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(Å

)

0 100 200 300

temperature (K)

6.60

6.63

6.66

6.69

6.72

c
(Å
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FIG. 3. (a), (b) Temperature-dependent a and c lattice parameters
of MnTe grown on two different substrates. The dashed (dash-dot) line
in (a) represents the measured temperature dependence of the SrF2

(InP) substrate lattice parameter scaled by
√

2 × 1.01 (
√

2 × 1.007).
Note that the solid lines shown for the case of MnTe on SrF2 are guides
to the eye since measurements around room temperature are hampered
by overlapping signals of the thin film and substrate. (c) Temperature-
dependent susceptibility of 2.5-µm MnTe on SrF2 measured for
a magnetic field applied in different directions. The diamagnetic
contribution of the substrate was subtracted. Dashed lines show the
mean-field susceptibility of a collinear uniaxial antiferromagnet for
the cases when the field is perpendicular (χ⊥/green) and parallel
(χ∥/black) to the easy axis. Insets indicate the directions of the
magnetic field with respect to the crystal within the c plane.

the in-plane lattice constant a of both films on SrF2 and InP
basically follows the change of the scaled substrate lattice
parameter, which is also plotted in Fig. 3(a) by the dashed and
dash-dotted lines. This means that the in-plane strain of the
MnTe film on InP even increases, whereas only small changes
occur on SrF2. Note that the scaling of the substrate surface
lattice parameters by around 1% indicates the relaxation of
the epitaxial films during growth. At liquid He temperatures,
the in-plane lattice constant of the MnTe films differs by as
much as 1.0% for the different substrates. This leads also to a
different evolution of the out-of-plane c-axis lattice constant of
the films on InP and SrF2 as shown in Fig. 3(b). Our theoretical
calculations in Table I indicate that while the out-of-plane
MAE remains dominant upon such variations of strain, the
in-plane MAE may change substantially, potentially even to
the point that the direction of the easy axis (within the basal
plane) changes.

B. Magnetometry

One possible way of determining the natural orientation
of magnetic moments, i.e., the easy axis direction, is the
measurement of the temperature-dependent susceptibility χ
shown in Fig. 3(c). Very early on [37], it has been recognized
that while χ∥(T ) (magnetic field applied parallel to magnetic
moments) for a uniaxial antiferromagnet drops to zero as
T → 0, a magnetic field applied in (any) perpendicular
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FIG. 4. Neutron diffraction structure factors measured vs tem-
perature for the (a) magnetic (0001), (b) structural (101̄0), and (c)
mixed structural and magnetic Bragg peak (101̄1). Black lines show
the behavior close to the Néel temperature described by the equation
Amag(TN −T )c + Astruct, where Ai denotes the amplitude of magnetic
and structural contribution and T the measurement temperature. The
Néel temperature TN = 309 K and the critical exponent c = 0.37
corresponds to the Heisenberg model [38].

direction gives a constant χ⊥(T ) = χ0 for T < TN. An explicit
form of χ0 as well as χ∥(T ) based on Weiss theory can
be found in Ref. [2]. We show this mean-field theory result
for S = 5/2 and scaled to the experimental data in Fig. 3(c)
as dashed lines. Experimental data for H ||[0001] therefore
confirm that magnetic moments lie in the basal plane. On the
other hand, since neither of the other two curves for H ||[112̄0]
and H ||[11̄00] approaches zero for low temperatures, we
conclude that there is not one single easy axis (or in other
words, the sample is not uniaxial and therefore not in a single
domain state). The small difference between these two curves
suggests that the anisotropy within the c planes is small.

IV. NEUTRON DIFFRACTION INVESTIGATIONS

Experiments at the CEA-CRG thermal neutron diffractome-
ter D23 at Institut Laue-Langevin in Grenoble, France allowed
us to determine the easy axis in MnTe layers grown on SrF2. A
monochromatic beam of neutrons with a wavelength of 0.127
nm was generated by a Cu (200) monochromator. The sample
was mounted in a rotatable cryomagnet with temperature range
of 5 to 305 K and magnetic fields up to 6 T along the sample
rotation axis. The diffraction geometry with two orthogonal
rotation axes of the detector allowed us to access several MnTe
Bragg peaks sufficiently separated from those of the substrate.
In Fig. 4, we show the intensity of selected diffraction peaks
as a function of temperature. Since nonpolarized neutrons
were used, the magnetic diffraction intensity depends solely
on the relative orientation of the magnetic moments and the
momentum transfer, and is at maximum when the magnetic
moment is perpendicular to the momentum transfer. The
shown variation of the (0001) diffraction peak [Fig. 4(a)],
which is structurally forbidden in the paramagnetic phase,
indicates that the magnetic moment within the c plane has a
significant value. In contrast to that, a peak with momentum
transfer within the c plane [see (101̄0) in Fig. 4(b)] shows no
magnetic contribution and therefore its intensity is virtually
independent of temperature. The variation of the structure
factors close to Néel temperature can be described by the
critical behavior of the Heisenberg model with exponent
c = 0.37 [38] and is shown as solid line in Fig. 4. The ratio of
intensities of the purely structural and magnetic Bragg peaks
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FIG. 1. Sketch of the atomic and possible magnetic structures
of antiferromagnetic hexagonal MnTe. (a) In-plane/c plane (ground
state) and (b) out-of-plane/c-axis (hard axis) orientation of the
magnetic moments of Mn with the Néel vector L⃗ along ⟨11̄00⟩ and
⟨0001⟩ are shown. The hexagonal basal plane, i.e., the c plane is
indicated by a gray plane, while red, green, and blue arrows show the
directions of the unit cell axes.

InP(111) [7], and Al2O3(0001) [16,25,26] substrates as well as
on amorphous Si(111)/SiO2 [27]. Due to lattice and thermal
expansion coefficient mismatch between α-MnTe and the
substrates, films will experience strain that may affect the mag-
netic properties such as MAs. For example [28], the dilute
magnetic semiconductor (Ga,Mn)As is known to have an
in-plane MA under compressive strain and an out-of-plane MA
for tensile strain under suitable conditions. Here, we study the
MAs in MnTe on different substrates, which cause different
strain states. The knowledge of the easy axis directions
is crucial for transport phenomena modeling, which has
so far relied only on assumptions [7]. As far as the easy
axis directions are concerned, we confirm these assumptions
using DFT+U calculations combined with experiments. Using
magnetotransport, magnetometry, and neutron diffraction, we
determine the easy axes to be along ⟨11̄00⟩ and show in what
respect MAs are sensitive to epitaxy-induced strain.

The paper is organized as follows. After introduction of
the results of DFT+U calculations in Sec. II, we describe our
samples structure and basic magnetometry characterization
in Sec. III. Section IV presents our neutron diffraction
experiments and Sec. V complementary magneto-transport
studies. Further magnetometry experiments determining the
spin-flop field are presented in Sec. VI. Finally, we conclude
in Sec. VII.

II. MAGNETIC ANISOTROPY CALCULATIONS

The magnetic anisotropy energy (MAE) in antiferromag-
nets comprises two main contributions: the dipole term and the
magnetocrystalline anisotropy (MCA). In order to calculate
the latter, we use the relativistic version of the rotationally
invariant DFT+U method [29], which takes into account
spin-orbit coupling, and nondiagonal in spin contributions
into the occupation matrix. The full-potential linearized
augmented plane-wave (FLAPW) [30] basis is used in the
self-consistent total energy calculations. We use U = 4 eV
and J = 0.97 eV parameters taken from a similar compound of
manganese [31].

The dipole term is a classical contribution from dipole-
dipole interaction of localized magnetic moments [32]. For

coherent rotations of the two AFM sublattices which strictly
maintain their antiparallel alignment, e.g., one that interpolates
between the two magnetic configurations shown in Fig. 1, the
dipole term depends in general on the rotation angle. This
dependence is absent for cubic crystals but present in MnTe
since the crystal symmetry of the NiAs structure is lower.
This causes the energy of the dipole-dipole interaction of the
structure in Fig. 1(b), with magnetic moments aligned along
the c-axis, to be higher than that of any structure with magnetic
moments oriented in the hexagonal basal plane (c plane), e.g.,
Fig. 1(a).

For lattice constants a = 0.4134 nm and c = 0.6652 nm
[experimentally determined at 5 K / see Sec. III, Figs. 3(a) and
3(b)], we obtain that Mn atoms carry the magnetic moments
of 4.27µB (spin MS = 4.25µB plus orbital ML = 0.02µB

magnetic moments). The energy difference of the two different
configurations shown in Fig. 1 from the dipole term Edipole

is calculated to be 0.135 meV per unit cell, favoring the
alignment in the c plane. This contribution to MAE is only
weakly dependent on strain or relevant lattice distortions and
gives no anisotropy within the c plane.

The DFT+U calculations of the MCA are much more
involved but, rather generally, a clear picture emerges of mod-
erately large out-of-plane anisotropy and small anisotropies
within the c plane. For the lattice constants quoted above,
an energy difference between configurations in Figs. 1(a) and
1(b) of 0.11 meV per unit cell is calculated again favoring
the alignment in the c plane. The anisotropy within the c
plane, defined as the energy difference between the magnetic
structure in Fig. 1(a) and one with magnetic moments rotated
by 90◦ in the c plane, is small and at the edge of the accuracy
(10 µeV) of the calculation in this particular case.

To model actual conditions in our experiments, we perform
zero-temperature calculations of EMCA for various choices
of lattice constants (see Table I). Adding the MCA to the
dipole term, we can conclude that (a) the out-of-plane MAE is
typically between 0.2 and 0.3 meV per unit cell (two formula
units), favoring the moments within the c plane, and (b) the
anisotropy within the c plane is typically an order of magnitude
smaller. For calculations under changing c/a ratio shown in
Table I, the MAE within the c plane is always smaller than
the out-of-plane MAE (even for the extreme choice of lattice
constants with c = 0.689 nm, see Table I, the latter is greater
than 0.1 meV per unit cell), the MAE within the c plane exhibits
no clear trend upon unit cell deformation and it even changes
sign. In order to unambiguously determine anisotropies
within the c planes, it is therefore advisable to resort to
experiments.

TABLE I. The total MAE, Edipole + EMCA in meV per unit cell for
different lattice parameters. The Néel vector directions with respect
to the crystal are given as subscript of the energies, showing the
preferential magnetic moment orientation in the c plane.

a (nm) 0.408 0.411 0.414 0.417 0.408 0.408
c (nm) 0.670 0.670 0.670 0.670 0.650 0.689
E[0001] − E[112̄0] 0.20 0.24 0.23 0.22 0.28 0.12
E[11̄00] − E[112̄0] − 0.01 0.03 0.01 0.04 0.05 − 0.01
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the Néel temperature and in the antiferromagnetic phase with no
preferred direction among the easy axes set during the zero-field-
cooling. The weak transverse resistance signal seen in Fig. 1f is
ascribed to an unintentional asymmetry of the Hall bar transverse
contacts and the resulting small admixture of the longitudinal
signal. From the Hall effect measurements, we obtained
low-temperature hole density of P¼ 6" 1018 cm# 3 due
to unintentional doping in our film and corresponding hole
mobility of m¼ 43 cm2 V# 1 s# 1.

Antiferromagnetic anisotropic magnetoresistance memory.
We now proceed to the discussion of the antiferromagnetic AMR
and memory functionalities in our MnTe devices. In Fig. 2a,b,
we plot the transverse and longitudinal AMRs, defined as
AMR? jBð Þ & RXY jBð Þ# RXYh i

RXXh i n and AMR jj jBð Þ & RXX jBð Þ# RXXh i
RXXh i ,

where RXY jBð Þ and RXX jBð Þ are the transverse and longitudinal
resistances indicated in Fig. 1e, hi denotes averaging over all angles
jB between the magnetic field and current, and n is the aspect ratio
of our Hall bar. Measurements in Fig. 2a,b are performed at
constant temperature of 200 K, sufficiently below the Néel tem-
perature, and in a rotating 2 T field. The curves show a harmonic
sin 2jB cos 2jBð Þ dependence on the field-angle and the ampli-
tudes of AMR> and AMR|| scale with the Hall bar aspect ratio, that
is, corresponding curves in Fig. 2a,b have the same amplitude. This
phenomenology is reminiscent of common non-crystalline AMR
traces in ferromagnets in applied saturating magnetic fields, where
the ratio of the longitudinal and transversal AMR amplitudes is
also unity (see Supplementary Note 1). Note that a crystalline AMR
contribution, due to an additional dependence of the resistance on
the angle between magnetic moments and crystal axes, is negligible
at 200 K (Supplementary Note 3).

For comparison, we show in Fig. 2a,b also 2 T AMR curves
measured at a low temperature (5 K). In contrast to the data at
200 K, the corresponding traces are anharmonic, show history
dependence, have smaller magnitudes and the amplitudes of
AMR|| and AMR> are significantly different. This is a result of the
stiffening of the MnTe antiferromagnet at 5 K, where the 2 T field
causes only partial reorientation of the spin-axes in the domains
around their zero-field direction, reminiscent of ferromagnets in
weak fields below the saturation field. The AMR|| and AMR>
signals therefore differ in their amplitude and depend on the
previous field-cooling protocol. Consistently, Supplementary
Fig. 8 shows a more systematic study of the ratio of the measured
AMR|| to AMR> amplitude whose deviation from unity and
history dependence is largest at low fields and low temperatures.
Together with a non-negligible contribution of the crystalline
AMR this results in a complicated anharmonic shape of the
longitudinal AMR trace at 5 K and 2 T shown in Fig. 2a,b.

In Fig. 2c, we show AMR measurements in which, for
each point, we first heated the sample above the Néel temperature
(to 350 K) and then field cooled (with BFC) down to 200 K
in a 2 T field of a fixed angle jB,FC and measured the
corresponding resistance with the field on. To obtain the data
shown in Fig. 2d, we continued with the field-cooling down to 5 K
then removed the field and took zero-field resistance measure-
ments again at 200 K. Corresponding data for other read-out
temperatures are shown in Supplementary Fig. 9a. Remarkably,
we observe similar AMR traces in the two panels only the
amplitude of the zero-field AMR in Fig. 2d is about a factor 2
smaller than in Fig. 2c.

Note that a 200 K zero-field AMR of a comparable amplitude
to the one seen in Fig. 2d is also obtained when field-cooling from
350 K down to only 200 K. Similar results can also be obtained
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plane. Taking into account the field directions and considered
easy axis directions, this means that we either equally favor or
disfavor two sets of domains. This means that one parameter
is sufficient to describe the domain repopulation in either case.
Since the two different field directions with respect to the easy
axes directions likely result in different domain repopulation
efficiencies, this means we have two free parameters in
the model. Within this model, the observed changes of the
structure factors !|FEXP| in Table II can only be consistently
explained when we consider the easy axes to be along the
⟨11̄00⟩ directions (cf. !|F ⟨11̄00⟩

SIM | in Table II). The two free
parameters describing the domain population thereby result in
populations of ∼ 40% : 30% : 30% and ∼ 39% : 39% : 22%
for the three distinct easy axes directions after the application
of the field perpendicular and parallel to one easy axis.
In Fig. 5(a), the change of the domain population by the
application of a field perpendicular to an easy axis, which leads
to the increase of one population, and corresponding decrease
of the population of the two other domains is qualitatively
sketched. In agreement to Ref. [7], a single domain state is
unachievable at least after removal of the magnetic field. The
determined easy axes are consistent with the susceptibility data
measured by SQUID [cf. Fig. 3(c)], which found the lowest
susceptibility at low temperature when the field is aligned
along the [11̄00] direction, or any other equivalent direction.

V. MAGNETOTRANSPORT

Since thick enough films for neutron diffraction cannot be
obtained for MnTe on InP(111) we employed an alternative
approach to determine the easy axis directions in this case.
Using the crystalline contribution [41] to the anisotropic mag-
netoresistance (AMR), the easy axis can also be determined.
Radial flow of electrical current in Corbino disks suppresses
the noncrystalline components [42] and the remaining crys-
talline contribution ∝ cos(6φ) due to the hexagonal symmetry
of the material serves as a straightforward detector of the Néel
vector direction. Here the angle φ corresponds to the angle
between the Néel vector and the easy axis direction. Corbino
contacts, sketched in the inset of Fig. 6(a), were fabricated on
MnTe thin layers (50-nm thick) grown on InP by depositing
gold contact rings using a lithographic lift-off process.

During an in-plane rotation of applied magnetic field,
also when its strength is above the spin-flop threshold, the
anisotropy makes the Néel vector lag behind the direction
perpendicular to the field when the former is located near an
easy axis. Consequently, deviations from the cos(6φ) form can
be observed in Fig. 6. This means that, as soon as the Néel
order can be influenced by external magnetic field, the easy
axis can be determined from such transport measurements. In
Fig. 6(a), we show the field direction (specified by the angle ψ)
dependence of the longitudinal resistance for magnetic fields
up to 10 T. While at low fields almost no effect of a field
rotation is observed, a dominantly six-fold signal arises in
stronger fields. Figure 6(b) shows the variation of the cos(6ψ)
contribution to the AMR signal for different field strengths.
The mentioned contribution shows a clear onset just below
2 T and saturates for fields above 6 T, indicating that all
moments rotate slightly canted aligned almost perpendicular
to the stronger fields. We note that the sixfold variation of
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FIG. 6. (a) Longitudinal resistance traces during magnetic field
rotations in 50 nm MnTe on InP(111) for different field strengths.
An inset shows the Corbino disk measurement geometry, and
three magnetic field directions are marked by their crystallographic
directions. (b) Variation of the amplitude of the dominant cos(6φ)
contribution to the resistance change. The amplitude was determined
using a Fourier decomposition of the measured resistance change.
(c) and (d) Zooms to the minimum and maximum resistance values
during the field rotations. Maxima in (c) are narrower than minima
in (d).

the resistance shows clear differences between the maxima
and minima of the resistance variation. As it is visible in
Figs. 6(c) and 6(d), the minima always appear wider than
the maxima. This indicates that magnetic moments are pushed
towards the position of the minima in the resistance by the
in-plane anisotropy. Considering that the magnetic field is
nearly perpendicular to the moments we infer that the easy axes
are oriented along ⟨11̄00⟩. Note that the difference between
minima and maxima is decreasing in stronger fields as the MA
is becoming smaller relative to the external magnetic field.

VI. SPIN-FLOP FIELD MEASUREMENTS

In Fig. 7, we plot magnetic field dependent measurements,
revealing the spin-flop transition detected by various methods
using both considered substrate materials. Figure 7(a) shows
the magnetization per Mn atom measured by a SQUID magne-
tometer when strong magnetic fields are applied. As expected
for an antiferromagnet, the magnetization of the sample is
mostly compensated and only a fraction of Bohr magneton µB

is detected even above the spin-flop transition. When the field
is applied in the out-of-plane c direction, a featureless linear
trace is observed, while for in-plane field small changes of the
slope appear (best visible in the inset), indicating the spin-flop
transition. Since our system comprises multiple domains and
three in-plane easy axis directions the traces deviate from the
more common spin-flop signals in uniaxial antiferromagnets
[43,44]. However, the characteristic features with smaller
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with other heat-assisted magneto-recording protocols where the
Néel temperature is not crossed. For instance, it is also possible to
set a stable zero-field AMR trace of the form of Fig. 2d, only with
a factor 2 smaller amplitude, by field-cooling from 200 K down to
low temperatures and then performing the zero-field read-out
measurement back at 200 K (see Supplementary Fig. 10).
This is consistent with the ability, seen in Fig. 2a,b, to control
the antiferromagnetic state by the 2 T field even if below, but
not too far from the Néel temperature. Crossing the Néel
temperature in the heat-assisted magneto-recording, therefore,
helps the efficiency of the writing process, however, it is not
necessary. We emphasize that Fig. 2 not only demonstrates a
continuous harmonic-function AMR in an antiferromagnet but
it also shows a multiple stability of states in our MnTe memory
device.

