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FIG. 3. (a), (b) Temperature-dependent a and c lattice parameters
of MnTe grown on two different substrates. The dashed (dash-dot) line
in (a) represents the measured temperature dependence of the SrF2

(InP) substrate lattice parameter scaled by
√

2 × 1.01 (
√

2 × 1.007).
Note that the solid lines shown for the case of MnTe on SrF2 are guides
to the eye since measurements around room temperature are hampered
by overlapping signals of the thin film and substrate. (c) Temperature-
dependent susceptibility of 2.5-µm MnTe on SrF2 measured for
a magnetic field applied in different directions. The diamagnetic
contribution of the substrate was subtracted. Dashed lines show the
mean-field susceptibility of a collinear uniaxial antiferromagnet for
the cases when the field is perpendicular (χ⊥/green) and parallel
(χ∥/black) to the easy axis. Insets indicate the directions of the
magnetic field with respect to the crystal within the c plane.

the in-plane lattice constant a of both films on SrF2 and InP
basically follows the change of the scaled substrate lattice
parameter, which is also plotted in Fig. 3(a) by the dashed and
dash-dotted lines. This means that the in-plane strain of the
MnTe film on InP even increases, whereas only small changes
occur on SrF2. Note that the scaling of the substrate surface
lattice parameters by around 1% indicates the relaxation of
the epitaxial films during growth. At liquid He temperatures,
the in-plane lattice constant of the MnTe films differs by as
much as 1.0% for the different substrates. This leads also to a
different evolution of the out-of-plane c-axis lattice constant of
the films on InP and SrF2 as shown in Fig. 3(b). Our theoretical
calculations in Table I indicate that while the out-of-plane
MAE remains dominant upon such variations of strain, the
in-plane MAE may change substantially, potentially even to
the point that the direction of the easy axis (within the basal
plane) changes.

B. Magnetometry

One possible way of determining the natural orientation
of magnetic moments, i.e., the easy axis direction, is the
measurement of the temperature-dependent susceptibility χ
shown in Fig. 3(c). Very early on [37], it has been recognized
that while χ∥(T ) (magnetic field applied parallel to magnetic
moments) for a uniaxial antiferromagnet drops to zero as
T → 0, a magnetic field applied in (any) perpendicular
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FIG. 4. Neutron diffraction structure factors measured vs tem-
perature for the (a) magnetic (0001), (b) structural (101̄0), and (c)
mixed structural and magnetic Bragg peak (101̄1). Black lines show
the behavior close to the Néel temperature described by the equation
Amag(TN − T )c + Astruct, where Ai denotes the amplitude of magnetic
and structural contribution and T the measurement temperature. The
Néel temperature TN = 309 K and the critical exponent c = 0.37
corresponds to the Heisenberg model [38].

direction gives a constant χ⊥(T ) = χ0 for T < TN. An explicit
form of χ0 as well as χ∥(T ) based on Weiss theory can
be found in Ref. [2]. We show this mean-field theory result
for S = 5/2 and scaled to the experimental data in Fig. 3(c)
as dashed lines. Experimental data for H ||[0001] therefore
confirm that magnetic moments lie in the basal plane. On the
other hand, since neither of the other two curves for H ||[112̄0]
and H ||[11̄00] approaches zero for low temperatures, we
conclude that there is not one single easy axis (or in other
words, the sample is not uniaxial and therefore not in a single
domain state). The small difference between these two curves
suggests that the anisotropy within the c planes is small.

IV. NEUTRON DIFFRACTION INVESTIGATIONS

Experiments at the CEA-CRG thermal neutron diffractome-
ter D23 at Institut Laue-Langevin in Grenoble, France allowed
us to determine the easy axis in MnTe layers grown on SrF2. A
monochromatic beam of neutrons with a wavelength of 0.127
nm was generated by a Cu (200) monochromator. The sample
was mounted in a rotatable cryomagnet with temperature range
of 5 to 305 K and magnetic fields up to 6 T along the sample
rotation axis. The diffraction geometry with two orthogonal
rotation axes of the detector allowed us to access several MnTe
Bragg peaks sufficiently separated from those of the substrate.
In Fig. 4, we show the intensity of selected diffraction peaks
as a function of temperature. Since nonpolarized neutrons
were used, the magnetic diffraction intensity depends solely
on the relative orientation of the magnetic moments and the
momentum transfer, and is at maximum when the magnetic
moment is perpendicular to the momentum transfer. The
shown variation of the (0001) diffraction peak [Fig. 4(a)],
which is structurally forbidden in the paramagnetic phase,
indicates that the magnetic moment within the c plane has a
significant value. In contrast to that, a peak with momentum
transfer within the c plane [see (101̄0) in Fig. 4(b)] shows no
magnetic contribution and therefore its intensity is virtually
independent of temperature. The variation of the structure
factors close to Néel temperature can be described by the
critical behavior of the Heisenberg model with exponent
c = 0.37 [38] and is shown as solid line in Fig. 4. The ratio of
intensities of the purely structural and magnetic Bragg peaks
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• not completely true, but indeed, 
 the response is typically weak 
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• weak anisotropy within the 
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orientations. Solid curves calculated from simplified theory .. 

Magnetization measurements were made in pulsed 
fields to 140 koe as previously described." One sample 
was of pressed powder, and a single-crystal sample was 
made available through the courtesy of Dr. J. W. 
N ielsen of the Bell Telephone Laboratories. In a 
polarizing microscope a number of subgrains were 
observed in the crystal, differing in orientation by a 
degree or so. 

Measurements at 77°K were convenient for calibra-
tion. On the powder sample, the observed linear magnet-
ization curve corresponded to a susceptibility in agree-
ment (±3%) with published values .•. ". On the crystal, 
because of the near equality of paraliel and perpendi-
cular susceptibilities]6 at 77°K, this measurement deter-
mined the magnetization scale. It also coincided '3b with 
the magnetization expected perpendicular to the c axis 
at 4.2°K, which was not measured in this investigation. 

The magnetization curve for powder at 4.2°K is 
shown in Fig. 1 where its low-field behavior agrees with 
initial powder susceptibility. It deviates smoothly with 
increasing field, and approaches the line expected for 
the perpendicular magnetization curve. Data points 
were read for both decreasing and increasing fields. 
Their superposition precludes mechanical rotation of 
the powder grains. This behavior for a powder was 
predicted by Neel,! but it is clear that it is poorly suited 
for an estimate of the critical field. 

14 r. S. Jacobs and P. E. Lawrence , Rev. Sci. Instr. 29, 713 
( t958). 

1& M . Griffe! and J. W. Stout, J. Chem. Phys. 18, 1-1.55 (1950). 

Low-temperature magnetization curves on the crystal 
were observed first with the c axis about 7.5 ° away from 
the field direction and subsequently with improved 
orientation to minimize misalignment. The rather 
abrupt spin-flopping is clearly visible in each case as 
shown in Fig. I for 4.2°K. The data plotted are selected 
for clarity of presentation from the full reduction of the 
photographs, read every 4 koe using an optical projec-

sys.tem. :Measurement at 20.4°K with the poorer 
onentatlOn gave a curve nearly identical to that at 
4.2°K, except for rounding before the spin-flop corre-
sponding to the nonzero value of the parallel suscepti-
bility at 20A°K. 1\0 significant hysteresis' is observed 
in the spin-flopping, beyond the experimental scatter. 
If present., it does not exceed 1 koc. 

H the field were applied exactly along the c axis of 
the crystal, a discontinuous jump in the magnetizatio 
would be expected at the crit.ical field. For sligh 
misorientations, the magnetization increase is steep bu 
continuous and the critical field is closely given by t ha 
field for which the nearly aligned curve has half th 

of the curvt:: ('orresponding to the perpen 
dlcular orientation. From of the suscepli 
bility-field-orientation relation, a small correction t 
this midpoint criterion is needed as the misalignmen 
increases. For 7.5 0 misorientation the field at the mid 
point should be increased by 2% to obtain He. Fro 
these two orientations the average value of H e is 93± 
koe. 

The solid curves in Fig. 1 are those predicted fo 
misalignments, OH t of 7.5° and 2.5°. They are calculate 
from a simplification of equations previously derived. l • 

This simplification neglects the midpoint correct ion 
The solid curves are normali7--cd with Hc=93 koe an 
Xl = 1.03 X 10-3 per CC.16 The better orientation corre 
sponds to about 2.5° misalignment, of which part i 
embraced by subgrain misorientation. 

The critical field value obtained herein is in excellen 
agreement with values found by microwave resonanc 
by Foner" and Johnson and Nethercot." These had 
close connect ion to theoretical calculations of Kefferl 

This example demonstrates that magnet 
lzatlOn measurements of spin-flopping can be used as a 
alternative tool to explore interaction energies in anti 
ferromagnets. Choice of technique may depend upo 
anticipated interaction strengths and magnetic struc 
ture. 

The author acknowledges discussions with W. P 
Wolf and experimental help from P. E. Lawrence. 

18 H. Bizeltc and B. Tsai, Compt. rend. 238 , 1'=;75 (lQ'=;..J.). 
17 F. Keffer, Phys. Rev. 87, 608 (1952). 
'd T . Oguchi. Phys. Rev. 111. 1063 (1958). 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:
147.231.127.63 On: Thu, 02 Apr 2015 08:53:55

• magnetic field along 
    c-axis (easy direction) 
• I.S. Jacobs, JAP 31, 61S

Manipulation of magnetic moments 
in antiferromagnets (AFM)



How does this work?

