearly constant, or in a more restrained (and honest) terminology,

its variations are much weaker than those of individual |Ψi
CM |2, Fig. 22.

With this in mind we expect that the sum nΨ1
CMΨr

(z) + nΨ2
CMΨr

(z) + nΨ3
CMΨr

(z) will be a good

approximation to nΨr (z). The reader may check with Fig. 22 how well this is fulfilled.
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Fig. 22 Left to right: (1) |ΨCM (Z)|2, Z = z1 + z2 + z3 + z4 for one of the three degenerate ground states in a

4 particle ν = 1/3 system and (2) the density n(r ) of this state. (3) |Ψ1
CM (Z)|2 + |Ψ2

CM (Z)|2 + |Ψ3
CM (Z)|2 of

those three states and (4) the sum of their densities (divided by three). Note that the last density is nearly constant (as

it should be for the Laughlin state) and thus by adding up densities of the three states differing only in the CM part, we

eliminated the effect of the CM part of WF.

Other finite size effects. Here, we will try to abstract from the effects due to the CM part of the calculated

wavefunctions. Since the operator for density-density correlation depends only on relative coordinates we

expect that g(r ) will be free of the finite size effects described in previous paragraphs. Since the curves for

g(r ) obtained from the ν = 1/3 ground state in systems of different sizes (Fig. 12b) match very well for |r|
going at least to one third of the elementary cell we may have good confidence in these results even within

the scope of infinite systems. In clear terms, we may believe that g(r) of the infinite system is nearly the

same as g(r) obtained in a finite system (with a : b = 1) as far as up to r ≈ 0.35a.

Another type of finite size effects which are “finer” than those originating from the CM part of the WF is

shown in Fig. 22, the rightmost plot. The density plotted should be constant after averaging over the three

states degenerated in the CM part in the infinite system. The weak (1/Nm)-periodic structure (Nm = 12 in

Fig. 22) which we still observe reflects the quantization of one particle momenta by the PBC. One particle

can be localized only around one of Nm discrete set of points in the x-direction. This effect is the same

along x and y, since we have lost the quantum number J (29), by averaging over the three states, belonging

to J = 2, 6, 10 in the present case. Note, how extremely small this finite size effect is.

2.1.5 Conclusion: yet another comparison to composite fermion models

For a large part we were concerned with the ν = 1/3, 2/3 and 2/5 incompressible ground states in this

section. All these states, including their possible spin polarizations, can be described in terms of Landau

levels (LL) filled with composite fermions (CF), Fig. 9a and Sect. 1.4. In particular, wavefunctions suggested

by Jain, Sect. 1.4.2, are very close to the many-electron ground states calculated by exact diagonalization,

as it is demonstrated by comparing the wavefunctions calculated by the two approaches in terms of overlaps

which approach unity [77] or of correlation functions shown in this Section, Figs. 11, 12 and 14a.

However, we have seen in this section that this picture is not as intuitive as someone may believe.

Correlation functions of states with p filled CF LLs are quite different from those of states with p filled

electronic LLs. Changing orientation of the effective magnetic field following from the CF LL “quantization”

alters the correlation functions drastically. It is hard to establish a relation between the ground states at

ν = 2/3 and 2/5 on the level of comparing the electronic correlation functions. We should also mention

a discrepancy in the CF model for the ν = 2/3 polarized state. It is both a particle-hole conjugate to

the ν = 1/3 Laughlin state and a state with two filled CF Landau levels and effective magnetic field

antiparallel to the real magnetic field or attached flux quanta. As Wu, Dev and Jain [77] noted already

in their original work about antiparallel flux attachment, these two approaches give two non-equivalent

microscopic wavefunctions. Surprisingly enough, both wavefunctions have high overlaps (≈ 0.99) with the

polarized ground state obtained by exact diagonalization [77]. Thus, either both models are in fact indeed
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equivalent or this result shows that even such high overlaps may be not enough to prove the correctness of

a trial many-body wavefunction.

Another point worth of notice is that the “CF cyclotron energies” (sometimes denoted by �ωCF ) extracted

from exact diagonalization with electrons are not quite the same in 2/3 and 2/5 systems, Fig. 23, the scaling

factor 5 : 3 makes Beff equal in both systems. In the picture of non-interacting CFs, only the direction of

the effective field Beff is reversed. Thus, if Beff has the same modulus in both cases and Zeeman energy

vanishes then Ep(Ne = 8)−Eu(Ne = 8), i.e. the difference of energies of the polarized and singlet GSs for

8-electron systems, should be equal to four times the CF cyclotron energy in the both systems (cf. Fig. 9b).

In the exact diagonalization spectra of Ne = 8 systems are regarded, the difference of �ωCF for ν = 2/3
and 2/5 is small, about 5%, Fig. 23. However, the quantitative agreement becomes worse when we attempt

to extrapolate the energies to larger systems.

Also comparing 2/5 to 2/3, differences in the lowest excitations from the polarized and singlet ground

states (energies, quantum numbers) are quite apparent, Fig. 23.

All these facts demonstrate that it can be misleading to think of the 2/3 and 2/5 states as of an exact copy

of Landau levels completely filled with electrons. Composite fermion models must be taken seriously since

they provide us with many very good predictions (explicite forms of wavefunctions, e.g.) but apart of that

they are not exact, they fail to describe some phenomena like e.g. position of zeroes in Coulomb interacting

states, Sect. 2.1.2, the analogy between electronic and CF Landau levels is sometimes weak. One of the

inherent problems not mentioned so far is the question of mixing between CF Landau levels: whereas LL

mixing can be neglected for electrons in the limit B → ∞, there is no such case for CFs.

The nature of many incompressible FQH states is therefore still not completely clear, for example the

ground states at ν = 2/3 and 2/5. Results in this section indicate that the singlet states at these filling factors

comprise of pairs of spin up and spin down electrons which we would not expect from the CF analogy – at

least not at first glance. Furthermore, in the ν = 2/3 singlet with electron density n, the ↑ − ↓ pairs seem

to form a state which could be constructed by taking a system with the lowest LL completely filled with

electrons of density n/2 and then replacing each electron by an ↑ − ↓ pair. This behaviour is not observed

in the ν = 2/5 singlet. We may again conclude, that even though the 2/5 and 2/3 ground states are very

closely related on the level of composite-fermion theories, their electronic properties are different. It can

thus be misleading to extend our intuition concerning the (completely filled) electronic Landau levels to

states interpreted as (completely filled) composite fermion Landau levels.
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Fig. 24 Ground state energies at ν = 2/3: the half-polarized state may become the absolute ground state in a

narrow interval of magnetic fields. Left: Energies of SRI ground states in the subspaces S = 0 (singlet), S = Ne/4
(half-polarized) and S = Ne/2 (fully polarized) as a function of Zeeman splitting (or magnetic field; note the energy

units e2/εℓ0 ∝
√

B). In all cases, energies of the two largest systems available to calculations are shown. Middle:

extrapolation of the GS energies to infinite systems (1/N → 0). Right: The energy-versus-magnetic field diagram for

extrapolated ground state energies. This indicates that even then the HPS will be a ground state close to the transition.

2.2 The half–polarized states at filling factors 2/3 and 2/5

In the previous section we dealt with the spin singlet and polarized ground states at filling factors 2/3 and

2/5 and it was mentioned that it is the Zeeman splitting (or better, EZ/EC ∝
√

B) which determines which

of them is the actual ground state. It is the singlet state for vanishing Zeeman splitting (low magnetic fields)

or the polarized state if the Zeeman term dominates (limit B → ∞). All this can be understood within the

composite fermion concept, Fig. 9a, where we even obtain the prediction that there is a direct transition

(crossing) between these two ground states at some critical value of EZ/EC or equivalently, at some critical

magnetic field BC , if we sweep magnetic field and keep the filling factor constant, cf. also Sect. 3.

However, experiments by Kukushkin et al. [45] indicate that this picture may be incomplete. They suggest

that some exactly half-polarized state becomes a stable ground state in the vicinity of BC . In this section

we will describe one candidate for such a half-polarized state ground state and discuss its properties.

2.2.1 Ground state energies by exact diagonalization

At first glance, spectra of homogeneous small finite systems with Coulomb interaction (Sect. 3, Fig. 47) do

not suggest any intermediate state at the transition. The picture is quite different when short-range interaction

is considered. In an interval of magnetic fields around BC the GS is a state with total spin equal to Ne/4,

Fig. 24a, i.e. a half-polarized state (HPS). This holds for all system sizes accessible to numerical calculation

and, by extrapolating energies to 1/N → 0, Fig. 24b, it seems to hold also for infinite systems.

It is probably only through the finiteness of the system that a half polarized ground state did not appear

in Coulomb interacting systems (Fig. 47). The SRI systems may be less sensitive to this generical drawback

of exact diagonalization models. On the other hand, SRI models predict wrong values of BC [73] and thus

the scheme presented in Fig. 24a must be checked in systems with Coulomb interaction.

Considering Coulomb-interacting systems, the scheme suggested in Fig. 24a is supported by extrap-

olations of GS energies performed by Niemelä, Pietiläinen and Chakraborty [55] in spherical geometry,

Fig. 25a, and it is not supported by analogous calculations on a torus presented here, Fig. 25b. We would like

to stress that the extrapolation of the energy of the HPS is based only on two points, the third point (Ne = 4)

in Fig. 25b, is not very reliable, Sect. 2.2.3. Therefore the question of whether the HPS becomes the absolute

GS or not remains basically open until exact diagonalizations of larger systems become possible.

Nonetheless let us assume in this section that a half-polarized state can indeed lower its energy sufficiently

so as to become the absolute ground state. We will therefore focus on the S = Ne/4 sector of systems at

filling factor 2/3, and also at 2/5 in Sect. 2.2.5. Studies were mostly focused on the SRI states where it is
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Fig. 25 Extrapolation 1/N → 0 of the GS energies for Coulomb interacting systems at ν = 2/3. Left: on

a sphere (taken from [55]), right: on a torus.

easier to identify the best candidate for the half-polarized ground state. Its Coulomb-interacting counterpart

is discussed later, in Sect. 2.2.6.

By convention a half-polarized state with 12 (8) electrons will consist of 9 (6) electrons with spin up

(majority spin) and 3 (2) electrons with spin down (minority spin).

2.2.2 Identifying the HPS in systems of different sizes

Provided some particular physical half-polarized state GS∞ is the ground state in an infinite system, we

may ask what its realizations in finite systems of different sizes are. Vice versa: given the half-polarized

states calculated in a system of Ne = 12 (4, 8. . . ) electrons, which state corresponds to GS∞? In this way

we can think of states which “correspond to each other” in systems of different sizes. The trouble is, of

course, that we do not know GS∞.

Regarding the computational capacity available, we could study ν = 2/3 systems with 4, 8 and 12

particles, the next larger system, Ne = 16, would require diagonalization in spaces of dimension many

hundred million. It seems likely that the analogues to GS∞ are the GSs in Ne = 12 and Ne = 8 systems

(GS12, GS8) and that it is a low lying excited state (st03) in the smallest system, Ne = 4. In the following,

reasons for this are proposed.

(i) GS12 and GS8 belong to the same symmetry class defined by the “crystallographic k r” (26). They

have both k̃ r = (π, π), i.e. they lie in the “corner of the Brillouin zone” (Fig. 6, Sect. 1.5.2). This is also

closely related to the fact that both GS12 and GS8 are non-degenerate.

(ii) The states GS12 and GS8 are well separated from excitations within the S = Ne/4 sector and the

energy of the lowest excitation is similar, 0.01 (e2/εℓ0), in systems of different size, Fig. 26.

(iii) Though not completely identical, the inner structure of GS12 and GS8 is very similar as seen by the

correlation functions, Fig. 27.

(iv) The GS of the Ne = 4 system has a lower symmetry than the formerly described states. Looking

for a state of inner structure (correlation functions) similar to the one of GS12 and GS8 within the sector

k̃ r = (π, π), we find remarkable similarities with the second excited state (marked st03 in Fig. 26),

Sect. 2.2.3. However, we should bear in mind that for Ne = 4 there is only a single electron with reversed

spin in other words the system is indeed extremely small. A consequence is for example that g↓↓(r) ≡ 0.

Relevance of such states with respect to infinite systems is thus doubtful.
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44 K. Výborný: Spin in fractional quantum Hall systems

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0  0.5  1  1.5

E
n
e
rg

y

|k|l0

Ne/Nm=4/6

st01
st02

st03

 1.15

 1.16

 1.17

 1.18

 1.19

 1.2

 1.21

 1.22

 0  0.5  1  1.5  2  2.5

|k|l0

Ne/Nm=8/12

GS8
 1.74

 1.75

 1.76

 1.77

 1.78

 1.79

 1.8

 1.81

 0  0.5  1  1.5  2  2.5  3

|k|l0

Ne/Nm=12/18

GS12

Fig. 26 Low lying energy levels in the S = Ne/4 (half-polarized) sector of 2/3 systems with (left to right)

Ne = 4, 8 and 12 particles. The states are sorted according to |k r| (Sect. 1.5.2). The GS of an infinite system

is likely to have k̃ r = (π, π) which is a point of very high symmetry in the k r-space. This symmetry class

is however distinct from the one of the singlet and polarized incompressible ground states.

2.2.3 Inner structure of the half-polarized states

Focus of this part will be the correlation functions of the states GS12 and GS8 and a brief comment will be

made on Ne = 4 states. As mentioned above and as the kind reader may verify in Fig. 27, GS12 and GS8

look indeed similar.

GS12 and GS8 match in all three spin-resolved correlation functions, g↑↑(r ), g↑↓(r ), g↓↓(r ), Fig. 27.

The match is especially good (quantitative) on short distances, r � 3ℓ0. This suggests that states GS12 and

GS8 are not bound to some particular system size and we can thus hope that if we could make the system

larger, they would eventually develop into the GS∞.

Differences between correlation functions of GS12 and GS8 at longer distances r are understandable,

given the normalization (43). The Ne = 12 system is “larger” than the Ne = 8 one, yet the integral
∫

drg(r )
must be the same. Perhaps the most apparent difference between various correlation functions is whether

they have a maximum or a minimum “in the middle” (6ℓ0 or 8ℓ0 in Fig. 27). In ideal case, a strong maximum

occurs when g(r) is monotoneous in an infinite system while a minimum, or a weak maximum following

a foregoing minimum, means that g(r) has some structure, one or more maxima for finite ri. In reality,

however, the former behaviour occurs also when ri is larger than the finite system size. A manifestation of

this is seen in g↑↑(r), Fig. 27. The flat maximum at ri ≈ 5ℓ0, followed by a minimum, observed for the

Nm = 18 torus does not occur for the smaller system (Nm = 12). Looking only at the smaller system we

could have wrongly concluded that the correlation function is almost structureless.