Stability of the memory states. Next we explore how the
amplitude of the memory read-out signal depends on the strength
of the writing field and test the limits for erasing the multiple-
stable states by turning the magnetic field back on. In Fig. 3a, we
plot the AMR amplitude, defined as RXY 45!ð Þ $ RXY $ 45!ð Þ

RXXh i n, obtained
when setting the states by field-cooling at jB,FC ¼ ±45! from
350 K down to 5 K and measuring the resistance during the
temperature down-sweep with the field on. Figure 3b shows zero-
field AMR amplitudes measured during the subsequent up-sweep
in temperature. The variation of the signal is associated with the
dependence of the AMR coefficients on temperature
(see Supplementary Note 1). The AMR disappears near the Néel
temperature and at low temperatures the AMR is again reduced,
presumably due to the suppressed contribution from magnon and

phonon scattering. This leads to a peak of the AMR amplitude in
Fig. 3a,b at intermediate temperatures.

For the range of writing field magnitudes from 0.5 to 2 T, we
were able to set the multiple-stable memory states with the zero-
field AMR of the harmonic form seen in Fig. 2d. The signal
disappears for all traces at B285 K, which approximately
coincides with the Néel temperature of thin a-MnTe films25

and is just B10 K lower than the broad peak in the longitudinal
resistivity shown in Fig. 1d. This confirms the antiferromagnetic
origin of the read-out signal. The amplitude of the AMR signal
scales with the magnitude of the writing field, apart from the
region between 0.5 and 1 T, where the AMR signal changes sign,
and does not saturate at the maximum applied writing field of
2 T. Before discussing the origin of these features we complete in
Fig. 3c,d the description of experimental data, namely of the
measurements testing the robustness of the multiple-stable
memory states under magnetic-field perturbations.

In Fig. 3c, we replot the zero-field AMR amplitude obtained
from the temperature up-sweeps after setting the states in 2 T
writing fields. We compare the trace with analogous measure-
ments which only differ in an additional magnetic field exposure
of the memory at 5 K after the writing and before starting the
temperature up-sweep read-out measurement. The additional
exposure comprises application of rotating in-plane and out-of-
plane magnetic fields of a 1 or 2 T magnitude. We see that neither
of these two magnitudes of the disturbing field applied at any
angle is sufficient to fully erase the memory. After the exposure,
the multiple-stable states maintain their characteristic harmonic
AMR form of the read-out signal (see Supplementary Note 4 and
Supplementary Fig. 9) with only the amplitude being partially
reduced, as shown in Fig. 3c.

We performed similar attempts to erase our antiferromagnetic
memory at 200 K. The results, shown in Fig. 3d, illustrate that at
this elevated temperature a magnetic field of 2 T is sufficient to
fully erase the memory states. This is consistent with measure-
ments in the rotating field of 2 T at 200 K shown in Fig. 2a,b,
where the observed AMR traces had a character of AMR in
ferromagnets under saturating magnetic fields. A field of 1 T, on
the other hand, is not sufficient to erase the memory at 200 K; it
only reduces the amplitude of the read-out signal, as seen in
Fig. 3d.

In Fig. 3e, we illustrate in more detail the stability of our
antiferromagnetic memory in fields, which are insufficient to
erase it. We explore how the states set by cooling in writing fields
of 2 T applied at angles jB,FC ¼ ±45!, corresponding to the
extrema in the AMR> read-out signal, are disturbed at 5 K by a
field of 1 T rotating in the sample plane. By taking the resistance
measurements with the field on, we observe a partial reorientation
of the antiferromagnetic spin-axis, reflected in the varying
resistance signal. The variations are, however, smaller than the
difference between the zero-field resistances of the two extrema
and according to our modelling presented below correspond to
only B3! rotation of the Néel vector and concomitant canting of
the antiferromagnetic moments by B1!. Moreover, if at each
given angle of the disturbing magnetic field we remove the field
and repeat the resistance measurement, we see that the original
zero-field state almost fully recovers. Supplementary Fig. 11
shows the measurements discussed in Fig. 3e but for applied
disturbing fields of 0.5 and 2 T. The 0.5 T field is insufficient to
cause any significant changes of the AMR signal neither with the
disturbing field on nor after turning the 0.5 T field off. On the
other hand, the 2 T disturbing field causes much stronger
transient changes of the AMR as compared with the 1 T field
and significant permanent changes of the AMR signal remain
even after turning the 2 T field off. This is consistent with the
measurements shown in Fig. 3c.
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Figure 2 | Antiferromagnetic AMR and multiple-stable memory.
(a,b) Transverse (red) and longitudinal (blue) AMR measurements at
200 K and rotating in-plane 2 T field. Analogous measurements at 5 K are
shown in grey. Arrow in a indicates the initial angle and the direction of
rotation. (c) Transverse AMR measured at 200 K after cooling from 350 K
in a magnetic field (BFC ¼ 2 T) applied at an angle jB,FC and with the field
kept on. The dashed line is a guide to the eye. (d) Zero-field transverse
AMR obtained after field-cooling (BFC ¼ 2 T) down to 5 K then removing the
field and taking zero-field resistance measurements at 200 K. The grey line
is a & sin 2jB;FC least squares fit which fails to describe the details of the

angular variation in the experimental data. On the other hand, the red line
shows the least square fit of the multi-domain model calculations, which
accurately reproduce the angular variation of the experimental data.
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• non-crystalline components (Hall) 
• crystalline components (Corbino)
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AMR: an “old” phenomenon

dence of the resistance on the basis of AMR and OMR.

IV. ANALYSIS AND DISCUSSION

We analyze our data with the expression of Döring7 for
the resistivity, which is based on the symmetry of the crystal.
He assumed that the electric field components E1 , E2, and
E3 along the cubic directions are linear functions of the com-
ponents j1 , j2, and j3 of the electrical current density: Ei
!!k!1

3 wik jk . Here wik are the magnetization-direction de-
pendent components of the magnetoresistivity tensor, which
describes all ohmic MR effects, including AMR and OMR.
The resistivity can be written as "!! i ,k!1

3 wik# i#k , where
#1 , #2, and #3 are the direction cosines of the electrical
current with respect to the cubic axes. The components wik
can be rewritten using the symmetry of a cubic crystal. This
yields for the relative change in resistivity for arbitrary cur-
rent and magnetization directions:7,22
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where "* is the average resistivity of a hypothetical multi-
domain sample with equal volume fractions with the magne-
tization pointing along a '100(direction, k1 , k2 , k3 , k4, and
k5 are temperature dependent constants, $1 , $2, and $3 are
the direction cosines of the magnetization direction with re-
spect to the cubic axes and s!$1

2$2
2#$2

2$3
2#$3

2$1
2. The lo-

cal magnetization direction should be used if the sample is in
a multidomain state. Equation %1& then describes the local
change in resistivity. Equation %1&is an expansion based on

the symmetry of the crystal. Therefore, it is hard to directly
relate the k constants to physical properties such as the spin-
orbit interaction. The relation of the k constants with the
underlying physics should follow from first principle AMR
models, but that is beyond the scope of this article.
For our purpose, we adapt Eq. %1&to the specific geometry

of our %110& films, using $1!"$2!(1/!2)sin), $3
!cos), #1!"#2!(1/!2)sin *, and #3!cos *. Here ) is
the angle between the magnetization and the +001, direction
and * is the angle between the electrical current and the
+001,direction %see inset Fig. 3&. This leads to four indepen-
dent terms in Eq. %1&:
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A linear term in ) is added to Eq. %2&to take into account the
small temperature drift in our measurements at high tempera-
tures %while stepping through the range of angles
+.start ,.end , the resistance drifts linearly in time&. A linear
term is orthogonal to the other terms, so that it does not
influence these in principle, but helps to correctly weigh each
measurement point. It is not possible to determine both "*
and - from the measurements. Therefore, we use +"""*(1
#-),/"*/(R"R0)/R0, which introduces a negligible error
(/1%) compared to the other errors in the C coefficients.
We analyze the resistance versus angle data with Eq. %2&

for measurements at up to 13 different temperatures in the
range 4.2–220 K for each sample, using )!.#* . In the
analysis, the value of the coefficients C1 , C2 , C3, and C4
results from a fitting procedure. In general, good agreement
between the experimental data and Eq. %2& is obtained, as
exemplified by the fit results in Figs. %4&and %6&. The tem-
perature dependence of the C coefficients is plotted in Figs. 7
and 8, where the error bars reflect the different fit results
obtained for curves measured with opposite angle-step direc-
tion at each temperature. The following general observations

FIG. 6. Magnetoresistance of sample B at H!10 kOe as a func-
tion of the angle between the applied magnetic field and the current
at %a&T!4.2 K, %b&T!80 K, and %c&T!184 K. The measurement
geometry is as in Fig. 5.
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• discovered in mid 19th century 
• more recently: epitaxial films (here, Fe)
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AMR: an “old” phenomenon - still explored
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AMR: the idea of analysis
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Generally, the tensor !7" may be nondiagonal and the re-
sistivity tensor !ij is its inverse. Here we consider a “pure-
AMR-configuration” where "ij is symmetric, i.e. free of any
antisymmetric Hall components. It can be envisaged as a
Hall-bar device fabricated from a thin !Ga,Mn"As film with
an arbitrary in-plane magnetization. Experimentally, the
magnetization will be controlled by a weak magnetic field
whose direct effect on the AMR will be neglected. The lon-
gitudinal and transverse voltage drops are proportional to !xx
and !xy; spherical approximation !see Sec. II A" makes both
the orientation of the film and of the Hall-bar device with
respect to the crystallographic axes irrelevant. In an out-of-
plane configuration, the resistivity acquires an antisymmetric
anomalous Hall component, see Ref. 33 for a comprehensive
review. For the in-plane configuration considered here, the
resistivity is completely symmetric, !xy!−êM"=!xy!êM"
=!yx!êM", and obeys !xy!#" /!av=CI sin 2# where # is the
angle between magnetization and current !Hall-bar device"
direction. This is a well-known result for isotropic systems
with symmetry broken by the current flow, see for instance
the derivation in Ref. 34. The diagonal resistivity, !xx!#"
=!av!1+CI cos 2#", then carries the same information about
AMR as !xy!#", which is concentrated into the noncrystalline
AMR coefficient CI #!av is the angular average of !xx!#"$.

We use the following definition of the AMR

AMR % − 2
"&− "!

"&+ "!

= 2
!&− !!

!&+ !!

, !8"

where "&and "! !!&and !!" are the longitudinal conductivi-
ties !resistivities" for current parallel and perpendicular to the
magnetization, respectively. Note that the off-diagonal resis-
tivities vanish for #=0 or 90°. For practical purposes, we
can set êM in the x direction and "&%"xx, "!%"yy as long as
we stay with the spherical approximation. The AMR of Eq.
!8" equals to 2CI.

III. NONCRYSTALLINE AMR OF HEAVY HOLES IN THE
SPHERICAL APPROXIMATION

In this Section, we first show that within our description
of metallic !Ga,Mn"As samples, the AMR trends are gov-
erned by the mechanism sketched in Fig. 1!b". Then we pro-
ceed to showing that only heavy-hole bands need to be con-
sidered when analyzing the basic AMR characteristics in
!Ga,Mn"As on a qualitative level.

A. Origins of anisotropy

Let us consider how the conductivity in Eq. !7" can be-
come magnetization-dependent. In agreement with the intui-
tive analysis of Fig. 1, magnetization direction êM can enter
Eq. !7" either via !a" the group velocity components vn

i or
!b,c" the scattering rates $n k. Considering Eqs. !3" and !4",
the scattering rates may depend on êM either through !b" the
scattering operator !MB+MC in our specific case" or !c" the
wave functions 'zkn ( and/or energies En !k" and density of
states of the carrier bands. The last mechanism, for example,
lies at the heart of the s-d model of AMR in transition
metals6 where isotropic and spin-independent scattering op-

erators have been assumed.19,20 The anisotropy arises due to
the competition of SOI and magnetization which splits the
five dstates according to lM, their angular momentum pro-
jection along êM. These states play the role of 'zk!n !( in Eq.
!4", and because of their lM-dependent spatial form they
cause êM-dependent scattering rates $n k in the s states that
carry the current. Plugged back into Eq. !3", these aniso-
tropic scattering rates may lead to different "xx for êM paral-
lel and perpendicular to the x direction, i.e., "&!"!.

In !Ga,Mn"As, we are going to take advantage of the tun-
ability that the effective model outlined in Sec. II offers: we
will switch the particular mechanisms !a,b,c" on and off to
see how important they are for the total AMR. We use the
band-structure model as described in Sec. II A !termed “full
spherical”" as a reference. Within this full spherical model,
the calculated AMR as a function of Mn doping x is negative
in the considered range between 2% and 10% and its mag-
nitude reaches a clear maximum as shown by the middle
curve in the left panel of Fig. 2 !the maximum is related to
the competition between the electric and magnetic parts of
the scattering operator as we explain in Sec. IV". To see the
effect of the mechanism !b" alone, we set h=0 in Eq. !2" but
leave the scatterer anisotropy unchanged by keeping nonzero
Jpd in Eq. !5". The bottom curve in the left panel of Fig. 2
demonstrates that the AMR quantitatively changes within a
factor of 2 but its overall form remains the same.

On the other hand, the result alters dramatically when we
switch off the anisotropy in the scattering operator #mecha-
nism !b"$ or the anisotropy in relaxation rates as a whole
#mechanisms !b" and !c" together$. The former is accom-
plished by setting MB=0 in Eq. !4", the latter is done by
replacing $n ,k by a constant whose value is irrelevant be-
cause it cancels out in Eq. !8". In both cases, we obtain AMR
that is more than an order of magnitude smaller than for the
full spherical model, see Fig. 2. Herewith we find that con-
trary to metals,3,4 the $n ,k=const. approximation fails to ac-
count for AMR in !Ga,Mn"As or, in other words, the AMR
mechanism of Fig. 1!a" does not play a significant role in
!Ga,Mn"As. Given the small difference between the curves
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FIG. 2. !Color online" AMR as a function of Mn doping x in an
idealized model of !Ga,Mn"As. Physical origin of the deep mini-
mum is explained in the third paragraph after Eq. !21". Left: study
of the influence of the three mechanisms !a,b,c" sketched in Fig. 1
on the total AMR. The model in spherical approximation as of Sec.
II, serves as a reference !“full spheric”". Note that the upper two
curves are upscaled by a factor of 10. Right: subsequent approxi-
mations !see text" aiming toward an analytically solvable model.
Note that !B" and !C" is the same as full spheric and !b" on the left
panel, respectively, while !D" and !E" correspond to gradual decou-
pling of the light holes.
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Starting with a microscopic model based on the Kohn-Luttinger Hamiltonian and kinetic p-d exchange
combined with Boltzmann formula for conductivity we identify the scattering from magnetic Mn combined
with the strong spin-orbit interaction of the GaAs valence band as the dominant mechanism of the anisotropic
magnetoresistance !AMR" in !Ga,Mn"As. This fact allows to construct a simple analytical model of the AMR
consisting of two heavy-hole bands whose charge carriers are scattered on the impurity potential of the Mn
atoms. The model predicts the correct sign of the AMR !resistivity parallel to magnetization is smaller than
perpendicular to magnetization" and identifies its origin arising from the destructive interference between
electric and magnetic part of the scattering potential of magnetic ionized Mn acceptors when the carriers move
parallel to the magnetization.

DOI: 10.1103/PhysRevB.80.165204 PACS number!s": 71.70.Ej, 72.25.Rb, 75.47.!m

I. INTRODUCTION

Although it has been known for 150 years that electric
resistance of a magnetic metal depends on the direction of
magnetization,1 the origin of such dependence is often ex-
plained only vaguely as an interplay of spin-orbit interaction
!SOI" and magnetization. Conceptual questions around this
phenomenon, the anisotropic magnetoresistance !AMR", re-
main open and relate to the quest for its detailed mechanism,
its sign and specific magnitude. Our ability to control the
AMR by material design, with potential impact on new elec-
tronic devices,2 would be improved if we had answers more
specific but nevertheless still more universal than “black-
box-like” modeling of AMR in each and every deemable
system.

Several factors obstruct a clearer insight into the phenom-
enon: there are many electronic bands crossing the Fermi
level in most materials and the AMR of a crystalline material
has various contributions of different symmetries. Ab initio
calculations performed in FeNi !Ref. 3" and FeCo !Ref. 4"
disordered alloys agree reasonably well with experimentally
determined AMR but they do not allow for any detailed con-
clusions about its mechanisms. On the other hand, the

model5 of current-carrying s-states scattered to spin-orbit-
coupled d-states provides a relatively transparent picture of
the AMR !Ref. 6" but requires the fitting of one or more
phenomenological parameters and even then a clear-cut cor-
respondence to ab initio results for ferromagnetic transition
metals could not be established.3

Diluted magnetic semiconductors, and !Ga,Mn"As in par-
ticular, offer a promising system in which these issues be-
come simplified:7 Fermi level lies close to the top of the
valence band so that k ·p approximation can be used, few
bands are involved in transport, and in addition, their SOI is
strong. Moreover, experiments done so far show that the
noncrystalline component of the AMR,8,9 arising from the
breaking of the symmetry by choosing a specific current di-
rection, outweighs the crystalline components in most of the
metallic highly Mn-doped materials. In attempting to de-
scribe the AMR in such system, we can begin with a model
isotropic but still spin-orbit coupled band structure and add
the effect of magnetization in the three possible distinct
ways, as sketched in Fig. 1. Either !a" the magnetization
induces a magnetotransport anisotropy via the SOI already at
the level of group velocities of the exchange-split Fermi
surfaces,10 !b" it may enter via anisotropic scattering of the

(b)(a) (c)

FIG. 1. !Color online" The AMR can originate from three distinct mechanisms combining magnetization !pointing to the right and
coupled antiferromagnetically to charge carrier spins in this sketch" and SOI, that break the isotropy: !a" anisotropic Fermi velocities !arrows"
along the Fermi surface for the charge carriers, or anisotropic relaxation rates due to !b" unpolarized bands !represented by the indicated
isotropic spin texture" scattered by anisotropic impurities or !c" partially polarized bands scattered by isotropic impurities.

PHYSICAL REVIEW B 80, 165204 !2009"
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band k·p Hamiltonian.12 This 20-band Hamiltonian was
built from the 14!14 Hamiltonian,17 adding an s-symmetry
band 12 eV under the top of the valence band and two s*
levels to obtain nonmonotonic bands and give access to X, ",
or L valleys in the first conduction band. As these s* levels
were not sufficient to describe simultaneously the L point
and the # effective masses, the contribution of d levels was
mimicked via Luttinger-like parameters which played a part
in the #7C and #8C levels and in the #7V and #8V levels by
second-order perturbations. It explains why Luttinger param-
eters could not be obtained directly from the matrix ele-
ments, contrary to the k·p 30-band method.
Taking into account strain can be made as in Ref. 18. The

same strain Hamiltonian with five parameters has to be
added to the 30!30 Hamiltonian used for bulk semiconduc-
tors.