MnF2 FeF2 CoF2

spin flop [T] 9.3 41.9 14.0

625 I. S. JACOBS 

160 
hln F2 4.2 "K 

140 

120 ! 9,-2.5'- • 
CRYSTAL 

9, - 7 5' - • 
POWDER - • 

100 

" .mu 
80 

60 

'0 

,. 

o 

FIG. I. ::\fagnelization data for fJowder and various crvstal 
orientations. Solid curves calculated from simplified theory .. 

Magnetization measurements were made in pulsed 
fields to 140 koe as previously described." One sample 
was of pressed powder, and a single-crystal sample was 
made available through the courtesy of Dr. J. W. 
N ielsen of the Bell Telephone Laboratories. In a 
polarizing microscope a number of subgrains were 
observed in the crystal, differing in orientation by a 
degree or so. 

Measurements at 77°K were convenient for calibra-
tion. On the powder sample, the observed linear magnet-
ization curve corresponded to a susceptibility in agree-
ment (±3%) with published values .•. ". On the crystal, 
because of the near equality of paraliel and perpendi-
cular susceptibilities]6 at 77°K, this measurement deter-
mined the magnetization scale. It also coincided '3b with 
the magnetization expected perpendicular to the c axis 
at 4.2°K, which was not measured in this investigation. 

The magnetization curve for powder at 4.2°K is 
shown in Fig. 1 where its low-field behavior agrees with 
initial powder susceptibility. It deviates smoothly with 
increasing field, and approaches the line expected for 
the perpendicular magnetization curve. Data points 
were read for both decreasing and increasing fields. 
Their superposition precludes mechanical rotation of 
the powder grains. This behavior for a powder was 
predicted by Neel,! but it is clear that it is poorly suited 
for an estimate of the critical field. 

14 r. S. Jacobs and P. E. Lawrence , Rev. Sci. Instr. 29, 713 
( t958). 

1& M . Griffe! and J. W. Stout, J. Chem. Phys. 18, 1-1.55 (1950). 

Low-temperature magnetization curves on the crystal 
were observed first with the c axis about 7.5 ° away from 
the field direction and subsequently with improved 
orientation to minimize misalignment. The rather 
abrupt spin-flopping is clearly visible in each case as 
shown in Fig. I for 4.2°K. The data plotted are selected 
for clarity of presentation from the full reduction of the 
photographs, read every 4 koe using an optical projec-

sys.tem. :Measurement at 20.4°K with the poorer 
onentatlOn gave a curve nearly identical to that at 
4.2°K, except for rounding before the spin-flop corre-
sponding to the nonzero value of the parallel suscepti-
bility at 20A°K. 1\0 significant hysteresis' is observed 
in the spin-flopping, beyond the experimental scatter. 
If present., it does not exceed 1 koc. 

H the field were applied exactly along the c axis of 
the crystal, a discontinuous jump in the magnetizatio 
would be expected at the crit.ical field. For sligh 
misorientations, the magnetization increase is steep bu 
continuous and the critical field is closely given by t ha 
field for which the nearly aligned curve has half th 

of the curvt:: ('orresponding to the perpen 
dlcular orientation. From of the suscepli 
bility-field-orientation relation, a small correction t 
this midpoint criterion is needed as the misalignmen 
increases. For 7.5 0 misorientation the field at the mid 
point should be increased by 2% to obtain He. Fro 
these two orientations the average value of H e is 93± 
koe. 

The solid curves in Fig. 1 are those predicted fo 
misalignments, OH t of 7.5° and 2.5°. They are calculate 
from a simplification of equations previously derived. l • 

This simplification neglects the midpoint correct ion 
The solid curves are normali7--cd with Hc=93 koe an 
Xl = 1.03 X 10-3 per CC.16 The better orientation corre 
sponds to about 2.5° misalignment, of which part i 
embraced by subgrain misorientation. 

The critical field value obtained herein is in excellen 
agreement with values found by microwave resonanc 
by Foner" and Johnson and Nethercot." These had 
close connect ion to theoretical calculations of Kefferl 

This example demonstrates that magnet 
lzatlOn measurements of spin-flopping can be used as a 
alternative tool to explore interaction energies in anti 
ferromagnets. Choice of technique may depend upo 
anticipated interaction strengths and magnetic struc 
ture. 

The author acknowledges discussions with W. P 
Wolf and experimental help from P. E. Lawrence. 

18 H. Bizeltc and B. Tsai, Compt. rend. 238 , 1'=;75 (lQ'=;..J.). 
17 F. Keffer, Phys. Rev. 87, 608 (1952). 
'd T . Oguchi. Phys. Rev. 111. 1063 (1958). 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:
147.231.127.63 On: Thu, 02 Apr 2015 08:53:55

0 10 14
B [T]

M

~B



Any other option?

Manipulation of magnetic moments 
in antiferromagnets (AFM)



… spin-orbit torques

originate from

current-induced spin polarisation S, i.e. linear response 
of S to applied electric field
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Antiferromagnetic memory  
based on CuMnAs

In ferromagnetic materials, all magnetic moments sitting on
individual atoms point in the same direction and can be
switched by running an electrical current through a nearby

electromagnet. This is the principle of recording in ferromagnetic
media used from the 19th century magnetic wire recorders to
today’s hard-drives. Magnetic storage has remained viable
throughout its entire history and today is the key technology
providing the virtually unlimited data space on the internet.
To keep it viable, the 19th century inductive coils were
first removed from the readout and replaced by the 20th century
spin-based magneto-resistive technology1. Twenty first century
physics brought yet another revolution by eliminating the
electromagnetic induction from the writing process in magnetic
memory chips and replacing it with the spin–torque
phenomenon1. In the non-relativistic version of the effect,
switching of the recording ferromagnet is achieved by
electrically transferring spins from a fixed reference permanent
magnet. In the recently discovered relativistic version of the spin
torque2–5, the reference magnet is eliminated and the switching is
triggered by the internal transfer from the linear momentum to
the spin angular momentum under the applied writing current6.
The complete absence of electromagnets or reference permanent
magnets in this most advanced physical scheme for writing in
ferromagnetic spintronics has served as the key for introducing
the physical concept7 for the efficient control of magnetic
moments in antiferromagnets (AFs) that underpins our work.

In their simplest form, compensated AFs have north poles of
half of the microscopic atomic moments pointing in one direction
and the other half in the opposite direction. This makes the
external magnetic field inefficient for switching magnetic
moments in AFs. Instead, our devices rely on the recently
dicovered special form of the relativistic spin torque7,8. When
driving a macroscopic electrical current through certain AF
crystals whose magnetic atoms occupy inversion-partner lattice
sites (for example, in AF CuMnAs or Mn2Au), a local relativistic

field is generated which points in the opposite direction on
magnetic atoms with opposite magnetic moments. The staggered
relativistic field is then as efficient in switching the AF as a
conventional uniform magnetic field in switching a ferromagnet.
This reverses the traditionally sceptical perception of the utility of
AFs in microelectronics and opens avenues for spintronics
research and applications9–12.

In the present paper we focus on the multi-level switching
characteristics of the memory bit-cells patterned into an
elementary cross-shape geometry from a single metallic layer of
the CuMnAs AF deposited on a III–V or Si substrate. The
multiple-stability, reflecting series of reproducible, electrically
controlled domain reconfigurations13, is not favourable for
maximizing the retention and the bit-cell size scalability.
However, in combination with the simplicity of the bit-cell
geometry and unique features of AFs stemming from their zero
net moment, the multi-level nature may provide additional
functionalities, such as a pulse counter, with a utility in
future specialized embedded memory-logic components in the
‘More than Moore’14 internet of things (IoT) applications. The
endurance, retention, and the bit-size scalability are important
parameters governing the development of bistable ferromagnetic
bit-cells for non-volatile magnetic random access memories
(MRAMs). Outside the realm of high-density main computer
memories, the requirements on these parameters might be less
stringent as long as the memories have other merits suitable for
the specific embedded applications. In particular, the components
we perceive are multi-level AF bit-cell chips with each bit-cell
integrating memory and pulse-counter functionalities.

Results
Overview. In the first and second parts of the paper we focus
on the response of our bit-cells to electrical pulses in the
microsecond to millisecond range. To highlight the realistic
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Figure 1 | Antiferromagnetic microelectronic memory device. (a) Scanning transmission electron microscopy image in the [100]–[001] plane of the
CuMnAs epilayer grown on a GaP substrate. (b) Optical microscopy image of the device containing Au contact pads (light) and the AF CuMnAs
cross-shape bit cell on the GaP substrate (dark). Scale bar length is 2 mm. (c) Picture of the PCB with the chip containing the AF bit cell and the input
write-pulse signals (red dots) and output readout signals (blue dots) sent via a USB computer interface.
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Torques acting on magnetic moments
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Solid state:

|Ic0.P-AP| ≠ |Ic0.AP-P| due to spin accumulation in
the spin valve and the MTJ magnetoresistance
behavior, respectively. The equivalence of the two
critical currents for a SHE-ST switching device
could be a major technical advantage. From our
measured values of |Ic0| and using Eq. 1 with
m0Meff = 0.76 T (32), we determine JS/Je for
this device to be 0.12 T 0.04 (32), in accord with
our two other spin Hall angle measurements. We
note that our three determinations of JS/Je are
consistent for FM layer thicknesses ranging from
1 to 4 nm and are not sensitive to whether the FM
layer is magnetized in plane or out of plane.