Some further points are worth of notice.

(i) g↑↓(r) is suppressed nearly to zero at r = 0 in spite of the missing Pauli principle, only on account

of the repulsive interaction. It displays strong maxima around r ≈ 3.4ℓ0.

(ii) Even though by far not identical, g↑↑(r) and g↓↓(r) are similar to each other. The clear shoulder

around r ≈ 2ℓ0 seems to stem from the “exchange hole” (of the LLL) gν=1(r) = 1 − exp(−r2/2ℓ20),
see (44). After subtracting a suitably scaled function gν=1(r) the shoulder completely disappears and the

remaining parts of both g↑↑(r) and g↓↓(r) are ∝ r6 close to r = 0, Fig. 28 and discussion below.
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Fig. 27 The likely analogues of the half-polarized (S = Ne/4) GS∞ (ground state in an infinite system) on

a torus with Ne = 8 and Ne = 12 particles and filling factor 2/3. Left to right: density-density correlation

for ↑↑ (majority spins), ↑↓ and ↓↓ (reversed spins), upper row: in the whole primitive cell; lower row: sections

along the diagonal. Note the isotropy of the state, i.e. visual manifestation of its high symmetry.

(iii) Up to a high precision the sum of g↑↑(r), g↓↓(r) and g↑↓(r) (with appropriate scaling, see Fig. 15

for explanation) is identical with gν=1(r), however with ℓ0 replaced by
√

2ℓ0. Not shown here.

Let us now turn to the smallest system where S = Ne/4 states may occur (at ν = 2/3), i.e. Ne = 4.

Fig. 27 shows correlation functions of the lowest two states in the sector of k̃ r = (π, π). Out of these, the

second state (i.e. st03) seems to be analogous to S = Ne/4 GS’s in the two larger systems (Ne = 8,

12): g↑↑(r) is again a sum of the “correlation hole” and a function ∝ r6, g↑↓(r) shows a peaked structure

with maximum around 2.8ℓ0 (both of these features are missing for the lower state st02). However, as

mentioned above, the Ne = 4 system is too small for a reliable study of S = Ne/4 states (g↓↓(r) ≡ 0).

Back to the GS12 (called HPS here), it is very interesting to study the “∝ r6 part” (P6P) of the like-spins

correlation functions, g↑↑(r), g↓↓(r). What we mean by “P6P” is the rest after we subtract the “lowest-LL

correlation hole”, i.e. the gν=1(r) part causing the shoulder in gσσ(r) around r ≈ 2ℓ0, curve A in Fig. 28a,b.

One of many facts we can extract from Fig. 28 is that P6P/ ↑↑ [refering to g↑↑(r)] and P6P/ ↓↓ are

similar but not identical. For example, they both exhibit a peaked structure but the first maxima do not

coincide, they occur at 5.0ℓ0 and 5.8ℓ0 for P6P/ ↑↑ and P6P/ ↓↓, respectively (curves B and D in Fig. 28a).

Let us compare the P6P/ ↓↓ of the HPS with P6P/↓↓ of the singlet incompressible 2/3 GS, curves B

and C in Fig. 28a). Match of these two is very good up to r ≈ 4ℓ0, the absence of the peak at 5.8ℓ0 in the

singlet state could be due to smallness of the system where the singlet state was determined (Ne = 10). It

might appear in the next larger system, Ne = 12, cf. similar situation in Fig. 27.

On the other hand, P6P/↑↑ of the HPS seems to resemble the singlet state less than P6P/↓↓ of the HPS.

The form of P6P/↑↑ seems to be not very different from the one of the correlation function of the Laughlin

1/3 state, Fig. 12b, whose first maximum occurs however already at r = 4.4ℓ0 (curves D and E in Fig. 28b).
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Fig. 28 The half-polarized state (GS in the S = Ne/4 sector) for Ne = 12 particles, analysis of the correlation

functions (details in text). Left to right: (a) g↓↓ (minority spin), (b) g↑↑ (majority spin) and (c) g↑↓. Legend for particular

curves (in all plots). A: lowest LL correlation hole, gν=1(r) scaled to fit the shoulder. B and D: g↓↓(r) and g↑↑(r)
without shoulder. C and F: g↓↓(r) and g↑↓(r) of the singlet state (Ne = 10, ν = 2/3), g↓↓(r) without shoulder. E:

g(r) of the ν = 1/3 Laughlin state. “Without shoulder” means, that the curve A was multiplied by a suitable constant

to fit the shoulder and subtracted.

In any case, P6P/↑↑ of the HPS matches better gν=1/3(r), i.e. the Laughlin state, than P6P of the ν = 2/3
singlet state. Here we mean especially behaviour on ranges � 3ℓ0.

Last but not least, the correlations between unlike spins are also very similar in the singlet state and in the

HPS, Fig. 28c, in particular positions of the maxima differ by as little as 0.1ℓ0 (both are around r ≈ 3.4ℓ0).

2.2.4 Discussion

Findings presented above suggest that the ν = 2/3 half-polarized ground state in short-range interacting

systems is a gapped state in which the singlet and polarized incompressible states coexist. Below, some key

points regarding the HPS are summarized.

Symmetry and energy. Both in eight- and twelve-electron systems, the ground state has k̃ r = (π, π).
This is one of two points of the highest symmetry in the k r-space, another one is k r = (0, 0), Fig. 6. In

particular, the “highest symmetry” means that this k r-point is not related to any other point by a symmetry

operation in the k r-space corresponding to relative translations, Sect. 1.5.2. This in turn implies that states

with k̃ r = (π, π) or (0, 0) – and only such states – are non-degenerate, except for center-of-mass and

incidental degeneracies. Together with the relatively large lowest excitation energy ∆(Ne = 8, 12) from

both GS12 and GS8 (10% of the gap of the Laughlin state, Fig. 26), this suggests that the ground state is

gapped. Also the relation ∆(Ne = 8) < ∆(Ne = 12) speaks in favour of this hypothesis. If the gap were

to vanish in an infinite system, we would expect the lowest excitation energy to decrease with system size.

Naturally, we must be careful, since we can compare systems of only two different sizes and the function

∆(Ne) may be non-monotonous. On the other hand, ∆(Ne = 12) ≈ 0.01 (e2/εℓ0) is much larger than a

typical level separation between excited states, Fig. 26 and for a mere finite size effect, this gap seems too

large.

In spite of the similarities to the singlet and polarized incompressible ground states, k̃ r clearly distin-

guishes HPS from these two states, since they have both k̃ r = (0, 0). Also in spherical geometry, where

|k̃ r| ∝ L (end of Sect. 1.5.2), these incompressible states have L = 0 while the HPS has L = S, where S
is the total spin [55]. Thus, even though we showed that the HPS could be gapped, it is of different nature

than the singlet and polarized ground states. Meaning of this different symmetry is however not clear.
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It would be interesting to study this state in a system with hexagonal elementary cell [30] which was

unfortunatelly out of the scope of this work. This geometry is nearer to an isotropic 2D system than a

torus (it has a six-fold rather than a four-fold rotational symmetry) while it is still compatible with plane

waves (in CDWs). Most importantly, there is only one point of the highest symmetry in this geometry and

a straightforward question is whether or not the HPS will maintain its high symmetry.

Inner structure again. Features of the HPS described by points (i-iii) in Sect. 2.2.3 are actually strikingly

similar to those of the incompressible singlet state at ν = 2/3. Investigation of the g↑↑(r) after the “shoulder”

was subtracted (P6P/↑↑) suggests again some relation to the Laughlin state which is the particle-hole

conjugate to the polarized incompressible state at ν = 2/3.

Especially manifest is the hint at pairing between unlike spins, the maximum around 3.4ℓ0 in g↑↓(r).
On the other hand, the shoulder in correlation functions of like spins seems to be rather a manifestation of

filling factor > 1
2 , since it occurs also for other states at filling ν = 2/3 (than just for the singlet, polarized

and half-polarized GS) and it does not occur at filling ν = 2/5 < 1
2 , Sect. 2.2.5. It suggests that some

ν = 2/3 states with less than full polarization can be interpreted in terms of holes rather than electrons even

though particle-hole symmetry applies only for fully polarized states, Sect. 2.1.1.

In the following sections we will continue investigating the half-polarized states at filling factor 2/3
by other methods and continue discussing the hypothesis of coexisting singlet and polarized states. First,

however, we look at two different minor issues.

2.2.5 Half-polarized states at filling ν = 2/5

At filling 2/5, the situation is much less transparent than at filling 2/3. First, only systems with four and

eight particles are accessible to exact diagonalization, the twelve particle system implies matrix dimensions

in the order of hundreds of millions. Second, the spectrum of the eight particle system in the S = Ne/4
sector is quite different from that of a 2/3 system, Fig. 29:

(i) the ground state lies at a different point in the k r-space, (0, 0), than the 2/3-HPS having k̃ r = (π, π).
(ii) The excitation energy from this GS is very small, less than a third of that one of the 2/3 HPS.

(iii) The symmetry of the low excited states is lower than for Ne = 8, 2/3 system.

Regarding the possibility that within the 8 electron calculations it is not the lowest energy half-polarized

state at ν = 2/5 to be the counterpart of the HPS at ν = 2/3, there are two 2/5 states displayed in Fig. 30:

(a) the one with the lowest energy in S = Ne/4 sector and (b) the lowest state with the same symmetry as

the 2/3 HPS, i.e. k̃ = (π, π).
Similarly, as for the ν = 2/3 states, the 2/5 HPS bear features of the polarized and singlet ground states.

Let us regard the state in Fig. 30a:

(i) Near r = 0 the functions g↓↓ (minority spin), g↑↓ and g↑↑ (majority spin) are ∝ r6, r4 and r2,

respectively. In this respect, g↓↓ and g↑↓ resemble the singlet state and g↑↑ resembles the polarized state.

(ii) Up to the first maximum, g↑↑ of the HPS is the same as in the polarized state, but shifted by about

0.2ℓ0 outwards. Positions of the first maxima mismatch slightly more (by 0.4ℓ0). The strong maximum in

the centre of the cell is not present in the HPS.

(iii) g↑↓ of the HPS and the singlet GS match very well even beyond the first maximum. Positions of the

maxima are identical, r ≈ 3.5ℓ0. On contrary to the previous point, there is another maximum in the centre

of the cell in the HPS state and nothing in the singlet state, indicating that the similarity between the singlet

and the HPS has certain limits.

(iv) g↓↓ of the HPS and the singlet GS also match very well up to r ≈ 4ℓ0. Then there is a deep minimum

in the HPS which is absent in the singlet GS.

Turning to the state (b), we might say that it is less alike to the singlet state. The minimum in g↓↓ is much

deeper than for state (a), the first maximum in g↑↓ does not match the maximum seen in the singlet state.

On the other hand, g↑↑ seems to be more similar to the polarized state.
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Fig. 29 Low lying half-polarized (i.e. S =
Ne/4) states of a 2/5 system, Ne = 8. The lowest
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Fig. 30 Half-polarized states at filling 2/5 and their inner structure (density-density correlation functions); eight

electron system. (a) The GS in the S = Ne/4 sector is non-degenerate but it has a different symmetry, i.e. (0, 0), than

the HPS of ν = 2/3. (b) the lowest half-polarized state (at 2/5) with the same symmetry, i.e. ( π
2
, π

2
) as the HPS of

ν = 2/3 (marked by ♠ in Fig. 29).

Lowest excitations in the high symmetry sectors show even less similarities to the singlet and polarized

GSs, especially g↓↓ is quite dissimilar beyond the r ≈ 0 range and maxima in g↑↓ match less well.

In conclusion, if there is a counterpart to the 2/3 HPS at filling 2/5 at all, we may expect it to be the state

(a) (the absolute GS), even though hints for this are not very convincing.Again, this suggests that differences

between filling factors 2/3 and 2/5 are not only of quantitative nature (gap energies, for instance) but may be

as substential as existence or non-existence of some particular ground state, which is nota bene completely

unexpected on the level of non-interacting CF picture.

2.2.6 Short-range versus Coulomb interaction

Let us conclude with observations regarding the Coulomb- and short-range-interacting (SRI) systems in the

sector of half-polarized states.

The spectra do not look very similar, Fig. 31a. However, the absolute ground states have in both cases

the same symmetry, they lie in the same point of the k space.

The Coulomb and SRI ground states in the largest system available, Ne = 12, have very similar structure.

The correlation functions g↑↑ and g↑↓ match nicely while g↓↓ show some differences between the CI and SRI

states. In spite of this, the overlap between the two states is as large as 95%. This allows for the following

conclusions
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Fig. 31 Half-polarized states in Coulomb in-

teracting systems. (a) Spectra. Coulomb and

short-range interacting systems do not look

quite similar, but the ground state is always at

the maximum |k|. (b) The ground state.

(a) The two states “correspond to each other”. (b) The short-range part of the interaction seems to be

essential for this state (very similar as for the Laughlin state). (c) Deviations in g↓↓ (minority spin) might

come from the fact that spin-down electrons are very far separated from each other (they have an effective

filling of only ν = 1
6 ). Thus the long-range part of the interaction substantially influences their motion.

In Ne = 8 systems, the most likely analogue to the Ne = 12 ground state is the state ♦, Fig. 31a.

This is the lowest 8-electron state with the same symmetry (value of k̃ r) as the Ne = 12 ground state.

Correlation functions of the two states (8- and 12-electron ones) match reasonably, Fig. 31(b). Compare

also with differences between Ne = 8 and Ne = 12 short-range ground states, Fig. 27.

Among the excited states the level order is often modified, comparing the Ne = 12 Coulomb and short-

range systems. When trying to assign CI to corresponding SRI states, calculating overlap between two states

seems to be a more reliable tool than comparing correlation functions.

In summary, in spite of differences in the excitation spectrum, the half-polarized ground states of Coulomb

and short-range systems seem to correspond to each other. Differences in the excited states and in the

correlations between the minority spin electrons indicate that the definition of the short-range interaction

should be improved when we study the half-polarized states. Since the minority spin electrons are relatively

far from each other, non-zero values of higher pseudopotentials (Vm, m > 1, Sect. 1.3.5) should probably

be considered.
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2.3 In search of the inner structure of states: response to delta impurities

Now that some candidates for the half-polarized ground state at filling 2/3 have been introduced we wish to

look at them more closely and learn more about their inner structure. The ultimate goal of such efforts can

be to propose trial wavefunctions just as the Laughlin wavefunction at filling ν = 1/3. Even though this has

not been accomplished, the results presented below shed some light on relations between the half-polarized

state and the singlet and polarized incompressible states.