III. BAND DIAGRAMS OF Si, Ge, AND GaAs

After having built the 30!30 Hamiltonian, we now give
the parameters used in our k·p calculation and describe the
results for Si, Ge, and GaAs. The k=0 energies are presented
in Table II. The left part of this table is known;16 for the right
part of Table II, we take the same values as in Ref. 5 for Si
and Ge. For GaAs, these levels are unknown but Cardona
and Pollak5 explain how to obtain an estimation of these
energies, knowing the form factors used in pseudopotential
calculations19 and assuming that only the pseudopotential in-
teraction between the 30 plane-waves states is important.
Anyway, the k=0 upper energy levels chosen are not key

parameter by themselves: the important data are the couples
energy level/matrix element. Briefly speaking, the k=0 en-
ergy levels are first fixed from Ref. 5 and the matrix elements
are then adjusted to obtain the band diagram; as a result there
are 10 (18) adjustable parameters in Oh!Td".
After having chosen the unknown k=0 energy levels, the

key parameters are the matrix elements. Here, they were first
estimated at the center of the Brillouin zone, especially for
the valence band to obtain Luttinger parameters, and for the
first conduction band for Ge and GaAs, then at the extrema X
and L and finally to respect the continuity between U#1, 14 ,

1
4$

and K#0, 34 ,
3
4$ equivalent points of the Brillouin zone. This

continuity is not obtained by construction as in pseudopoten-
tial or LCAO: on the contrary, it is the strongest numerical
difficulty of this method. Figures 3–5 show the band struc-
tures of Si, Ge, and GaAs obtained with our k·p model.
Numerical results are given in Table III. The band structure
is well reproduced on a width of about 11 eV: it describes
correctly the valence band over a 6 eV scale (see Fig. 6) and
the lowest four conduction bands over a 4 eV scale in four
directions namely #X, #L, #K, XU. All the spin-orbit param-
eters were taken null except "so and "C.16
The 30-band method represents a great improvement of

the k·p method compared to the 20-band Hamiltonian whose
extension was only 1 eV for the valence band and 3 eV for
the conduction band.12 This 20-band method was built to
take into account the d level effects without directly consid-
ering this level in the Hamiltonian. The present calculation
shows that taking into account the real d levels with their

TABLE III. Matrix elements of the momentum p: energies EPj
!!" and matrix elements Pj

!!" are linked by
EPj

!!"= !2m0 /$2"#Pj
!!"$2. Pj

!!" are defined in the text (Sec. III) and in Figs. 2 and 3.

eV Ge Si GaAs eV Ge Si GaAs

Ep 24.60 19.96 22.37 EPd 0.0051 1.193 0.010
EPX 17.65 14.81 16.79 EPXd 12.23 7.491 4.344
EP3 5.212 4.475 4.916 EP3d 15.76 9.856 8.888
EP2 2.510 3.993 6.280 EP2d 27.59 20.76 23.15
EPS 1.071 1.092 2.434 EPU 17.84 16.36 19.63
EP! 0.0656 EPd! ,EP3! ,EP2! ,EPS! ,EPU! ,EPSd! ,EPUd! 0

FIG. 4. Band diagram of Ge at T=0 K. FIG. 5. Band diagram of GaAs at T=0 K.
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Calculation of AMR from electronic structure

H = HKL + (Jpd/µB) ~M · ~s

point !see Chap. 3 of Ref. 27". Note that spin is not a good
quantum number owing to the presence of SOI. Expectation
value of spin along any of the Fermi surfaces can be visual-
ized as a spin texture rather than having separate spin up and
spin down bands. An example in Fig. 1!b" that corresponds30

to the n=1,2 bands of Hamiltonian !2" with h →0, shows
that for each k there are two states with opposite spin whose
direction, however, depends on k, contrary to systems with-
out SOI.

B. Scattering on random Mn impurities

In order to get finite conductivity at zero temperature, we
need to go beyond the virtual-crystal concept of Eq. !2". We
follow Ref. 31 and use the Fermi golden rule !in first-order
Born approximation treatment of Vdis" as the simplest model
of scattering to calculate the transport scattering rates !n,k of
the Bloch states from Eq. !2",

!n,k =
2"

#
NMn $ #

n!
$ d3k!

!2""3 %Mnn!
kk!%2%&En!k" − En!!k!"'

$ !1 − cos &vv!" , !3"

where we use31 &vv!, the angle subtended by the velocities
vn!k" and vn!!k!" to take into account v which need not be
parallel to k in case the combined effect of the SOI and
magnetization distorts the Fermi surfaces as suggested by the
sketch in Fig. 1!a".

Substitutional Mn act as acceptors and their magnetic mo-
ments participate in the ferromagnetic order of !Ga,Mn"As.
Acknowledging the magnetic and nonmagnetic part of Vdis,
we take

Mnn!
kk! = (zk!n!%M

B + MC%zkn) !4"

for the scattering matrix elements between two eigenstates of
the Hamiltonian !2". In the six-band notation of Eq. !2", the
magnetic part of a single Mn impurity scattering operator is

MB = JpdSMnêM · s , !5"

corresponding to the second term in Eq. !1". Explicit form of
the spin 6$ 6 matrices s is again given in the first of Ref. 26.
The nonmagnetic part MC describes screened Coulomb at-
traction of the valence holes to the ionized acceptors and we
therefore take

MC = V!%k − k!%"1, V!q" = −
e2

'

1

q2 + qTF
2 , !6"

where 1 denotes a 6$ 6 unity matrix, ' is the host semicon-
ductor dielectric constant, qTF=*e2g /' the Thomas-Fermi
screening wavevector,21,32 and g the density of states at the
Fermi level.

It is important that the two scattering operators !5" and !6"
add up “coherently” in Eq. !4". If Eq. !3" contained the “in-
coherent” sum %Mnn!

kk!%2= %(zk!n!%M
B%zkn)%2+ %(zk!n!%M

C%zkn)%2
this would describe a physically different situation with two
distinct types of scatterers, magnetic, and nonmagnetic ones.
Such incoherent sum, with appropriately defined scattering

operators, was used earlier21 to describe more realistic
!Ga,Mn"As systems that contain interstitial Mn atoms or As
antisites in addition to the substitutional Mn.

To summarize our model description of substitutional Mn
impurities in GaAs, the Mn atoms in Ga1−xMnxAs enter our
model at three different places: !i" As acceptors and in the
absence of other dopants they determine the Fermi level EF
and therefore the density of states and Fermi velocities. !ii"
On the virtual-crystal approximation !VCA" level, they cause
the ferromagnetic-exchange splitting of the hole bands, and
!iii" because of the random distribution in the lattice, the Mn
impurities also cause scattering. The essential feature of the
Mn impurity potentials for the AMR is that they contain
components which are proportional to the Mn local moments
and that these moments are ordered in the ferromagnetic
state, as expressed in Eq. !5". We stress that considering !ii"
and !iii" simultaneously leads to only a small “double-
counting” error in the description of the effect of the Mn-
related impurity potential. In terms of the VCA, we assume
in !ii" that each site on the cation !Ga" sublattice of the host
semiconductor is occupied by a mixture of x Mn and 1−x
Ga. This yields an effective mean potential which shares the
full periodicity of the host zinc-blende lattice. Strictly speak-
ing, the scattering potential of randomly distributed Mn on
the cation sublattice should be described as the difference
between the full impurity potential due to Mn and the above
VCA potential. Similarly the remaining sites occupied by Ga
should be described by the difference between the Ga poten-
tial and the VCA potential. Ignoring the latter difference and
taking the full Mn impurity potential for sites occupied by
Mn when describing scattering in !iii" is therefore not a pre-
cise procedure but it introduces only a small error for Mn
dopings not exceeding several percent.

C. Conductivity of (Ga,Mn)As in the relaxation-time
approximation

We now calculate the conductivity tensor using the semi-
classical formula based on the Boltzmann transport
equation21,32

(ij = e2#
n
$ d3k

!2""3 !#!nk"−1vn
i !k"vn

j !k"%&EF − E!k"' . !7"

We assume zero temperature hence the conductivity is deter-
mined exclusively by states on the Fermi level EF. The Fermi
velocities are calculated as vn!k"= !1 /#"!kEn. In our model
of one particular material, !Ga,Mn"As, the conductivity ten-
sor depends on the direction of magnetization êM through
Eqs. !2" and !5", that is owing to the combined effect of
magnetization and SOI. More generally, we can divide !the
models of" materials exhibiting the AMR into those in which
vn

i !k" in Eq. !7" is magnetization dependent, as sketched in
Fig. 1!a", and those which have a magnetization-dependent
transport relaxation times !#!nk"−1. Among the latter, we can
still discriminate those where the magnetization-dependence
enters through the scattering operator M &denoted MB+MC

in Eq. !4"' as sketched in Fig. 1!b" and those where the SOI-
and magnetization-induced anisotropy of wave functions in
Eq. !4" becomes important as it symbolizes Fig. 1!c".
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point !see Chap. 3 of Ref. 27". Note that spin is not a good
quantum number owing to the presence of SOI. Expectation
value of spin along any of the Fermi surfaces can be visual-
ized as a spin texture rather than having separate spin up and
spin down bands. An example in Fig. 1!b" that corresponds30

to the n=1,2 bands of Hamiltonian !2" with h →0, shows
that for each k there are two states with opposite spin whose
direction, however, depends on k, contrary to systems with-
out SOI.

B. Scattering on random Mn impurities

In order to get finite conductivity at zero temperature, we
need to go beyond the virtual-crystal concept of Eq. !2". We
follow Ref. 31 and use the Fermi golden rule !in first-order
Born approximation treatment of Vdis" as the simplest model
of scattering to calculate the transport scattering rates !n,k of
the Bloch states from Eq. !2",

!n,k =
2"

#
NMn $ #

n!
$ d3k!

!2""3 %Mnn!
kk!%2%&En!k" − En!!k!"'

$ !1 − cos &vv!" , !3"

where we use31 &vv!, the angle subtended by the velocities
vn!k" and vn!!k!" to take into account v which need not be
parallel to k in case the combined effect of the SOI and
magnetization distorts the Fermi surfaces as suggested by the
sketch in Fig. 1!a".

Substitutional Mn act as acceptors and their magnetic mo-
ments participate in the ferromagnetic order of !Ga,Mn"As.
Acknowledging the magnetic and nonmagnetic part of Vdis,
we take

Mnn!
kk! = (zk!n!%M

B + MC%zkn) !4"

for the scattering matrix elements between two eigenstates of
the Hamiltonian !2". In the six-band notation of Eq. !2", the
magnetic part of a single Mn impurity scattering operator is

MB = JpdSMnêM · s , !5"

corresponding to the second term in Eq. !1". Explicit form of
the spin 6$ 6 matrices s is again given in the first of Ref. 26.
The nonmagnetic part MC describes screened Coulomb at-
traction of the valence holes to the ionized acceptors and we
therefore take

MC = V!%k − k!%"1, V!q" = −
e2

'

1

q2 + qTF
2 , !6"

where 1 denotes a 6$ 6 unity matrix, ' is the host semicon-
ductor dielectric constant, qTF=*e2g /' the Thomas-Fermi
screening wavevector,21,32 and g the density of states at the
Fermi level.

It is important that the two scattering operators !5" and !6"
add up “coherently” in Eq. !4". If Eq. !3" contained the “in-
coherent” sum %Mnn!

kk!%2= %(zk!n!%M
B%zkn)%2+ %(zk!n!%M

C%zkn)%2
this would describe a physically different situation with two
distinct types of scatterers, magnetic, and nonmagnetic ones.
Such incoherent sum, with appropriately defined scattering

operators, was used earlier21 to describe more realistic
!Ga,Mn"As systems that contain interstitial Mn atoms or As
antisites in addition to the substitutional Mn.

To summarize our model description of substitutional Mn
impurities in GaAs, the Mn atoms in Ga1−xMnxAs enter our
model at three different places: !i" As acceptors and in the
absence of other dopants they determine the Fermi level EF
and therefore the density of states and Fermi velocities. !ii"
On the virtual-crystal approximation !VCA" level, they cause
the ferromagnetic-exchange splitting of the hole bands, and
!iii" because of the random distribution in the lattice, the Mn
impurities also cause scattering. The essential feature of the
Mn impurity potentials for the AMR is that they contain
components which are proportional to the Mn local moments
and that these moments are ordered in the ferromagnetic
state, as expressed in Eq. !5". We stress that considering !ii"
and !iii" simultaneously leads to only a small “double-
counting” error in the description of the effect of the Mn-
related impurity potential. In terms of the VCA, we assume
in !ii" that each site on the cation !Ga" sublattice of the host
semiconductor is occupied by a mixture of x Mn and 1−x
Ga. This yields an effective mean potential which shares the
full periodicity of the host zinc-blende lattice. Strictly speak-
ing, the scattering potential of randomly distributed Mn on
the cation sublattice should be described as the difference
between the full impurity potential due to Mn and the above
VCA potential. Similarly the remaining sites occupied by Ga
should be described by the difference between the Ga poten-
tial and the VCA potential. Ignoring the latter difference and
taking the full Mn impurity potential for sites occupied by
Mn when describing scattering in !iii" is therefore not a pre-
cise procedure but it introduces only a small error for Mn
dopings not exceeding several percent.

C. Conductivity of (Ga,Mn)As in the relaxation-time
approximation

We now calculate the conductivity tensor using the semi-
classical formula based on the Boltzmann transport
equation21,32

(ij = e2#
n
$ d3k

!2""3 !#!nk"−1vn
i !k"vn

j !k"%&EF − E!k"' . !7"

We assume zero temperature hence the conductivity is deter-
mined exclusively by states on the Fermi level EF. The Fermi
velocities are calculated as vn!k"= !1 /#"!kEn. In our model
of one particular material, !Ga,Mn"As, the conductivity ten-
sor depends on the direction of magnetization êM through
Eqs. !2" and !5", that is owing to the combined effect of
magnetization and SOI. More generally, we can divide !the
models of" materials exhibiting the AMR into those in which
vn

i !k" in Eq. !7" is magnetization dependent, as sketched in
Fig. 1!a", and those which have a magnetization-dependent
transport relaxation times !#!nk"−1. Among the latter, we can
still discriminate those where the magnetization-dependence
enters through the scattering operator M &denoted MB+MC

in Eq. !4"' as sketched in Fig. 1!b" and those where the SOI-
and magnetization-induced anisotropy of wave functions in
Eq. !4" becomes important as it symbolizes Fig. 1!c".

MICROSCOPIC MECHANISM OF THE NONCRYSTALLINE… PHYSICAL REVIEW B 80, 165204 !2009"

165204-3

point !see Chap. 3 of Ref. 27". Note that spin is not a good
quantum number owing to the presence of SOI. Expectation
value of spin along any of the Fermi surfaces can be visual-
ized as a spin texture rather than having separate spin up and
spin down bands. An example in Fig. 1!b" that corresponds30

to the n=1,2 bands of Hamiltonian !2" with h →0, shows
that for each k there are two states with opposite spin whose
direction, however, depends on k, contrary to systems with-
out SOI.

B. Scattering on random Mn impurities

In order to get finite conductivity at zero temperature, we
need to go beyond the virtual-crystal concept of Eq. !2". We
follow Ref. 31 and use the Fermi golden rule !in first-order
Born approximation treatment of Vdis" as the simplest model
of scattering to calculate the transport scattering rates !n,k of
the Bloch states from Eq. !2",

!n,k =
2"

#
NMn $ #

n!
$ d3k!

!2""3 %Mnn!
kk!%2%&En!k" − En!!k!"'

$ !1 − cos &vv!" , !3"

where we use31 &vv!, the angle subtended by the velocities
vn!k" and vn!!k!" to take into account v which need not be
parallel to k in case the combined effect of the SOI and
magnetization distorts the Fermi surfaces as suggested by the
sketch in Fig. 1!a".

Substitutional Mn act as acceptors and their magnetic mo-
ments participate in the ferromagnetic order of !Ga,Mn"As.
Acknowledging the magnetic and nonmagnetic part of Vdis,
we take

Mnn!
kk! = (zk!n!%M

B + MC%zkn) !4"

for the scattering matrix elements between two eigenstates of
the Hamiltonian !2". In the six-band notation of Eq. !2", the
magnetic part of a single Mn impurity scattering operator is

MB = JpdSMnêM · s , !5"

corresponding to the second term in Eq. !1". Explicit form of
the spin 6$ 6 matrices s is again given in the first of Ref. 26.
The nonmagnetic part MC describes screened Coulomb at-
traction of the valence holes to the ionized acceptors and we
therefore take

MC = V!%k − k!%"1, V!q" = −
e2

'

1

q2 + qTF
2 , !6"

where 1 denotes a 6$ 6 unity matrix, ' is the host semicon-
ductor dielectric constant, qTF=*e2g /' the Thomas-Fermi
screening wavevector,21,32 and g the density of states at the
Fermi level.

It is important that the two scattering operators !5" and !6"
add up “coherently” in Eq. !4". If Eq. !3" contained the “in-
coherent” sum %Mnn!

kk!%2= %(zk!n!%M
B%zkn)%2+ %(zk!n!%M

C%zkn)%2
this would describe a physically different situation with two
distinct types of scatterers, magnetic, and nonmagnetic ones.
Such incoherent sum, with appropriately defined scattering

operators, was used earlier21 to describe more realistic
!Ga,Mn"As systems that contain interstitial Mn atoms or As
antisites in addition to the substitutional Mn.

To summarize our model description of substitutional Mn
impurities in GaAs, the Mn atoms in Ga1−xMnxAs enter our
model at three different places: !i" As acceptors and in the
absence of other dopants they determine the Fermi level EF
and therefore the density of states and Fermi velocities. !ii"
On the virtual-crystal approximation !VCA" level, they cause
the ferromagnetic-exchange splitting of the hole bands, and
!iii" because of the random distribution in the lattice, the Mn
impurities also cause scattering. The essential feature of the
Mn impurity potentials for the AMR is that they contain
components which are proportional to the Mn local moments
and that these moments are ordered in the ferromagnetic
state, as expressed in Eq. !5". We stress that considering !ii"
and !iii" simultaneously leads to only a small “double-
counting” error in the description of the effect of the Mn-
related impurity potential. In terms of the VCA, we assume
in !ii" that each site on the cation !Ga" sublattice of the host
semiconductor is occupied by a mixture of x Mn and 1−x
Ga. This yields an effective mean potential which shares the
full periodicity of the host zinc-blende lattice. Strictly speak-
ing, the scattering potential of randomly distributed Mn on
the cation sublattice should be described as the difference
between the full impurity potential due to Mn and the above
VCA potential. Similarly the remaining sites occupied by Ga
should be described by the difference between the Ga poten-
tial and the VCA potential. Ignoring the latter difference and
taking the full Mn impurity potential for sites occupied by
Mn when describing scattering in !iii" is therefore not a pre-
cise procedure but it introduces only a small error for Mn
dopings not exceeding several percent.

C. Conductivity of (Ga,Mn)As in the relaxation-time
approximation

We now calculate the conductivity tensor using the semi-
classical formula based on the Boltzmann transport
equation21,32

(ij = e2#
n
$ d3k

!2""3 !#!nk"−1vn
i !k"vn

j !k"%&EF − E!k"' . !7"

We assume zero temperature hence the conductivity is deter-
mined exclusively by states on the Fermi level EF. The Fermi
velocities are calculated as vn!k"= !1 /#"!kEn. In our model
of one particular material, !Ga,Mn"As, the conductivity ten-
sor depends on the direction of magnetization êM through
Eqs. !2" and !5", that is owing to the combined effect of
magnetization and SOI. More generally, we can divide !the
models of" materials exhibiting the AMR into those in which
vn

i !k" in Eq. !7" is magnetization dependent, as sketched in
Fig. 1!a", and those which have a magnetization-dependent
transport relaxation times !#!nk"−1. Among the latter, we can
still discriminate those where the magnetization-dependence
enters through the scattering operator M &denoted MB+MC

in Eq. !4"' as sketched in Fig. 1!b" and those where the SOI-
and magnetization-induced anisotropy of wave functions in
Eq. !4" becomes important as it symbolizes Fig. 1!c".
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point !see Chap. 3 of Ref. 27". Note that spin is not a good
quantum number owing to the presence of SOI. Expectation
value of spin along any of the Fermi surfaces can be visual-
ized as a spin texture rather than having separate spin up and
spin down bands. An example in Fig. 1!b" that corresponds30

to the n=1,2 bands of Hamiltonian !2" with h →0, shows
that for each k there are two states with opposite spin whose
direction, however, depends on k, contrary to systems with-
out SOI.

B. Scattering on random Mn impurities

In order to get finite conductivity at zero temperature, we
need to go beyond the virtual-crystal concept of Eq. !2". We
follow Ref. 31 and use the Fermi golden rule !in first-order
Born approximation treatment of Vdis" as the simplest model
of scattering to calculate the transport scattering rates !n,k of
the Bloch states from Eq. !2",

!n,k =
2"

#
NMn $ #

n!
$ d3k!

!2""3 %Mnn!
kk!%2%&En!k" − En!!k!"'

$ !1 − cos &vv!" , !3"

where we use31 &vv!, the angle subtended by the velocities
vn!k" and vn!!k!" to take into account v which need not be
parallel to k in case the combined effect of the SOI and
magnetization distorts the Fermi surfaces as suggested by the
sketch in Fig. 1!a".