Technology applications. Improvements to
this initial three-terminal SHE device can be very
reasonably expected to result in substantial
reductions in the switching currents for thermally
stable nanomagnets. By reducing the width of the
Ta microstrip to be equal to the dimension of the
long axis of the nanopillar, we can easily decrease
Ic0 by a factor of 3 without affecting thermal sta-
bility. A further reduction in Ic0 could be achieved
by reducing the demagnetization field of the FM
free layer from 700 mT to ≤100 mT (37, 38).
With such improvements, Ic0 could be reduced to
<100 mA, at which point the three-terminal SHE
devices would be competitive with the efficiency

of conventional ST switching in optimized MTJs
(31, 33, 39) while providing the added advantage
of a separation between the low-impedance switch-
ing (write) process and high-impedance sensing
(read) process. This separation solves the reliability
challenges that presently limit applications based
onconventional two-terminalMTJswhile alsogiving
improved output signals. Other three-terminal spin-
torque devices based on conventional spin-filtering
have been demonstrated previously (40–43), but
the SHE-ST design can provide better spin-torque
efficiency and is much easier to fabricate. More-
over, the discovery of materials with even larger
values of the spin Hall angle than in b-Ta could
also add to the competitiveness of the SHE-ST.
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Fig. 3. Spin Hall effect–induced switching for an in-plane magnetized nanomagnet at room
temperature. (A) Schematic of the three-terminal SHE devices and the circuit for measurements. The
direction of the spin Hall spin transfer torque is not the same as in Fig. 1A because the CoFeB layer now
lies above the Ta rather than below. (B) TMR minor loop of the MTJ as a function of the external applied
field Bext applied in-plane along the long axis of the sample. (Inset) TMR major loop of the device. (C)
TMR of the device as a function of applied dc current IDC. An in-plane external field of –3.5 mT is
applied to set the device at the center of the minor loop. (D) Switching currents as a function of the
ramp rate for sweeping current. Red squares indicate switching from AP to P; blue triangles indicate
switching from P to AP. Solid lines represent linear fits of switching current versus log(ramp rate). Error
bars are smaller than the symbol size.
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 Science 336, 555|Ic0.P-AP| ≠ |Ic0.AP-P| due to spin accumulation in

the spin valve and the MTJ magnetoresistance
behavior, respectively. The equivalence of the two
critical currents for a SHE-ST switching device
could be a major technical advantage. From our
measured values of |Ic0| and using Eq. 1 with
m0Meff = 0.76 T (32), we determine JS/Je for
this device to be 0.12 T 0.04 (32), in accord with
our two other spin Hall angle measurements. We
note that our three determinations of JS/Je are
consistent for FM layer thicknesses ranging from
1 to 4 nm and are not sensitive to whether the FM
layer is magnetized in plane or out of plane.

Technology applications. Improvements to
this initial three-terminal SHE device can be very
reasonably expected to result in substantial
reductions in the switching currents for thermally
stable nanomagnets. By reducing the width of the
Ta microstrip to be equal to the dimension of the
long axis of the nanopillar, we can easily decrease
Ic0 by a factor of 3 without affecting thermal sta-
bility. A further reduction in Ic0 could be achieved
by reducing the demagnetization field of the FM
free layer from 700 mT to ≤100 mT (37, 38).
With such improvements, Ic0 could be reduced to
<100 mA, at which point the three-terminal SHE
devices would be competitive with the efficiency

of conventional ST switching in optimized MTJs
(31, 33, 39) while providing the added advantage
of a separation between the low-impedance switch-
ing (write) process and high-impedance sensing
(read) process. This separation solves the reliability
challenges that presently limit applications based
onconventional two-terminalMTJswhile alsogiving
improved output signals. Other three-terminal spin-
torque devices based on conventional spin-filtering
have been demonstrated previously (40–43), but
the SHE-ST design can provide better spin-torque
efficiency and is much easier to fabricate. More-
over, the discovery of materials with even larger
values of the spin Hall angle than in b-Ta could
also add to the competitiveness of the SHE-ST.
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Fig. 3. Spin Hall effect–induced switching for an in-plane magnetized nanomagnet at room
temperature. (A) Schematic of the three-terminal SHE devices and the circuit for measurements. The
direction of the spin Hall spin transfer torque is not the same as in Fig. 1A because the CoFeB layer now
lies above the Ta rather than below. (B) TMR minor loop of the MTJ as a function of the external applied
field Bext applied in-plane along the long axis of the sample. (Inset) TMR major loop of the device. (C)
TMR of the device as a function of applied dc current IDC. An in-plane external field of –3.5 mT is
applied to set the device at the center of the minor loop. (D) Switching currents as a function of the
ramp rate for sweeping current. Red squares indicate switching from AP to P; blue triangles indicate
switching from P to AP. Solid lines represent linear fits of switching current versus log(ramp rate). Error
bars are smaller than the symbol size.
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Current-induced spin-orbit torque - for ferromagnets

Edelstein effect… … action on magnetic moments
�S = �E

3

FIG. 1: Fermi surfaces and spin textures in a system with (a)
time reversal, (b) inversion asymmetry.

We use a four-band model for the holes in ferromag-
netic semiconductors. The Hamiltonian of the system
is

H = HKL +Hpd +Hstrain, (8)

where the first term is the Kohn-Luttinger Hamiltonian,
the second is the exchange coupling and the third is
the strain Hamiltonian. The four band Kohn-Luttinger
Hamiltonian is

HKL = ~2k2

2m0

�
�1 +

5
2�2

⇥
I4 � ~2

m0
�3 (k · J)2

+ ~2

m0
(�3 � �2)

�
k2xJ

2
x + k2yJ

2
y + k2zJ

2
z

⇥
.

(9)

Here, k is the momentum of the holes, m0 is the electron
mass, �1,2,3 are the Luttinger parameters, I4 is the 4⇤ 4
identity matrix and J = (Jx, Jy, Jz) are the 4⇤4 spin ma-
trices of the holes. The exchange coupling between the
holes and the d-electrons localized on Mn ions responsi-
ble for magnetism in GaMnAs is given by the exchange
Hamiltonian

Hexch = JpdSMnNMn�̂ · S, (10)

where Jpd is the exchange coupling strength, NMn is the
Mn ions concentration and the hole spin J = 3S, while
the Mn spin is SMn = 5/2. The angle �̂ gives the ori-
entation of the magnetization in the system. The strain
Hamiltonian is

Hstrain = �b

⇧⇤
J2
x � J2

3

⌅
⇤xx + c.p.

⌃

+C4 [Jx (⇤yy � ⇤zz) kx + c.p.] (11)

+C4 [⇤xy(kyJx � kxJy) + c.p.]

where ⇤ij is the stress tensor, b is the axial deformation
potential and C4 gives the magnitude of the momentum-
dependent strain. In a typical situation of pure growth
strain (⇤xy = 0) we use the notation ⇤xx = ⇤yy = 0,

⇤zz = e0. The first term of the strain Hamiltonian
is momentum independent. The other two terms are
momentum-dependent and they are believed to be es-
sential for the generation of CITs.14,15 The second term
has a Dresselhaus symmetry and the third has a Rashba
symmetry. These symmetries pertain to the resulting
CIT too, but this non-trivial statement deserves a closer
attention.

B. Intraband terms — simple case

With all necessary ingredients at hand, let us start
investigating the CIF. First, we look at the intraband
terms which dominate in clean systems (admittedly, this
assumption is not well satisfied in (Ga,Mn)As and we
will discuss appropriate corrections later). According to
Eq. (5), magnitude of the intraband terms is proportional
to E and hole mobility µ = e⇧/m⇥. We further focus on
the ”nontrivial” dependences.

1. Magnetization dependence and symmetry

Experiments typically focus on the CIF dependence
on the current direction, assuming that CIF does not de-
pend on the magnetization direction. Let us examine the
validity of this assumption (within our model, of course).
In Fig. 2, we show CIF calculated using Eq. (5) for an
exemplar system with hole density p = 2.0 nm�3 and
Mn content x = 9%. The spin texture in panel A shows
the CIF as a function of �̂ assuming electric field along
[100]. Although some dependence on �̂ both in the di-
rection and magnitude of the CIF (as shown lower on
the same panel) is clearly seen, on average, the induced
field points in the [100] direction and the whole infor-
mation of panel A can be reasonably collapsed into the
single arrow marked ’A’ at the bottom of Fig. 2. This
arrow represents the average CIF for ⌫E along [100]. Sim-
ilar procedure can be repeated for ⌫E along [010] where
the average CIF points along [01̄0]. If we express the
two average CIFs as (Ehxx, 0) and (0, Ehyy), Eq. (5) im-
plies that the CIF for arbitrary (in-plane) orientation of
electric field equals ⌫E ·(hxx, hyy). The resulting ”Dressel-
haus symmetry pattern” at the bottom of Fig. 5 agrees
with experimental finding.14 We note that by symmetry
of Eq. (5), ⇥Hintra will always remain in-plane as long as
both �̂ and ⌫E do.

Dependence of CIF on the magnitude of magnetization
is even weaker than on its direction. In an attempt to
scan the range of relevant system parameters, we show
in Fig. 3 the dependence of CIF on the hole densities for
several di⇥erent values of Jex as implied by various NMn

in Eq. (10). These Mn concentrations corresponding to
x = 2, 5, and 9% leave the CIF virtually una⇥ected.