As a probing tool, the homogeneous states are subjected to a δ-line impurity and response in density and

polarization is observed. In first quantization,

Himpurity =

Ne∑

i=1

W (r i) , W (x, y) = δ(x − x0) (53)

This inhomogeneity profile (Fig. 32) was chosen since it is compatible with the torus symmetry. For studies

of point-like impurities, spherical geometry is more suitable since it preserves the rotational symmetry, cf.

references in Sect. 2.3.1. The δ-line form is particularly apt to unveil a tendency of the state to build plane

charge or spin density waves. We should keep in mind, that due to the restriction to the lowest Landau level,

even a δ-like potential has an effective cross section of ℓ0 [59].

As we are dealing with spinful electrons, inhomogeneities can be principially of four distinct types:

HEI = W (r) · (δσ↑ + δσ↓) , HMI,↑ = W (r) · δσ↑ ,

HMI = W (r) · (δσ↑ − δσ↓) , HMI,↓ = W (r) · δσ↓ , (54)

where the function W (r) describes the spatial form of the impurity, Fig. 32 shows the form of W (r) chosen

in the present study. It is important to note that these impurities fail to conserve S2 but they do conserve

Sz . Also, owing to the form of W (r ) = W (x), they conserve k r
y and thus also J (29) and they spoil only

the k r
x-symmetry. This is very convenient from the computational point of view as matrix sizes remain

tractable. From the physical point of view, this inhomogeneity is a soft tool which does not completely

destroy the high symmetry of the studied states. For example, it allows us to stay in the Sz = Ne/4 sector

when we study the half-polarized states.

The first type (HEI , electric impurity) is an ordinary non-magnetic impurity or external electric potential.

The magnetic impurity (HMI ) favours particles with correct spin (↓, if W (r) > 0) and costs energy for

particles with wrong spin (↑ in this case). The last two types describe an impurity which is seen only by

one group of spins. In case that a system consists of two separated subsystems, one of spin up particles and

another of spin down particles, these impurities allow to test only one of them without directly disturbing

the other one.

Note that some inhomogeneity types in (54) may be redundant, depending on the state we apply them

to. For instance, the effect of HMI,↑ and HMI,↓ must be the same up to a sign for all states with Sz = 0.

Before we turn to the exact diagonalization results, let us briefly think about what types of responses can

be expected. Most importantly, consider the difference between compressible and incompressible states. As

a classical compressible system imagine a playground of fixed size filled with a gas of negatively charged

footballs of density n(r), 〈n(r)〉 = N . A negative impurity at r = 0 will repel the gas causing n(0) < N ,

Fig. 32a right. Beyond some distance rh, the density will reach a constant level again and this level will be

slightly higher than the original density, N + δ = n(r ) > N , |r | > rh, so that the constraint 〈n(r )〉 = N
remains preserved. Some charge has been depleted away from the impurity, thereby compressing slightly the

gas in the rest of the system. If the depleted charge equals the charge of the impurity, the charge distribution

(charge of the footballs plus charge of the impurity) in the system will remain constant in spite of non-

constant n(r ) and the gas particles far away from r = 0 will not “see” the impurity anymore. This is the

case of ideal screening.

A classical incompressible liquid, for example again charged footballs, will not react at all, because it

cannot change its density. Even though particles of the liquid feel repulsion from r = 0, the density will
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Fig. 32 δ-line inhomogeneity and sketches of possible resulting effects. (a) Density response: incompressible- or

compressible-like. Note that density integrated over the hatched area remains unchanged for the incompressible system

when the inhomogeneity is switched off. (b) δ-line impurity of the type δσ↑ − δσ↓. (c) Two possible ways of how

a response to an inhomogeneity can change with system size; different lines in one sketch refer to the same state in

systems of different sizes.

remain constant n(r) = N . We can also encounter a different behaviour, Fig. 32a (left). Though the density

decreases directly at r = 0, an oscillatory structure develops in n(r), so that the integral density in the

region |r | < rh remains as it was without the impurity. The density then also remains at its original value

N beyond rh. This is a non-ideal incompressible behaviour: at very short distances, the density can vary

slightly, but averaged over distances of rh (or larger), the density remains constant. Also, since no net charge

was depleted from the region |r | < rh, the impurity is completely unscreened on distances > rh.

Compressible-like response as shown in Fig. 32a can be combined with quantum interferences (Friedel

oscillations) and it is also possible to think of some overscreening effect which would lead to an oscillatory

n(r). This means the sole fact that n(r) exhibits oscillations does not necessarily have to imply incom-

pressibility. A more reliable criterion is that the integral density over |r | < rh remains the same with and

without impurity. This procedure is delicate in finite systems where rh and system size can be comparable.

The last figure, 32c, shows two possible ways of how responses change with system size. The right panel

suggests that the state is not fixed to a particular size of the finite system and especially we could expect

oscillations with period r1 also in an infinite system. On the contrary, the left panel shows a state with no

intrinsic length scale and e.g. the width of the peak is related to the (finite) size of the particular system.

Now, let us proceed to fractional quantum Hall states.

2.3.1 Electric (nonmagnetic) impurity

The effect of electric impurities on incompressible ground states has been under investigation since the early

times of the fractional quantum Hall effect. The main reason is that some disorder is needed for the integer

quantum Hall effect to be observable, but on the other hand, too strong disorder will destroy the effect [79].

For the fractional quantum Hall effect, two of the basic questions were, (i) how strong impurity potentials

may be so that they do not destroy the gap and (ii) how does it change the ground state. Basic studies with

the Laughlin state were performed as early as in 1985 [26,59,86].

Since the exact diagonalization is limited to finite, and in fact quite small, systems, it is very delicate to put

forward statements about the infinite 2D electron gas. Therefore, when we use the word “incompressible” we

mean rather “incompressible-like” in terms of Fig. 32. In fact, the main purpose of the following subsections

is to see how the polarized and singlet state respond to impurities in a finite system and later to compare

them to the half-polarized state again in a finite system. We will focus on short-range interacting systems

here.
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The Laughlin state or the fully polarized 2/3 state. The fully polarized ν = 2/3 state is a particle-hole

conjugate to the ν = 1/3 Laughlin state in a homogeneous system, Sect. 1.5.4. In this part we will study

the latter state. Strictly taken, the particle-hole symmetry is lost when an arbitrary impurity is considered

since the Hamiltonian is no longer translationally invariant. Differences between the ν = 1/3 and 2/3
polarized states are however small if the impurity is weak. In particular, for inhomogeneities considered

in this paragraph, it has been checked numerically that n(x) − Ne are almost the same for the two states.

Moreover, the larger Ne, the smaller are the differences.

The response of a ν = 1/3 system to an impurity of the form (53), a δ-line along y, is shown in Fig. 33.

Different curves show the ground state density n(x) in systems of different sizes (Ne = 4 to 10 particles).

The repulsive impurity is always located at x = 0 and it is weak, its strength is ∼ 10% of the gap. These

results agree very well with the densities presented by Zhang et al. [86], who considered a δ rather than

a δ-line impurity, though for Ne = 4 systems only. Comparison between rectangular, spherical and disc

geometry showed, in all cases, very similar behaviour [86]. Note also that findings in Fig. 33 assume

short-range interaction whereas [59,86] considered Coulomb interaction.

Results in Fig. 33a support the conclusions of Zhang and Rezayi. The oscillatory response of n(x) is

size-independent and it has a period r1 ≈ 2.5ℓ0. The response, measured by n(0), does not vanish with

increasing system size but it decays with distance from the impurity. Comparing n(x) in Fig. 33a to the model

cases in Fig. 32a, we may tend to classify the Laughlin state as an incompressible one. Incompressibility of

the Laughlin state is locally not perfect, otherwise n(x) would remain constant, at least in infinite systems.

However, if some net charge were accumulated even in a larger region (of the order rh) around x = 0, we

would expect n(x) at large distances to be consistently higher than the no-inhomogeneity value n(x) ≡ Ne.

Recall the difference N to N + δ in Fig. 32a. If just a unit charge is depleted from the impurity, then

δ = 1/N . In infinite systems, the difference δ will vanish, but data in Fig. 33a come from rather small

systems N ≤ 10 where δ is not negligible. This is not seen in Fig. 33a.

Zhang et al. suggest that the observed response is a local charge density wave (27), a strong argument

supporting this idea is given in point (iv) below. Under this view, it is not surprising that the response to a

δ-line shown in Fig. 33(a) is very similar to the response to a δ-peak studied by Zhang. Only the envelope

function, not the wavelength depends on the particular form of the exciting impurity.

We should again add several comments:

(i) oscillations observed in n(x), Fig. 33a, are not related to Friedel oscillations which appear in the

Fermi gas. This is where a sharp Fermi surface exists giving rise to interferences, just as in correlation

functions of a free Fermi gas, Sect. 2.1.1.

(ii) small wiggles on the Ne = 4 density in Fig. 33a are due to the center-of-mass (CM) part of the

wavefunction. Being a finite size effect, they fall off rapidly with system size as we indeed see in Fig. 33a,

Sect. 2.1.4.

(iii) the ground state of the homogeneous system is triply degenerate in the CM part, Sect. 2.1.4. This

degeneracy is lifted by the inhomogeneity, but energy differences between these three states remain much

smaller than their separation from the lowest excited states for the inhomogeneity strength considered [86].

The response n(x) of any of the three states depends slightly on the position of the impurity within

the elementary cell, but this dependence and also differences among the three states in energy and in n(x)
quickly vanish with increasing system size. In Fig. 33a always the impurity giving the strongest response

in n(x) was chosen.

(iv) Period of oscillations: As Rezayi and Haldane [59] note, numerical calculations as in Fig. 33 agree

with results of the single mode approximation proposed by Girvin et al. [26]. The linear response function

χ(q) (in the ν = 1/3 Laughlin state) is dominated by the magnetoroton collective mode around q0ℓ0 ≈ 1.4.

Would it be χ(q) = δ(q − q0), the density response to a point impurity potential would be n(r) ∝ J0(q0r).
This density profile looks like damped oscillations with the first node at r = 1.7ℓ0.

Regarding a more realistic profile of χ(q), this estimate for n(r) is a very good approximation to n(x)
in Fig. 33a.

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Leipzig) (2006) 53

-0.5

-0.25

 0

 0.25

 0.5

-6 -4 -2  0  2  4  6

n
(x

)-
N

e

x/l0

N=4
...

N=8
N=10

-0.5

-0.25

 0

 0.25

 0.5

-6 -4 -2  0  2  4  6

n
(x

)-
N

e

x/l0

8/12 (hmg. subtr.)
10/15 (hmg. subtr.)

homog. 8/12

(a) (b)

Fig. 33 Polarized and singlet 2/3 state and (non-magnetic) impurity in the form of a δ-line (along y).

Normalized density along x is plotted. (a) The polarized state (ν = 1/3 considered, see text) in systems with

Ne = 4-10 electrons. Note that the response does not decay with increasing the system size. (b) The singlet

state. The thin line shows the CM oscillations in a homogeneous system, thick lines show responses to an

impurity with CM oscillations subtracted.

As the purpose of the present work was to study systems with spin, we will now continue to spin singlet

states at ν = 2/3.

The singlet state. The 2/3 singlet ground state shows basically the same signs of incompressibility as

the polarized state. The period of the density oscillations incurred by a δ-line impurity is almost the same

(r1 ≈ 2ℓ0), and also in terms of classification of Fig. 32a, the singlet state shows an incompressible-like

behaviour, cf. discussion of the polarized state. The striking feature of the singlet state is, that the strength

of the response is about an order of magnitude less than in the polarized state. Thus in an 8-electron system,

the density response is “hidden” under the center-of-mass oscillations, Fig. 33b.

This strong difference between the singlet and polarized ground states is unexpected since “incompress-

ibility” gaps of both states are similar.

This hints at unusual stability of the singlet state with respect to charged inhomogeneities. In terms

of perturbation theory, this is not due to energetic reasons but rather owing to small matrix elements of

HEI between the ground state and excited states. Energy of the first excitation, however, decreases when

impurities are present and thus, in spite of the quite stable density of the GS, the gap will eventually collapse.

Regarding the response in systems of different size, we find a considerable attenuation when going from

eight to ten-electron systems, Fig. 33b. Nevertheless we assume that the response remains finite even in the

thermodynamic limit. To support this hypothesis, a fact worth of emphasis is that the Ne = 8 (10) singlet

state occurs in systems with Nm = 12 (15) flux quanta, i.e. with system area A = 2πℓ20Nm (1). These are

the two smallest systems considered in Fig. 33a. For the these two systems we also observe a considerable

attenuation of the n(x) response when going from the Ne = 4 to Ne = 5 state, Fig. 33a, and this reduction in

response is definitely only a finite size effect. As close as this analogy is, observations presented in Fig. 33b

are not conclusive and an investigation of the singlet state in a larger system (Ne = 12) would be needed.

Let us just briefly mention, that non-magnetic impurities have no effect on the polarization of the singlet

ground state.

2.3.2 Magnetic impurity in incompressible 2/3 states

As far as spin polarized states are considered, magnetic impurities (54) cannot have any other effect than the

electric impurities do. Therefore only the 2/3 singlet ground state will be discussed here as the half-polarized

states deserve to be considered separately, Sect. 2.3.4.
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(b) Polarization.

Considering the density, Fig. 34a, we find a yet weaker response than for non-magnetic impurities,

Fig. 33b. The response reminds of an incompressible system, in terms of Fig. 32a, and may remain finite in

the thermodynamic limit, cf. discussion of non-magnetic impurities.

Polarization n↓(x)/n(x) behaves quite differently, Fig. 34b: the response is large and it looks compress-

ible. Again in terms of Fig. 32a. In particular, note that the polarization n↓(x)/n(x) in Fig. 34b approaches

≈ 0.51 as we go “far away” from the impurity, i.e. a different value than the polarization in the homogeneous

case, 0.5.. Electrons with “correct spin” (↑) accumulate around the impurity, n↓(0)/n(0) drops from the

homogeneous value (0.5) by as much as by 5%, whereas the average polarization off the impurity slightly

increases so as to keep the overall average value 0.5 as required by Sz = 0. This behaviour differs strongly

from the density response, Fig. 34b.

It should also be noted that both density and polarization are here much less system-size dependent than

in the case of non-magnetic impurities.