Substitutional Mn act as acceptors and their magnetic mo-
ments participate in the ferromagnetic order of !Ga,Mn"As.
Acknowledging the magnetic and nonmagnetic part of Vdis,
we take

Mnn!
kk! = (zk!n!%M

B + MC%zkn) !4"

for the scattering matrix elements between two eigenstates of
the Hamiltonian !2". In the six-band notation of Eq. !2", the
magnetic part of a single Mn impurity scattering operator is

MB = JpdSMnêM · s , !5"

corresponding to the second term in Eq. !1". Explicit form of
the spin 6$ 6 matrices s is again given in the first of Ref. 26.
The nonmagnetic part MC describes screened Coulomb at-
traction of the valence holes to the ionized acceptors and we
therefore take

MC = V!%k − k!%"1, V!q" = −
e2

'

1

q2 + qTF
2 , !6"

where 1 denotes a 6$ 6 unity matrix, ' is the host semicon-
ductor dielectric constant, qTF=*e2g /' the Thomas-Fermi
screening wavevector,21,32 and g the density of states at the
Fermi level.

It is important that the two scattering operators !5" and !6"
add up “coherently” in Eq. !4". If Eq. !3" contained the “in-
coherent” sum %Mnn!

kk!%2= %(zk!n!%M
B%zkn)%2+ %(zk!n!%M

C%zkn)%2
this would describe a physically different situation with two
distinct types of scatterers, magnetic, and nonmagnetic ones.
Such incoherent sum, with appropriately defined scattering

operators, was used earlier21 to describe more realistic
!Ga,Mn"As systems that contain interstitial Mn atoms or As
antisites in addition to the substitutional Mn.

To summarize our model description of substitutional Mn
impurities in GaAs, the Mn atoms in Ga1−xMnxAs enter our
model at three different places: !i" As acceptors and in the
absence of other dopants they determine the Fermi level EF
and therefore the density of states and Fermi velocities. !ii"
On the virtual-crystal approximation !VCA" level, they cause
the ferromagnetic-exchange splitting of the hole bands, and
!iii" because of the random distribution in the lattice, the Mn
impurities also cause scattering. The essential feature of the
Mn impurity potentials for the AMR is that they contain
components which are proportional to the Mn local moments
and that these moments are ordered in the ferromagnetic
state, as expressed in Eq. !5". We stress that considering !ii"
and !iii" simultaneously leads to only a small “double-
counting” error in the description of the effect of the Mn-
related impurity potential. In terms of the VCA, we assume
in !ii" that each site on the cation !Ga" sublattice of the host
semiconductor is occupied by a mixture of x Mn and 1−x
Ga. This yields an effective mean potential which shares the
full periodicity of the host zinc-blende lattice. Strictly speak-
ing, the scattering potential of randomly distributed Mn on
the cation sublattice should be described as the difference
between the full impurity potential due to Mn and the above
VCA potential. Similarly the remaining sites occupied by Ga
should be described by the difference between the Ga poten-
tial and the VCA potential. Ignoring the latter difference and
taking the full Mn impurity potential for sites occupied by
Mn when describing scattering in !iii" is therefore not a pre-
cise procedure but it introduces only a small error for Mn
dopings not exceeding several percent.

C. Conductivity of (Ga,Mn)As in the relaxation-time
approximation

We now calculate the conductivity tensor using the semi-
classical formula based on the Boltzmann transport
equation21,32

(ij = e2#
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i !k"vn

j !k"%&EF − E!k"' . !7"

We assume zero temperature hence the conductivity is deter-
mined exclusively by states on the Fermi level EF. The Fermi
velocities are calculated as vn!k"= !1 /#"!kEn. In our model
of one particular material, !Ga,Mn"As, the conductivity ten-
sor depends on the direction of magnetization êM through
Eqs. !2" and !5", that is owing to the combined effect of
magnetization and SOI. More generally, we can divide !the
models of" materials exhibiting the AMR into those in which
vn

i !k" in Eq. !7" is magnetization dependent, as sketched in
Fig. 1!a", and those which have a magnetization-dependent
transport relaxation times !#!nk"−1. Among the latter, we can
still discriminate those where the magnetization-dependence
enters through the scattering operator M &denoted MB+MC

in Eq. !4"' as sketched in Fig. 1!b" and those where the SOI-
and magnetization-induced anisotropy of wave functions in
Eq. !4" becomes important as it symbolizes Fig. 1!c".
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point !see Chap. 3 of Ref. 27". Note that spin is not a good
quantum number owing to the presence of SOI. Expectation
value of spin along any of the Fermi surfaces can be visual-
ized as a spin texture rather than having separate spin up and
spin down bands. An example in Fig. 1!b" that corresponds30

to the n=1,2 bands of Hamiltonian !2" with h →0, shows
that for each k there are two states with opposite spin whose
direction, however, depends on k, contrary to systems with-
out SOI.

B. Scattering on random Mn impurities

In order to get finite conductivity at zero temperature, we
need to go beyond the virtual-crystal concept of Eq. !2". We
follow Ref. 31 and use the Fermi golden rule !in first-order
Born approximation treatment of Vdis" as the simplest model
of scattering to calculate the transport scattering rates !n,k of
the Bloch states from Eq. !2",
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where we use31 &vv!, the angle subtended by the velocities
vn!k" and vn!!k!" to take into account v which need not be
parallel to k in case the combined effect of the SOI and
magnetization distorts the Fermi surfaces as suggested by the
sketch in Fig. 1!a".

Substitutional Mn act as acceptors and their magnetic mo-
ments participate in the ferromagnetic order of !Ga,Mn"As.
Acknowledging the magnetic and nonmagnetic part of Vdis,
we take

Mnn!
kk! = (zk!n!%M

B + MC%zkn) !4"

for the scattering matrix elements between two eigenstates of
the Hamiltonian !2". In the six-band notation of Eq. !2", the
magnetic part of a single Mn impurity scattering operator is

MB = JpdSMnêM · s , !5"

corresponding to the second term in Eq. !1". Explicit form of
the spin 6$ 6 matrices s is again given in the first of Ref. 26.
The nonmagnetic part MC describes screened Coulomb at-
traction of the valence holes to the ionized acceptors and we
therefore take

MC = V!%k − k!%"1, V!q" = −
e2

'

1

q2 + qTF
2 , !6"

where 1 denotes a 6$ 6 unity matrix, ' is the host semicon-
ductor dielectric constant, qTF=*e2g /' the Thomas-Fermi
screening wavevector,21,32 and g the density of states at the
Fermi level.

It is important that the two scattering operators !5" and !6"
add up “coherently” in Eq. !4". If Eq. !3" contained the “in-
coherent” sum %Mnn!

kk!%2= %(zk!n!%M
B%zkn)%2+ %(zk!n!%M

C%zkn)%2
this would describe a physically different situation with two
distinct types of scatterers, magnetic, and nonmagnetic ones.
Such incoherent sum, with appropriately defined scattering

operators, was used earlier21 to describe more realistic
!Ga,Mn"As systems that contain interstitial Mn atoms or As
antisites in addition to the substitutional Mn.

To summarize our model description of substitutional Mn
impurities in GaAs, the Mn atoms in Ga1−xMnxAs enter our
model at three different places: !i" As acceptors and in the
absence of other dopants they determine the Fermi level EF
and therefore the density of states and Fermi velocities. !ii"
On the virtual-crystal approximation !VCA" level, they cause
the ferromagnetic-exchange splitting of the hole bands, and
!iii" because of the random distribution in the lattice, the Mn
impurities also cause scattering. The essential feature of the
Mn impurity potentials for the AMR is that they contain
components which are proportional to the Mn local moments
and that these moments are ordered in the ferromagnetic
state, as expressed in Eq. !5". We stress that considering !ii"
and !iii" simultaneously leads to only a small “double-
counting” error in the description of the effect of the Mn-
related impurity potential. In terms of the VCA, we assume
in !ii" that each site on the cation !Ga" sublattice of the host
semiconductor is occupied by a mixture of x Mn and 1−x
Ga. This yields an effective mean potential which shares the
full periodicity of the host zinc-blende lattice. Strictly speak-
ing, the scattering potential of randomly distributed Mn on
the cation sublattice should be described as the difference
between the full impurity potential due to Mn and the above
VCA potential. Similarly the remaining sites occupied by Ga
should be described by the difference between the Ga poten-
tial and the VCA potential. Ignoring the latter difference and
taking the full Mn impurity potential for sites occupied by
Mn when describing scattering in !iii" is therefore not a pre-
cise procedure but it introduces only a small error for Mn
dopings not exceeding several percent.

C. Conductivity of (Ga,Mn)As in the relaxation-time
approximation

We now calculate the conductivity tensor using the semi-
classical formula based on the Boltzmann transport
equation21,32

(ij = e2#
n
$ d3k

!2""3 !#!nk"−1vn
i !k"vn

j !k"%&EF − E!k"' . !7"

We assume zero temperature hence the conductivity is deter-
mined exclusively by states on the Fermi level EF. The Fermi
velocities are calculated as vn!k"= !1 /#"!kEn. In our model
of one particular material, !Ga,Mn"As, the conductivity ten-
sor depends on the direction of magnetization êM through
Eqs. !2" and !5", that is owing to the combined effect of
magnetization and SOI. More generally, we can divide !the
models of" materials exhibiting the AMR into those in which
vn

i !k" in Eq. !7" is magnetization dependent, as sketched in
Fig. 1!a", and those which have a magnetization-dependent
transport relaxation times !#!nk"−1. Among the latter, we can
still discriminate those where the magnetization-dependence
enters through the scattering operator M &denoted MB+MC

in Eq. !4"' as sketched in Fig. 1!b" and those where the SOI-
and magnetization-induced anisotropy of wave functions in
Eq. !4" becomes important as it symbolizes Fig. 1!c".
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example: ferromagnetic (Ga,Mn)As

band k·p Hamiltonian.12 This 20-band Hamiltonian was
built from the 14!14 Hamiltonian,17 adding an s-symmetry
band 12 eV under the top of the valence band and two s*
levels to obtain nonmonotonic bands and give access to X, ",
or L valleys in the first conduction band. As these s* levels
were not sufficient to describe simultaneously the L point
and the # effective masses, the contribution of d levels was
mimicked via Luttinger-like parameters which played a part
in the #7C and #8C levels and in the #7V and #8V levels by
second-order perturbations. It explains why Luttinger param-
eters could not be obtained directly from the matrix ele-
ments, contrary to the k·p 30-band method.
Taking into account strain can be made as in Ref. 18. The

same strain Hamiltonian with five parameters has to be
added to the 30!30 Hamiltonian used for bulk semiconduc-
tors.

III. BAND DIAGRAMS OF Si, Ge, AND GaAs

After having built the 30!30 Hamiltonian, we now give
the parameters used in our k·p calculation and describe the
results for Si, Ge, and GaAs. The k=0 energies are presented
in Table II. The left part of this table is known;16 for the right
part of Table II, we take the same values as in Ref. 5 for Si
and Ge. For GaAs, these levels are unknown but Cardona
and Pollak5 explain how to obtain an estimation of these
energies, knowing the form factors used in pseudopotential
calculations19 and assuming that only the pseudopotential in-
teraction between the 30 plane-waves states is important.
Anyway, the k=0 upper energy levels chosen are not key

parameter by themselves: the important data are the couples
energy level/matrix element. Briefly speaking, the k=0 en-
ergy levels are first fixed from Ref. 5 and the matrix elements
are then adjusted to obtain the band diagram; as a result there
are 10 (18) adjustable parameters in Oh!Td".
After having chosen the unknown k=0 energy levels, the

key parameters are the matrix elements. Here, they were first
estimated at the center of the Brillouin zone, especially for
the valence band to obtain Luttinger parameters, and for the
first conduction band for Ge and GaAs, then at the extrema X
and L and finally to respect the continuity between U#1, 14 ,

1
4$

and K#0, 34 ,
3
4$ equivalent points of the Brillouin zone. This

continuity is not obtained by construction as in pseudopoten-
tial or LCAO: on the contrary, it is the strongest numerical
difficulty of this method. Figures 3–5 show the band struc-
tures of Si, Ge, and GaAs obtained with our k·p model.
Numerical results are given in Table III. The band structure
is well reproduced on a width of about 11 eV: it describes
correctly the valence band over a 6 eV scale (see Fig. 6) and
the lowest four conduction bands over a 4 eV scale in four
directions namely #X, #L, #K, XU. All the spin-orbit param-
eters were taken null except "so and "C.16
The 30-band method represents a great improvement of

the k·p method compared to the 20-band Hamiltonian whose
extension was only 1 eV for the valence band and 3 eV for
the conduction band.12 This 20-band method was built to
take into account the d level effects without directly consid-
ering this level in the Hamiltonian. The present calculation
shows that taking into account the real d levels with their

TABLE III. Matrix elements of the momentum p: energies EPj
!!" and matrix elements Pj

!!" are linked by
EPj

!!"= !2m0 /$2"#Pj
!!"$2. Pj

!!" are defined in the text (Sec. III) and in Figs. 2 and 3.

eV Ge Si GaAs eV Ge Si GaAs

Ep 24.60 19.96 22.37 EPd 0.0051 1.193 0.010
EPX 17.65 14.81 16.79 EPXd 12.23 7.491 4.344
EP3 5.212 4.475 4.916 EP3d 15.76 9.856 8.888
EP2 2.510 3.993 6.280 EP2d 27.59 20.76 23.15
EPS 1.071 1.092 2.434 EPU 17.84 16.36 19.63
EP! 0.0656 EPd! ,EP3! ,EP2! ,EPS! ,EPU! ,EPSd! ,EPUd! 0

FIG. 4. Band diagram of Ge at T=0 K. FIG. 5. Band diagram of GaAs at T=0 K.
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Calculation of AMR from electronic structure

H = HKL + (Jpd/µB) ~M · ~s

point !see Chap. 3 of Ref. 27". Note that spin is not a good
quantum number owing to the presence of SOI. Expectation
value of spin along any of the Fermi surfaces can be visual-
ized as a spin texture rather than having separate spin up and
spin down bands. An example in Fig. 1!b" that corresponds30

to the n=1,2 bands of Hamiltonian !2" with h →0, shows
that for each k there are two states with opposite spin whose
direction, however, depends on k, contrary to systems with-
out SOI.

B. Scattering on random Mn impurities

In order to get finite conductivity at zero temperature, we
need to go beyond the virtual-crystal concept of Eq. !2". We
follow Ref. 31 and use the Fermi golden rule !in first-order
Born approximation treatment of Vdis" as the simplest model
of scattering to calculate the transport scattering rates !n,k of
the Bloch states from Eq. !2",

!n,k =
2"

#
NMn $ #

n!
$ d3k!

!2""3 %Mnn!
kk!%2%&En!k" − En!!k!"'

$ !1 − cos &vv!" , !3"

where we use31 &vv!, the angle subtended by the velocities
vn!k" and vn!!k!" to take into account v which need not be
parallel to k in case the combined effect of the SOI and
magnetization distorts the Fermi surfaces as suggested by the
sketch in Fig. 1!a".

Substitutional Mn act as acceptors and their magnetic mo-
ments participate in the ferromagnetic order of !Ga,Mn"As.
Acknowledging the magnetic and nonmagnetic part of Vdis,
we take

Mnn!
kk! = (zk!n!%M

B + MC%zkn) !4"

for the scattering matrix elements between two eigenstates of
the Hamiltonian !2". In the six-band notation of Eq. !2", the
magnetic part of a single Mn impurity scattering operator is

MB = JpdSMnêM · s , !5"

corresponding to the second term in Eq. !1". Explicit form of
the spin 6$ 6 matrices s is again given in the first of Ref. 26.
The nonmagnetic part MC describes screened Coulomb at-
traction of the valence holes to the ionized acceptors and we
therefore take

MC = V!%k − k!%"1, V!q" = −
e2

'

1

q2 + qTF
2 , !6"

where 1 denotes a 6$ 6 unity matrix, ' is the host semicon-
ductor dielectric constant, qTF=*e2g /' the Thomas-Fermi
screening wavevector,21,32 and g the density of states at the
Fermi level.

It is important that the two scattering operators !5" and !6"
add up “coherently” in Eq. !4". If Eq. !3" contained the “in-
coherent” sum %Mnn!

kk!%2= %(zk!n!%M
B%zkn)%2+ %(zk!n!%M

C%zkn)%2
this would describe a physically different situation with two
distinct types of scatterers, magnetic, and nonmagnetic ones.
Such incoherent sum, with appropriately defined scattering

operators, was used earlier21 to describe more realistic
!Ga,Mn"As systems that contain interstitial Mn atoms or As
antisites in addition to the substitutional Mn.

To summarize our model description of substitutional Mn
impurities in GaAs, the Mn atoms in Ga1−xMnxAs enter our
model at three different places: !i" As acceptors and in the
absence of other dopants they determine the Fermi level EF
and therefore the density of states and Fermi velocities. !ii"
On the virtual-crystal approximation !VCA" level, they cause
the ferromagnetic-exchange splitting of the hole bands, and
!iii" because of the random distribution in the lattice, the Mn
impurities also cause scattering. The essential feature of the
Mn impurity potentials for the AMR is that they contain
components which are proportional to the Mn local moments
and that these moments are ordered in the ferromagnetic
state, as expressed in Eq. !5". We stress that considering !ii"
and !iii" simultaneously leads to only a small “double-
counting” error in the description of the effect of the Mn-
related impurity potential. In terms of the VCA, we assume
in !ii" that each site on the cation !Ga" sublattice of the host
semiconductor is occupied by a mixture of x Mn and 1−x
Ga. This yields an effective mean potential which shares the
full periodicity of the host zinc-blende lattice. Strictly speak-
ing, the scattering potential of randomly distributed Mn on
the cation sublattice should be described as the difference
between the full impurity potential due to Mn and the above
VCA potential. Similarly the remaining sites occupied by Ga
should be described by the difference between the Ga poten-
tial and the VCA potential. Ignoring the latter difference and
taking the full Mn impurity potential for sites occupied by
Mn when describing scattering in !iii" is therefore not a pre-
cise procedure but it introduces only a small error for Mn
dopings not exceeding several percent.

C. Conductivity of (Ga,Mn)As in the relaxation-time
approximation

We now calculate the conductivity tensor using the semi-
classical formula based on the Boltzmann transport
equation21,32

(ij = e2#
n
$ d3k

!2""3 !#!nk"−1vn
i !k"vn

j !k"%&EF − E!k"' . !7"

We assume zero temperature hence the conductivity is deter-
mined exclusively by states on the Fermi level EF. The Fermi
velocities are calculated as vn!k"= !1 /#"!kEn. In our model
of one particular material, !Ga,Mn"As, the conductivity ten-
sor depends on the direction of magnetization êM through
Eqs. !2" and !5", that is owing to the combined effect of
magnetization and SOI. More generally, we can divide !the
models of" materials exhibiting the AMR into those in which
vn

i !k" in Eq. !7" is magnetization dependent, as sketched in
Fig. 1!a", and those which have a magnetization-dependent
transport relaxation times !#!nk"−1. Among the latter, we can
still discriminate those where the magnetization-dependence
enters through the scattering operator M &denoted MB+MC

in Eq. !4"' as sketched in Fig. 1!b" and those where the SOI-
and magnetization-induced anisotropy of wave functions in
Eq. !4" becomes important as it symbolizes Fig. 1!c".
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point !see Chap. 3 of Ref. 27". Note that spin is not a good
quantum number owing to the presence of SOI. Expectation
value of spin along any of the Fermi surfaces can be visual-
ized as a spin texture rather than having separate spin up and
spin down bands. An example in Fig. 1!b" that corresponds30

to the n=1,2 bands of Hamiltonian !2" with h →0, shows
that for each k there are two states with opposite spin whose
direction, however, depends on k, contrary to systems with-
out SOI.

B. Scattering on random Mn impurities

In order to get finite conductivity at zero temperature, we
need to go beyond the virtual-crystal concept of Eq. !2". We
follow Ref. 31 and use the Fermi golden rule !in first-order
Born approximation treatment of Vdis" as the simplest model
of scattering to calculate the transport scattering rates !n,k of
the Bloch states from Eq. !2",

!n,k =
2"

#
NMn $ #

n!
$ d3k!