+

~E

k
x

ky

�S =

Z
S�f dk +

Z
f�S dk

band k·p Hamiltonian.12 This 20-band Hamiltonian was
built from the 14!14 Hamiltonian,17 adding an s-symmetry
band 12 eV under the top of the valence band and two s*
levels to obtain nonmonotonic bands and give access to X, ",
or L valleys in the first conduction band. As these s* levels
were not sufficient to describe simultaneously the L point
and the # effective masses, the contribution of d levels was
mimicked via Luttinger-like parameters which played a part
in the #7C and #8C levels and in the #7V and #8V levels by
second-order perturbations. It explains why Luttinger param-
eters could not be obtained directly from the matrix ele-
ments, contrary to the k·p 30-band method.
Taking into account strain can be made as in Ref. 18. The

same strain Hamiltonian with five parameters has to be
added to the 30!30 Hamiltonian used for bulk semiconduc-
tors.

III. BAND DIAGRAMS OF Si, Ge, AND GaAs

After having built the 30!30 Hamiltonian, we now give
the parameters used in our k·p calculation and describe the
results for Si, Ge, and GaAs. The k=0 energies are presented
in Table II. The left part of this table is known;16 for the right
part of Table II, we take the same values as in Ref. 5 for Si
and Ge. For GaAs, these levels are unknown but Cardona
and Pollak5 explain how to obtain an estimation of these
energies, knowing the form factors used in pseudopotential
calculations19 and assuming that only the pseudopotential in-
teraction between the 30 plane-waves states is important.
Anyway, the k=0 upper energy levels chosen are not key

parameter by themselves: the important data are the couples
energy level/matrix element. Briefly speaking, the k=0 en-
ergy levels are first fixed from Ref. 5 and the matrix elements
are then adjusted to obtain the band diagram; as a result there
are 10 (18) adjustable parameters in Oh!Td".
After having chosen the unknown k=0 energy levels, the

key parameters are the matrix elements. Here, they were first
estimated at the center of the Brillouin zone, especially for
the valence band to obtain Luttinger parameters, and for the
first conduction band for Ge and GaAs, then at the extrema X
and L and finally to respect the continuity between U#1, 14 ,

1
4$

and K#0, 34 ,
3
4$ equivalent points of the Brillouin zone. This

continuity is not obtained by construction as in pseudopoten-
tial or LCAO: on the contrary, it is the strongest numerical
difficulty of this method. Figures 3–5 show the band struc-
tures of Si, Ge, and GaAs obtained with our k·p model.
Numerical results are given in Table III. The band structure
is well reproduced on a width of about 11 eV: it describes
correctly the valence band over a 6 eV scale (see Fig. 6) and
the lowest four conduction bands over a 4 eV scale in four
directions namely #X, #L, #K, XU. All the spin-orbit param-
eters were taken null except "so and "C.16
The 30-band method represents a great improvement of

the k·p method compared to the 20-band Hamiltonian whose
extension was only 1 eV for the valence band and 3 eV for
the conduction band.12 This 20-band method was built to
take into account the d level effects without directly consid-
ering this level in the Hamiltonian. The present calculation
shows that taking into account the real d levels with their

TABLE III. Matrix elements of the momentum p: energies EPj
!!" and matrix elements Pj

!!" are linked by
EPj

!!"= !2m0 /$2"#Pj
!!"$2. Pj

!!" are defined in the text (Sec. III) and in Figs. 2 and 3.

eV Ge Si GaAs eV Ge Si GaAs

Ep 24.60 19.96 22.37 EPd 0.0051 1.193 0.010
EPX 17.65 14.81 16.79 EPXd 12.23 7.491 4.344
EP3 5.212 4.475 4.916 EP3d 15.76 9.856 8.888
EP2 2.510 3.993 6.280 EP2d 27.59 20.76 23.15
EPS 1.071 1.092 2.434 EPU 17.84 16.36 19.63
EP! 0.0656 EPd! ,EP3! ,EP2! ,EPS! ,EPU! ,EPSd! ,EPUd! 0

FIG. 4. Band diagram of Ge at T=0 K. FIG. 5. Band diagram of GaAs at T=0 K.
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235204-4

… applicable to (Ga,Mn)As

SOT in a ferromagnet

LLG (Landau-Lifshitz-G
ilbert) e

q.

• example: dilute magnetic semiconductor (Ga,Mn)As,
   critical temperature up to ~190 K

• carriers (   ) coupled to magnetic moments (    )

• on the mean-field level, magnetisation                    feels 
   spin polarization which acts like effective field
• non-equilibrium spin polarization: 
• in equilibrium,            , non-eq. spin pol. induces dynamics of   
   magnetisation described by

H = HKL + Jpd
X
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◆

~M k s0

unpolarized spin-orbit coupled carriers from polarized mag-
netic impurities, or !c" via anisotropic scattering of partially
polarized carriers which does not require a magnetic charac-
ter of the scatterers. Transport calculations must of course
always include an account of scattering but it is its aniso-
tropy that is disregarded within mechanism !a"; in mecha-
nisms !b" and !c" it is in turn the anisotropy of the group
velocities that is neglected !a more detailed discussion is
presented in Sec. II C". We point out that the mechanisms !a"
and !c" represent a situation where both fundamental ingre-
dients of the AMR !SOI and magnetization" are present in
the same states of the band structure. The SOI is necessary
for AMR to occur but, at the same time, it weakens the effect
of magnetization so that weaker AMR may be expected
whenever the mechanisms !a" or !c" dominate. On the other
hand, in mechanism !b", the SOI in an unpolarized carrier
band can be strong while the magnetization of the impurities
remains at 100%. Consequently, very large AMR can arise if
this mechanism is important.11

We show in this paper that metallic !Ga,Mn"As is a favor-
able system for the purposes of studying AMR. Not only
because of its relatively simple !effective" Hamiltonian !de-
scribed in Sec. II" and the dominance of the AMR mecha-
nism !b", but also because of the way the AMR model can be
simplified !as shown in Sec. III" down to analytical formulae
revealing the basic AMR trends !see Sec. IV". This analysis
is our main result together with the detailed explanation of
the AMR sign in !Ga,Mn"As !resistance parallel to magneti-
zation is smaller than perpendicular to magnetization" which
is observed experimentally8,9,12–18 and is opposite to most
magnetic metals.19,20 The results in Sec. IV include analyti-
cally evaluated anisotropic conductivity on several levels of
model complexity, and the most simplified model allows to
clearly identify the physical mechanism that determines the
sign of the AMR in !Ga,Mn"As. Our approach21 is based on
the relaxation-time approximation !RTA" and it would be
desirable to put the present results into more precise terms by
exactly solving the Boltzmann equation in its full integral
form as the authors did for the simpler Rashba system
recently.11,22 Although this solution is presently not available,
we explain in a short discussion at the end of Sec. IV that the
RTA reproduces at least the basic features of the AMR as
presented in this work.

II. BASIC MODEL OF AMR IN METALLIC (GA,MN)AS

Three principal ingredients, described in Secs. II A–II C,
are necessary to model the conductivity and its magnetic
anisotropy: !A" The band structure yielding the spectrum and
wave functions, !B" the scattering mechanism, and !C" a
transport formalism which combines the former two and pro-
duces the conductivity tensor. Given that we base our ap-
proach to !C" on relaxation-time approximate solution to the
semiclassical Boltzmann equation, we basically need the
Fermi velocities derived from the band dispersions, and the
relaxation times calculated from the spectrum, wave func-
tions and the relevant form of the impurity potential.

A. Virtual-crystal kinetic-exchange model of (Ga,Mn)As bands

The valence-band kinetic-exchange model of !Ga,Mn"As
with metallic conductivities is an established qualitative and

often semiquantitative theoretical approach.7,23 The descrip-
tion is based on the canonical Schrieffer-Wolff transforma-
tion of the Anderson Hamiltonian24 which for !Ga,Mn"As
replaces hybridization of Mn d orbitals with As and Ga sp
orbitals by an effective spin-spin interaction of !L=0; S
=5 /2" local moments with host valence-band states. This
step proves essential to effectively separate the different
AMR mechanisms !a,b,c", symbolized in Fig. 1, because—
except for the spin-spin interaction which will be treated as
we review below—it completely detaches the Mn states from
the spin-orbit coupled host-valence-band states. These
valence-band states are conveniently parametrized by the
Luttinger parameters !1 ,!2 ,!3 and spin-orbit splitting "SO in
the six-band Kohn-Luttinger Hamiltonian25–27 HKL. The local
interaction between Mn magnetic moments SI !located at RI"
and valence hole spins s !at r", being at the root of the
carrier-mediated ferromagnetism in !Ga,Mn"As, is the ki-
netic exchange and it is described by single parameter7,28 Jpd.
In order to model the band structure of !Ga,Mn"As including
disorder electrical potential V associated with the Mn mag-
netic moments, we treat the Hamiltonian

H = HKL + Vdis = HKL + Jpd#
I

SI · s#!r − RI" + #
I

V!r − RI"

!1"

by the virtual-crystal mean-field26 approximation, whence
we get the single-particle Hamiltonian !in momentum repre-
sentation" of the !Ga,Mn"As valence band

H = HKL + hêM · s . !2"

Here, êM stands for the unit vector in the direction of the
mean-field magnetization, h=JpdNMnSMn, and the magnetic
moment of Mn is SMn=5 /2. In this paper, we will only con-
sider substitutional Mn with volume density NMn as in opti-
mally annealed samples,29 and assume zero temperature. In
the band-structure model, we thus disregard the randomness
in the Mn distribution over the crystal and the ensuing spatial
inhomogeneity of the exchange interaction, and also we
completely ignore the disorder defined by the electrical po-
tential V in Eq. !1" of every single substitutional Mn which is
an ionized acceptor. Within this approximation, the effect of
the Mn atoms present in the crystal is reduced only to the
effective Zeeman-like term in Eq. !2" due to the kinetic ex-
change of the valence holes with the Mn d states. Explicit
form of the k-dependent 6$6 matrix HKL in a convenient
basis is given e.g. by Eq. !A8" of the first of Ref. 26.