These are quite remarkable findings. It seems that the singlet state is locally much more “incompressible”

than the polarized state. On the other hand, the singlet state is relatively easily polarizable which is partic-

ularly striking when compared to the weak response in the density. If we assume the density in Fig. 33b

to be the response of two independent liquids, then the polarization in Fig. 34b should be (i) smaller by a

factor of five for Ne = 8 than what is observed and (ii) considerably smaller for Ne = 10 compared to

the Ne = 8 case. This again contradicts the picture of two uncorrelated 1/3 Laughlin liquids, one spin up,

another spin down, which we could wrongly infer from the view of filled composite fermion LLs. Remind,

however, that it is in fact not the claim of CF theories, that particles of n = 0, ↑ and n = 0, ↓ CF LLs are

uncorrelated.

2.3.3 Integer quantum Hall ferromagnets

A brief introduction to integer quantum Hall ferromagnets (QHF) was given in Sect. 1.6. It is instructive to

keep in mind the scheme of Landau levels, Fig. 8.

Here we will focus on the Sz = 0 sector in prototypes of Ising and Heisenberg QHFs with neglected

LL mixing. These states (Sz = 0) are analogues of the half-polarized states at filling 2/3, the explanation

follows. Disciples of CF teachings deem the ν = 2/3 ground states to have νCF = 2 completely filled CF

LLs, Fig. 9b. Transitions between the singlet and polarized GSs occur, when the (n, σ) = (0, ↓) CF LL

crosses the (1, ↑) CF LL. It is then plausible to neglect the low lying (0, ↑) CF LL and look only at the two

crossing CF Landau levels. The two ferromagnetic Ising states – the singlet, and polarized electronic GS at

ν = 2/3 – correspond to all CFs placed in the (0, ↓), and (1, ↑) CF LL, respectively, compare to Fig. 7b.

Hence the half-polarized state (ν = 2/3) corresponds to half-filled (0, ↓) and half-filled (1, ↑). Disregarding

the fully occupied (0, ↑) CF LL, i.e. counting only particles in the two crossing CF LLs (in total Ne CFs),

the ferromagnetic Ising states are Sz = ±Ne/2 and the “half-half” state is Sz = 0.

In this subsection we study the same situation as the one occuring at the ν = 2/3 ground state transition

(within the picture of crossing CF LLs) but for electronic Landau levels, i.e. with electrons instead of

composite fermions. We therefore study a ν = 1 system with spin degree of freedom, where spin down (spin

up) electrons lie in the n = 0 (n = 1) Landau level, respectively, and we disregard the fully occupied (0, ↑)
level. The physical system we model herewith has thus ν = 2. Technically, this requires only implementing
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Fig. 35 Half-polarized states (Sz = 0) of an Ising quantum Hall ferromagnet. ν = 2. (a) Spectra. The

lowest branch is marked by ∗, the second lowest by ♣. The state marked in different colour does not belong

to the lowest branch. (b) Change in density in response to a δ-line impurity, cf. Fig. 37b.

modified values of pseudopotentials, Fig. 2. Without electron-electron interaction, these two Landau levels

are set to equal energy so as to model the LL crossing. Mixing to the fully occupied (0, ↑) LL as well as to

all higher LLs is neglected, since all these levels are well separated from the two crossing levels.

Heisenberg QHFs are not related to ν = 2/3 and we investigate them just for the sake of comparison

between Ising- and some other type of QHF. In the integer QHE regime, Heisenberg QHF occurs e.g. when

(0, ↑) and (0, ↓) LLs cross (and ν = 1) as it is the case for instance at vanishing Zeeman splitting. With

CFs, this happens at ν = 1/3, i.e. νCF = 1, Fig. 9b.

We will first briefly discuss homogeneous states in these QHF systems and then we will turn to their

response to magnetic inhomogeneities (δ-lines).

Ising quantum Hall ferromagnet. There are two degenerate ground states of an Ising ferromagnet: both

with S = Ne/2, one Sz = Ne/2 and another Sz = −Ne/2. In general, excited states are no eigenstates to

S2 as a consequence of the omission of the fully occupied (0, ↑) level and may only be classified according

to Sz . They are all situated well above the ground states, Fig. 7b, and their energy grows with Ne/2 − |Sz|.
In the following we will only speak about Sz = 0 states. The whole Sz = 0 sector is quite high in the

complete spectrum. Unlike for a Heisenberg ferromagnet there is nothing like a S = Ne/2, Sz = 0 ground

state for an Ising ferromagnet.

Low lying Sz = 0 states of the considered Ising QHF are apparently arranged into a flat dispersion branch,

Fig. 35a. For a fully occupied Landau level, J “coincides” with k r
y . Precisely, k r

y = (Ne/2 − J)
√

2π/Nm

for Ne even in the sense of (26). Centre-of-mass degeneracy is absent. The anomalous form of the branch in

a Ne = 8 system, seems to be of finite-size origin, since Ne = 10, 12 and 14 spectra are all similar. States

of the lowest branch have k̃ r of the form (2πn/Ne, 0), n = 0,±1, . . . , Ne/2, or (0, 2πn/Ne). This is in

agreement with the symmetry between x and y (square elementary cell). It shows that rotational symmetry

is absent in the low energy sector – otherwise we would observe also states with k̃ r = (kx, ky), kx, ky �= 0.

The lowest branch flattens and becomes well separated from excited states with increasing system size,

and the minimum energy remains at k̃ r = (0, 0). Also, other branches develop, the second lowest branch

is described by k̃ r = (πn/Ne,±2π/Ne) (plus the x-y symmetric partner) and minimum energy at points

(π, ±2π/Ne), see the Ne = 12 spectrum in Fig. 35a. Apart from these branches an isolated k̃ r = (0, 0)
state is present (shown in gray in Fig. 35a) and it is hidden within the branch. We can hypothesise that

this state becomes the absolute ground state i.e. gets separated from the lowest branch in sufficiently large

systems.
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Fig. 36 Half-polarized states (Sz = 0) of a Heisenberg quantum Hall ferromagnet. ν = 1. (a) Spectra. (b) Density,

12 particle system.

The flat branch is reminiscent of results of Rezayi2 et al. [61] and could correspond to domain states,

i.e. stripes along x or y with alternating spin polarization, in a system which does not prefer any particular

domain size. The origin of the highly symmetric isolated (gray in Fig. 35a) state is unknown.

As it can be expected, low lying states have homogeneous density and it is true even for the whole lowest

branch. The anticipated domains are visible first in correlation functions [74]. States in the second lowest

branch show unidirectional charge density waves.

In summary, in a homogeneous ν = 2 Ising QHF we observe

(i) a flat branch of low lying states, which could become degenerate in infinite systems, Fig. 35a. This first

branch probably consists of stripe domains – or spin density waves – of all possible wavelengths λ = a/n,

n = 0, 1, . . . Ne/2 just as in the system studied in [61]. Contrary to isotropic states (like Laughlin liquid),

the wave must be parallel to one side of the square elementary cell.

(ii) second branch with pronounced dispersion, which could be a charge density wave

(iii) continuum of excited states above the two branches and

(iv) another state, with high symmetry, k r = (0, 0), which lies among the states of the lowest branch.

Heisenberg quantum Hall ferromagnet. The situation here is quite different from the Ising ferromagnets.

The Hamiltonian (Coulomb interaction projected to the lowest Landau level) conserves the total spin S and

it even commutes with S+ and S− which change Sz while keeping the length of the total spin. The ground

state is fully polarized, S = Ne/2, but its z-component of spin is arbitrary, Fig. 7b.

Looking at the sector Sz = 0, Fig. 36b, the lowest state is thus the ferromagnetic S = Ne/2 state.

Other low-energy states form again a branch, k̃ r = (±πn/Ne, 0) and (0,±πn/Ne), n = 0, . . . , Ne/2 (x-y
symmetry present, rotational symmetry absent). Contrary to the Ising QHF, this branch does not seem to

flatten. States in the branch fulfil S = Ne/2−n: the ferromagnetic (ground) state is polarized and going up

the branch, the polarization decreases. In this respect, the excitations of the lowest branch markedly differ

from spin density waves. What we observe in the Heisenberg QHF are most likely states with n weakly

interacting spin waves which were observed under the same conditions on a sphere by Wójs and Quinn [76].

Half-polarized QHF states and magnetic impurity. If a homogeneous state cannot be established and

domains formation is more favourable, then no particular domain size is preferred. This is the central

message of the following paragraph and it applies to both Ising and Heisenberg QHFs described at the

beginning of Sect. 2.3.3.

The two systems were subjected to a δ-line magnetic inhomogeneity, just as the incompressible singlet

ground state in Sect. 2.3.2. However, QHF systems and incompressible liquid states at ν = 1/3 or 2/3

2 The cited work concerns the situation when the lowest and the third Landau levels of different subbands cross. Rezayi et al.

had first to show that this system is an Ising QHF. See Sect. 1.6 for more details. In the Sz = 0 sector of his system Rezayi et

al. found a multiply (almost) degenerate ground state with k̃ r just of the sequence (2πn/Ne, 0), similar as we see in Fig. 35a

for Ne = 12.
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Fig. 37 Different quantum Hall ferromagnets (QHF), half-polarized states: polarization response to a

magnetic δ-line impurity in systems of 8 and 12 particles. (a) Heisenberg QHF (ν = 1). (b) Ising QHF

(ν = 2, crossing of n = 0, ↑ and n = 1, ↑ levels.

behave quite differently. Looking at a QHF and comparing the response in systems of different sizes, we

observe no intrinsic length scale, Fig. 37. Rather, the form of the response reflects the size of the system

(cf. the left panel of Fig. 32c). This statement applies both to the Ising, Fig. 37b, and the Heisenberg

QHF, Fig. 37a, where we show the polarization of the energetically lowest state in a system subject to the

inhomogeneity.

It is also interesting to study the density of the disturbed QHF states. The density of the Heisenberg QHF

remains almost unchanged (it is constant) unlike the density of the Ising QHF state, Fig. 35b right. This

is understandable. Whereas in the Heisenberg QHF spin up and spin down one-particle states have exactly

the same wavefunction, both spin up and spin down states are from the lowest Landau level, this is not the

case for the Ising QHF. In that case, spin up and spin down states come from different Landau levels. Thus,

even when the magnetic impurity shuffles the spin up and spin down particles somehow in the Heisenberg

QHF, the density does not change.

Finally, we comment on densities in the inhomogeneous states in the Ising QHF. Results shown in

Fig. 35b belong to quite small systems (12 particles at most). In the largest system studied, we observe a

maximum in the density direct at the position of the impurity (x = 0) and the maximum approaches the

value of density in a homogeneous system. With some imagination this allows for a hypothesis that – if

domains are formed in an infinite system – the density will be inhomogeneous close to the domain boundary

while remaining homogeneous inside a domain. However, we would have to study larger systems to confirm

this speculation.

2.3.4 The half-polarized states

The inner structure of the half-polarized (S = Ne/4) ground state at filling 2/3 is investigated in this sub-

section. We will argue that this state (assuming short-range interaction) resembles rather the incompressible

singlet and polarized ground states at ν = 2/3 than the Ising quantum Hall ferromagnet in the Sz = 0
sector as described in Sect. 2.3.3.

In this subsection, by half-polarized ground states we mean the 8- and 12-electron S = Ne/4 states GS8

and GS12 as introduced in Sect. 2.2, cf. correlation functions in Fig. 28.

The ground state in a homogeneous system has a nearly constant density (oscillations due to the center-

of-mass part wavefunction are less than 0.1% in the 12-electron system). This changes when a weak δ-line

magnetic impurity along y is applied. Not only the polarization but also the density becomes inhomogeneous,

Fig. 38. The first minima of n(x) are at the same position r1 ≈ 2.2ℓ0 in the two system sizes considered and

decaying oscillations are likely to follow at larger distances. Comparing the two system sizes in Fig. 38a, we

find a much weaker response in the larger system, but this still does not have to imply a vanishing response

in an infinite system, cf. discussion of the singlet state in Sect. 2.3.1.
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Fig. 38 Half-polarized ground state (S = Ne/4) responding to a δ-line magnetic impurities (54). (a) HMI,↑, density.

(b) HMI,↑, polarization. (c) Different impurity types, 12 electrons, density. (d) Different impurity types 8 electrons,

density.

Unlike the Ising quantum Hall ferromagnet discussed in Sect. 2.3.3, the half-polarized states seem to

have an intrinsic length scale in n(x) (of the order of r1), Fig. 38a. It is remarkable that this r1 matches

quite well the position of the first maximum in the density of the Laughlin state (1/3) responding to an

impurity, Fig. 33.

Contrary to the density, the polarization does not show an intrinsic length scale as positions of the first

minima in Ne = 8 and Ne = 12 systems mismatch considerably, Fig. 38b. However, the polarization

response here differs from the behaviour of the singlet state, Fig. 34b. Rather, Fig. 38b suggests that

n↓(x)/n(x) → 0.75 as we go away from the impurity for the half-polarized states. This behaviour was

classified as “incompressible” in Fig. 32a.

These observations suggest that the presence of an impurity will not lead to a splitting of the state into

two domains (one with spin up, second with spin down), which we could expect for Ising QHF, Fig. 37. It

seems that an impurity will rather change the polarization of the system only locally, in an “incompressible

manner”, Fig. 32a. The density response has the same characteristic length scale as the singlet and polarized

ν = 2/3 ground states and such a length scale is absent in the polarization in agreement with behaviour of

the singlet state, Fig. 34b.

A state with Sz = Ne/4 comprises of 1
4 Ne electrons with spin down (“minority spins”) and 3

4 Ne

electrons with spin up (“majority spins”). Since the two populations are not balanced, we may gain extra

information by speaking to them separately. The simplest concept, assuming non-interacting electrons,

would be that HMI,↓, HMI,↑ and HMI (54) give rise to responses in ratio 1
4 : 3

4 : 1. Very roughly, this is

indeed the case. Heights of the central peak (x = 0) for these three types of inhomogeneities are indeed

approximately in this ratio, both for the density and for the polarization, Fig. 38. In the following we will

discuss investigations with spin-dependent perturbations in more detail.

Let us separate the density of majority and minority spins, Fig. 39. We will argue that the half-polarized

state with Ne electrons consists of two coexisting and weakly interacting liquids: Ne/2 electrons in a fully

polarized liquid (with Sp
z = Ne/4) and Ne/2 electrons in a Su

z = 0 state. Minority spins are thus present

only in the Su
z = 0 liquid whereas majority spins occur in both of them. Concentrate on Fig. 39c.

(i) Minority spins (↓) react almost equally to HMI,↑ and −HMI,↓. They reflect only changes in the

Su
z = 0 liquid and there are as many up as down spins in it. In fact, the HMI,↑ impurity influences also the

polarized liquid component, but we cannot see it in the density of minority spins provided the two liquids

do not interact appreciably. The combined effect of HMI,↑ − HMI,↓ causes a response of about the sum of

these two.