!2""3 %Mnn!
kk!%2%&En!k" − En!!k!"'

$ !1 − cos &vv!" , !3"

where we use31 &vv!, the angle subtended by the velocities
vn!k" and vn!!k!" to take into account v which need not be
parallel to k in case the combined effect of the SOI and
magnetization distorts the Fermi surfaces as suggested by the
sketch in Fig. 1!a".

Substitutional Mn act as acceptors and their magnetic mo-
ments participate in the ferromagnetic order of !Ga,Mn"As.
Acknowledging the magnetic and nonmagnetic part of Vdis,
we take

Mnn!
kk! = (zk!n!%M

B + MC%zkn) !4"

for the scattering matrix elements between two eigenstates of
the Hamiltonian !2". In the six-band notation of Eq. !2", the
magnetic part of a single Mn impurity scattering operator is

MB = JpdSMnêM · s , !5"

corresponding to the second term in Eq. !1". Explicit form of
the spin 6$ 6 matrices s is again given in the first of Ref. 26.
The nonmagnetic part MC describes screened Coulomb at-
traction of the valence holes to the ionized acceptors and we
therefore take

MC = V!%k − k!%"1, V!q" = −
e2

'

1

q2 + qTF
2 , !6"

where 1 denotes a 6$ 6 unity matrix, ' is the host semicon-
ductor dielectric constant, qTF=*e2g /' the Thomas-Fermi
screening wavevector,21,32 and g the density of states at the
Fermi level.

It is important that the two scattering operators !5" and !6"
add up “coherently” in Eq. !4". If Eq. !3" contained the “in-
coherent” sum %Mnn!

kk!%2= %(zk!n!%M
B%zkn)%2+ %(zk!n!%M

C%zkn)%2
this would describe a physically different situation with two
distinct types of scatterers, magnetic, and nonmagnetic ones.
Such incoherent sum, with appropriately defined scattering

operators, was used earlier21 to describe more realistic
!Ga,Mn"As systems that contain interstitial Mn atoms or As
antisites in addition to the substitutional Mn.

To summarize our model description of substitutional Mn
impurities in GaAs, the Mn atoms in Ga1−xMnxAs enter our
model at three different places: !i" As acceptors and in the
absence of other dopants they determine the Fermi level EF
and therefore the density of states and Fermi velocities. !ii"
On the virtual-crystal approximation !VCA" level, they cause
the ferromagnetic-exchange splitting of the hole bands, and
!iii" because of the random distribution in the lattice, the Mn
impurities also cause scattering. The essential feature of the
Mn impurity potentials for the AMR is that they contain
components which are proportional to the Mn local moments
and that these moments are ordered in the ferromagnetic
state, as expressed in Eq. !5". We stress that considering !ii"
and !iii" simultaneously leads to only a small “double-
counting” error in the description of the effect of the Mn-
related impurity potential. In terms of the VCA, we assume
in !ii" that each site on the cation !Ga" sublattice of the host
semiconductor is occupied by a mixture of x Mn and 1−x
Ga. This yields an effective mean potential which shares the
full periodicity of the host zinc-blende lattice. Strictly speak-
ing, the scattering potential of randomly distributed Mn on
the cation sublattice should be described as the difference
between the full impurity potential due to Mn and the above
VCA potential. Similarly the remaining sites occupied by Ga
should be described by the difference between the Ga poten-
tial and the VCA potential. Ignoring the latter difference and
taking the full Mn impurity potential for sites occupied by
Mn when describing scattering in !iii" is therefore not a pre-
cise procedure but it introduces only a small error for Mn
dopings not exceeding several percent.

C. Conductivity of (Ga,Mn)As in the relaxation-time
approximation

We now calculate the conductivity tensor using the semi-
classical formula based on the Boltzmann transport
equation21,32

(ij = e2#
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$ d3k

!2""3 !#!nk"−1vn
i !k"vn

j !k"%&EF − E!k"' . !7"

We assume zero temperature hence the conductivity is deter-
mined exclusively by states on the Fermi level EF. The Fermi
velocities are calculated as vn!k"= !1 /#"!kEn. In our model
of one particular material, !Ga,Mn"As, the conductivity ten-
sor depends on the direction of magnetization êM through
Eqs. !2" and !5", that is owing to the combined effect of
magnetization and SOI. More generally, we can divide !the
models of" materials exhibiting the AMR into those in which
vn

i !k" in Eq. !7" is magnetization dependent, as sketched in
Fig. 1!a", and those which have a magnetization-dependent
transport relaxation times !#!nk"−1. Among the latter, we can
still discriminate those where the magnetization-dependence
enters through the scattering operator M &denoted MB+MC

in Eq. !4"' as sketched in Fig. 1!b" and those where the SOI-
and magnetization-induced anisotropy of wave functions in
Eq. !4" becomes important as it symbolizes Fig. 1!c".
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point !see Chap. 3 of Ref. 27". Note that spin is not a good
quantum number owing to the presence of SOI. Expectation
value of spin along any of the Fermi surfaces can be visual-
ized as a spin texture rather than having separate spin up and
spin down bands. An example in Fig. 1!b" that corresponds30

to the n=1,2 bands of Hamiltonian !2" with h →0, shows
that for each k there are two states with opposite spin whose
direction, however, depends on k, contrary to systems with-
out SOI.

B. Scattering on random Mn impurities

In order to get finite conductivity at zero temperature, we
need to go beyond the virtual-crystal concept of Eq. !2". We
follow Ref. 31 and use the Fermi golden rule !in first-order
Born approximation treatment of Vdis" as the simplest model
of scattering to calculate the transport scattering rates !n,k of
the Bloch states from Eq. !2",

!n,k =
2"
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$ d3k!

!2""3 %Mnn!
kk!%2%&En!k" − En!!k!"'

$ !1 − cos &vv!" , !3"

where we use31 &vv!, the angle subtended by the velocities
vn!k" and vn!!k!" to take into account v which need not be
parallel to k in case the combined effect of the SOI and
magnetization distorts the Fermi surfaces as suggested by the
sketch in Fig. 1!a".

Substitutional Mn act as acceptors and their magnetic mo-
ments participate in the ferromagnetic order of !Ga,Mn"As.
Acknowledging the magnetic and nonmagnetic part of Vdis,
we take

Mnn!
kk! = (zk!n!%M

B + MC%zkn) !4"

for the scattering matrix elements between two eigenstates of
the Hamiltonian !2". In the six-band notation of Eq. !2", the
magnetic part of a single Mn impurity scattering operator is

MB = JpdSMnêM · s , !5"

corresponding to the second term in Eq. !1". Explicit form of
the spin 6$ 6 matrices s is again given in the first of Ref. 26.
The nonmagnetic part MC describes screened Coulomb at-
traction of the valence holes to the ionized acceptors and we
therefore take

MC = V!%k − k!%"1, V!q" = −
e2

'

1

q2 + qTF
2 , !6"

where 1 denotes a 6$ 6 unity matrix, ' is the host semicon-
ductor dielectric constant, qTF=*e2g /' the Thomas-Fermi
screening wavevector,21,32 and g the density of states at the
Fermi level.

It is important that the two scattering operators !5" and !6"
add up “coherently” in Eq. !4". If Eq. !3" contained the “in-
coherent” sum %Mnn!

kk!%2= %(zk!n!%M
B%zkn)%2+ %(zk!n!%M

C%zkn)%2
this would describe a physically different situation with two
distinct types of scatterers, magnetic, and nonmagnetic ones.
Such incoherent sum, with appropriately defined scattering

operators, was used earlier21 to describe more realistic
!Ga,Mn"As systems that contain interstitial Mn atoms or As
antisites in addition to the substitutional Mn.

To summarize our model description of substitutional Mn
impurities in GaAs, the Mn atoms in Ga1−xMnxAs enter our
model at three different places: !i" As acceptors and in the
absence of other dopants they determine the Fermi level EF
and therefore the density of states and Fermi velocities. !ii"
On the virtual-crystal approximation !VCA" level, they cause
the ferromagnetic-exchange splitting of the hole bands, and
!iii" because of the random distribution in the lattice, the Mn
impurities also cause scattering. The essential feature of the
Mn impurity potentials for the AMR is that they contain
components which are proportional to the Mn local moments
and that these moments are ordered in the ferromagnetic
state, as expressed in Eq. !5". We stress that considering !ii"
and !iii" simultaneously leads to only a small “double-
counting” error in the description of the effect of the Mn-
related impurity potential. In terms of the VCA, we assume
in !ii" that each site on the cation !Ga" sublattice of the host
semiconductor is occupied by a mixture of x Mn and 1−x
Ga. This yields an effective mean potential which shares the
full periodicity of the host zinc-blende lattice. Strictly speak-
ing, the scattering potential of randomly distributed Mn on
the cation sublattice should be described as the difference
between the full impurity potential due to Mn and the above
VCA potential. Similarly the remaining sites occupied by Ga
should be described by the difference between the Ga poten-
tial and the VCA potential. Ignoring the latter difference and
taking the full Mn impurity potential for sites occupied by
Mn when describing scattering in !iii" is therefore not a pre-
cise procedure but it introduces only a small error for Mn
dopings not exceeding several percent.

C. Conductivity of (Ga,Mn)As in the relaxation-time
approximation

We now calculate the conductivity tensor using the semi-
classical formula based on the Boltzmann transport
equation21,32
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j !k"%&EF − E!k"' . !7"

We assume zero temperature hence the conductivity is deter-
mined exclusively by states on the Fermi level EF. The Fermi
velocities are calculated as vn!k"= !1 /#"!kEn. In our model
of one particular material, !Ga,Mn"As, the conductivity ten-
sor depends on the direction of magnetization êM through
Eqs. !2" and !5", that is owing to the combined effect of
magnetization and SOI. More generally, we can divide !the
models of" materials exhibiting the AMR into those in which
vn

i !k" in Eq. !7" is magnetization dependent, as sketched in
Fig. 1!a", and those which have a magnetization-dependent
transport relaxation times !#!nk"−1. Among the latter, we can
still discriminate those where the magnetization-dependence
enters through the scattering operator M &denoted MB+MC

in Eq. !4"' as sketched in Fig. 1!b" and those where the SOI-
and magnetization-induced anisotropy of wave functions in
Eq. !4" becomes important as it symbolizes Fig. 1!c".
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point !see Chap. 3 of Ref. 27". Note that spin is not a good
quantum number owing to the presence of SOI. Expectation
value of spin along any of the Fermi surfaces can be visual-
ized as a spin texture rather than having separate spin up and
spin down bands. An example in Fig. 1!b" that corresponds30

to the n=1,2 bands of Hamiltonian !2" with h →0, shows
that for each k there are two states with opposite spin whose
direction, however, depends on k, contrary to systems with-
out SOI.

B. Scattering on random Mn impurities

In order to get finite conductivity at zero temperature, we
need to go beyond the virtual-crystal concept of Eq. !2". We
follow Ref. 31 and use the Fermi golden rule !in first-order
Born approximation treatment of Vdis" as the simplest model
of scattering to calculate the transport scattering rates !n,k of
the Bloch states from Eq. !2",

!n,k =
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where we use31 &vv!, the angle subtended by the velocities
vn!k" and vn!!k!" to take into account v which need not be
parallel to k in case the combined effect of the SOI and
magnetization distorts the Fermi surfaces as suggested by the
sketch in Fig. 1!a".

Substitutional Mn act as acceptors and their magnetic mo-
ments participate in the ferromagnetic order of !Ga,Mn"As.
Acknowledging the magnetic and nonmagnetic part of Vdis,
we take

Mnn!
kk! = (zk!n!%M

B + MC%zkn) !4"

for the scattering matrix elements between two eigenstates of
the Hamiltonian !2". In the six-band notation of Eq. !2", the
magnetic part of a single Mn impurity scattering operator is

MB = JpdSMnêM · s , !5"

corresponding to the second term in Eq. !1". Explicit form of
the spin 6$ 6 matrices s is again given in the first of Ref. 26.
The nonmagnetic part MC describes screened Coulomb at-
traction of the valence holes to the ionized acceptors and we
therefore take

MC = V!%k − k!%"1, V!q" = −
e2

'

1

q2 + qTF
2 , !6"

where 1 denotes a 6$ 6 unity matrix, ' is the host semicon-
ductor dielectric constant, qTF=*e2g /' the Thomas-Fermi
screening wavevector,21,32 and g the density of states at the
Fermi level.

It is important that the two scattering operators !5" and !6"
add up “coherently” in Eq. !4". If Eq. !3" contained the “in-
coherent” sum %Mnn!

kk!%2= %(zk!n!%M
B%zkn)%2+ %(zk!n!%M

C%zkn)%2
this would describe a physically different situation with two
distinct types of scatterers, magnetic, and nonmagnetic ones.
Such incoherent sum, with appropriately defined scattering

operators, was used earlier21 to describe more realistic
!Ga,Mn"As systems that contain interstitial Mn atoms or As
antisites in addition to the substitutional Mn.

To summarize our model description of substitutional Mn
impurities in GaAs, the Mn atoms in Ga1−xMnxAs enter our
model at three different places: !i" As acceptors and in the
absence of other dopants they determine the Fermi level EF
and therefore the density of states and Fermi velocities. !ii"
On the virtual-crystal approximation !VCA" level, they cause
the ferromagnetic-exchange splitting of the hole bands, and
!iii" because of the random distribution in the lattice, the Mn
impurities also cause scattering. The essential feature of the
Mn impurity potentials for the AMR is that they contain
components which are proportional to the Mn local moments
and that these moments are ordered in the ferromagnetic
state, as expressed in Eq. !5". We stress that considering !ii"
and !iii" simultaneously leads to only a small “double-
counting” error in the description of the effect of the Mn-
related impurity potential. In terms of the VCA, we assume
in !ii" that each site on the cation !Ga" sublattice of the host
semiconductor is occupied by a mixture of x Mn and 1−x
Ga. This yields an effective mean potential which shares the
full periodicity of the host zinc-blende lattice. Strictly speak-
ing, the scattering potential of randomly distributed Mn on
the cation sublattice should be described as the difference
between the full impurity potential due to Mn and the above
VCA potential. Similarly the remaining sites occupied by Ga
should be described by the difference between the Ga poten-
tial and the VCA potential. Ignoring the latter difference and
taking the full Mn impurity potential for sites occupied by
Mn when describing scattering in !iii" is therefore not a pre-
cise procedure but it introduces only a small error for Mn
dopings not exceeding several percent.

C. Conductivity of (Ga,Mn)As in the relaxation-time
approximation

We now calculate the conductivity tensor using the semi-
classical formula based on the Boltzmann transport
equation21,32
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mined exclusively by states on the Fermi level EF. The Fermi
velocities are calculated as vn!k"= !1 /#"!kEn. In our model
of one particular material, !Ga,Mn"As, the conductivity ten-
sor depends on the direction of magnetization êM through
Eqs. !2" and !5", that is owing to the combined effect of
magnetization and SOI. More generally, we can divide !the
models of" materials exhibiting the AMR into those in which
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i !k" in Eq. !7" is magnetization dependent, as sketched in
Fig. 1!a", and those which have a magnetization-dependent
transport relaxation times !#!nk"−1. Among the latter, we can
still discriminate those where the magnetization-dependence
enters through the scattering operator M &denoted MB+MC

in Eq. !4"' as sketched in Fig. 1!b" and those where the SOI-
and magnetization-induced anisotropy of wave functions in
Eq. !4" becomes important as it symbolizes Fig. 1!c".
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Figure 1 | AFM-AMRmemory functionality in a FeRh resistor. a, Schematic illustration of the AFM FeRh/MgO structure and of the memory writing and
reading set-up. For writing, the sample is cooled in a field HFC from a temperature above the AFM–ferromagnetic transition in FeRh (we used maximum
field of 9 T and temperature of 400K allowed in our transport measurement set-up) to below the transition temperature (200K). Black arrows denote the
orientation of the magnetic moments in the ferromagnetic phase whereas either red or blue arrows denote two distinct configurations of the magnetic
moments in the AFM phase. The resulting AFM spin axis in the low-temperature memory state depends on the direction of HFC, which is either along the
[100] or [010] crystal axis. For reading, electrical current j is driven between electrical contacts (yellow bars) along the [100] direction and the resistance
is detected. b, Resistance measured at 200K and zero magnetic field after field-cooling the sample with HFC parallel (blue) and perpendicular (red) to the
current direction. The two resistance states are clearly distinct and many successive measurement steps demonstrate the stability of the distinct memory
states. c, The same as in b, but at room temperature. d, Stability of the two memory states at room temperature tested by measuring the resistance while
sweeping a magnetic field H between±1 T applied along the [100] direction. e, The same as in d, while rotating a 1 T magnetic field. f, AMR values
calculated for the Rh-rich (Fe1�xRhx)Rh random alloy using the Kubo formula CPA-TB-LMTO formalism. The AMR is defined as a relative di�erence
between the resistivity for the spin axis parallel and perpendicular to the current, AMR = (Rskj � Rs?j)/RskI. Results are shown for the AFM ground state
(filled symbols) and for a hypothetical zero-temperature ferromagnetic state (open symbols) of FeRh.

FeRh close to 400K; at this temperature, we have applied amagnetic
fieldHFC to align itsmagnetization and the correspondingmagnetic
moments of FM FeRh along the applied magnetic field. The sample
is then field-cooled below room temperature (200K) and HFC is
then removed. In this AFM state with no applied magnetic field
we perform a series of four-probe resistance measurements with
the current j applied along the [100] substrate crystal direction.
The same protocol is repeated several times with HFC applied
during field-cooling either along the [100] or [010] substrate crystal
directions (Fig. 1a). The resulting resistances in the AFM state are
stable and fully reproducible in the successive write–read cycles,
and the two cooling-field directions define two distinct resistance
states of the AFM. They remain distinct not only on removing
the magnetic field but also when warming the AFM up to room
temperature, as shown in Fig. 1b,c.

In Fig. 1d,e we demonstrate that the two AFMmemory states are
robust against strong magnetic field perturbations. After preparing
one of the states by the above cooling-in-field procedure, we rotate
the sample at room temperature in a magnetic field H of 1 T and
observe a negligible e�ect on the resistance in either of the two
AFM memory states (Fig. 1e). As in the rotation experiment, the

states are not disturbed by sweeping the magnitude of H at a fixed
applied field angle (Fig. 1d). In the detailed discussion below we
show that the retention in our AFM memory is not disturbed up to
the highest fields (9 T) available in our transport measurement set-
up.However, before resuming the detailed experimental analysis, we
focus in the following paragraphs on themicroscopic physics behind
the observed distinct resistance states in our FeRh AFM.

Theory of the AFM-AMR
In this theoretical section, we first recall the fundamentals of the
AMR relevant to our experiments and then discuss our quantitative
modelling of the e�ect based on a relativistic density-functional
transport theory16–20. As already mentioned in the introduction,
conceptually the AMR phenomena are equally present in AFMs as
in ferromagnets. As AMR is an even function of the microscopic
magneticmoment vector, it is the direction of the spin axis (s) rather
than the direction of the macroscopic magnetization (M) relative
to the current direction that primarily determines the e�ect. In
collinear ferromagnets the two directions are equivalent. For the
staggered spin configuration of compensated AFMs only the spin
axis can be defined while the macroscopic magnetization is zero.
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Interband and intraband terms
Permittivity spectra shown infigures 2(a) and (b)were calculated usingWIEN2k taking into account only
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Figure 4.Temperature dependence ofmagneticmoment at an appliedfield of 1 T for the studied FeRhfilmswith different thicknesses.
(a) 6 nm, (b) 18 nm, (c) 36 nm, and (d) 100 nm.

Figure 5. Structure of bulk FeRh. In theAF phase (left), the Rh atom (grey) has nomagneticmomentwhile the Femagneticmoments
are ordered as indicated. Except for a different lattice constant (see text), the crystal structure remains unchanged in the FMphase
(right); magneticmoment of the Rh atoms is then non-zero and parallel with that of Fe atoms.
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FIG. 1. Sketch of the atomic and possible magnetic structures
of antiferromagnetic hexagonal MnTe. (a) In-plane/c plane (ground
state) and (b) out-of-plane/c-axis (hard axis) orientation of the
magnetic moments of Mn with the Néel vector L⃗ along ⟨11̄00⟩ and
⟨0001⟩ are shown. The hexagonal basal plane, i.e., the c plane is
indicated by a gray plane, while red, green, and blue arrows show the
directions of the unit cell axes.