As we are aiming at a simple model of the noncrystalline
AMR component only, we will treat HKL in the spherical
approximation, implemented by setting !2 ,!3 to their aver-
age value.25 In this approximation the dispersion of all six
valence bands becomes isotropic in the absence of the
kinetic-exchange field. The 6$6 Hamiltonian !2" can be di-
agonalized numerically and provide the valence bands En!k"
of !Ga,Mn"As which are split by the exchange field h. The
index n labels the two heavy-hole bands !n=1,2", two light-
hole bands !n=3,4", both of the %8 symmetry and total an-
gular momentum J=3 /2 in the %-point, and two split-off
bands !n=5,6" with the %7 symmetry and J=1 /2 in the %
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to a fieldlike torque generated by ISGE [31]. However, it
has been recently proposed that the incomplete absorption
of the SHE-induced spin current by the ferromagnet (or,
equivalently, the nonvanishing imaginary part of the interfacial
spin mixing conductance) may result in a fieldlike STT
component [31]. Similarly, in the context of ISGE-induced
SOT, recent theories have suggested that spin relaxation
and dephasing may also lead to a correction in the SOT
in the form of a anti-damping-like component [11–14].
In Refs. [12] and [13], the anti-damping-like SOT term
arises from the electron-scattering-induced spin relaxation.
In Ref. [31], the semiclassical diffusion formalism was used,
whereas in Refs. [11] and [14], the anti-damping-like SOT is
obtained within a quantum kinetic formalism. It is ascribed
to spin-dependent carrier lifetimes [11] or to a term arising
from the weak-diffusion limit, which in the leading order is
proportional to a constant carrier lifetime [14].

Intriguing material dependence of the SOTs has been
unraveled in various experiments keeping the debate on the
origin of these components open [22–27]. The difficulty in
determining the physical origin of the torques partly lies in the
complexity of the ultrathin bilayer considered, involving both
bulk and interfacial transport in the current-in-plane config-
uration. First-principles calculations have indeed pointed out
the significant sensitivity of the torques to the nature of the
interfaces [32].

In a recent publication, Kurebayashi et al. [33] investigated
the SOT in a bulk DMS. They observed a large anti-damping-
like torque that is not ascribed to the SHE since no adjacent
spin-orbit-coupled paramagnet is present. It was then proposed
that such a torque has a scattering-independent origin in the
Berry curvature of the band structure, in a similar spirit as the
intrinsic SHE was introduced about ten years ago [34,35].

In this paper, we present a systematic theoretical study of
SOTs arising from the ISGE and Berry curvature mechanisms
in a spin-independent relaxation time approximation. We focus
our attention on the current-driven spin-orbit field (called the
SOT field), hso, producing the spin-orbit torque T = M × hso.
This SOT field has an in-plane component of the ISGE
origin [29] hso

∥ = τFLuso [i.e., lying in the (m,uso) plane
and producing an out-of-plane torque] and also an intrinsic
contribution arising from interband transitions. The latter [33]
produces an out-of-plane field of the form hso

⊥ = τDLuso × m
[i.e., lying perpendicular to the (m,uso) plane]. Analytical
expressions are obtained in the model case of a magnetic
Rashba two-dimensional electron gas (2DEG), while numer-
ical calculations are performed on DMSs described by the
kinetic-exchange Kohn-Luttinger Hamiltonian [36]. Paramet-
ric dependencies of the different torque components and simi-
larities to the analytical results of the Rashba two-dimensional
electron gas in the weak disorder limit are described.

II. NONEQUILIBRIUM SPIN DENSITY: INTRABAND AND
INTERBAND CONTRIBUTIONS IN KUBO FORMULA

In the present study, we start from a general single-particle
Hamiltonian

Ĥsys = Ĥ0 + ĤSOC + Ĥex + Vimp(r) − eE · r̂, (1)

where the first term includes the spin-independent kinetic and
potential energies of the particle, the second term denotes
the coupling between the carrier spin and its orbital angular
momentum, and the third one represents the interaction
between the spin of the carrier and the magnetization of the
ferromagnetic system. Below, we refer to these first three
terms as the unperturbed part of the Hamiltonian. The fourth
term is the impurity potential and the fifth term is the electric
field applied through the system. Impurities are treated within
the constant relaxation time approximation while the electric
field is treated within the framework of the linear response
theory. As discussed below, this electric field has two distinct
effects on the electronic system: (i) it modifies the carrier
distribution function from its equilibrium Fermi-Dirac form
and (ii) it distorts the carrier wave functions. The former leads
to intraband ISGE contributions, while the latter is responsible
for the interband (Berry curvature) contribution. To calculate
the SOT field, we evaluate first the nonequilibrium spin density
δS using the Kubo formula

δS = e!
2πV

Re
∑

k,a,b

⟨ψka|ŝ|ψkb⟩⟨ψkb|E · v̂|ψka⟩

×
[
GR

kaG
A
kb − GR

kaG
R
kb

]
, (2)

where GR
ka = (GA

ka)∗ = 1/(EF − Eka + i%), EF is the Fermi
energy, Eka is the energy dispersion of band a, V is the system
volume, and % is the spectral broadening due to the finite
lifetime of the particle in the presence of impurities. The
Bloch state |ψka⟩ in band a can be found by diagonalizing
the unperturbed part of the Hamiltonian in Eq. (1). This
expression contains both intraband (a = b) and interband
(a ̸= b) contributions to the nonequilibrium spin density.
Numerical results in Sec. IV B are calculated with the above
equation.

In order to understand the numerical results, Eq. (2) can
be rewritten [37] as δS = δSintra + δSinter

1 + δSinter
2 when weak

impurity scattering (namely, small spectral broadening, % →
0) is assumed. The three contributions are

δSintra = 1
V

e!
2%

∑

k,a

⟨ψka|ŝ|ψka⟩⟨ψka|E · v̂|ψka⟩

× δ(Eka − EF ), (3)

δSinter
1 = −e!

V

∑

k,a ̸=b

2Re[⟨ψak|ŝ|ψbk⟩⟨ψbk|E · v̂|ψak⟩]

× %(Eka − Ekb)
[(Eka − Ekb)2 + %2]2

(fka − fkb), (4)

δSinter
2 = −e!

V

∑

k,a ̸=b

Im[⟨ψka|ŝ|ψkb⟩⟨ψkb|E · v̂|ψka⟩]

× %2 − (Eka − Ekb)2

[(Eka − Ekb)2 + %2]2
(fka − fkb). (5)

The first term, Eq. (3), is the intraband (a = b) contribution
arising from the perturbation of the carrier distribution function
by the electric field. It is proportional to the momentum
scattering time (τ = !/2%) and is therefore an extrinsic

134402-2

HANG LI et al. PHYSICAL REVIEW B 91, 134402 (2015)

to a fieldlike torque generated by ISGE [31]. However, it
has been recently proposed that the incomplete absorption
of the SHE-induced spin current by the ferromagnet (or,
equivalently, the nonvanishing imaginary part of the interfacial
spin mixing conductance) may result in a fieldlike STT
component [31]. Similarly, in the context of ISGE-induced
SOT, recent theories have suggested that spin relaxation
and dephasing may also lead to a correction in the SOT
in the form of a anti-damping-like component [11–14].
In Refs. [12] and [13], the anti-damping-like SOT term
arises from the electron-scattering-induced spin relaxation.
In Ref. [31], the semiclassical diffusion formalism was used,
whereas in Refs. [11] and [14], the anti-damping-like SOT is
obtained within a quantum kinetic formalism. It is ascribed
to spin-dependent carrier lifetimes [11] or to a term arising
from the weak-diffusion limit, which in the leading order is
proportional to a constant carrier lifetime [14].

Intriguing material dependence of the SOTs has been
unraveled in various experiments keeping the debate on the
origin of these components open [22–27]. The difficulty in
determining the physical origin of the torques partly lies in the
complexity of the ultrathin bilayer considered, involving both
bulk and interfacial transport in the current-in-plane config-
uration. First-principles calculations have indeed pointed out
the significant sensitivity of the torques to the nature of the
interfaces [32].

In a recent publication, Kurebayashi et al. [33] investigated
the SOT in a bulk DMS. They observed a large anti-damping-
like torque that is not ascribed to the SHE since no adjacent
spin-orbit-coupled paramagnet is present. It was then proposed
that such a torque has a scattering-independent origin in the
Berry curvature of the band structure, in a similar spirit as the
intrinsic SHE was introduced about ten years ago [34,35].

In this paper, we present a systematic theoretical study of
SOTs arising from the ISGE and Berry curvature mechanisms
in a spin-independent relaxation time approximation. We focus
our attention on the current-driven spin-orbit field (called the
SOT field), hso, producing the spin-orbit torque T = M × hso.
This SOT field has an in-plane component of the ISGE
origin [29] hso

∥ = τFLuso [i.e., lying in the (m,uso) plane
and producing an out-of-plane torque] and also an intrinsic
contribution arising from interband transitions. The latter [33]
produces an out-of-plane field of the form hso

⊥ = τDLuso × m
[i.e., lying perpendicular to the (m,uso) plane]. Analytical
expressions are obtained in the model case of a magnetic
Rashba two-dimensional electron gas (2DEG), while numer-
ical calculations are performed on DMSs described by the
kinetic-exchange Kohn-Luttinger Hamiltonian [36]. Paramet-
ric dependencies of the different torque components and simi-
larities to the analytical results of the Rashba two-dimensional
electron gas in the weak disorder limit are described.