(ii) Majority spins (↑) react differently to HMI,↑ and −HMI,↓. We should keep in mind that n↑ reflects

changes in both (polarized and Su
z = 0) liquids. The latter impurity inflicts changes only on the Su

z = 0
part, whereas the former impurity acts on both liquids. If both liquids would have the same sensitivity to

the considered impurities, we could expect responses in ratio 4 : 3 : 1 (HMI to HMI,↑ to HMI,↓). The fact

that responses observed in Fig. 39c (measured by the height of the central maximum) are in ratio 3 : 2 : 1
could be an indication that the polarized liquid is less sensitive than the Su

z = 0 liquid.
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Fig. 39 The same as Fig. 38, but the density is decomposed into the density of majority spins (n↑) and minority spins

(n↓). By attractive (repulsive) is meant that the δ-impurity at x = 0 is attractive (repulsive) for the majority spin. (a) 8

electrons, repulsive. (b) 8 electrons, attractive. (c) 12 electrons, attractive.

(iii) Note also, that responses are the same (up to an inversion) for attractive and repulsive impurities,

Fig. 39a and 39b, provided the impurities are weak.

Studies of the eight electron half-polarized state, Fig. 39b is not in conflict with this interpretation,

responses in densities are quantitatively different though. However, we should be cautious in drawing

strong conclusions as these systems with primitive cell of size 12 flux quanta correspond to the smallest

system (Ne = 4) considered in Fig. 33 (ν = 1/3 state plus an impurity) and in that case finite size effects

are already very strongly pronounced. Thus, the twelve electron system can be considered as the smallest

system with finite size effects not playing a major role.

In conclusion, the hypothesis of the coexistence of the spin singlet and polarized liquids in the half-

polarized states (HPS) seems to be supported. We have pointed out some similarities between the HPS and

the former two incompressible states. In contrast, response to magnetic impurities seems to be different

for the HPS and the Ising quantum Hall ferromagnet (in the Sz = 0 sector) which would be the direct

counterpart of the HPS if composite fermions are substituted by electrons.

In general, it is not very surprising that electronic systems (ν = 2 Ising QHF) differ strongly from the

CF-counterparts. We have already seen this in correlation functions in Sect. 2.1.1. However, the observed

differences seem to be too deep to allow us to establish a relation between QHF states and the half-polarized

states introduced in Sect. 2.2.

2.4 Deforming the elementary cell

In this section we discuss another way of how to investigate fractional quantum Hall states. We will exactly

diagonalize ν = 1/3 and ν = 2/3 systems in elongated rectangular elementary cells. The dimensions are

a by b, the aspect ratio is thus a : b > 1. The area of the rectangle is always kept constant, ab = 2πℓ20Nm

(1), and therefore

ab = 2πℓ20Nm , ⇒ a = ℓ0
√

2πNmλ , b = ℓ0
√

2πNmλ−1 , λ = a : b . (55)

What can we expect? In the first approximation, we would say (i) nothing happens for an isotropic state

such as the ν = 1/3 Laughlin liquid and (ii) crystalline or wave-like states will change both in energy and in

density. The reason is, that structures in homogeneous liquid states (as for example in correlation functions

in Sect. 2.1.1) are intrinsic and not incurred by the finite system size. Consequently, we expect the liquid

state to change neither their energy nor their correlation functions, at least not on short distances, if a : b is

slightly varied. On the other hand, an integer multiple of the period of a wave-like or crystalline state must

be necessarily equal to a and/or b, hence by varying the aspect ratio we force it to change its period. In a
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Fig. 40 Spin polarized eight electrons at filling factor 1/3 and 2/3. Energy of the lowest states versus aspect ratio

of the primitive cell. An overview of the polarized, singlet and half-polarized states in the same scale is presented in

the last panel. (a) Coulomb interaction (1/3). (b) Short-range interaction (2/3). Blue crosses mark the energy of a full

Landau level. See the comment [6] for details. (c) Polarized, singlet and half-polarized states at ν = 2/3. Overview.

classical crystal this means compression, or better deformation, since total “volume” ab remains constant,

and we expect it to cost energy.

This investigation of ν = 2/3 systems was partly motivated by the work of Rezayi et al. [61] who

investigated one particular type integer quantum Hall ferromagnet. Their exact diagonalization on a torus

showed an Nm-fold nearly degenerate ground state and the authors argued that these states comprised

of stripes of alternating spin polarization (Sect. 2.3.3) oriented parallel to one side of the rectangle, for

example a. As they varied the aspect ratio, the states still remained degenerate, and their energy E(λ)
changed proportional to b. In fact, the degeneracy even improved: the small energy differences between the

Nm states dropped. This was a strong argument for the stripe order, since then dE(λ)/db can be interpreted

as energy per unit length of an interface between a spin up and spin down stripe.

2.4.1 Incompressible ground states

As usual, we will start with ν = 1/3, being probably the best understood system. This will also be the

only case where we will discuss Coulomb interacting systems, in the rest we will stay with short-range

interacting systems.

Coulomb versus short-range interaction: ν = 1/3. The spectrum of a Coulomb-interacting system

has a quite rich structure, Fig. 40a. The ground state energy exhibits several minima as a function of the

aspect ratio of the elementary cell. In fact even more structure seems to appear in larger systems, as far as

it could be inferred from comparing 6, 8 and 10 electron systems. In the following, we will show that this

structure occurs mainly due to the long-range part of the Coulomb potential, it should be possible to describe

it mainly by the Hartree part of the total energy or simply that it is due to formation of charge density waves

(CDW) resembling Wigner crystals. Differences between Wigner crystals and CDWs are discussed below.

In fact, energy of the states in question, Fig. 41, will contain strong exchange contributions. Nevertheless,

these states are very similar to the classical states which minimize the Coulomb energy. In a second step,

we will discuss how correlations (and energy due to correlations) depend on the aspect ratio, Fig. 40b.

In order to understand the the aspect-ratio dependence of energy of the Coulomb-interacting ground state,

let us focus on two low excited states marked by arrows in Fig. 40a. These two states are just the CDWs

mentioned above and they look almost like Wigner crystals: one hexagonal, another square, as density-

density correlation shows, Fig. 41. It is then not surprising that the energy of such states is minimal, when
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Fig. 41 Charge density waves resembling Wigner crystal states are among the lowest excitations in a Coulomb

interacting 1/3 system. Their energy is minimized (as a function of aspect ratio) when the elementary cell matches the

crystal geometry. Correlation functions in eight-electron systems are shown, length of x- and y-sides corresponds to

the particular aspect ratio. (a) The “square” crystal state (aspect ratio 2). (b) The hexagonal crystal state, aspect ratio

4/
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Fig. 42 Evolution of the Laughlin state with aspect ratio of the elementary cell (Coulomb interaction). Correlation

functions are shown. (a) Aspect ratio 1.00. (b) Aspect ratio 2.00. (c) Aspect ratio 2
√

3 ≈ 3.46.

the aspect ratio matches its geometry. For eight electrons considered here, this happens for3 4d : 2d = 2
and 4d : (2

√
3/2d) = 4

√
3/3 for the square and hexagonal crystal, respectively. Perhaps the most apparent

difference between a CDW and an (unpinned) Wigner crystal is that for the latter state we expect the

correlation function to drop almost to zero between the “lattice sites” and this is not the case here, Fig. 41.

The reason is that at filling factor ν = 1/3, the system is too densely populated, or mean interparticle

distance is too small, rmean/ℓ0 =
√

2π/ν ≈ 4.35 (1) to allow the electron density (or correlation function)

to vanish between two sites. Remember that an electron within the lowest Landau level cannot be localized

more strongly than on a length scale of the order of unity (magnetic length ℓ0). Even if we assembled a

hexagonal Wigner crystal at ν = 1/3, the wavefunctions at neighbouring sites would strongly overlap and

it is then more favourable for the electrons to retain some features of the Laughlin correlations. As a result

we obtain a CDW (or a “strongly correlated crystal” [46]) like the state in Fig. 41b. At lower filling factors,

rmean/ℓ0 is larger and Wigner crystal states become possible. This can be interpreted as a quantum phase

transition from liquid to solid as the filling factor is decreased and the extensive studies in this field suggest

the critical value ν ≈ 1
7 , see Sect. 5.7 in Chakraborty [13] for a review.

The ground state (GS) energy reflects these geometrical conditions. This state also minimizes its energy

when the square crystal can easily be formed, but at short distances it strictly preserves the liquid-like

correlations, Fig. 42. It is isotropic at short distances, in Fig. 42b, the ring corresponding to the first

maximum is circular and not deformed into an oval for instance, Fig. 41, and also g(r) ∝ r6 (not obvious

in Fig. 42). It seems plausible that the increase of GS energy around a : b ≈ 3, Fig. 40a, is due to the

3 d is the “lattice constant”.
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loss of isotropy at shorter distances. The ring of the first maximum in g(r) disappears, Fig. 42c, the feature

g(r) ∝ r6 however remains. It is important to know, that unlike the energy, the structure (correlation

functions) of the ground state is quite insensitive to the type of interaction (Coulomb or short-range).

Let us now proceed to short-range interacting states. The crystalline states disappear from the realm

of low-energy excitations. The ground state energy is completely independent on aspect ratio, it is zero,

Fig. 40b. Energies of fully polarized 2/3 states displayed therein are equal to those of 1/3-systems up to a

constant shift. This constant depends on aspect ratio, but the dependence is imperceptible up to a : b ≈ 4
(for 4 electron system). In fact, the ground state is rigid in the following sense: a state can have zero energy

only if there are three zeroes on the position of each electron in the wavefunction. The wavefunction is

completely determined by this condition together with the confinement to the lowest Landau level. It is even

surprising, that given how strictly determined the ground state is, it once resembles a liquid (for a : b ≈ 1)

and another time a CDW state (larger aspect ratios), Fig. 42c.

Assuming fully spin polarized electrons, 2/3 and 1/3 systems (e.g. 8/12 and 4/12) are particle-hole

conjugated. Thus, spectra of these systems are identical up to a constant energy shift, which is just the

Coulomb (or short-range interaction) energy of a completely filled lowest Landau level. Note that this

energy varies with aspect ratio (both for Coulomb and for short-range interaction). The common statement

that interaction energy of a full LL is a constant is valid in a broad range of aspect ratios, but not everywhere.

In Fig. 40b, this holds up to a : b < 4, Sect. 1.5.4. This is shown in Fig. 40b. The ν = 1/3 Laughlin state

has zero energy for any aspect ratio (not shown), the 2/3 ground state energy is then just the Hartree-Fock

energy of a completely filled Landau level. Beyond a : b ≈ 4, this energy is no longer constant, indicating

that the deformation of the elementary cell becomes pathologic and beyond this point (at latest), the model

no longer describes a 2D system but rather an effective 1D system.

Consider a/b ≫ 1. Then the Ne electrons are located on a very thin cylinder [60] of length ∝
√

a/b
(area of the cylinder is fixed by filling factor, ab = 2πNm) and single electron states resemble “rings on a

pole”. The mean distance between electrons is then ∝
√

a/b/Ne and Coulomb energy is then proportional

to (a/b)−1/2. The increase of the ground state energy for very large aspect ratios, Fig. 40a, is due to the

repulsion between an electron and its own periodic image in the “short-direction”.

Excited states are sensitive to deformation of the elementary cell even more. Energy levels group into

branches beyond a/b ≈ 2, Fig. 40b. Keeping in mind the transition towards an effective 1D model, these

branches can be attributed to 0, 1, 2, etc. pairs of “rings on a pole” sitting at neighbouring sites. In illustrative

terms, there is no longer enough room for two electrons to be positioned in “vertical” direction (along y
axis, i.e. the shorter side of the elementary cell) except when they freeze into a crystal.

In conclusion, going beyond aspect ratio ∼ 2 (in a Nm = 12 system) the system cannot be taken as a

faithful model for an isotropic infinite system.

The singlet state. The singlet ground state is apparently more sensitive to varying the aspect ratio. Its

energy changes at much smaller deformation than that of the polarized state, Fig. 40c. However, comparison

between systems of different sizes shows that its energy is also constant, provided that the aspect ratio is

not much larger than one and the system is large enough, Fig. 43. This is another hint at isotropy of the

state. A crystalline state responds more strongly to a change of a/b, since this is in principle an attempt to

compress the lattice in one direction while expanding it in the other direction. Recall just the CDW states

in ν = 1/3 systems marked by arrows in Fig. 40a.

This is in agreement with a direct observation of correlation functions, Fig. 44. In particular, the ring

structure in g↑↓(r) (or maximum at r0 ≈ 3.4ℓ0) remains preserved even for aspect ratios a : b ≈ 3, Fig. 44

right. This is similar to how the ring structure of the first maximum was preserved in the deformed ν = 1/3
Laughlin state, Fig. 42b. Also, looking at g↑↑(x) and g↑↓(x) in the deformed singlet state, the sum of these

two seems to remain constant beyond r0 even in deformed systems, in spite of g↑↓(x) decreasing beyond

x = r0. This was just the conclusion in a : b = 1 systems, Fig. 15, and it suggests that the singlet state

did not change much even in a quite strongly deformed system (a : b � 3). Moreover, this finding allows
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Fig. 43 Low lying states at filling 2/3 under vanishing Zeeman splitting versus aspect ratio of the primitive

cell. Note that energy of the singlet ground state remains about constant for aspect ratios � 1.4 in the larger

system. (a) Eight electrons. (b) Ten electrons.
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Fig. 44 The singlet 2/3 state in elementary cells of different aspect ratios: density-density correlation

between unlike spins (the two aspect ratios shown in 2D plots are a : b = 1 and 2).

us to use deformed systems to study what happens on slightly larger distances than distances accessible in

a square cell of a fixed area because maximum distance between two electrons in a deformed elementary

cell, 1
2 ℓ0

√
2πNm(λ + 1/λ), grows with increasing λ.

Regarding the energy, which seems to react more sensitively to deformations than the correlation func-

tions, the following speculation seems plausible. If the singlet state is a liquid of ↑ − ↓ pairs of characteristic

size r0 ≈ 3.4ℓ0, Sect. 2.1.1, it ought to be more sensitive to aspect ratio variations than the Laughlin state

just because such a pair in the ν = 2/3 singlet state is larger than a single electron in the ν = 1/3 Laughlin

state.

2.4.2 Half-polarized states

The half-polarized states can be expected to suffer severely under the finite size of the system. A system with

eight electrons contains only two electrons with minority spin. Contrary to fully polarized systems (where

eight particles is already fair enough), it is thus the smallest system with S = Ne/4 where many-body

effects can be studied.