InP(111) [7], and Al2O3(0001) [16,25,26] substrates as well as
on amorphous Si(111)/SiO2 [27]. Due to lattice and thermal
expansion coefficient mismatch between α-MnTe and the
substrates, films will experience strain that may affect the mag-
netic properties such as MAs. For example [28], the dilute
magnetic semiconductor (Ga,Mn)As is known to have an
in-plane MA under compressive strain and an out-of-plane MA
for tensile strain under suitable conditions. Here, we study the
MAs in MnTe on different substrates, which cause different
strain states. The knowledge of the easy axis directions
is crucial for transport phenomena modeling, which has
so far relied only on assumptions [7]. As far as the easy
axis directions are concerned, we confirm these assumptions
using DFT+U calculations combined with experiments. Using
magnetotransport, magnetometry, and neutron diffraction, we
determine the easy axes to be along ⟨11̄00⟩ and show in what
respect MAs are sensitive to epitaxy-induced strain.

The paper is organized as follows. After introduction of
the results of DFT+U calculations in Sec. II, we describe our
samples structure and basic magnetometry characterization
in Sec. III. Section IV presents our neutron diffraction
experiments and Sec. V complementary magneto-transport
studies. Further magnetometry experiments determining the
spin-flop field are presented in Sec. VI. Finally, we conclude
in Sec. VII.

II. MAGNETIC ANISOTROPY CALCULATIONS

The magnetic anisotropy energy (MAE) in antiferromag-
nets comprises two main contributions: the dipole term and the
magnetocrystalline anisotropy (MCA). In order to calculate
the latter, we use the relativistic version of the rotationally
invariant DFT+U method [29], which takes into account
spin-orbit coupling, and nondiagonal in spin contributions
into the occupation matrix. The full-potential linearized
augmented plane-wave (FLAPW) [30] basis is used in the
self-consistent total energy calculations. We use U = 4 eV
and J = 0.97 eV parameters taken from a similar compound of
manganese [31].

The dipole term is a classical contribution from dipole-
dipole interaction of localized magnetic moments [32]. For

coherent rotations of the two AFM sublattices which strictly
maintain their antiparallel alignment, e.g., one that interpolates
between the two magnetic configurations shown in Fig. 1, the
dipole term depends in general on the rotation angle. This
dependence is absent for cubic crystals but present in MnTe
since the crystal symmetry of the NiAs structure is lower.
This causes the energy of the dipole-dipole interaction of the
structure in Fig. 1(b), with magnetic moments aligned along
the c-axis, to be higher than that of any structure with magnetic
moments oriented in the hexagonal basal plane (c plane), e.g.,
Fig. 1(a).

For lattice constants a = 0.4134 nm and c = 0.6652 nm
[experimentally determined at 5 K / see Sec. III, Figs. 3(a) and
3(b)], we obtain that Mn atoms carry the magnetic moments
of 4.27µB (spin MS = 4.25µB plus orbital ML = 0.02µB

magnetic moments). The energy difference of the two different
configurations shown in Fig. 1 from the dipole term Edipole

is calculated to be 0.135 meV per unit cell, favoring the
alignment in the c plane. This contribution to MAE is only
weakly dependent on strain or relevant lattice distortions and
gives no anisotropy within the c plane.

The DFT+U calculations of the MCA are much more
involved but, rather generally, a clear picture emerges of mod-
erately large out-of-plane anisotropy and small anisotropies
within the c plane. For the lattice constants quoted above,
an energy difference between configurations in Figs. 1(a) and
1(b) of 0.11 meV per unit cell is calculated again favoring
the alignment in the c plane. The anisotropy within the c
plane, defined as the energy difference between the magnetic
structure in Fig. 1(a) and one with magnetic moments rotated
by 90◦ in the c plane, is small and at the edge of the accuracy
(10 µeV) of the calculation in this particular case.

To model actual conditions in our experiments, we perform
zero-temperature calculations of EMCA for various choices
of lattice constants (see Table I). Adding the MCA to the
dipole term, we can conclude that (a) the out-of-plane MAE is
typically between 0.2 and 0.3 meV per unit cell (two formula
units), favoring the moments within the c plane, and (b) the
anisotropy within the c plane is typically an order of magnitude
smaller. For calculations under changing c/a ratio shown in
Table I, the MAE within the c plane is always smaller than
the out-of-plane MAE (even for the extreme choice of lattice
constants with c = 0.689 nm, see Table I, the latter is greater
than 0.1 meV per unit cell), the MAE within the c plane exhibits
no clear trend upon unit cell deformation and it even changes
sign. In order to unambiguously determine anisotropies
within the c planes, it is therefore advisable to resort to
experiments.

TABLE I. The total MAE, Edipole + EMCA in meV per unit cell for
different lattice parameters. The Néel vector directions with respect
to the crystal are given as subscript of the energies, showing the
preferential magnetic moment orientation in the c plane.

a (nm) 0.408 0.411 0.414 0.417 0.408 0.408
c (nm) 0.670 0.670 0.670 0.670 0.650 0.689
E[0001] − E[112̄0] 0.20 0.24 0.23 0.22 0.28 0.12
E[11̄00] − E[112̄0] − 0.01 0.03 0.01 0.04 0.05 − 0.01

214418-2

−12

−8

−4

0

4

K Γ A K H M L
En

er
gy

 [e
V]

MnTe in hexagonal NiAs structure

occupied 
Mn d-states

VB top: 
Te p-states

}
<latexit sha1_base64="z9I03uDaA3bS8qEriCB/zLQ+3nM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqadWq3kW1dn9Zqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD5/ajWs=</latexit>



detail of the VB (no SO)

−3

−2

−1

0

1

2

3

Γ A K H M L

to be 774 meV lower in energy than the ferromagnetic
phase, indicating an interlayer antiferromagnetic order as
the ground state.
The band structure near the valence band top is strongly

affected by SOC. As shown in Figs. 1(c)–1(e), the valence
band top is found to be at the A point without SOC, which
is ∼0.05 eV higher than the Γ point. This is consistent with
the pioneering calculations done by Podgòrny et al. [28]
and Wei et al. [29]. Once SOC is included, the configu-
ration with in-plane spin along x̂ [shown in Fig. 1(b)] or the
other two equivalent directions has the lowest energy,
suggesting that the easy axes are consistent with the recent
experiment [9]. With this magnetic order, C3 rotation about
ẑ is no longer a symmetry operation so that the Γ-M-K-Γ
paths are not identical. This will be explained in detail by
the group-theory analysis later. Two representative paths
are chosen to demonstrate the band anisotropy, as shown in
Fig. 1(f). The most significant SOC splitting occurs in the
valence band near the Γ point, as denoted by the red arrow
in Fig. 1(d). This splitting shifts the band top from the A
point to the Γ → K1 ¼ ð− 1

3 ;
2
3 ; 0Þ line, which is now

∼0.1 eV higher. Cryogenic magnetotransport therefore
should be dominated by this band, which is formed by
the antibonding of the pz orbitals of Teð5pÞ sitting on
different sublattices, as illustrated by the partial charge
density in Fig. 1(g). No band splitting shows up in the
conduction band, which is dominated by the emptyMnð3dÞ
3z2 − r2 orbital. The above calculations are carried out
using project augmented wave pseudopotential (PAW) [30]
implemented in VASP [31,32]. The generalized gradient
approximation (GGA) in Perdew, Burke, and Ernzerhof
(PBE) [33] is used as the exchange-correlation energy for
structure optimization, whereas the hybrid functional
(HSE06) is applied for the calculation of the total energy.
This functional computes the exact Fock energy and is
known to avoid underestimation of band gaps in certain
systems [34,35]. See Sec. II in Supplemental Material [26]
for the comparison between the calculated band structure
and experimental data from different sources. The k points
are sampled on a Γ-centered 13 × 13 × 8 mesh, and an
energy cutoff of 400 eV is used throughout all calculations.
To analytically understand the impact of SOC, a minimal

effective Hamiltonian describing the long-wavelength
behavior is constructed. The NiAs structure of α-MnTe
has the space group P63=mmc (No. 194). Therefore, the
point-group symmetry should be D6h [36] without consid-
ering the magnetic order. However, once an in-plane easy
axis is selected by the Mn spin, the C3 symmetry about ẑ is
broken, and the point group D6h is reduced to its subgroup
D2h. This group contains inversion (I) and three mirror
operations with respect to xy, yz, and zx planes, respec-
tively. The combination of inversion and mirror leads to
three C2 operations with respect to the x, y, and z axes,
respectively. The double group of D2h has 10 irreducible
representations, grouped into 5 pairs with opposite parities.
The character table of these representations is shown in
the Supplemental Material Sec. III [26]. Since the valence
band is formed by the antibonding between two pz orbitals
of Te, basis jϕ1i ¼ ð1=

ffiffiffi
2

p
ÞðpzA þ pzBÞj↑i and jϕ2i ¼

ð1=
ffiffiffi
2

p
ÞðpzA þ pzBÞj↓i expand a Γþ

5 irreducible represen-
tation of D2h, where the superscript “þ” denotes the even
parity.
The effective Hamiltonian in this sub-Hilbert space

can be constructed by the theory of invariants [37].
Given Γþ

5 × Γþ
5 ¼ Γþ

1 ⊕ Γþ
2 ⊕ Γþ

3 ⊕ Γþ
4 , ĤðkÞ ¼

P
γaγ

PjΓγj
k¼1 h

γ
kðkÞð

P
2
i;j¼1 C

γ
ij;kjϕiihϕjjÞ, where hγkðkÞ

and jΓγj are the basis and dimension of representation
Γγ, respectively. Coefficients faγg are free parameters that
cannot be dictated from the symmetry analysis. Cij;k are the
Clebsh-Gordan (CG) coefficients available in Ref. [38].
The lowest order basis of Γþ

2 and Γþ
4 are kzkx and kykz,

respectively. Because we are focusing on the transport
signature in MnTe thin film, the z direction is modeled as
a quantum well state, in which hkzi ¼ 0 and hk2zi ¼
ðnπ=dÞ2 ¼ const, where d is the film thickness and n
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FIG. 1. Ab initio band structure for α-MnTe. (a) Top view of the
magnetic unit cell and the choice of coordinate. (b) Three-
dimensional view of the magnetic unit cell. (c) Electron bands
without spin-orbit coupling (SOC), illustrated along the high-
symmetry points of the nonmagnetic primitive cell. The red curve
denotes the spin-degenerate valence band. (d) and (e) The band
structure considering SOC, illustrated along two different loops
in the Brillouin zone shown in (f). The red arrow denotes the
valence band top near Γ. (g) The charge density contributed by
the valence band at Γ. The white dotted line denotes the plane
separating the A-Te and B-Te atoms, where the charge density is
zero. This color contour plot is illustrated in the plane containing
â3 and the two Mn sublattices.
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competing maxima at the VB top: the idea
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1

Comment on ”Planar Hall e↵ect in antiferro-

magnetic MnTe thin films”

In a recent Letter [1], Yin et al. develop an e↵ective
model for MnTe using which they explore the anisotropic
magnetoresistance (AMR). Specifically, they show that
its transversal component (also known as the planar Hall
e↵ect) can be larger than 10% in this p-type antiferro-
magnetic semiconductor and put this into context of rel-
atively small experimental values with ramifications into
multidomain structure of real samples etc. The model of
Yin et al. is based on an assumption, justified by their
ab initio calculations, that the top of the valence band
(VB) is located close to the � point of the Brillouin zone.
It is the purpose of this Comment to show that this is
only true for certain special choices of lattice constants of
MnTe and that bulk ↵-MnTe (at room temperature) has
the VB maximum close to the A point. This could ex-
plain the discrepancy between experimental magnitude
of AMR and theoretical results of Yin et al.

As Yin et al. observe, the consensus about the VB has
been so far that its global maximum occurs close to the A
point (we denote this maximum by VBM1). There’s an-
other local maximum (VBM2) close to the � point (along
the �-K1 line) and Yin et al. claim that when spin-orbit
interaction is taken into account, this other maximum is
pushed higher in energy than VBM1 by ⇠ 0.1 eV. We
now show that whether VBM1 or VBM2 is higher in en-
ergy depends on the lattice constants a, c of the hexag-
onal NiAs structure of the studied system (MnTe). The
values of c (a) used in the main text [1] (see Tab. I)
di↵er by 4.2% (1.2%) from the room-temperature bulk
lattice constants [2] and this large di↵erence makes rela-
tive shifts of VBM1 and VBM2 at the order of hundreds
meV entirely possible. Indeed, the DFT+U calculations

FIG. 1. Overall view of the band structure (DFT+U).
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FIG. 2. Detail of the MnTe band structure. Top: DFT+U,
bottom: QSGW.

type a/c position of max.
Ref. [1] 0.409/0.643
bulk 0.414/0.671 around A
SrF2 LT 0.4135/0.6655 around A
SrF2 RT 0.4148/0.672 around A
InP RT 0.417/0.669 VBM1⇡VBM2
InP LT 0.417/0.660 �-K line

TABLE I. Lattice parameters considered (in nm) and our re-
sults of QSGW. LT = low temperature (4 K), RT = room
temperature.

(including spin-orbit interaction) in Fig. 2a show VBM1
higher in energy than VBM2 by roughly 55 meV. The
moderate-to-small value of Hubbard U = 0.1 Ry was
inferred from the position of Mn d-bands known from
photoemission experiments [3]. Density of states (DOS)
shown in the inset of Fig. 1 exhibits a clear double peak
dominated by Mn d-orbitals and its distance from empty
d-states (marked by an arrow in the inset) varies in an
approximately linear fashion with U (see the other in-
set of Fig. 2). The chosen value of U thus corresponds
to the experimental peak-to-peak separation of 6.6 eV.
In order to confirm our conclusions about relative po-
sitions of VBM1 and VBM2, we compare our DFT+U
calculations to QSGW and find essentially the same re-
sult. We note that unlike DFT+U, QSGW reproduces
the experimental[5] gap of 1.5 eV to within a few per
cent.
We now proceed to calculations with other lattice con-

stants that correspond to MnTe thin layers where the
substrate choice is essential. Values of a, c given in Tab. I
correspond to SrF2 and InP substrates used for neutron
di↵raction and transport experiments [4] and for sim-
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sults of QSGW. LT = low temperature (4 K), RT = room
temperature.

(including spin-orbit interaction) in Fig. 2a show VBM1
higher in energy than VBM2 by roughly 55 meV. The
moderate-to-small value of Hubbard U = 0.1 Ry was
inferred from the position of Mn d-bands known from
photoemission experiments [3]. Density of states (DOS)
shown in the inset of Fig. 1 exhibits a clear double peak
dominated by Mn d-orbitals and its distance from empty
d-states (marked by an arrow in the inset) varies in an
approximately linear fashion with U (see the other in-
set of Fig. 2). The chosen value of U thus corresponds
to the experimental peak-to-peak separation of 6.6 eV.
In order to confirm our conclusions about relative po-
sitions of VBM1 and VBM2, we compare our DFT+U
calculations to QSGW and find essentially the same re-
sult. We note that unlike DFT+U, QSGW reproduces
the experimental[5] gap of 1.5 eV to within a few per
cent.
We now proceed to calculations with other lattice con-

stants that correspond to MnTe thin layers where the
substrate choice is essential. Values of a, c given in Tab. I
correspond to SrF2 and InP substrates used for neutron
di↵raction and transport experiments [4] and for sim-
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Comment on ”Planar Hall e↵ect in antiferro-

magnetic MnTe thin films”

In a recent Letter [1], Yin et al. develop an e↵ective
model for MnTe using which they explore the anisotropic
magnetoresistance (AMR). Specifically, they show that
its transversal component (also known as the planar Hall
e↵ect) can be larger than 10% in this p-type antiferro-
magnetic semiconductor and put this into context of rel-
atively small experimental values with ramifications into
multidomain structure of real samples etc. The model of
Yin et al. is based on an assumption, justified by their
ab initio calculations, that the top of the valence band
(VB) is located close to the � point of the Brillouin zone.
It is the purpose of this Comment to show that this is
only true for certain special choices of lattice constants of
MnTe and that bulk ↵-MnTe (at room temperature) has
the VB maximum close to the A point. This could ex-
plain the discrepancy between experimental magnitude
of AMR and theoretical results of Yin et al.
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point (we denote this maximum by VBM1). There’s an-
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onal NiAs structure of the studied system (MnTe). The
values of c (a) used in the main text [1] (see Tab. I)
di↵er by 4.2% (1.2%) from the room-temperature bulk
lattice constants [2] and this large di↵erence makes rela-
tive shifts of VBM1 and VBM2 at the order of hundreds
meV entirely possible. Indeed, the DFT+U calculations
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how to deal with exchange

band k·p Hamiltonian.12 This 20-band Hamiltonian was
built from the 14!14 Hamiltonian,17 adding an s-symmetry
band 12 eV under the top of the valence band and two s*
levels to obtain nonmonotonic bands and give access to X, ",
or L valleys in the first conduction band. As these s* levels
were not sufficient to describe simultaneously the L point
and the # effective masses, the contribution of d levels was
mimicked via Luttinger-like parameters which played a part
in the #7C and #8C levels and in the #7V and #8V levels by
second-order perturbations. It explains why Luttinger param-
eters could not be obtained directly from the matrix ele-
ments, contrary to the k·p 30-band method.
Taking into account strain can be made as in Ref. 18. The

same strain Hamiltonian with five parameters has to be
added to the 30!30 Hamiltonian used for bulk semiconduc-
tors.

III. BAND DIAGRAMS OF Si, Ge, AND GaAs

After having built the 30!30 Hamiltonian, we now give
the parameters used in our k·p calculation and describe the
results for Si, Ge, and GaAs. The k=0 energies are presented
in Table II. The left part of this table is known;16 for the right
part of Table II, we take the same values as in Ref. 5 for Si
and Ge. For GaAs, these levels are unknown but Cardona
and Pollak5 explain how to obtain an estimation of these
energies, knowing the form factors used in pseudopotential
calculations19 and assuming that only the pseudopotential in-
teraction between the 30 plane-waves states is important.
Anyway, the k=0 upper energy levels chosen are not key

parameter by themselves: the important data are the couples
energy level/matrix element. Briefly speaking, the k=0 en-
ergy levels are first fixed from Ref. 5 and the matrix elements
are then adjusted to obtain the band diagram; as a result there
are 10 (18) adjustable parameters in Oh!Td".
After having chosen the unknown k=0 energy levels, the

key parameters are the matrix elements. Here, they were first
estimated at the center of the Brillouin zone, especially for
the valence band to obtain Luttinger parameters, and for the
first conduction band for Ge and GaAs, then at the extrema X
and L and finally to respect the continuity between U#1, 14 ,

1
4$

and K#0, 34 ,
3
4$ equivalent points of the Brillouin zone. This

continuity is not obtained by construction as in pseudopoten-
tial or LCAO: on the contrary, it is the strongest numerical
difficulty of this method. Figures 3–5 show the band struc-
tures of Si, Ge, and GaAs obtained with our k·p model.
Numerical results are given in Table III. The band structure
is well reproduced on a width of about 11 eV: it describes
correctly the valence band over a 6 eV scale (see Fig. 6) and
the lowest four conduction bands over a 4 eV scale in four
directions namely #X, #L, #K, XU. All the spin-orbit param-
eters were taken null except "so and "C.16
The 30-band method represents a great improvement of

the k·p method compared to the 20-band Hamiltonian whose
extension was only 1 eV for the valence band and 3 eV for
the conduction band.12 This 20-band method was built to
take into account the d level effects without directly consid-
ering this level in the Hamiltonian. The present calculation
shows that taking into account the real d levels with their

TABLE III. Matrix elements of the momentum p: energies EPj
!!" and matrix elements Pj

!!" are linked by
EPj

!!"= !2m0 /$2"#Pj
!!"$2. Pj

!!" are defined in the text (Sec. III) and in Figs. 2 and 3.

eV Ge Si GaAs eV Ge Si GaAs

Ep 24.60 19.96 22.37 EPd 0.0051 1.193 0.010
EPX 17.65 14.81 16.79 EPXd 12.23 7.491 4.344
EP3 5.212 4.475 4.916 EP3d 15.76 9.856 8.888
EP2 2.510 3.993 6.280 EP2d 27.59 20.76 23.15
EPS 1.071 1.092 2.434 EPU 17.84 16.36 19.63
EP! 0.0656 EPd! ,EP3! ,EP2! ,EPS! ,EPU! ,EPSd! ,EPUd! 0

FIG. 4. Band diagram of Ge at T=0 K. FIG. 5. Band diagram of GaAs at T=0 K.
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Calculation of AMR from electronic structure

H = HKL + (Jpd/µB) ~M · ~s

point !see Chap. 3 of Ref. 27". Note that spin is not a good
quantum number owing to the presence of SOI. Expectation
value of spin along any of the Fermi surfaces can be visual-
ized as a spin texture rather than having separate spin up and
spin down bands. An example in Fig. 1!b" that corresponds30

to the n=1,2 bands of Hamiltonian !2" with h →0, shows
that for each k there are two states with opposite spin whose
direction, however, depends on k, contrary to systems with-
out SOI.