II. NONEQUILIBRIUM SPIN DENSITY: INTRABAND AND
INTERBAND CONTRIBUTIONS IN KUBO FORMULA

In the present study, we start from a general single-particle
Hamiltonian

Ĥsys = Ĥ0 + ĤSOC + Ĥex + Vimp(r) − eE · r̂, (1)

where the first term includes the spin-independent kinetic and
potential energies of the particle, the second term denotes
the coupling between the carrier spin and its orbital angular
momentum, and the third one represents the interaction
between the spin of the carrier and the magnetization of the
ferromagnetic system. Below, we refer to these first three
terms as the unperturbed part of the Hamiltonian. The fourth
term is the impurity potential and the fifth term is the electric
field applied through the system. Impurities are treated within
the constant relaxation time approximation while the electric
field is treated within the framework of the linear response
theory. As discussed below, this electric field has two distinct
effects on the electronic system: (i) it modifies the carrier
distribution function from its equilibrium Fermi-Dirac form
and (ii) it distorts the carrier wave functions. The former leads
to intraband ISGE contributions, while the latter is responsible
for the interband (Berry curvature) contribution. To calculate
the SOT field, we evaluate first the nonequilibrium spin density
δS using the Kubo formula

δS = e!
2πV

Re
∑

k,a,b

⟨ψka|ŝ|ψkb⟩⟨ψkb|E · v̂|ψka⟩

×
[
GR

kaG
A
kb − GR

kaG
R
kb

]
, (2)

where GR
ka = (GA

ka)∗ = 1/(EF − Eka + i%), EF is the Fermi
energy, Eka is the energy dispersion of band a, V is the system
volume, and % is the spectral broadening due to the finite
lifetime of the particle in the presence of impurities. The
Bloch state |ψka⟩ in band a can be found by diagonalizing
the unperturbed part of the Hamiltonian in Eq. (1). This
expression contains both intraband (a = b) and interband
(a ̸= b) contributions to the nonequilibrium spin density.
Numerical results in Sec. IV B are calculated with the above
equation.

In order to understand the numerical results, Eq. (2) can
be rewritten [37] as δS = δSintra + δSinter

1 + δSinter
2 when weak

impurity scattering (namely, small spectral broadening, % →
0) is assumed. The three contributions are

δSintra = 1
V

e!
2%

∑

k,a

⟨ψka|ŝ|ψka⟩⟨ψka|E · v̂|ψka⟩

× δ(Eka − EF ), (3)

δSinter
1 = −e!

V

∑

k,a ̸=b

2Re[⟨ψak|ŝ|ψbk⟩⟨ψbk|E · v̂|ψak⟩]

× %(Eka − Ekb)
[(Eka − Ekb)2 + %2]2

(fka − fkb), (4)

δSinter
2 = −e!

V

∑

k,a ̸=b

Im[⟨ψka|ŝ|ψkb⟩⟨ψkb|E · v̂|ψka⟩]

× %2 − (Eka − Ekb)2

[(Eka − Ekb)2 + %2]2
(fka − fkb). (5)

The first term, Eq. (3), is the intraband (a = b) contribution
arising from the perturbation of the carrier distribution function
by the electric field. It is proportional to the momentum
scattering time (τ = !/2%) and is therefore an extrinsic

134402-2

CISP - in linear response

HANG LI et al. PHYSICAL REVIEW B 91, 134402 (2015)

ferromagnetic Rashba 2DEG described by Eqs. (16) and (17).
The out-of-plane component hinter

⊥ converges to a finite value
when ! vanishes, indicating the intrinsic character of this part
of the SOT field. These results are consistent with the analytical
solutions obtained in Eqs. (13)–(15) in the ferromagnetic
Rashba 2DEG and weak scattering limit. It is worth noticing
that this dependence on spectral broadening holds over a wide
range of ! in the case of intraband contribution [see inset in
Fig. 2(a)], while it breaks down already for ! equal to few
meV for the interband contributions.

2. Ferromagnetic splitting

The band structure of (Ga,Mn)As changes with the Mn
doping that would, in the absence of the SOI, lead to a
rigid mutual shift of the majority- and minority-spin bands.
Such ferromagnetic splitting would be proportional to Jex =
JpdNMnSa and we can distinguish two limiting situations in a
system where the SOI is present: Eso ≪ Jex and Eso ≫ Jex.
In view of the analytical results presented in Sec. III, it is
meaningful to take Eso = αkF in the Rashba 2D system. For
each component of the nonequilibrium spin-density δSintra,
δSinter

1 , δSinter
2 , there is a transition between different types

of behavior in the two limits. For example, the out-of-plane
component of the SOT field h changes from the ∝J 2

ex
behavior in the αkF ≫ Jex limit implied by Eq. (12) into
a Jex-independent behavior in the opposite αkF ≪ Jex limit
implied by Eq. (15). We checked that this transition occurs
also in the numerical calculations across a range of Jex values.

FIG. 3. (Color online) (a) Intraband and (b),(c) interband SOT
field as a function of exchange interaction Jex = JpdNMn. Varied
values of Jex can be understood as a proxy to different Mn doping
concentrations, e.g., x = 5% corresponds to Jex = 0.06 eV, the
spectral broadening is set to 50 meV, and other parameters are the
same as in Fig. 2.

Contrary to the Rashba 2D system, the situation is more
complicated in (Ga,Mn)As because of the additional SOI terms
in Eq. (19). Due to their mutual competition, it is not obvious
what should be taken for the effective spin-orbit strength Eso.
Looking at the Jex dependence of the individual SOT field
components in Fig. 3, we nevertheless recognize similarities
to the Eso ≫ Jex limit behavior of the Rashba 2D system. To
some extent, this is a surprising finding since the disorder
broadening used for calculations in Fig. 3 is quite large
(! = 50 meV), better corresponding to realistic (Ga,Mn)As
samples but further away from the assumptions used to derive
the analytical results presented in Sec. III. When Jex is small,
both hintra

∥ and hinter
∥ are proportional to Jex as seen in Eqs. (10)

and (11), respectively. On the other hand, hinter
⊥ ∝ J 2

ex in the
bottom panel of Fig. 3, which is reminiscent of Eq. (12). No
similarities to the Rashba 2D system behavior of the opposite
limit (Eso ≪ Jex) are found in our calculations for (Ga,Mn)As.

3. Hole concentration

We display in Fig. 4 the SOT field as a function of the
hole density for different magnitudes of the lattice-mismatch
strain ϵzz. First of all, we notice that the SOT field components
increase linearly with the strain. Second, increase of the hole
concentration results in an increase in the in-plane SOT field h∥
approximatively following a p1/3 law, as shown in Figs. 4(a)
and 4(b). This is consistent with Eq. (17) in Ref. [6] in the
case of the intraband component. Interestingly, the in-plane

FIG. 4. (Color online) (a) Intraband and (b),(c) interband SOT
field as a function of hole concentration for different lattice-mismatch
strain ϵzz. Inset in (c): interband SOT field in the parabolic model.
The dashed lines in panel (a) are calculated using Eq. (17) in Ref. [6]
and follow a p1/3 law. Parameters are the same as in Fig. 3 except for
JpdNMn fixed to a value corresponding to Mn doping x = 5%.
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of antiferromagnetic exchange Hex = �AF · J. This interaction
leads to the ferromagnetic alignment of magnetic moments of
Mn ions and equilibrium polarization of hole spins. If further,
non-equilibrium spin polarization of the holes �JE is induced, the
interaction of the hole spins with magnetic moments of Mn ions
enables one to control ferromagnetism bymanipulating J. Magnetic
properties of (Ga,Mn)As are thus tightly related to the electronic
properties of GaAs. For example, strain-induced spin anisotropy of
the hole energy dispersion is largely responsible for the magnetic
anisotropy in this material. (Ga,Mn)As, epitaxially grown on the
(001) surface of GaAs, is compressively strained, which results in
magnetization M lying in the plane of the layer perpendicular to
the growth direction, with two easy axes along the [100] and [010]
crystallographic directions22,23. Recently, control of magnetization
by means of strain modulation has been demonstrated24. In this
letter, we use spin–orbit-generated polarization �JE to manip-
ulate ferromagnetism.

We report measurements on two samples fabricated from
(Ga,Mn)As wafers with different Mn concentrations. The devices
were patterned into circular islands with eight non-magnetic
ohmic contacts, as shown in Fig. 1a and discussed in the Methods
section. In the presence of a strong external magnetic field H,
the magnetization of the ferromagnetic island is aligned with the
field. For weak fields, however, the direction of magnetization
is primarily determined by magnetic anisotropy. As a small field
(5 < H < 20mT) is rotated in the plane of the sample, the
magnetization is re-aligned along the easy axis closest to the field
direction. Such rotation of magnetization by an external field is
demonstrated in Fig. 2. For the current I||[11̄0], the measured Rxy is
positive forM||[100] and negative forM||[010]. Note that Rxy , and
thus also the magnetization, switches direction when the direction
ofH is close to the hard axes [110] and [11̄0], confirming the cubic
magnetic anisotropy of our samples. The switching angles⌅H =\HI
whereRxy changes sign are denoted as ⌅(i)

H on the plot.
In the presence of both external and spin–orbit fields, we

expect to see a combined effect of Hso +H on the direction of
magnetization. For small currents (a few microamperes) H so ⌅ 0,
and Rxy does not depend on the sign or the direction of the
current. At large d.c. currents, the value of ⌅(i)

H becomes current
dependent and we define ⇧⌅(i)

H (I )= ⌅(i)
H (I )�⌅(i)

H (�I ). Specifically,
for I||[11̄0], the switching of magnetization [010] ⇧ [1̄00] occurs
for I = +0.7mA at smaller ⌅(1)

H than for I = �0.7mA, ⇧⌅(1)
H < 0.