Let us compare how systems of two different sizes respond to varying aspect ratio. In an eight-electron

system, Fig. 45a, there are four low lying states: the ground state at a/b = 1 with k̃ r = (π, π), a (0, 0) state
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Fig. 45 Half-polarized states (S = Ne/4) at filling 2/3 versus aspect ratio. States with next larger spin are

well above (out of scale here). (a) 8 electrons. (b) 12 electrons. Colours indicate different J’s.

which becomes the ground state at a/b > 1.5 and a pair of degenerate states, (0, π) and (π, 0) (k̃ r is defined

in Sect. 1.5.2). The former two states are isotropic (and lie in high symmetry points of the Brillouin zone),

the other two are spin-density waves in x and y direction, judging by the correlation functions (not shown).

Moving away from aspect ratio one, degeneracy of the latter two is lifted – just as the 90 deg rotational

symmetry of the elementary cell is broken – and the wave along x (the longer side) becomes energetically

more favourable. It is quite conspicious that this state evolves parallel to the (π, π) state for aspect ratios

above ≈ 1.4. For these values of a : b, the inner structure of these two states seems to be very similar, too.

In the low-energy sector, a (0, 0) state is absent in a 12-electron system, Fig. 45b. In other respects,

however, the situation is quite similar to the smaller system. There is a well-separated (π, π) ground state

in a square cell and this state becomes nearly degenerate with a (0, π) state for aspect ratios � 1.4. Also,

the energy of these two states decreases with increasing aspect ratio and eventually reaches its minimum.

In contrast to the smaller system, the minimum occurs later, at a : b ≈ 2.4 (Fig. 45b) compared to ≈ 1.6 in

Fig. 45a, but this occurs also for the incompressible states, e.g. the singlet at ν = 2/3 (Fig. 43a vs Fig. 43b).

The correlation functions of these two states, (0, π) and (π, π), are similar to those of the (0, π) and (π, π)
states in the eight-electron system (not shown).

Now turn to the correlation functions of the (0, π) and (π, π) states in a 12-electron system, Fig. 46.

Both states are quite isotropic, for a square elementary cell, first at a very close look, we find a slight x
versus y anisotropy in the (0, π) state. However, already under slight variation of the aspect ratio, stripe

structures parallel to the shorter side evolve (a : b = 1.2, Fig. 46a). In this respect, both states look quite

similar, Fig. 46 (or compare Figs. 46a and 46b), and we should stress that the differences in the correlation

functions between the isotropic (at a : b = 1) and the wave-like state (a : b = 1.8) are very large, both in

isotropy/anisotropy and in the short-range behaviour, Fig. 46c. This is in a strong contrast to the behaviour

of the incompressible states, e.g. the Laughlin state which preserves lot of its original isotropy even at

a : b ≈ 2, Fig. 42.

These observations suggest the following interpretation. The half-polarized ground state at ν = 2/3 is

an isotropic state which however inclines to the formation of a spin-density wave. The wave has the shortest

period allowed by the number of electrons, i.e. it resembles an antiferromagnetic ordering (↑↓↑↓ . . . rather

than ↑↑↓↓ . . . , for instance) as the correlation functions in the rightmost column in Fig. 46a suggest. Since

there are just three ↓-electrons in the system, we expect two stripes (the third ↓-electron is just at the

origin) in g↓↓(x, 0) in the case of ↑↓↑↓ . . . ordering. In more detail, see Fig. 46d: the minima/maxima

in g↑↑(x, 0) match well with the maximum/minima in g↑↓(x, 0). In other words, spin up is followed by

spin down. However, the amplitude of oscillations in g↓↓(x, 0) is moderate, Fig. 46c, and hence we should

rather classify the state as a “spin density wave” than e.g. a state with stripe domains of alternating spin

polarization.
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Fig. 46 Evolution of two half-polarized states lowest in energy with growing aspect ratio of the elementary

cell (12 electrons, ν = 2/3, short-range interaction). Correlation functions are shown. (a) The lowest state,

k̃ r = (π, π). (b) The first excited state, k̃ r = (0, π). (c) g↑↑, g↑↓ and g↓↓ of the lowest state in a deformed

cell. (d) g↓↓, section along x for square and deformed cell.

On the basis of the present investigation, it is not clear whether in a large enough system, this spin wave

state is the ground state, a low-energy excitation or it is degenerate with the isotropic ground state. Even

though the GS at a : b > 1 (spin wave) has a lower energy than the isotropic state at a : b = 1, Fig. 45b,

this does not say much about which state would be the ground state in a larger system. We saw a similar

situation for the ν = 1/3 Laughlin state, Fig. 40a, or the singlet ν = 2/3 state, Fig. 43. The energy of the

ground state was not at its minimum at a : b = 1, yet the isotropic (a : b = 1) state is probably the real

ground state in the thermodynamic limit. The question how to decide which state – isotropic or anisotropic

– will be preferred in infinite systems remains open, but comparison between systems of more different

sizes could be very helpful.

2.4.3 Conclusions

It has been demonstrated that isotropic states like the fully polarized or singlet incompressible ν = 2/3 ones

tend to be insensitive to slight deformations. The response was observed in the energy of the state and in its

correlation functions, where we saw that especially the short-range behaviour remains basically unchanged.

The insensitivity improves with increasing the system size (number of particles). We also registered some

differences between the singlet and polarized state. In systems of equal size (area) the former state was

disturbed by smaller deformations. This agrees with our previously mentioned hypothesis (Sect. 2.1) that the

singlet ground state consists of pairs of electrons with unlike spin. Since the typical size of such a pair was

rather large (3.4ℓ0), the singlet state will suffer under the finite size of the system more than the polarized

state where the “relevant particles” are still electrons whose size is about ℓ0. Imagine filling a container

once with ten tennis balls (∼ polarized state) or with five footballs (∼ singlet state). Slightly deforming the

container will probably affect the latter system stronger.

Investigation of the half-polarized state revealed that while the state is isotropic in a square cell, it tends

to build a unidirectional spin density wave for aspect ratios not far from one. In this regime, it also becomes

degenerate with one other state. Correlation functions of the both states (in deformed elementary cells) are
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quite similar to each other. We suggested that these states have an antiferromagnetic ordering in agreement

with both correlation functions and wavevectors of these two states, k̃ r = (0, π) and (π, π). The question

which state (isotropic or spin wave) is the real ground state in an infinite system remained unanswered.

2.5 Summary and comparison to other studies

The incompressible states: the polarized and the singlet ones. We studied various properties of the fractional

quantum Hall states with spin degree of freedom at filling factors 1/3, 2/3 and 2/5: correlation functions,

response to magnetic and non-magnetic δ-line impurities or to deformation of the elementary cell. Briefly

summarized:

(i) The results are in agreement with the concept of incompressibility of these states and also (in the case

of ν = 1/3) with some earlier studies, e.g. [86].

(ii) Even though these states can be imagined as composite fermion systems with integer filling, the

analogy to Landau levels completely filled with electrons can often be misleading. For instance electrons

of unlike spin are strongly correlated in the ν = 2/3 singlet state while they are completely uncorrelated in

a ν = 2 singlet state.

(iii) We inferred pairing of spin up and spin down electrons in the ν = 2/3 singlet state. In the spin-

unresolved density-density correlations, this state looks as if the two electrons in each pair were located

exactly at the same position and the pairs then formed a ν = 1 state. This conclusion was not possible

for the ν = 2/5 singlet state thereby highlighting differences between fillings 2/5 and 2/3 which are very

closely related within composite fermion theories.

Half-polarized states. We identified a highly symmetric half-polarized state at filling factor 2/3 which

could become the absolute ground state in a narrow range of Zeeman energies (or magnetic fields). Such

a state is completely unexpected in mean-field composite fermion theories. Extending earlier studies with

exact diagonalization on a sphere we showed that extrapolating the energy of this state from finite size exact

diagonalizations to the thermodynamic limit is problematic and the question whether the half-polarized

state really becomes the absolute ground state remains open.

Investigations on this state both for short-range and Coulomb interacting systems showed strong sim-

ilarities to the incompressible singlet and polarized states at ν = 2/3. Consequently, we suggested that

the singlet and the polarized state coexist within the half-polarized state. The state might be gapped for

short-range interacting electrons but even if yes, it is probably not gapped for Coulomb interacting systems.

These differences in spectra accentuate the fact that extrapolations to infinite systems should be taken with

extreme caution. It also means, that the definition of the short-range interaction should be reconsidered. The

model may be an oversimplified if we study the half-polarized states since the mean distance between two

minority spin electrons is rather large, higher pseudopotentials should also be taken into account.

The half-polarized state forms a pronounced spin-density wave, or antiferromagnetic order, when anisotropy

is introduced from outside (deformation of the elementary cell) but we could not conclude whether this

spin-wave will be more energetically favourable than the isotropic form in much larger systems.

Half-polarized states: other studies. Let us first briefly recall other suggestions which appeared since

Kukushkin et al. presented their experiment showing a plateau of the polarization at the value of one half.

All works mentioned below can be applied both to filling factor 2/3 and 2/5 in principle. Unless necessary,

we will not distinguish between these two cases.

Ganpathy Murthy [52] was attracted by the idea that correlations favour either the spin singlet or the

fully polarized state. At the point where the two ground states cross (recall Figures 24 and 9a), electrons

could prefer to form a translationally non-invariant state consisting of regularly alternating areas of (locally)

singlet and (locally) polarized states arranged into a partially polarized density wave (PPDW). He argues

that this structure ought to have square rather than a hexagonal symmetry. The energy of the PPDW state is

evaluated within the Hamiltonian theory of composite fermions [54] and it is shown that the PPDW state is

stable (against one-particle excitations) and lower in energy than the (homogeneous) singlet and polarized
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states. The period of the density wave should be 2
√

πℓ∗ (18) which is 7.93ℓ0 for filling 2/5 and 6.14ℓ0 for

2/3. Charge modulation in the wave should be quite weak (in the order of 1%).

Apal’kov, Chakraborty, Niemelä and Pietiläinen [9] object that the energy of the PPDW is too high and

claim that a homogeneous Halperin state in the two crossing CF Landau levels (see below) should have a

lower energy. Without invalidating the following results, this estimation seems to be however incorrect [53].

As the mentioned Halperin state cannot account for the half-polarized states, Apal’kov et al. suggest another

candidate for the half-polarized state, a non-symmetric excitonic liquid. They consider only the “active

levels” meaning the two CF Landau levels which cross. These (two) levels have total filling of one, i.e., there

are only Nm electrons for Nm places in the ↑ level and Nm places in the ↓ level. By convention, they define

a ↑-particle as an “electron” and a missing ↓-particle as a “hole”; an “electron”-“hole” pair is an “exciton”

and a pair of a ↓-particle and a missing ↑-particle is “vacuum”. Owing to the constraint N↑ + N↓ = Nm,

one-particle states can be mapped onto a system consisting solely of “vacua” and “excitons”. The partial

filling factor N↓/Nm ∈ [0; 1] then gives simultaneously the polarization and the number of “excitons” (by

Nm). Note, that “excitons” are bosons by virtue of an integer spin.

From this viewpoint, the ν = 1 quantum Hall ferromagnet (being described by the Halperin (1, 1, 1)
state) is a Bose condensate of excitons. In that case, all the excitons are non-interacting and have zero

angular momentum L. This is most easily seen by the fact that g↑↓(0) = 0. On an “electron” (↑ particle),

there is no ↓ particle, i.e. there is a “hole”. In an exciton (hydrogen atom), the only wavefunctions with

ψ(r = 0) �= 0 are those with L = 0. On the other hand, g↑↓(0) = 0 follows from the fact that the Halperin

state has maximum polarization and thus the spatial part of the wavefunction must be totally antisymmetric.

Apal’kov et al. suggest that the half-polarized state at ν = 2/3 or 2/5 could be a condensate of excitons

with L = 1 for which they call it nonsymmetric.

To support this idea, they perform exact diagonalizations in a ν = 1 system with several model inter-

actions which are meant to describe the two – active – crossing CF Landau levels. These interactions are

derived from the Coulomb potential with suppressed short-range component, probably (without justifica-

tion) with the intention to describe interacting composite fermions. Stability of the half-polarized state is

substantiated by showing that the energy versus polarization curve has a downward cusp at half-polarization.

On the other hand, g↑↓(0) �= 0 in the half-polarized state indicates that the “excitons” do not have L = 0.

The particular value of L = 1 is demonstrated by other means.

Finally, the idea of Eros Mariani [50] should be presented. Parallel to the previous two works, the two

“active” crossing CF Landau levels are considered. An assumption is made that they both have a partial

filling of 1/2 rendering (after a second Chern-Simons transformation) two Fermi seas of “free” composite

fermions (of second generation). Mariani et al. show that interaction of these objects with fluctuations of the

gauge field leads to an attractive effective interaction between particles with opposite spin and momentum.

In analogy to superconductive pairing, this implies a gapped ground state. An estimation of the gap is given.

At the end of this section, we must state that presently it is not clear which (if any) of the candidates

proposed in the previous subsection describes the half-polarized reality. As Murthy correctly mentions, the

final answer should be given by exact diagonalization of a large enough system. Unfortunatelly, we dispose

of systems not larger than 12 particles. Nonetheless let us compare the candidates with what was presented

earlier in this chapter.

The downward cusp in energy-versus-polarization dependence cannot be assured by the calculations

presented here. However, if the lowest half-polarized state indeed becomes the absolute ground state at the

transition between the singlet and polarized state (see extrapolations in Fig. 25), the cusp is likely to be

present. In the other case, it will turn into an upward cusp, as the calculated spectra suggest.

Results presented here indicate, that the half-polarized ground state (2/3) has (k̃ r
x, k̃ r

y) = (π, π) and that

it shows similarities to the singlet and polarized ground states (Fig. 27). In particular g↑↓(0) ≈ 0, which is in

contrast with the model of a nonsymmetric exciton liquid (cf. the correlation functions in [9]). Comparison

between short-range interaction and Coulomb half-polarized states (Fig. 31) suggest that, similar to the
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68 K. Výborný: Spin in fractional quantum Hall systems

Laughlin state, the short-range part of the interaction plays the major role. From this point, the model

discussed by Apal’kov et al. [9] seems to be more appropriate rather for some other systems.

Positioning of the half-polarized state out of the centre of the Brillouin zone could be an indication

that it is indeed a standing wave. This is also supported by spectral properties when the elementary cell

is deformed, Fig. 45. The two lowest states becoming degenerate at aspect ratios larger than 1.4 could be

a charge/spin-density wave (note also the correlation functions, Fig. 46). The fact, that the energy of the

ground state lowers with increasing aspect ratio could indicate that this state is more stable than an isotropic

one. However, caution is advised here, since the singlet incompressible ground state does the same, Fig. 43,

while its isotropic form is the true ground state.