B. Scattering on random Mn impurities

In order to get finite conductivity at zero temperature, we
need to go beyond the virtual-crystal concept of Eq. !2". We
follow Ref. 31 and use the Fermi golden rule !in first-order
Born approximation treatment of Vdis" as the simplest model
of scattering to calculate the transport scattering rates !n,k of
the Bloch states from Eq. !2",

!n,k =
2"

#
NMn $ #

n!
$ d3k!

!2""3 %Mnn!
kk!%2%&En!k" − En!!k!"'

$ !1 − cos &vv!" , !3"

where we use31 &vv!, the angle subtended by the velocities
vn!k" and vn!!k!" to take into account v which need not be
parallel to k in case the combined effect of the SOI and
magnetization distorts the Fermi surfaces as suggested by the
sketch in Fig. 1!a".

Substitutional Mn act as acceptors and their magnetic mo-
ments participate in the ferromagnetic order of !Ga,Mn"As.
Acknowledging the magnetic and nonmagnetic part of Vdis,
we take

Mnn!
kk! = (zk!n!%M

B + MC%zkn) !4"

for the scattering matrix elements between two eigenstates of
the Hamiltonian !2". In the six-band notation of Eq. !2", the
magnetic part of a single Mn impurity scattering operator is

MB = JpdSMnêM · s , !5"

corresponding to the second term in Eq. !1". Explicit form of
the spin 6$ 6 matrices s is again given in the first of Ref. 26.
The nonmagnetic part MC describes screened Coulomb at-
traction of the valence holes to the ionized acceptors and we
therefore take

MC = V!%k − k!%"1, V!q" = −
e2

'

1

q2 + qTF
2 , !6"

where 1 denotes a 6$ 6 unity matrix, ' is the host semicon-
ductor dielectric constant, qTF=*e2g /' the Thomas-Fermi
screening wavevector,21,32 and g the density of states at the
Fermi level.

It is important that the two scattering operators !5" and !6"
add up “coherently” in Eq. !4". If Eq. !3" contained the “in-
coherent” sum %Mnn!

kk!%2= %(zk!n!%M
B%zkn)%2+ %(zk!n!%M

C%zkn)%2
this would describe a physically different situation with two
distinct types of scatterers, magnetic, and nonmagnetic ones.
Such incoherent sum, with appropriately defined scattering

operators, was used earlier21 to describe more realistic
!Ga,Mn"As systems that contain interstitial Mn atoms or As
antisites in addition to the substitutional Mn.

To summarize our model description of substitutional Mn
impurities in GaAs, the Mn atoms in Ga1−xMnxAs enter our
model at three different places: !i" As acceptors and in the
absence of other dopants they determine the Fermi level EF
and therefore the density of states and Fermi velocities. !ii"
On the virtual-crystal approximation !VCA" level, they cause
the ferromagnetic-exchange splitting of the hole bands, and
!iii" because of the random distribution in the lattice, the Mn
impurities also cause scattering. The essential feature of the
Mn impurity potentials for the AMR is that they contain
components which are proportional to the Mn local moments
and that these moments are ordered in the ferromagnetic
state, as expressed in Eq. !5". We stress that considering !ii"
and !iii" simultaneously leads to only a small “double-
counting” error in the description of the effect of the Mn-
related impurity potential. In terms of the VCA, we assume
in !ii" that each site on the cation !Ga" sublattice of the host
semiconductor is occupied by a mixture of x Mn and 1−x
Ga. This yields an effective mean potential which shares the
full periodicity of the host zinc-blende lattice. Strictly speak-
ing, the scattering potential of randomly distributed Mn on
the cation sublattice should be described as the difference
between the full impurity potential due to Mn and the above
VCA potential. Similarly the remaining sites occupied by Ga
should be described by the difference between the Ga poten-
tial and the VCA potential. Ignoring the latter difference and
taking the full Mn impurity potential for sites occupied by
Mn when describing scattering in !iii" is therefore not a pre-
cise procedure but it introduces only a small error for Mn
dopings not exceeding several percent.

C. Conductivity of (Ga,Mn)As in the relaxation-time
approximation

We now calculate the conductivity tensor using the semi-
classical formula based on the Boltzmann transport
equation21,32

(ij = e2#
n
$ d3k

!2""3 !#!nk"−1vn
i !k"vn

j !k"%&EF − E!k"' . !7"

We assume zero temperature hence the conductivity is deter-
mined exclusively by states on the Fermi level EF. The Fermi
velocities are calculated as vn!k"= !1 /#"!kEn. In our model
of one particular material, !Ga,Mn"As, the conductivity ten-
sor depends on the direction of magnetization êM through
Eqs. !2" and !5", that is owing to the combined effect of
magnetization and SOI. More generally, we can divide !the
models of" materials exhibiting the AMR into those in which
vn

i !k" in Eq. !7" is magnetization dependent, as sketched in
Fig. 1!a", and those which have a magnetization-dependent
transport relaxation times !#!nk"−1. Among the latter, we can
still discriminate those where the magnetization-dependence
enters through the scattering operator M &denoted MB+MC

in Eq. !4"' as sketched in Fig. 1!b" and those where the SOI-
and magnetization-induced anisotropy of wave functions in
Eq. !4" becomes important as it symbolizes Fig. 1!c".
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quantum number owing to the presence of SOI. Expectation
value of spin along any of the Fermi surfaces can be visual-
ized as a spin texture rather than having separate spin up and
spin down bands. An example in Fig. 1!b" that corresponds30

to the n=1,2 bands of Hamiltonian !2" with h →0, shows
that for each k there are two states with opposite spin whose
direction, however, depends on k, contrary to systems with-
out SOI.

B. Scattering on random Mn impurities

In order to get finite conductivity at zero temperature, we
need to go beyond the virtual-crystal concept of Eq. !2". We
follow Ref. 31 and use the Fermi golden rule !in first-order
Born approximation treatment of Vdis" as the simplest model
of scattering to calculate the transport scattering rates !n,k of
the Bloch states from Eq. !2",
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where we use31 &vv!, the angle subtended by the velocities
vn!k" and vn!!k!" to take into account v which need not be
parallel to k in case the combined effect of the SOI and
magnetization distorts the Fermi surfaces as suggested by the
sketch in Fig. 1!a".

Substitutional Mn act as acceptors and their magnetic mo-
ments participate in the ferromagnetic order of !Ga,Mn"As.
Acknowledging the magnetic and nonmagnetic part of Vdis,
we take

Mnn!
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for the scattering matrix elements between two eigenstates of
the Hamiltonian !2". In the six-band notation of Eq. !2", the
magnetic part of a single Mn impurity scattering operator is

MB = JpdSMnêM · s , !5"

corresponding to the second term in Eq. !1". Explicit form of
the spin 6$ 6 matrices s is again given in the first of Ref. 26.
The nonmagnetic part MC describes screened Coulomb at-
traction of the valence holes to the ionized acceptors and we
therefore take

MC = V!%k − k!%"1, V!q" = −
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2 , !6"

where 1 denotes a 6$ 6 unity matrix, ' is the host semicon-
ductor dielectric constant, qTF=*e2g /' the Thomas-Fermi
screening wavevector,21,32 and g the density of states at the
Fermi level.

It is important that the two scattering operators !5" and !6"
add up “coherently” in Eq. !4". If Eq. !3" contained the “in-
coherent” sum %Mnn!
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this would describe a physically different situation with two
distinct types of scatterers, magnetic, and nonmagnetic ones.
Such incoherent sum, with appropriately defined scattering

operators, was used earlier21 to describe more realistic
!Ga,Mn"As systems that contain interstitial Mn atoms or As
antisites in addition to the substitutional Mn.

To summarize our model description of substitutional Mn
impurities in GaAs, the Mn atoms in Ga1−xMnxAs enter our
model at three different places: !i" As acceptors and in the
absence of other dopants they determine the Fermi level EF
and therefore the density of states and Fermi velocities. !ii"
On the virtual-crystal approximation !VCA" level, they cause
the ferromagnetic-exchange splitting of the hole bands, and
!iii" because of the random distribution in the lattice, the Mn
impurities also cause scattering. The essential feature of the
Mn impurity potentials for the AMR is that they contain
components which are proportional to the Mn local moments
and that these moments are ordered in the ferromagnetic
state, as expressed in Eq. !5". We stress that considering !ii"
and !iii" simultaneously leads to only a small “double-
counting” error in the description of the effect of the Mn-
related impurity potential. In terms of the VCA, we assume
in !ii" that each site on the cation !Ga" sublattice of the host
semiconductor is occupied by a mixture of x Mn and 1−x
Ga. This yields an effective mean potential which shares the
full periodicity of the host zinc-blende lattice. Strictly speak-
ing, the scattering potential of randomly distributed Mn on
the cation sublattice should be described as the difference
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tial and the VCA potential. Ignoring the latter difference and
taking the full Mn impurity potential for sites occupied by
Mn when describing scattering in !iii" is therefore not a pre-
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We now calculate the conductivity tensor using the semi-
classical formula based on the Boltzmann transport
equation21,32
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mined exclusively by states on the Fermi level EF. The Fermi
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of one particular material, !Ga,Mn"As, the conductivity ten-
sor depends on the direction of magnetization êM through
Eqs. !2" and !5", that is owing to the combined effect of
magnetization and SOI. More generally, we can divide !the
models of" materials exhibiting the AMR into those in which
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i !k" in Eq. !7" is magnetization dependent, as sketched in
Fig. 1!a", and those which have a magnetization-dependent
transport relaxation times !#!nk"−1. Among the latter, we can
still discriminate those where the magnetization-dependence
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quantum number owing to the presence of SOI. Expectation
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ized as a spin texture rather than having separate spin up and
spin down bands. An example in Fig. 1!b" that corresponds30

to the n=1,2 bands of Hamiltonian !2" with h →0, shows
that for each k there are two states with opposite spin whose
direction, however, depends on k, contrary to systems with-
out SOI.

B. Scattering on random Mn impurities

In order to get finite conductivity at zero temperature, we
need to go beyond the virtual-crystal concept of Eq. !2". We
follow Ref. 31 and use the Fermi golden rule !in first-order
Born approximation treatment of Vdis" as the simplest model
of scattering to calculate the transport scattering rates !n,k of
the Bloch states from Eq. !2",
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therefore take
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where 1 denotes a 6$ 6 unity matrix, ' is the host semicon-
ductor dielectric constant, qTF=*e2g /' the Thomas-Fermi
screening wavevector,21,32 and g the density of states at the
Fermi level.
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operators, was used earlier21 to describe more realistic
!Ga,Mn"As systems that contain interstitial Mn atoms or As
antisites in addition to the substitutional Mn.

To summarize our model description of substitutional Mn
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absence of other dopants they determine the Fermi level EF
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On the virtual-crystal approximation !VCA" level, they cause
the ferromagnetic-exchange splitting of the hole bands, and
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Mn impurity potentials for the AMR is that they contain
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state, as expressed in Eq. !5". We stress that considering !ii"
and !iii" simultaneously leads to only a small “double-
counting” error in the description of the effect of the Mn-
related impurity potential. In terms of the VCA, we assume
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semiconductor is occupied by a mixture of x Mn and 1−x
Ga. This yields an effective mean potential which shares the
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Mn when describing scattering in !iii" is therefore not a pre-
cise procedure but it introduces only a small error for Mn
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We assume zero temperature hence the conductivity is deter-
mined exclusively by states on the Fermi level EF. The Fermi
velocities are calculated as vn!k"= !1 /#"!kEn. In our model
of one particular material, !Ga,Mn"As, the conductivity ten-
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to the n=1,2 bands of Hamiltonian !2" with h →0, shows
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need to go beyond the virtual-crystal concept of Eq. !2". We
follow Ref. 31 and use the Fermi golden rule !in first-order
Born approximation treatment of Vdis" as the simplest model
of scattering to calculate the transport scattering rates !n,k of
the Bloch states from Eq. !2",

!n,k =
2"

#
NMn $ #

n!
$ d3k!

!2""3 %Mnn!
kk!%2%&En!k" − En!!k!"'

$ !1 − cos &vv!" , !3"

where we use31 &vv!, the angle subtended by the velocities
vn!k" and vn!!k!" to take into account v which need not be
parallel to k in case the combined effect of the SOI and
magnetization distorts the Fermi surfaces as suggested by the
sketch in Fig. 1!a".

Substitutional Mn act as acceptors and their magnetic mo-
ments participate in the ferromagnetic order of !Ga,Mn"As.
Acknowledging the magnetic and nonmagnetic part of Vdis,
we take

Mnn!
kk! = (zk!n!%M

B + MC%zkn) !4"

for the scattering matrix elements between two eigenstates of
the Hamiltonian !2". In the six-band notation of Eq. !2", the
magnetic part of a single Mn impurity scattering operator is

MB = JpdSMnêM · s , !5"

corresponding to the second term in Eq. !1". Explicit form of
the spin 6$ 6 matrices s is again given in the first of Ref. 26.
The nonmagnetic part MC describes screened Coulomb at-
traction of the valence holes to the ionized acceptors and we
therefore take

MC = V!%k − k!%"1, V!q" = −
e2

'

1

q2 + qTF
2 , !6"

where 1 denotes a 6$ 6 unity matrix, ' is the host semicon-
ductor dielectric constant, qTF=*e2g /' the Thomas-Fermi
screening wavevector,21,32 and g the density of states at the
Fermi level.

It is important that the two scattering operators !5" and !6"
add up “coherently” in Eq. !4". If Eq. !3" contained the “in-
coherent” sum %Mnn!

kk!%2= %(zk!n!%M
B%zkn)%2+ %(zk!n!%M

C%zkn)%2
this would describe a physically different situation with two
distinct types of scatterers, magnetic, and nonmagnetic ones.
Such incoherent sum, with appropriately defined scattering

operators, was used earlier21 to describe more realistic
!Ga,Mn"As systems that contain interstitial Mn atoms or As
antisites in addition to the substitutional Mn.

To summarize our model description of substitutional Mn
impurities in GaAs, the Mn atoms in Ga1−xMnxAs enter our
model at three different places: !i" As acceptors and in the
absence of other dopants they determine the Fermi level EF
and therefore the density of states and Fermi velocities. !ii"
On the virtual-crystal approximation !VCA" level, they cause
the ferromagnetic-exchange splitting of the hole bands, and
!iii" because of the random distribution in the lattice, the Mn
impurities also cause scattering. The essential feature of the
Mn impurity potentials for the AMR is that they contain
components which are proportional to the Mn local moments
and that these moments are ordered in the ferromagnetic
state, as expressed in Eq. !5". We stress that considering !ii"
and !iii" simultaneously leads to only a small “double-
counting” error in the description of the effect of the Mn-
related impurity potential. In terms of the VCA, we assume
in !ii" that each site on the cation !Ga" sublattice of the host
semiconductor is occupied by a mixture of x Mn and 1−x
Ga. This yields an effective mean potential which shares the
full periodicity of the host zinc-blende lattice. Strictly speak-
ing, the scattering potential of randomly distributed Mn on
the cation sublattice should be described as the difference
between the full impurity potential due to Mn and the above
VCA potential. Similarly the remaining sites occupied by Ga
should be described by the difference between the Ga poten-
tial and the VCA potential. Ignoring the latter difference and
taking the full Mn impurity potential for sites occupied by
Mn when describing scattering in !iii" is therefore not a pre-
cise procedure but it introduces only a small error for Mn
dopings not exceeding several percent.

C. Conductivity of (Ga,Mn)As in the relaxation-time
approximation

We now calculate the conductivity tensor using the semi-
classical formula based on the Boltzmann transport
equation21,32
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n
$ d3k

!2""3 !#!nk"−1vn
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We assume zero temperature hence the conductivity is deter-
mined exclusively by states on the Fermi level EF. The Fermi
velocities are calculated as vn!k"= !1 /#"!kEn. In our model
of one particular material, !Ga,Mn"As, the conductivity ten-
sor depends on the direction of magnetization êM through
Eqs. !2" and !5", that is owing to the combined effect of
magnetization and SOI. More generally, we can divide !the
models of" materials exhibiting the AMR into those in which
vn

i !k" in Eq. !7" is magnetization dependent, as sketched in
Fig. 1!a", and those which have a magnetization-dependent
transport relaxation times !#!nk"−1. Among the latter, we can
still discriminate those where the magnetization-dependence
enters through the scattering operator M &denoted MB+MC

in Eq. !4"' as sketched in Fig. 1!b" and those where the SOI-
and magnetization-induced anisotropy of wave functions in
Eq. !4" becomes important as it symbolizes Fig. 1!c".
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how to deal with exchange - a toy model
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Figure 6: Symmetry unit cell of MnTe with AF alignement along 10-10 direction.

Analyzing the effect of the symmetry operations of D6h to the spins, already excluding the operations that are
combined with translations:

• E: allowed as it is

• 2C3: forbidden, the final spin is tilted

• 3C 0
2: only one rotation, with axis parallel to the AF aligment

• i: allowed as it is

• 2S3: forbidden, the final spin is tilted

• 3�d: only one reflection, with mirror perpendicular to the AF aligment

The resulting symmetry group is C2h!

2.4 AF 11-20
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E↵ective model of exchange part of Ĥ in MnTe

K&K

Oct16, 2019

These notes are based on littleNotes.pdf and start with the idea of a 1D chain with four

atoms per unit cell.

[ ]

Aa AbB B

Here, the single orbital (times two for spin) on B-atoms represents the Mn d-states and the

two Te atoms are explicitly distinguished by a subscript. Magnetic moment of Mn is modelled by

a �~S · ~� term and to start with, assume the unit vector ~S k ẑ. Hamiltonian, in the spin-up basis,

reads

H =

0
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and for |✏d| � t,� it can be downfolded into the subspace {|a "i, |b "i}, yielding a 2 ⇥ 2 Hamil-

tonian. At the Brillouin zone edges (ka = ⇡), there opens a gap of � +
1
2 (d� � d+) with

d± =

p
8t2 + (✏d ±�)2.

This model can be generalised to arbitrary spin direction and yields

Heff = � 2✏dt
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in the {|a "i, |a #i, |b "i, |b #i} basis, where all entries are 2 ⇥ 2 matrices (I2 is identity) and

� = I2e
�ika/2

cos ka/2 +
�
2✏d

(1 � e
�ika

)(~S · ~�). At ka = ⇡, the spectrum consists of two pairs of

levels and it is independent of ~S. For ~S k ẑ, the eigenvectors of (one of the) pairs are

|a "i+ |b "i = (|ai+ |bi)⌦ | "i and (|ai � |bi)⌦ | #i (3)

and taking any other direction of ~S results only in the corresponding rotation of the spin part;

we denote these states by |~S, 1i and |~S, 2i. Note that any linear combination ↵|~S, 1i+�|~S, 2i will
always have expectation value of spin k ~S.

