Spin structures in inhomogeneous fractional quantum Hall systems

KAREL VÝBORNÝ AND DANIELA PFANNKUCHE

I. Institute of Theoretical Physics, University of Hamburg, Jungiusstr. 9, 20355 Hamburg, Germany

Fractional quantum Hall system, v = 2/3Longitudinal Ground states at various B's magnetoresistance [1] Composite fermion picture Polarization [2] · two concurring ground states, - fully polarized (B → ∞) spin-singlet (B → 0) at transition: quantum Hall

scattering on domain walls ⇒ enhanced resistance?

ferromagnet?

stable half-nolarized state?

What happens at the transition?

Model

- rectangle periodic boundary conditions with $N \approx 8$ electrons
- · lowest Landau level

- . (homogeneous) Zeeman term: brings the two incompressible ground states to degeneracy
- . third term: attempt to enforce domains
- . fourth term: mixing the two incompressible ground states

Profile of

Additional magnetic field

- varying in the x di-
- constant along y
- · we expect it to support a domain structure (half of system polarized, half of system unpolar-

Spin-spin correlation functions for the incompressible ground states

Short-range interaction: stronger response inhomogeneity • more sensitive to inhomo-

- transition state between the two incompressible GS's; $S = 0 \rightarrow S = N_e/4 \rightarrow S = N_e/2$
- this scheme is very likely to persist in the thermodynamic limit (also with Coulomb int.)

Transition between S = 0 and $S = N_e/2$ at v = 2/3

- . if only the two ground states (the spin-singlet one and the polarized one) cross, i.e. there is a gap over the GS in the transition point, no pronounced spin structures can be achieved by magnetic inhomogeneities
- . in the thermodynamical limit there seems to be an exactly half-polarized and (probably) gapless state at the transition point

The half-polarized transient state (in 8 electron

- · completely different from the two incompressible ground states
- it can be formed into a domain-like form by magnetic impurity of suitable form
- · intrinsically, it seems to support stripe-like spin structures

Half–polarized states ($S = N_e/4$)

In homogeneous system without Zeeman energy

The excitations, homogeneous system

Gapped ground state, lowest excita-

 \vec{k} = 'extra momentum' for each particle in charge density wave

What are its intrinsic spin structures? Apply magnetic impurity $\propto \delta(x-x_0)$...

 half-polarized states much more (10x) sensitive than the incompressible singlet GS

 δ-MI seems to pin a stripe-like structure these eight (4+4) low-lying states be-

long to one group?

Stretch the primitive cell along x in homogeneous system

Spectra of the $S=N_e/4$ states vs. aspect ratio a : I

 breaks the r-v symmetry favors strines

along y 'two-strinesper-cell' structures also

What happens to the states: examples

References

appear

- [1] S. Kronmüller et al., Phys. Rev. Lett., 81, 2526 (1998), J. Smet et al., Nature, 415, 281 (2002), S. Kraus et al., Phys. Rev. Lett., 89, 266801 (2002); Hashimoto et al., Phys. Rev. Lett., 88, 176601 (2002).
- [2] I.V. Kukushkin et al., Phys. Rev. Lett., 82, 3665 (1999)
- [3] D. Yoshioka, Phys. Rev. B, 29, 6833 (1984); T. Chakraborty, Surf. Sci., 229, 16 (1990); E. Rezayi, Phys. Rev. B, 36, 5454 (1987)