Theory of the “superconductive” pairing was not addressed so far. Comparisons on the level of correlation

functions, possibly in k r-space, are in principle possible, but quite complicated because of the two Chern-

Simons transformations involved.

3 Quantum Hall ferromagnetism at ν = 2/3?

Like the previous section, this section also starts from the fact that there are two distinct ground states at

filling factor 2/3: a spin-singlet and a fully polarized one. Their structure was studied in Chapter 2 and we

also interpreted them in terms of composite fermions, Fig. 9a. Whichever of these two becomes the absolute

ground state depends on the Zeeman splitting which favours spins aligned parallel to magnetic field. The

singlet state is the lowest in energy for vanishing Zeeman splitting. However, increasing the Zeeman splitting,

its energy remains unchanged while the energy of the fully spin polarized state decreases and eventually

this other state becomes the absolute ground state. This simplest scenario, sweeping the Zeeman energy

while magnetic field is kept constant, is not very usual, albeit it is experimentally possible [49]. However,

even if we simply sweep the magnetic field (and keep constant filling 2/3 which requires a simultaneous

change of the electron density), the Coulomb energy of the singlet state changes ∝
√

B and that is slower

than the Zeeman energy of the polarized state in the limit of large B. Therefore, the qualitative discussion

above is still valid. The total energy bilance of the two ground states (in SI units) is

polarized: Ep(B) =
e2

4πεℓ0
EC

p − gµBNeB = −|Cp|
√

B − |Dp|B ,

singlet: Es(B) =
e2

4πεℓ0
EC

s = −|Cs|
√

B ,

where Ne is the number of particles and EC
p > EC

s are the total Coulomb energies in units e2/4πεℓ0 (as

calculated by exact diagonalization, for example; not per particle). Obviously, Ep(B) < Es(B) for B large

enough. What the critical field Bc is, where both energies are equal, depends on (EC
p − EC

s )/Ne. This

quantity is accessible only numerically and depends on Ne although this dependence is weak.

Fig. 47 demonstrates this singlet to polarized transition for 6, 8 and 10 Coulomb-interacting electrons

on a torus. Note that the energy units in Fig. 47, e2/(4πεℓ0) ∝
√

B, change with magnetic field. In these

units, the potential (Coulomb) energy of all states stays constant (singlet state) and Zeeman energy scales

as ∝ e2/(4πεℓ0) ·
√

B.

A close look at Fig. 47 shows that the magnetic field Bc, at which the ground state transition takes place,

varies non-monotonically. However, an extrapolation of energies of the two ground states to 1/N → 0
allows for a rough estimate of Bc ≈ 7 T in an infinite system, Sect. 2.2. This is in quite good agreement

with experiments [44], even though in some samples Bc as low as ≈ 2 T was observed [45,68]. This could

be due to deviations from an ideal 2D system, Sect. 3.1.

The next step in understanding this ground state transition, beyond determining BC , is to investigate the

existence of the spin structures and the eventual formation of domains. The ground state is always either

a singlet or fully polarized in a homogeneous system. The energies of these two states are equal at the

transition. This is similar to an Ising ferromagnet, if we label the polarized state by pseudospin up and
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Fig. 47 Energies of low lying states at ν = 2/3 in a homogeneous Coulomb-interacting system with Zeeman

field: transition from an incompressible singlet ground state to a fully polarized incompressible ground state. Different

numbers of particles in a square with periodic boundary conditions are considered, the scenario is however the same in

all cases. (a) Ne = 6. (b) Ne = 8 (c) Ne = 10.

the singlet state by pseudospin down. In an infinite system at non-zero temperature, the Ising ferromagnet

prefers a state with domains, some with (pseudo)spin up, others with spin down, to the two homogeneous

states. First because entropy of the former is higher [40] and second because the total magnetization of

a domain state is approximately zero while, locally, most spins are parallel to their neighbours thereby

minimizing the energy of magnetic stray fields [10]. None of these two mechanisms was included in the

studied model of a ν = 2/3 system. Instead, the question is addressed here how the system responds if such

a domain-inducing mechanism is modeled by a magnetic inhomogeneity.

From the experimental side, there are quite strong hints at ferromagnetism, mentioned in the introduction.

Hysteresis, saturation (in time) of magnetoresistance, Barkhausen jumps etc. hint at ferromagnetic states

with domain structure near the transition point. The intention of this part of the paper is to show where it is

possible to look for states containing domains in numerical studies of finite-size systems.

3.1 Attempting to enforce domains by applying a suitable magnetic inhomogeneity

The simplest scenario is sketched in Fig. 48. In the homogeneous case, the Hamiltonian consists of two

terms H = HCoul + HZeeman = (e2/4πε)
∑

i<j 1/|r i − r j | +
∑

j g0µBBσj
z , the Coulomb interaction

and the Zeeman term. If the Coulomb energy is fixed, the energies of the two incompressible ground states

can be shifted with respect to each other by varying the Zeeman term. If B is fixed at B = Bc (i.e. the

two ground state have the same energy), the Zeeman energy can be still varied by means of the g factor.

Decreasing g slightly, the singlet state will become the absolute ground state, increasing g the polarized

state will prevail.

The idea of a “domain-enforcing” inhomogeneity is to the turn the constant g into g(xj) = g0 + g1(xj)
and g(x) > g0 in one part of the system whereas g(x) < g0 in another.

Or, speaking in terms of Fig. 47: we slightly modulate the magnetic field B and in one part of the system

we consider B > Bc while in another B < Bc. By slightly we mean that only the spin degree of freedom

is affected, not the orbital. This is an approximation.

The full Hamiltonian to consider is thus

H =
e2

4πε

∑

i<j

1

|r i − r j |
+
∑

j

g0µBBσj
z + HMI , (56)

HMI =
∑

j

g1(xj)µBBσj
z , 〈ϕi|HMI |ϕj〉 = δijEMI





i = 0, 1, . . . , 1
4 Nm : 1

i = 1
4 Nm + 1, . . . , 3

4 Nm : −1

i = 3
4 Nm + 1, . . . , Nm : 1
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Fig. 48 An idea of how to enforce domains at the crossing of singlet and polarized ground states of ν = 2/3. An

average Zeeman field is chosen so that the both homogeneous states have the same energy. Modulation of the Zeeman

field prefers the singlet state “in the middle” and the polarized state “at the edges” (note however the periodic boundary

conditions). (a) Homogeneous system. (b) System with a “domain-enforcing” inhomogeneity.

where |ϕj〉 is a one-particle state localized around x = (j/Nm)a, cf. (20). This roughly corresponds to

g1(x) having a “rectangular wave” form (g1 = 1 for 0 < x < 1
4 a and 3

4 a < x < a and g1 = −1 for
1
4 a < x < 3

4 a).

The basic results of this model are: the ground states slightly change in accord with the inhomogeneity

and nothing peculiar happens near the transition. As we sweep the magnetic field through B = Bc, even

in the presence of a weak inhomogeneity, the singlet state evolves “smoothly and monotonously” into the

polarized state, without any remarkable intermediate states.

Typical results are shown in Fig. 49. A magnetic inhomogeneity (56) was applied to a ten-electron

Coulomb-interacting system and its strength EMI was chosen to be ∼ 10% of the incompressibility gap.

Regarding the ground states and the gap, the spectrum remains virtually unchanged [73]. Looking now at

the singlet and polarized ground states, we find a spatially varying spin polarization4 n↑(x)/n(x), Fig. 49a.

However, the mean values of the polarization still remains at 0.5 (1) as it was in the homogeneous singlet

(polarized) state, Fig. 49a, leftmost (rightmost) inset. The polarization of the “transition state” has a mean

value of 0.75, i.e. just in the middle between the polarized and the singlet state. This is not surprising,

since the “transition state” was taken to be a symmetric linear combination of the two crossing states (the

middle of an anticrossing in a more disordered system [73]). What is more interesting, is the variation of

the polarization around the mean value, Fig. 49b: in this point, the “transition state” lies just between the

singlet and polarized states. Contrary to what we observe in Fig. 49a (middle inset), formation of domains

near the transition would mean that the polarization of the transition state should vary between 0.5 and 1.

This “no-domain result” could have occurred because the system was simply too small for domains to

evolve near the transition. On the other hand, this does not seem to be the case, since the response to the

inhomogeneity does not grow with increasing system size but rather stays about the same, Fig. 49c. Also, the

particular parameters of the model presented in Figs. 48,49 could have been, by chance, chosen unluckily

so that domains could not evolve. A more detailed study [73] however suggests that this is not the case and

weak impurities will never induce domains in ν = 2/3 systems with the exception discussed in Sect. 3.2.

If the strength of the “rectangular wave” impurity becomes comparable to the gap atB ≈ BC ,EMI ≈ Eg ,

the situation at the “singlet-to-polarized” transition changes dramatically. The excitation gap closes and many

states of different spin polarizations crowd around the ground state. Even at zero temperature and in spite

of lack of anticrossings of states with different Sz (i.e. Sz is a good quantum number again), the transition

becomes more gradual, when measured by Sz of the ground state, Fig. 50c.

4 Throughout this Chapter, we will refer to p(x) = n↑(x)/n(x) as to polarization. In the literature, another definition is more

common, P (x) = [n↑(x) − n↓(x)]/n(x), both quantities are, however, equivalent: P (x) = 2p(x) − 1.
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Fig. 49 Response of a ten-electron system to a weak (EMI = 0.002) magnetic inhomogeneity of the form given in

(56). No sings of domain formation observed: the transition state does not respond stronger than the incompressible

states. (a) An overview: spectrum and (inset) polarizations of the singlet, transition and polarized ground state (left to

right). (b) Polarization of the three states in detail (n = 10). Mean polarization subtracted. (c) The transition in systems

of different sizes.
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Fig. 50 Stronger MI’s bring another ground state into play (Sz = 1) and the transition from the singlet to the polarized

ground state becomes more gradual. (a) Weak MI. (EMI = 0.002). (b) Intermediate MI. (EMI = 0.01). (c) Strong

MI. (EMI = 0.02).

Primarily, this is owing to the S = 1 state which profits best from the inhomogeneity. Keeping in mind

its value of k r = (1.07, 0)ℓ−1
0 , this state seems to be a spin density wave in x-direction pinned by the

inhomogeneity potential. It is also important that states with other spins are very near to it.

A strong magnetic inhomogeneity has also another quite pronounced feature: the singlet-polarized ground

state transition BC shifts to higher magnetic fields, Fig. 50. Origin of this shift to higher B is the decreasing

energy of the singlet ground state, Fig. 50 or Fig. 51d.

Let us look at this issue more closely. Increasing EMI , there is no apparent transition (crossing) in the

ground state of the Sz = 0 sector (not shown). The total spin of the ground state increases smoothly from zero

and saturates around S ≈ 1.6 for EMI ≈ 0.02, Fig. 51d. Beyond this point, the label “singlet ground state”

becomes inappropriate. At such values of EMI , the polarization achieves the maximum variation between

zero and one, Fig. 51a. The eight electrons, four with spin up, four with spin down, split into two nearly

independent groups: the spin up (down) electrons gather in the region where g1(x) is positive (negative), see

(56). Such a state where e.g. no spin up electrons occur in the “wrong region” (Fig. 51c, EMI = 0.02) is no

longer even remotely related to the homogeneous incompressible state, even though it has Sz = 0. Rather,

we could interpret it as two ν = 1/3 systems living next to each other: one with spin up, another with spin

down. The strong spatial variation of density in this system, Fig. 51b, indicates that electrons try to avoid

the “interface region”; an alternative point of view is to compare the “spin-down domain region” (seen in

the polarization, Fig. 51a) with the density of spin down electrons, Fig. 51c. However, we must always be
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Fig. 51 Destruction of the singlet state by very strong magnetic inhomogeneities: the system splits into two

domains, one with spin up, another with spin down and the electrons avoid the “interface region” (minima

in the density). (a) Polarization n↑(x)/n(x). (b) Density. (c) Density n↓(x). (d) Energy and S.

aware that we investigate only a finite system which is too small to observe the “inside” of a domain where

we expect the density to be constant. In a sufficiently large system, the maximum in Fig. 51c should spread

into a plateau. Therefore, also conclusions about the interface region must be interpreted with caution.

3.2 Systems with an oblong elementary cell

We have only considered square elementary cells a by a so far. If we somehow e.g. by means of a magnetic

inhomogeneity, manage to split such a system into two domains of the same size, these will be a/2 by a.

Consequently, the spin singlet and spin polarized states which we expect to appear in these domains would

necessarily have to be deformed as in a cell of aspect ratio 1 : 2. In principle, this could even suppress

the formation of such domains or at least shift them to higher excited states. The energy of any of the two

incompressible ground states depends on aspect ratio (the stronger the smaller the system is), Sect. 2.4.1.

There is no reason to expect that the energy of a domain wall between two such states is constant. Let us

therefore investigate systems in a rectangular cell with aspect ratio 2 : 1 which brings the possibility of

splitting them into two square domains. All results in this section refer to Coulomb interacting systems.

Going from square elementary cell to aspect ratio 1 : 2, the overall view of the transition changes. The

crossing between singlet and polarized incompressible states is no longer well separated from excited states,

Fig. 54 (cf. Fig. 47). States with different spin appear near the transition: most prominently S = 1 and

S = 2. Again, Fig. 50, these states are promoted by the perpendicular magnetic inhomogeneities in the form

of a “rectangular wave”, Fig. 52. A consequence of this is a gradual change of the spin in the ground state

as we sweep magnetic field (or simply increase Zeeman energy). Here, we should point out the difference

between the present case and the Coulomb interacting system in a square elementary cell, Fig. 50. For an
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Fig. 52 Spectra and Sz of the ground state in a system with oblique rectangular elementary cell (as-

pect ratio 2 : 1, eight electrons). Magnetic inhomogeneities (56) of different strengths are considered. (a)

Homogeneous. (b) EMI = 0.002 (weak). (c) EMI = 0.004 (intermediate).

oblique elementary cell, (i) the S = 1 state becomes the absolute ground state near the transition even in

homogeneous systems. (ii) A much weaker inhomogeneity is needed to make the S = 2 state the absolute

ground state in some range of the magnetic field. Fig. 52c shows that EMI = 0.004 is sufficient for this to

happen in a 2 : 1 system, while EMI = 0.02 is not strong enough for a square elementary cell, Fig. 50c.