Since this property is not sensitive to the exchange splitting � (as long as it is finite), it

suggests the following approach to the e↵ective description of real MnTe (valence band top in A):

• start with the 2⇥ 2 Hamiltonian (~k · ~p) derived by Paulo

• add the pz orbital at ’far-away’ level ✏z, call this H3
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levels and it is independent of ~S. For ~S k ẑ, the eigenvectors of (one of the) pairs are

|a "i+ |b "i = (|ai+ |bi)⌦ | "i and (|ai � |bi)⌦ | #i (3)

and taking any other direction of ~S results only in the corresponding rotation of the spin part;

we denote these states by |~S, 1i and |~S, 2i. Note that any linear combination ↵|~S, 1i+�|~S, 2i will
always have expectation value of spin k ~S.

Since this property is not sensitive to the exchange splitting � (as long as it is finite), it

suggests the following approach to the e↵ective description of real MnTe (valence band top in A):

• start with the 2⇥ 2 Hamiltonian (~k · ~p) derived by Paulo

• add the pz orbital at ’far-away’ level ✏z, call this H3

1



how to deal with exchange - a toy model
wavefunctions
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E↵ective model of exchange part of Ĥ in MnTe

K&K

Oct16, 2019

These notes are based on littleNotes.pdf and start with the idea of a 1D chain with four

atoms per unit cell.

[ ]

Aa AbB B

Here, the single orbital (times two for spin) on B-atoms represents the Mn d-states and the

two Te atoms are explicitly distinguished by a subscript. Magnetic moment of Mn is modelled by

a �~S · ~� term and to start with, assume the unit vector ~S k ẑ. Hamiltonian, in the spin-up basis,

reads
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and for |✏d| � t,� it can be downfolded into the subspace {|a "i, |b "i}, yielding a 2 ⇥ 2 Hamil-

tonian. At the Brillouin zone edges (ka = ⇡), there opens a gap of � +
1
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d± =

p
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This model can be generalised to arbitrary spin direction and yields
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in the {|a "i, |a #i, |b "i, |b #i} basis, where all entries are 2 ⇥ 2 matrices (I2 is identity) and

� = I2e
�ika/2

cos ka/2 +
�
2✏d

(1 � e
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)(~S · ~�). At ka = ⇡, the spectrum consists of two pairs of

levels and it is independent of ~S. For ~S k ẑ, the eigenvectors of (one of the) pairs are

|a "i+ |b "i = (|ai+ |bi)⌦ | "i and (|ai � |bi)⌦ | #i (3)

and taking any other direction of ~S results only in the corresponding rotation of the spin part;

we denote these states by |~S, 1i and |~S, 2i. Note that any linear combination ↵|~S, 1i+�|~S, 2i will
always have expectation value of spin k ~S.

Since this property is not sensitive to the exchange splitting � (as long as it is finite), it

suggests the following approach to the e↵ective description of real MnTe (valence band top in A):

• start with the 2⇥ 2 Hamiltonian (~k · ~p) derived by Paulo

• add the pz orbital at ’far-away’ level ✏z, call this H3
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changed to

& matrix els. of Hso recalculated



detail of the VB - effect of spin-orbit (SO) int.
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(zero order eff.)

Hso = �~S · ~L
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detail of the VB - effect of spin-orbit (SO) int.
(zero order eff.)
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~ 1 eV ~ 1 meV

• make two copies of H3, one representing {|pxi, |pyi, |pzi} ⌦ (|a "i + |b "i) and another

{|pxi, |pyi, |pzi}⌦ (|a #i � |b #i).

• for other direction of ~S than k ẑ, modify the basis accordingly but keep the matrix the same;

this way, we obtain a matrix combining the band dispersion and exchange field simultane-

ously (to be denoted Hbe)

• to take account of HSO = �~L · ~�, evaluate its matrix elements anew for every direction of ~S

Both matrices Hbe and Hso are block diagonal. The upper 3⇥ 3 block, e.g. for ~k = (kx, 0, 0),
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when ~S k ẑ. Now, Hbe +Hso gives a large splitting (2�) at kx = 0 while for ~S k x̂, the non-zero

matrix element of Hso is the yz one and the splitting is suppressed by a factor �/✏z

1 The 6⇥ 6 model

Based on the plan outlined above, we consider the |Xi, |Y i, |Zi basis of Te 5p orbitals based on

which we build 3 ⇥ 3 diagonal blocks akin to (4) and then take ⌦ (??) with spin along x. The

total Hamiltonian Hbe +Hso comprises
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with x = (a� b)kxky and
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where the k-dependence of t = h1|2i can be accounted for by t�z = �kz, for instance. Another

way of writing this, with � ⌘ �xy
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detail of the VB - effect of spin-orbit (SO) int.
(first order eff.)
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optical properties measured by Allen er a1 (1977) it is clear that below TN MnTe is 
semiconducting with a direct gap of about 1.3 eV, but relatively high absorption below 
the edge suggests existence of an indirect gap at lower energy. No reliable estimation for 
this gap exists. Zviagin er a1 (1971) estimated it to be about 0.4 eV, but their measure- 
ments were performed in the paramagnetic region and we believe that antiferromagnetic 
ordering may change such a small value substantially. Finally, the core level shifts from 
x-ray photoemission spectra of Franzen and Sterner (1978) and effective charge calcu- 
lated by Allen er a1 (1977) suggest the ionic model for binding. 

Starting from these data we carried out spin-polarised, non-relativistic APW calcu- 
lation of the electronic band structure of MnTe in the antiferromagnetic phase. We 
present some details of calculation and its results, as well as density of states and one- 
electron optical spectra. Comparing available experimental data and our results we 
discuss the validity of previously formulated models of the electronic structure of MnTe. 

2. Calculations 

MnTe crystal structure is shown in figure l(a).  It consists of a simple hexagonal sublattice 

t 
C 

V 

0 M" 

0 'e 

Figure 1. (a) NiAs (D&) crystallographic structure. Full circles: Te ions; open circles: Mn 
ions. (b)  Brillouin zone for NiAs structure and its irreducible part with high-symmetry 
points. 

of Mn2+ ions and two interlocking simple hexagonal sublattices of Te2- ions each with 
twice the repeat distance along the c axis of the Mn2+ sublattice. The symmetry around 
Mn2+ and Te2- sites is D3d and D3h, respectively. Below the NCel temperature Mn 
magnetic moments of 5 p~ order ferromagnetically in the hexagonal planes perpendicu- 
lar to the c axis and antiferromagnetically in the chains along this axis. For the non- 
magnetic case (i.e. when we disregard the changes of exchange potential from plane to 
plane) the symmetry group is D& . Accordingly to Slater's (1974) spin-polarised Xa 
method of calculation for energy levels of magnetically ordered solids the exchange 
potential for electrons with given spin direction changes from one plane to another. In 
both cases, antiferromagnetic and non-magnetic, the unit cell consists of four ions, two 
of manganese and two of tellurium, but in the latter case both manganese atoms are 
equivalent, in the former they are not. This formally changes the symmetry group from 
D&, to Dgd (Mattheiss 1974). 

During construction of crystal potential the Coulomb part of it (and also the exchange 
part for Te2-) was calculated from superposition of the total ionic charge densities. For 
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anisotropic bands (due to exchange+SO)
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• make two copies of H3, one representing {|pxi, |pyi, |pzi} ⌦ (|a "i + |b "i) and another

{|pxi, |pyi, |pzi}⌦ (|a #i � |b #i).

• for other direction of ~S than k ẑ, modify the basis accordingly but keep the matrix the same;

this way, we obtain a matrix combining the band dispersion and exchange field simultane-

ously (to be denoted Hbe)

• to take account of HSO = �~L · ~�, evaluate its matrix elements anew for every direction of ~S

Both matrices Hbe and Hso are block diagonal. The upper 3⇥ 3 block, e.g. for ~k = (kx, 0, 0),
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when ~S k ẑ. Now, Hbe +Hso gives a large splitting (2�) at kx = 0 while for ~S k x̂, the non-zero

matrix element of Hso is the yz one and the splitting is suppressed by a factor �/✏z

1 The 6⇥ 6 model

Based on the plan outlined above, we consider the |Xi, |Y i, |Zi basis of Te 5p orbitals based on

which we build 3 ⇥ 3 diagonal blocks akin to (4) and then take ⌦ (??) with spin along x. The

total Hamiltonian Hbe +Hso comprises
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where the k-dependence of t = h1|2i can be accounted for by t�z = �kz, for instance. Another

way of writing this, with � ⌘ �xy
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conductivity: Boltzmann approach

Conductivity and AMR

• Estimated using Boltzmann equation
• Constant scattering time assumption
• Scattering time based on scattering on dopants
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point !see Chap. 3 of Ref. 27". Note that spin is not a good
quantum number owing to the presence of SOI. Expectation
value of spin along any of the Fermi surfaces can be visual-
ized as a spin texture rather than having separate spin up and
spin down bands. An example in Fig. 1!b" that corresponds30

to the n=1,2 bands of Hamiltonian !2" with h →0, shows
that for each k there are two states with opposite spin whose
direction, however, depends on k, contrary to systems with-
out SOI.

B. Scattering on random Mn impurities

In order to get finite conductivity at zero temperature, we
need to go beyond the virtual-crystal concept of Eq. !2". We
follow Ref. 31 and use the Fermi golden rule !in first-order
Born approximation treatment of Vdis" as the simplest model
of scattering to calculate the transport scattering rates !n,k of
the Bloch states from Eq. !2",

!n,k =
2"

#
NMn $ #

n!
$ d3k!

!2""3 %Mnn!
kk!%2%&En!k" − En!!k!"'

$ !1 − cos &vv!" , !3"

where we use31 &vv!, the angle subtended by the velocities
vn!k" and vn!!k!" to take into account v which need not be
parallel to k in case the combined effect of the SOI and
magnetization distorts the Fermi surfaces as suggested by the
sketch in Fig. 1!a".

Substitutional Mn act as acceptors and their magnetic mo-
ments participate in the ferromagnetic order of !Ga,Mn"As.
Acknowledging the magnetic and nonmagnetic part of Vdis,
we take

Mnn!
kk! = (zk!n!%M

B + MC%zkn) !4"

for the scattering matrix elements between two eigenstates of
the Hamiltonian !2". In the six-band notation of Eq. !2", the
magnetic part of a single Mn impurity scattering operator is

MB = JpdSMnêM · s , !5"

corresponding to the second term in Eq. !1". Explicit form of
the spin 6$ 6 matrices s is again given in the first of Ref. 26.
The nonmagnetic part MC describes screened Coulomb at-
traction of the valence holes to the ionized acceptors and we
therefore take

MC = V!%k − k!%"1, V!q" = −
e2

'

1

q2 + qTF
2 , !6"

where 1 denotes a 6$ 6 unity matrix, ' is the host semicon-
ductor dielectric constant, qTF=*e2g /' the Thomas-Fermi
screening wavevector,21,32 and g the density of states at the
Fermi level.

It is important that the two scattering operators !5" and !6"
add up “coherently” in Eq. !4". If Eq. !3" contained the “in-
coherent” sum %Mnn!

kk!%2= %(zk!n!%M
B%zkn)%2+ %(zk!n!%M

C%zkn)%2
this would describe a physically different situation with two
distinct types of scatterers, magnetic, and nonmagnetic ones.
Such incoherent sum, with appropriately defined scattering

operators, was used earlier21 to describe more realistic
!Ga,Mn"As systems that contain interstitial Mn atoms or As
antisites in addition to the substitutional Mn.

To summarize our model description of substitutional Mn
impurities in GaAs, the Mn atoms in Ga1−xMnxAs enter our
model at three different places: !i" As acceptors and in the
absence of other dopants they determine the Fermi level EF
and therefore the density of states and Fermi velocities. !ii"
On the virtual-crystal approximation !VCA" level, they cause
the ferromagnetic-exchange splitting of the hole bands, and
!iii" because of the random distribution in the lattice, the Mn
impurities also cause scattering. The essential feature of the
Mn impurity potentials for the AMR is that they contain
components which are proportional to the Mn local moments
and that these moments are ordered in the ferromagnetic
state, as expressed in Eq. !5". We stress that considering !ii"
and !iii" simultaneously leads to only a small “double-
counting” error in the description of the effect of the Mn-
related impurity potential. In terms of the VCA, we assume
in !ii" that each site on the cation !Ga" sublattice of the host
semiconductor is occupied by a mixture of x Mn and 1−x
Ga. This yields an effective mean potential which shares the
full periodicity of the host zinc-blende lattice. Strictly speak-
ing, the scattering potential of randomly distributed Mn on
the cation sublattice should be described as the difference
between the full impurity potential due to Mn and the above
VCA potential. Similarly the remaining sites occupied by Ga
should be described by the difference between the Ga poten-
tial and the VCA potential. Ignoring the latter difference and
taking the full Mn impurity potential for sites occupied by
Mn when describing scattering in !iii" is therefore not a pre-
cise procedure but it introduces only a small error for Mn
dopings not exceeding several percent.

C. Conductivity of (Ga,Mn)As in the relaxation-time
approximation

We now calculate the conductivity tensor using the semi-
classical formula based on the Boltzmann transport
equation21,32

(ij = e2#
n
$ d3k

!2""3 !#!nk"−1vn
i !k"vn

j !k"%&EF − E!k"' . !7"

We assume zero temperature hence the conductivity is deter-
mined exclusively by states on the Fermi level EF. The Fermi
velocities are calculated as vn!k"= !1 /#"!kEn. In our model
of one particular material, !Ga,Mn"As, the conductivity ten-
sor depends on the direction of magnetization êM through
Eqs. !2" and !5", that is owing to the combined effect of
magnetization and SOI. More generally, we can divide !the
models of" materials exhibiting the AMR into those in which
vn

i !k" in Eq. !7" is magnetization dependent, as sketched in
Fig. 1!a", and those which have a magnetization-dependent
transport relaxation times !#!nk"−1. Among the latter, we can
still discriminate those where the magnetization-dependence
enters through the scattering operator M &denoted MB+MC

in Eq. !4"' as sketched in Fig. 1!b" and those where the SOI-
and magnetization-induced anisotropy of wave functions in
Eq. !4" becomes important as it symbolizes Fig. 1!c".
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!Ga,Mn"As systems that contain interstitial Mn atoms or As
antisites in addition to the substitutional Mn.
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model at three different places: !i" As acceptors and in the
absence of other dopants they determine the Fermi level EF
and therefore the density of states and Fermi velocities. !ii"
On the virtual-crystal approximation !VCA" level, they cause
the ferromagnetic-exchange splitting of the hole bands, and
!iii" because of the random distribution in the lattice, the Mn
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Mn impurity potentials for the AMR is that they contain
components which are proportional to the Mn local moments
and that these moments are ordered in the ferromagnetic
state, as expressed in Eq. !5". We stress that considering !ii"
and !iii" simultaneously leads to only a small “double-
counting” error in the description of the effect of the Mn-
related impurity potential. In terms of the VCA, we assume
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semiconductor is occupied by a mixture of x Mn and 1−x
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between the full impurity potential due to Mn and the above
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tial and the VCA potential. Ignoring the latter difference and
taking the full Mn impurity potential for sites occupied by
Mn when describing scattering in !iii" is therefore not a pre-
cise procedure but it introduces only a small error for Mn
dopings not exceeding several percent.

C. Conductivity of (Ga,Mn)As in the relaxation-time
approximation
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classical formula based on the Boltzmann transport
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!Ga,Mn"As systems that contain interstitial Mn atoms or As
antisites in addition to the substitutional Mn.
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and that these moments are ordered in the ferromagnetic
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Ga. This yields an effective mean potential which shares the
full periodicity of the host zinc-blende lattice. Strictly speak-
ing, the scattering potential of randomly distributed Mn on
the cation sublattice should be described as the difference
between the full impurity potential due to Mn and the above
VCA potential. Similarly the remaining sites occupied by Ga
should be described by the difference between the Ga poten-
tial and the VCA potential. Ignoring the latter difference and
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cise procedure but it introduces only a small error for Mn
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Conclusions

• competing VB maxima - to be resolved  
    by advanced ab initio 
• effective model components: band, SO, exchange 
    (band+exchange go together) 
• complicated structure in the vicinity of A-point 
• conductivity can easily be evaluated, scattering 
    treated e.g. by Fermi golden rule 
• some symmetry-breaking terms still to be identified





how to deal with exchange - a toy model
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Figure 6: Symmetry unit cell of MnTe with AF alignement along 10-10 direction.

Analyzing the effect of the symmetry operations of D6h to the spins, already excluding the operations that are
combined with translations:

• E: allowed as it is

• 2C3: forbidden, the final spin is tilted

• 3C 0
2: only one rotation, with axis parallel to the AF aligment

• i: allowed as it is

• 2S3: forbidden, the final spin is tilted

• 3�d: only one reflection, with mirror perpendicular to the AF aligment

The resulting symmetry group is C2h!

2.4 AF 11-20
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E↵ective model of exchange part of Ĥ in MnTe

K&K

Oct16, 2019

These notes are based on littleNotes.pdf and start with the idea of a 1D chain with four

atoms per unit cell.

[ ]

Aa AbB B

Here, the single orbital (times two for spin) on B-atoms represents the Mn d-states and the

two Te atoms are explicitly distinguished by a subscript. Magnetic moment of Mn is modelled by

a �~S · ~� term and to start with, assume the unit vector ~S k ẑ. Hamiltonian, in the spin-up basis,

reads

H =

0

BB@

0 t 0 te
�ika

t ✏d +� t 0

0 t 0 t

te
ika

0 t ✏d ��

1

CCA (1)

and for |✏d| � t,� it can be downfolded into the subspace {|a "i, |b "i}, yielding a 2 ⇥ 2 Hamil-

tonian. At the Brillouin zone edges (ka = ⇡), there opens a gap of � +
1
2 (d� � d+) with

d± =

p
8t2 + (✏d ±�)2.

This model can be generalised to arbitrary spin direction and yields

Heff = � 2✏dt
2
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(k) I2
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in the {|a "i, |a #i, |b "i, |b #i} basis, where all entries are 2 ⇥ 2 matrices (I2 is identity) and

� = I2e
�ika/2

cos ka/2 +
�
2✏d

(1 � e
�ika

)(~S · ~�). At ka = ⇡, the spectrum consists of two pairs of

levels and it is independent of ~S. For ~S k ẑ, the eigenvectors of (one of the) pairs are

|a "i+ |b "i = (|ai+ |bi)⌦ | "i and (|ai � |bi)⌦ | #i (3)

and taking any other direction of ~S results only in the corresponding rotation of the spin part;

we denote these states by |~S, 1i and |~S, 2i. Note that any linear combination ↵|~S, 1i+�|~S, 2i will
always have expectation value of spin k ~S.

Since this property is not sensitive to the exchange splitting � (as long as it is finite), it

suggests the following approach to the e↵ective description of real MnTe (valence band top in A):

• start with the 2⇥ 2 Hamiltonian (~k · ~p) derived by Paulo

• add the pz orbital at ’far-away’ level ✏z, call this H3
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• Lowest order expansion

• 𝐻 =
𝑎 𝑘𝑥2 + 𝑏 𝑘𝑦2 𝑎 − 𝑏 𝑘𝑥𝑘𝑦
𝑎 − 𝑏 𝑘𝑥𝑘𝑦 𝑏 𝑘𝑥2 + 𝑎 𝑘𝑦2

+ 𝑐 𝑘𝑧2
1 0
0 1

Crystalline Hamiltonian

a

b
𝑘𝑥

𝑘𝑦

What is the basis?
px, py orbitals



AMR: crystalline and non-crystalline components

∆ρL/ρav =

CI cos 2φ + CI ,C cos(2φ + 4θ) +

+CC cos(4φ + 4θ) + CU cos(2φ + 2θ)

de Ranieri et al., NJP ’08

∆ρT/ρav =

CI sin 2φ − CI ,C sin(2φ + 4θ)

I

M

[1 0]1

[110]

!
"

#

Wunderlich et al., PRB ’07

Rushforth et al., PRB ’08

AMR:  crystalline and non-crystalline components
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