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internal structure magnetotransport
anisotropy (AMR)

Conclusion
• a recipe how to extract anisotropy params.
• classification of anisotropy using these:

(normal/cubic/monoclinic symmetry)
• microscopic calculation of the 
anisotropy parameters

• in agreement with (different) experiments:
normal AMR < 0, 

• sign switch AMRip vs. AMRop

due to growth strain
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Intro
In an isotropic material, the sheet resistance 
does not depend on current direction and
transversal resistance is zero. In a ferromagnet,
(for instance diluted magnetic semiconductors)
a special direction is given by the magnetization,
the symmetry is lowered and both resistances
become a function of the current direction. 
This effect, called magnetotransport anisotropy
is further promoted by the particular symmetry
of the crystalline environment: e.g. cubic in GaAs.
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Experimental

Model calculations

Phenomenology

Modelling the effect of strain

Isotropic
• : angle between M and I the only param.
• = polycrystalline (random psi, constant phi)
•
•
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Cubic

• many angles:             (M),             (I)
•
•

• two angles:   ,   , while 
• : magnetization to [100]
• : current to [100]

Cubic – inplane configuration

•
• for current I along (               ),

voltage U along (              ):

Most general AMR (Cubic material): 
•

•

Fourier expansion of U and V
•
•

Keeping only the lowest terms:

´Magnetocrystalline anisotropy´ 
Isotropic vs. cubic

Normal AMR: =NOR
Cubic   AMR: =CUB

Uniaxial (in the plane)

vs.  

•

•
(this is     if I ||[100])

Uniaxial AMR:          = UNI

Six-band model

• GaAs within k.p approximation + SO interaction
• Mn moments: mean field, 
• Kohn-Luttinger Hamiltonian

Linear transport: Boltzmann equation

• equilibrium distribution shifted by  
•

•
• relaxation time:      , Fermi golden rule

Transversal AMR (   ) Longitudinal AMR (   )
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• NOR = -3.6%
• CUB = 0.79%
• UNI  = 0.25%

• 3.5% Mn, 50 nm film, measured at 4 K and inplane B = 1.3 T

Inferred AMR:

• negative normal AMR (contrary to metals) • uniaxial anisotr. present

• NOR = -6.0%
• CUB =   1.5%
• UNI  not calc.

Microscopic mechanism:
• mostly due to the minority hh band
• Fermi surf./vel. change only little
• relaxation times strongly anisotropic

• 3.5% Mn, bulk, no strain, saturated Mn moments, in-plane geometry 

• 2.0% Mn, saturated Mn moments
• biaxial strain (substrate – GaMnAs

lattice mismatch)

• current along [100]
• w/o strain [010] = [001]
• strain lifts the degeneracy
• tensile/compressive –
different sign of AMRip-AMRop

• in agreement with exp.
(Matsukura et al., Phys. E ’04)

Relaxation times:

• 5% Mn, 25 nm film, measured at 4 K and inplane B = 1.0 T

• NOR = -3.0%
• CUB = 0.36%
• UNI  = 0.54%
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