By changing the elementary cell geometry we support possible domain states, but it is adequate to ask

how much the incompressible singlet and polarized states are affected by this procedure. The inner structure

of these states under elementary cell variations was addressed in Sect. 2.4.1 and we saw indications that the

states are liquid like (and very similar to the original states from square elementary cell) even at aspect ratio

1 : 2. However, overlaps between the square-cell and deformed states are noticeably below unity and hence

their behaviour is not representative if we are interested in infinite homogeneous systems. Recall, that the

square-cell polarized state is extremely close to the Laughlin state (overlaps ≈ 99%).

3.2.1 States at the transition

The following paragraph deals with he central result of the investigations on systems with aspect ratio

2 : 1. The low-energy states near the transition (S = 1 and S = 2 in Fig. 52) respond very strongly to

a “rectangular wave” magnetic inhomogeneity, Fig. 53 (the middle two lines). Already for intermediate

strength of the inhomogeneity like 15% of the singlet incompressibility gap in a square cell, polarization

varies between ≈ 0.5 and ≈ 0.05, Fig. 53a (values of 0.5 and 0 would mean a state with Sz = 0 and

Sz = Ne/2, respectively). Equivalently, Fig. 53b shows that (a) the density of spin down electrons drops

below 25% of its average value in the spin polarized region and (b) spin up and spin down densities are

balanced up to 10% variations in the “spin singlet region”. At the same time, variations of the total density

remain small (less than 5%), but there is a clear deficit of electrons in the “polarized region”, Fig. 53c.

In order to check that the inhomogeneity is not too strong (“destructive”) compared to the Coulomb

interaction responsible for the formation of the incompressible ground states (far away from Bc), we should

observe the incompressible S = 0 and S = Ne/2 states, Fig. 53. For both of them, responses are much

weaker than for the transition states.

Let us now concentrate exclusively to the half-polarized states and try to analyze their nature. Observe first

the homogeneous system near the transition, Fig. 54 and focus on the half-polarized sector (Sz = Ne/4 = 2)

with one particular value of J , Sect. 1.5.2. The low lying states show pronounced spin structures seen in

density-density correlation functions [73] and, moreover, several distinct types of spin structures appear in

the low energy part of the spectrum. This is heralded by different values of k r which are (0, 0), (±1, 0) and

(2, 0) for the lowest three states (st01,st02+st03, st04, the middle pair is degenerate). Half-polarized

states contain six spins up and two spins down here, which we choose to call majority and minority spins

respectively.
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Fig. 53 “Domains” imprinted by a magnetic inhomogeneity of type “rectangular wave” into a system with

oblong rectangular elementary cell (aspect ratio 2 : 1). The strength of the inhomogeneity is about 20 %

of the gap in the limit B → 0 (in particular EMI = 0.004). Plotted quantities are averaged over the three

states which were degenerate in the homogeneous system (in the center-of-mass part). (a) Polarization. (b)

Densities of electrons with spin up (or down). (c) Total density.
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Table 3 Incompressible ground states (polarized and singlet) in an eight-electron system. Overlaps between

states in a square elementary cell, oblong elementary cell and oblong elementary cell with intermediate

magnetic inhomogeneity.

asp. 1 : 1,

hmg.

asp. 2 : 1,

hmg.

asp. 2 : 1,

EMI = 0.004

Sz = 0 GS 0.713 0.976

Sz = Ne/2 GS 0.750 0.9996

The lowest state looks isotropic as far as the rectangular elementary cell allows, the other two (st02+st03

and st04) are different kinds of spin density waves in the “long direction” (x). Keeping in mind that these

states are energetically close to each other as compared to incompressibility gaps at ν = 2/3 in a square

elementary cell, for example, we can indeed expect strongly modulated polarization in response to suitable

not very strong inhomogeneities. Polarizations in Fig. 53 were a good demonstration of this prediction.

This leads us to the question what types of spin structures can be imprinted into these states. Are they

completely “soft” or are some particular structures preferred?An answer is given by polarizations in response

to various types of inhomogeneities, Fig. 55. Briefly summarized: a variety of spin structures is possible but

“periodic” structures are preferred.Among the “periodic” structures, the largest period available is preferred.

This means one stripe or just the “domains” as in Fig. 53. By periodic we mean commensurate with the
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Fig. 55 Half-polarized state and different forms of inhomogeneity. Strength of the inhomogeneity is the same in

all cases, EMI = 0.004. (a) Polarization. Different impurity types are explained in the text. (b) Projections of the

inhomogeneous ground states to the lowest four homogeneous states (in Fig. 54).

elementary cell period, for instance a “rectangular wave” in contrast to a delta peak since otherwise, any

structure is periodic in our system due to periodic boundary conditions. Apart of the delta-line impurity,

Fig. 32b and the single stripe (the 2 : 1 = 12 : 6 cell divided into two 6 : 6 parts), inhomogeneities studied

in Fig. 55 were a “narrow stripe” (division of 12 : 6 into parts 2 : 6 and 10 : 6) and “two stripes” (12 : 6
divided into four times 3 : 6)

Looking only at polarizations, Fig. 55a, responses to all types of inhomogeneities considered here seem

to be the same (in strength) within a factor of two. However, a closer look reveals some differences between

those which are “periodic” and the others, Fig. 55b. The one-stripe and two-stripe inhomogeneities mix

mostly only the lowest four states: (sum of squares of) projections of the inhomogeneous state to states

st01-st04 give in these cases ≥ 90%. It seems that a one-stripe structure, or domain state in Fig. 53,

stems from the k r = (±1, 0) states (st02+st03) and the two-stripe structure comes from the k r = (2, 0)
state (st04). In both cases, however, projections to the lowest state (st01) remain high.

A different situation occurs for “non-periodic” structures like a delta peak. Inhomogeneous states are then

“constructed” in the main from states which were originally energetically higher in a homogeneous system.

Such states (e.g. with a delta peak in the polarization) only have a strong projection to the k r = (2, 0) state

(st04), but still more than 50% of weight comes from higher states, Fig. 55b.

This scheme, “periodic-welcome, others-less welcome”, is confirmed also in terms of energy. While the

“periodic” states (one- and two-stripes) profit energetically from the inhomogeneity, the delta-peak state is

shifted to higher energy, Fig. 55b.

Finally, the following conclusion about the ν = 2/3 system near the transition seems to be possible.

The softening against magnetic inhomogeneities of different forms, as observed in Fig. 53a, stems not only

from the spectral properties of the system (small level spacing, Fig. 54) but also from the fact that more

different (inner) spin structures occur among the low lying states. States belonging to a single value of S
(e.g. S = Ne/4) are capable of generating a response as shown in Fig. 53a.

3.3 Summary of studies on the inhomogeneous systems

Perhaps the most important conclusion of this Chapter is that the two incompressible ground states at

ν = 2/3, the polarized and the singlet one, alone are not enough to create a state with “domains”, i.e.

regions of polarization zero, corresponding to Sz = 0, existing side-by-side with regions of polarization

one. We have demonstrated this in Sect. 3.1. When a “domain-inducing” magnetic inhomogeneity is applied,

the singlet ground state is more strongly affected than states near the transition. This claim remains true for

different types of magnetic inhomogeneities, for different quantities used to detect the domains (apart from

the polarization, also for Sz(x), Sx(x), etc.) and also for non-zero temperature [73].

Different conclusions apply when more than just the polarized and the singlet ground states are present

in the low-energy sector. We have demonstrated, that near the transition, the gap could actually close in
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several different situations. In the present study, this happens for very strong magnetic inhomogeneities or

for systems with an elongated elementary cell (Sect. 3.2). The states which closed the gap always belong

to an intermediate value of spin, most prominent are those with S = 1 and S = 2 and since we considered

only eight-electron systems, the latter value of spin corresponds to the half-polarized sector S = Ne/4.

These states are considerably softer against magnetic inhomogeneities than the incompressible singlet and

polarized states. On one hand, this fact follows from a small level spacing in the low energy sector when the

gap closes. However, the magnetic inhomogeneities were also found to have large (∼ 0.1) matrix elements

between most of the low lying states.

The states with the strongest tendency to form domains i.e. the “softest” states, were found in systems

with Coulomb interaction and an elongated elementary cell. Near the transition, even a moderately strong

magnetic inhomogeneity (weaker than the incompressibility gap) was enough to make the polarization

approach the values corresponding to the singlet and polarized states inside the domains. For these domain

states, it is possible to investigate the “inside” of the domains by means of non-averaged correlation functions

[73]. It could not be confirmed yet, however, that the domains comprise of an incompressible liquid [73]

but this system defintely deserves a more detailed study. Especially in this case, a comparison with larger

systems would be very helpful.

4 Conclusions

Fractional quantum Hall systems at filling factors ν = 2/3 and 2/5 have been studied numerically by

means of exact diagonalization techniques on a torus. In both systems, the existence of two different ground

states is well established: one is fully spin polarized, another is a spin singlet and they are both strongly

correlated.All four states can be visualised as composite fermion systems at integer filling factor (νCF = 2).

A transition between these two ground states can be induced by changing the Zeeman energy while keeping

the filling factor constant, Sect. 3.

At the beginning of Sect. 2, we investigated the polarized and the singlet incompressible ground states

in terms of their density-density correlation functions. First, we highlighted the fact that – even if these

states were exactly described by some composite fermion model – the inner structures of the ground states

at ν = 2/3 and 2/5 differ strongly from the inner structure of a state comprising of two fully occupied

Landau levels. In other words, in a composite-fermion state (e.g. νCF = 2), the correlations between the

electrons are different than in a corresponding electronic state (ν = 2). A more important result is, however,

that the electronic correlations differ strongly also between the ν = 2/3 and 2/5 states themselves. This is

surprising, since both filling factors map to the same filling factor of composite fermions (νCF = 2) and

only the orientation of the effective field is different. Study of the correlation functions allowed to suggest

a new interpretation of the singlet ν = 2/3 ground state. The electrons move along in pairs of opposite

spins and the pairs form a state equivalent to a fully occupied lowest Landau level. This conclusion does

not apply to the ν = 2/5 singlet ground state.

The central focus of the present work was on the low-energy states occurring near the transition between

the singlet and the polarized ground states. Some experimental results indicate that another ground state

distinct from the two ground states already mentioned could exist near the transition [45]. In Sections 3.3 and

2.2 we found several arguments in favour of a half-polarized state (S = Ne/4) becoming the absolute ground

state in a narrow range of the magnetic field. The systems available to exact diagonalization were however

too small to allow for an unswerving prediction. Two candidates for the half-polarized ground state were

identified. In Sect. 2.2 we concentrated on the “isotropic candidate”.A study of its inner structure (correlation

functions) combined with an investigation of the response to probing magnetic inhomogeneities (Sect. 2.3)

produced results resembling both the singlet and polarized incompressible ground state. A hypothesis that

both these states coexist within the half-polarized state has been presented.

Calculations with elongated rectangular elementary cells (Sect. 2.4) suggested another candidate for the

half-polarized ground state: a spin-density wave along the longer side of the elementary cell. A comparison
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between two systems of different size indicated that this state has the shortest period allowed by the finite

size of the considered system (e.g. one third of the length of the cell for a state which contains three minority

spins). Based on the present calculations it is not possible to decide which of the two candidates (if any)

evolves into the ground state of an infinite system.

At ν = 2/5, no obvious analogue to the half-polarized state at ν = 2/3 was found.

Employing magnetic inhomogeneities to enforce domains of different spin polarization near the transition

at ν = 2/3 (Chapter 3) we found that no signs of domain formation occur unless the energy gap closes. The

loss of incompressibility could however still be compatible with the experimental observation of a plateau

of polarization one half during the transition. It is enough if there are many states with S = Ne/4 and no

(or only few) states with other values of S in the low-energy sector.

The “best” candidates for domain states were found to appear in systems with an elongated rectangular

cell. The Leitmotiv here was that the elementary cell with aspect ratio 2 : 1 is divided by the inhomogeneity

into two square parts which could be more convenient for the formation of isotropic states (the singlet and

the polarized incompressible liquid). Examination of the domain state however suggestss that the inside

of the domains does not resemble the incompressible ground states at ν = 2/3 [73]. Nevertheless, a more

detailed study is necessary here, since systems with aspect ratio far from unity can suffer more from finite

size effects than what was demonstrated in Sect. 2.1.
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[1] If we completely fill the lowest Landau level with spin up electrons and with spin down electrons (imagine ν = 2
and zero Zeeman energy), then spin up and spin down electrons are uncorrelated, g↑↓(r ) = 1. It is not a claim

of composite fermion theories that the same is true if we do the same with CF Landau levels. The attachment of

flux quanta introduces correlations between the originally uncorrelated (n = 0, ↑) and (n = 0, ↓) levels: spin

up CFs do not feel the spin down CFs (owing to LL mixing neglect) but they do feel fluxes attached to the spin

down CFs.

[2] In fact, there are some analytical results.Very appealing schemes how to evaluate energy and correlation functions

were suggested by Girvin [24] Takano and Isihara [70]. Interesting extension of the former work was presented

by Görbig (Sect. 1.2.2. in [27]). All these schemes however present closed formulae neither for energy nor for

correlation functions.

[3] Consider the action of S− (the lowering operator for the z-component of spin) on the ν = 2 (or νCF = 2) ground

state |Ψ, Sz = 0〉 at zero Zeeman energy (0 ↑ and 0 ↓ LLs are filled). On one hand, the state S−|Ψ, Sz = 0〉 may

not contain any particles in higher LLs (up to Zeeman energy, it should have the same energy as |Ψ, Sz = 0〉).

On the other hand, there is no room for an extra spin down in the lowest LL which is completely filled and

therefore flipping a spin ↑→↓ (as contained in S−) must annihilate the state. Finally, S−|Ψ, Sz = 0〉 = 0
implies that |Ψ, Sz = 0〉 is a S2 = 0 state.

[4] Going once around an s-fold vortex gives phase 2πs. Exchange of two particles corresponds to one half of

such a loop (for ψ(r1, r2) → ψ(r2, r1) corresponds to ψrel(̺) → ψrel(−̺) with ̺ = r1 − r2 in the relative

part of the WF; ̺ → −̺ is half the way of going around zero). Thus exchanging two particles with s attached

vortices, the wavefunction acquires phase πs. For two fermions with s attached vortices, it is π(s + 1). Thus

the wavefunction changes sign at exchange of two particles when s is even and does not change the sign when

s is odd.

[5] The magnetic field described by the vector potential in (16) is proportional to electron density, Ψ†(r 1)Ψ(r 1).

In other words: the magnetic field felt by an electron at r is only non-zero if r = r 1, or, an electron at r sees
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magnetic field consisting of delta–functions located at positions of other electrons. However, these points in
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