For the [01̄0] ⇧ [100] magnetization switching, the I dependence
of the switching angle is reversed, ⇧⌅(3)

H > 0. There is no
measurable difference in switching angle for the [1̄00]⇧ [01̄0] and
[100]⇧ [010] transitions (⇧⌅(2,4)

H ⌅0).When the current is rotated
by 90⇤ (I||[110]), we observe ⇧⌅(2)

H > 0, ⇧⌅(4)
H < 0 and ⇧⌅(1,3)

H ⌅ 0.
Figure 2c shows that ⇧⌅(2)

H (I ) decreases as current decreases and
drops below experimental resolution of 0.5⇤ at I< 50 µA. Similar
data are obtained for sample B (see Supplementary Fig. S4).

The data can be qualitatively understood if we consider an
extra current-induced effective magnetic field Heff, as shown
schematically in Fig. 1b. When an external field H aligns the
magnetization along one of the hard axes, a small perpendicular
field can initiate magnetization switching. For I||[110], the effective
field Heff||[1̄10] aids the [100] ⇧ [010] magnetization switching,
whereas it hinders the [1̄00] ⇧ [01̄0] switching. For ⌅(1)

H ⌅ 90⇤ and
⌅(3)
H ⌅ 270⇤, where [010]⇧ [1̄00] and [01̄0]⇧ [100] magnetization

transitions occur, Heff||H does not affect the transition angle,
⇧⌅(2,4)

H = 0. For I||[11̄0], the direction of the field Heff||[110] is
reversed relative to the direction of the current, compared with
the I||[110] case. The symmetry of the measured Heff with respect
to I coincides with the unique symmetry of the strain-related
spin–orbit field (Fig. 1c).

The dependence of ⇧⌅(i)
H on various magnetic fields and current

orientations is summarized in Fig. 3a,b. Assuming that the angle of
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Figure 2 |Dependence of transverse anisotropic magnetoresistance
on current and field orientation. a,b, Transverse anisotropic
magnetoresistance Rxy as a function of external field direction ⌅H for
H= 10mT and current I= ±0.7mA in sample A. The angles ⌅(i)

H mark
magnetization switchings. c, Magnetization switching between [̄100] and
[01̄0] easy axes for several values of the current.

magnetization switching depends only on the total field Heff +H,
we can extract the magnitude H eff and angle ⇥ = \IHeff from
the measured ⇧⌅(i)

H , thus reconstructing the whole vector Heff.
Following a geometrical construction shown in Fig. 3d and taking
into account that⇧⌅(i)

H is small, we find that

H eff ⌅H sin(⇧⌅(i)
H /2)/sin(⇥ �⌅(i)

H )

and ⇥ can be found from the comparison of switching at two
angles. We find that ⇥ ⌅ 90⇤, or Heff⌥ I for I⌦[110] and I⌦[11̄0].
To further test our procedure, we carried out similar experiments
with small current I =10 µAbut constant extramagnetic field �H⌥I
having the role of Heff. The measured �H (⇧⌅H) coincides with
the applied �H within the precision of our measurements. (See
Supplementary Fig. S5.)

In Fig. 3c, H eff is plotted as a function of the average current
density �j for both samples. There is a small difference in the
H eff versus �j dependence for I⌦[110] and I⌦[11̄0]. The difference
can be explained by considering the current-induced Oersted field
HOe ⌃ I in the metal contacts. The Oersted field is localized
under the pads, which constitutes only 7% (2.5%) of the total
area for sample A (B). The Oersted field has the symmetry
of the field shown in Fig. 1d, and is added to or subtracted
from the spin–orbit field, depending on the current direction.
Thus, H eff = H so + HOe for I⌦[110] and H eff = H so � HOe for
I⌦[11̄0]. We estimate the fields to be as high as 0.6mT under
the contacts at I = 1mA, which corresponds to HOe ⌅ 0.04mT
(0.015mT) averaged over the sample area for sample A (B). These
estimates are reasonably consistent with the measured values of
0.07mT (0.03mT). Finally, we determine H so as an average of H eff

between the two current directions. The spin–orbit field depends
linearly on j, as expected for strain-related spin–orbit interactions:
dH so/dj = 0.53⇥ 10�9 and 0.23⇥ 10�9 T cm2 A�1 for samples A
and B respectively.

We now compare the experimentally measured H so with
theoretically calculated effective spin–orbit field. In (Ga,Mn)As,
the only term allowed by symmetry that generates H so linear
in the electric current is the ⌃⇤ term, which results in the
directional dependence of Hso on j precisely as observed in

NATURE PHYSICS | VOL 5 | SEPTEMBER 2009 | www.nature.com/naturephysics 657

LETTERS
PUBLISHED ONLINE: 2 AUGUST 2009 | DOI: 10.1038/NPHYS1362

Evidence for reversible control of magnetization in
a ferromagnetic material by means of spin–orbit
magnetic field
Alexandr Chernyshov1*, Mason Overby1*, Xinyu Liu2, Jacek K. Furdyna2, Yuli Lyanda-Geller1
and Leonid P. Rokhinson1†

The current state of information technology accentuates the
dichotomy between processing and storage of information,
with logical operations carried out by charge-based devices and
non-volatile memory based on magnetic materials. The main
obstacle for a wider use of magnetic materials for information
processing is the lack of efficient control of magnetization.
Reorientation of magnetic domains is conventionally carried
out by non-local external magnetic fields or by externally
polarized currents1–3. The efficiency of the latter approach
is enhanced in materials where ferromagnetism is carrier-
mediated4, because in such materials the control of carrier
polarization provides an alternative means for manipulating
the orientation of magnetic domains. In some crystalline
conductors, the charge current couples to the spins by
means of intrinsic spin–orbit interactions, thus generating
non-equilibrium electron spin polarization5–11 tunable by local
electric fields. Here, we show that magnetization can be
reversibly manipulated by the spin–orbit-induced polarization
of carrier spins generated by the injection of unpolarized
currents. Specifically, we demonstrate domain rotation and
hysteretic switching of magnetization between two orthogonal
easy axes in amodel ferromagnetic semiconductor.

In crystalline materials with inversion asymmetry, intrinsic
spin–orbit interactions couple the electron spinwith itsmomentum
h̄k. The coupling is given by the Hamiltonian Hso = (h̄/2)⇤̂ ·�(k),
where h̄ is the reduced Planck constant and ⇤̂ is the electron
spin operator (for holes ⇤̂ should be replaced by the total angular
momentum J). Electron states with different spin projection signs
on �(k) are split in energy, analogous to the Zeeman splitting
in an external magnetic field. In zinc-blende crystals such as
GaAs there is a cubic Dresselhaus term12 �D ⇥ k3, whereas strain
introduces a term �⌅ = C⇧⌅(kx ,�ky ,0) that is linear in k, where
⇧⌅ is the difference between strain in the ẑ and x̂, ŷ directions13.
In wurtzite crystals or in multilayered materials with structural
inversion asymmetry, there also exists the Rashba term14 �R,
which has a different symmetry with respect to the direction of k,
�R =�R(�ky ,kx ,0), where ẑ is along the axis of reduced symmetry.
In the presence of an electric field, the electrons acquire an average
momentum h̄⇧k(E), which leads to the generation of an electric
current j= ⇥̂�1E in the conductor, where ⇥̂ is the resistivity tensor.
This current defines the preferential axis for spin precession ⇤⌃(j)⌅.
As a result, a non-equilibrium current-induced spin polarization
⇤JE⌅⇧⇤�(j)⌅ is generated, the magnitude of which ⇤J E⌅ depends
on the strength of various mechanisms of momentum scattering
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Figure 1 | Layout of the device and symmetry of the spin–orbit fields.
a, Atomic force micrograph of sample A with eight non-magnetic metal
contacts. b, Diagram of device orientation with respect to crystallographic
axes, with easy and hard magnetization axes marked with blue dashed and
red dot–dash lines, respectively. Measured directions of Heff field are
shown for different current directions. c,d, Orientation of effective magnetic
field with respect to current direction for strain-induced (c) and Rashba (d)
spin–orbit interactions. The current-induced Oersted field under the
contacts has the same symmetry as the Rashba field.

and spin relaxation5,15. This spin polarization has been measured
in non-magnetic semiconductors using optical7–9,11,16 and electron
spin resonance17 techniques. It is convenient to parameterize ⇤JE⌅
in terms of an effective magnetic field Hso. Different contributions
to Hso have different current dependencies (⇥ j or j3), as well
as different symmetries with respect to the direction of j, as
schematically shown in Fig. 1c,d, enabling one to distinguish
between spin polarizations in different fields.

To investigate interactions between the spin–orbit-generated
magnetic field and magnetic domains, we have chosen (Ga,Mn)As,
a p-type ferromagnetic semiconductor18,19 with zinc-blende crys-
talline structure similar to GaAs. Ferromagnetic interactions in this
material are carrier-mediated20,21. The total angular momentum of
the holes J couples to the magnetic moment F of Mn ions by means
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heavy-metal/FM heterostructures due to spin Hall effect.
Lateral electrical current generates spin current in the perpen-
dicular direction due to the spin Hall effect, which flows in the
FM and exerts a torque via the spin-transfer torque mechanism.
Since the heterostructures have broken inversion symmetry,
the torque due to inverse spin galvanic effect coexists with the
spin Hall torque, rendering the entire physics quite complex
to analyze (see for instance Ref. [37], where both mechanisms
are included). We only consider bulk systems in which the spin
Hall effect does not generate any torque.

