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Abstract

Discovery of the huge longitudinal magnetoresistance
(HLM) phenomenon [1] opened new promising ways
to measure indirectly nuclear spin polarization in
GaAs/GaAlAs heterostructures by means of conductiv-
ity measurements rather than by e.g. NMR [2]. The HLM
has been experimentally studied on high-mobility two—
dimensional electron gases in the fractional quantum Hall
regime (filling factor %) where the ground state is known
to be spin unpolarized for lower magnetic fields and spin
polarized for higher magnetic fields [3]. Although there are
strong hints that the phenomenon appears due to formation
of domains of spin polarized and spin unpolarized states
there is — to our best knowledge — neither theoretical nor
direct experimental evidence for this model so far.

We report on finite size calculations based on the standard
model developed by Yoshioka et al. [4] with a magnetic inho-
mogeneity added. We study the spin structures appearing
in the ground state near the critical field where spin polariza-
tion of the ground state changes in a homogeneous system.

Experiments

Fractional quantum Hall effect
Tsui, Stormer, Gossard 1982
Experimental setup ~ Willett et al, PRL 59, 1776 (1987)

Huge longitudinal magnetoresistance (HLM)
Kronmiiller et al, PRL 81, 2526 (1998)
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 big resistance peak appears at filling factor v = % if mag-
netic field is swept slowly;

« the peak shows hysteretic behaviour

e itis known that the ground state atv = % can be either spin
unpolarized () or fully spin polarized (11) depending on the
Zeeman splitting [3]

= possible explanation of HLM: domains of | and 11 states
form due to inhomogeneities; domain walls enhance sample
resistance

= inhomogeneity may be made up of polarized (domains of)
nuclear spins which have macroscopic relaxation times
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Model (homogeneous systems)

= homogeneous infinite 2D electron gas

= strong perpendicular magnetic field B

= electrons interact via Coulomb interaction
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Magnetic length: (2= 1/(eB)

How to treat it

= choose a finite basis (= approximation)
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o calculate matrix elements of H in this basis

» diagonalize (— spectra, eigenstates)
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Homogeneous system + Zeeman term
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a spin unpolarized (S=0,S; = 0) state to a fully spin
polarized state (S= 3,S, = 3),(S=4,S, = 4).

Spin polarization changes abruptly at the transition
(crossing).

Restriction to the lowest

Choosing the basis = approximation

Landau level (LLL)
v :

Periodic boundary condi-
tion (= torus geometry)

Is it a domain?
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6 electrons, ground state, inhomogeneity: B,: By=4:1
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Only m allowed one—electron wavefunctions
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One—particle densities
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Ne/Nm=6/9, homogeneous, totS=0; particle densities

Averaged: [(3=0)+(J=3)+(3=6)}13

Ne/Nm=6/9, homogeneous, totS=3; particle densities

Homogeneous n/m= 6/9 system

« Ground states at
20 S=0and S=3have
the same structure.
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ground state occurs

Weak fluctuating magnetic field perpendicular to the 2D gas
(Hyw) and || X (Hy).

Inhomogeneities
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Consider B,(x) U cog2mx/a) and B at the ground state tran-
sition.

H,, favours

o the polarized states near to x=0and x=a (B 11 B;)

« the unpolarized states near to x=a/2 (B 1. B;)

H,.: necessary to make the crossing states mix

Spatial form of inhomogeneities
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Quantities to evaluate
e Particle density: n(x) = 3 8(xi —X).

« Density of total spin z-component (spinZ density):
ns,(X) = (N(X) © S;)/n(x). For example at n=2, §,=

Win(X) ©S;¥) = 1-(Wan()|W1) +0- (Woln(x) o)

=1 (@ n(x) 1) -

Where [y1) is a projection of [) to the subspace of all
states with S, = 1.

« Density of total spin x-component

« Density of total spin (spin density):
ns(X) = (n(x) @ ) /n(x).

« Density of particles with spin down (spinDown density;
‘polarization’): ny(x) = (n(x) ® P,)/n(x).
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Spectrum

8 electrons, ground state, inhomogeneity B, : By=1:1

spin ensives
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Summary

» Owing to the Zeeman splitting there is a transition from a
S=0 state to a fully spin polarized state (S=n/2) at B=
B.. in the ground state of v = § homogeneous systems.

= A model inhomogeneity was proposed which makes the
crossing states mix = (S) of the ground state varies
smoothly from 0 to n/2 as B passes through B,.

= Finite size effects: suppressed by averaging the densities
over the three nearly degenerated lowest lying states

» Local expectation values of (S):

= mimic the underlying inhomogeneous magnetic field

amplitude proportional® to inhomogeneity strength

amplitude weak (A(S)/(S) < 0.001) for inhomo-
geneities which do not drastically change the spec-
trum

no convincing tendence seen when comparing 6-
electron and 8-electron systems

« The studied systems seem to be too small for domains to
build up.