To calculate the CISP δSa (a denotes the sublattice) we use
the Kubo linear response formalism. We can define a response
tensor χa such that δSa = χaE, where E is the electrical field.
We assume that the only effect of disorder is a constant band
broadening # and we consider a weak disorder (i.e., small #).
As discussed in Ref. [28], the tensor χa can then be expressed
as a sum of three terms:

χa = χ I
a + χ II(a)

a + χ II(b)
a , (1)

χ I
a,ij = − e!

2#

∑

k,n

⟨ψnk|Ŝa,i |ψnk⟩⟨ψnk|v̂j |ψnk⟩

×δ(εkn − EF ), (2)

χ
II(a)
a,ij = e!

∑

k,n̸=m

Im[⟨ψnk|Ŝa,i |ψmk⟩⟨ψmk|v̂j |ψnk⟩]

× #2 − (εkn − εkm)2

[(εkn − εkm)2 + #2]2
(fkn − fkm), (3)

χ
II(b)
a,ij = 2e!

∑

k,n̸=m

Re[⟨ψnk|Ŝa,i |ψmk⟩⟨ψmk|v̂j |ψnk⟩]

× #(εkn − εkm)
[(εkn − εkm)2 + #2]2

(fkn − fkm), (4)

where n,m are band indices, ψnk and εnk denote Bloch
eigenfunctions and eigenvectors, respectively, EF is the Fermi
energy, fk,n is the Fermi-Dirac distribution function, v̂ is the
velocity operator, e is the (positive) elementary charge, and
Ŝa is the spin-operator projected on sublattice a. Throughout
this text we use a dimensionless spin operator; i.e., for one
electron Ŝ = σ , where σ is a vector of Pauli matrices. The k
sums run over the first Brillouin zone. These equations are the
same as in Ref. [28], except we replace the spin operator by the
spin operator projected on a sublattice. We calculate the CISP
for the AFM spin sublattices. However, the same formalism
applies also for any sublattice in a FM or a nonmagnetic
material. χ I

a is called the intraband term and χ II(a)
a ,χ II(b)

a are
the interband terms. The term χ I

a could also be obtained from
the Boltzmann formula with constant relaxation time (with the
relaxation time τ = !/2#). It is diverging in the limit # −→ 0,
analogously to how, for example, the conductivity diverges
in a perfectly periodic crystal. Thus to evaluate this term we
always have to consider some disorder, i.e., a finite #. The
term χ II(a)

a is constant in the zero-# limit, while the term χ II(b)
a

is zero in this limit. The zero-# limit of the term χ II(a)
a is

called the intrinsic contribution since it is determined only
by the electronic structure of the crystal and not by disorder.
The intrinsic contribution has been studied extensively in the

FIG. 1. Crystal structure of two model AFMs. (a) Crystal struc-
ture of the AFM 2D Rashba model. (b) Crystal structure of AFM
Mn2Au. Note that the unit cell shown is the conventional unit cell,
which is as large as the primitive unit cell. All of the atoms with the
same color are connected by a translation and are thus equivalent.

context of the anomalous Hall effect [38] and the spin Hall
effect [39].

We calculated the CISP for the two tight-binding models
from Ref. [31]. For completeness we give here a description
of the models. The first one is a 2D tight-binding model with
Rashba spin-orbit coupling, which simulates the structural in-
version asymmetry at a surface or an interface. The model was
chosen as a simplest AFM model in which the spin-orbit torque
is expected. We consider a square AFM lattice [see Fig. 1(a)],
where the d-orbital local magnetic moments are treated
classically and only the conduction s electrons are treated
quantum mechanically. The Hamiltonian can be written as

H =
∑

⟨ij⟩
JddM̂i · M̂j + Htb +

∑

i

JsdŜi · M̂i + HR. (5)

Here the indices i,j correspond to lattice sites; M̂i ,M̂j are
directions of magnetic moments, Jdd and Jsd are the exchange
constants for exchange interaction between the magnetic
moments, and between the magnetic moments and conduction
electron spins, respectively. Htb contains the nearest-neighbor
hoppings. HR is the Rashba spin-orbit coupling, given by

HR = α

2al

∑

j

[(c†j↑cj+δx↓ − c
†
j↓cj+δx↑)

− i(c†j↑cj+δy↓ + c
†
j↓cj+δy↑) + H.c.], (6)

where α is the Rashba parameter, al the lattice constant, c†j , cj

are the creation and annihilation operators for electron on
site j , and j + δx, j + δy are nearest neighbors along the
x and y directions, respectively. Reference [31] shows the
band structure of this Hamiltonian. In all calculations we set
t = 3 eV, Jsd = 1 eV, and α

2al
= 0.1 eV, where t is the hopping

parameter. Unless stated otherwise, the Fermi level is set to
EF = −2 eV.

The torque is given by

Ta = Ma × Ba, (7)

where Ma is the magnetic moment on sublattice a and Ba is the
effective current-induced field, which for this model is given
by [23]

Ba = −Jsd
δSa

Ma

, (8)
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in the AFM 2D Rashba model, a simultaneous translation and
time inversion will always be a symmetry of the model that
transforms one AFM spin-sublattice into the other. For such
a symmetry operation, D = I , where I is the identity matrix,
and therefore

χ even
A = χ even

B , (16)

χodd
A = −χodd

B . (17)

This implies that the efficient torque driven by a staggered field
is generated by the odd component of the response tensor.

In the Mn2Au type of crystal, the AFM spin sublattices are
not connected by translation. Instead they are connected by
inversion around the unit cell center so that a combination of
inversion and time reversal is a symmetry of the model. Since
in this case D = −I , we find

χ even
A = −χ even

B , (18)

χodd
A = χodd

B , (19)

and now it is the even component of the response tensor that
generates the staggered CISP. The two models illustrate a
general phenomenology of CISPs in collinear AFMs, in which
the two AFM spin sublattices are typically connected either
by a translation or by an inversion.

By considering the magnetic space group of a given
material, one can find using the Eqs. (13) and (14) the most
general form of the tensor χa as well as relations between
tensors χa on different sublattices. Note that for the CISP
projected on a sublattice it is not enough to consider the
point group of the crystal because then the information on
the relationship between the sublattices would be lost. We
provide a free program which outputs the symmetry of the
CISP for any type of crystal and magnetic structure [49]. See
the Appendix B for a brief description of the code. Symmetry
of the tensors, which describe the global spin-orbit torque, can
be found in Ref. [50] for every magnetic point group. These
also apply for the local spin-orbit torque, if one uses the site
symmetry group (of the site which forms the sublattice), i.e.,
the group of symmetry operations of the whole crystal that
leave the sublattice invariant.

In a magnetic material, the CISP in general depends on
the direction of the magnetic moments. This is because
the CISP is determined by the electronic structure and in
the presence of spin-orbit coupling the electronic structure
depends on the direction of magnetic moments. Understanding
this dependence is important because it determines what kind
of magnetic dynamics the spin-orbit torque will induce. Note
that a CISP strongly dependent on the direction of magnetic
moments has been observed experimentally [24]. To describe
the dependence of the CISP on the direction of magnetic
moments, it is useful to expand the linear response tensor
in powers of magnetic moments. In general χa depends
on the directions of all magnetic moments in the system.
We consider only FMs and collinear two-sublattice AFMs.
We again assume that the magnetic moments will always
stay approximately collinear. Since the intra-spin-sublattice
exchange is typically very large, we also assume that the
magnitude of the spin-sublattice magnetic moments will not

change during dynamics. Then χa will be a function of
only the spin-axis direction n̂. In the case of two-sublattice
collinear AFMs, n̂ = L̂ = L̂/|L|, where L is the Néel vector:
L = MA − MB . In FMs n̂ = M/|M|. We can then write the
tensor χa in the following way [51]:

χa,ij (n̂) = χ
(0)
a,ij + χ

(1)
a,ij,kn̂k + χ

(2)
a,ij,kl n̂kn̂l + · · · . (20)

Here the Einstein summation notation is used. Note that since
n̂ is a unit vector, the expansion could be done using two
variables only. We find it more practical, however, to use
all three components of n̂. The odd terms in the expansion
correspond to the odd part of the CISP, while the even terms
correspond to the even part.

To find the symmetry properties of the expansion (20) we
have to consider the nonmagnetic site symmetry group. This is
a group of symmetry operations of the nonmagnetic crystal that
leave the sublattice a invariant. [See Appendix A for details
on how to find the symmetry properties of the expansion
(20).] Since there are only 21 nonmagnetic point groups
with broken inversion symmetry, it is feasible to calculate
all allowed leading terms of the expansion (20). This was
done for the zeroth-order terms in Ref. [48] that focused on
the CISP in FMs. The zeroth-order terms generate the fieldlike
torque. In Table I we give all allowed first-order terms and
for completeness we also show the zeroth-order terms. The
zeroth-order term vanishes for several point groups. For those
we also give the second-order terms in Table II. Together the
tables give the lowest-order terms for the even and odd part of
the CISP in all 21 noncentrosymmetric point groups.

The tensors in Tables I and II are given in Cartesian
coordinate systems. The Cartesian systems are defined in terms
of the conventional basis vectors a,b,c (see the International
Tables for Crystallography [52]). The choice of the Cartesian
system is straightforward for the orthorhombic, tetragonal,
and cubic groups. The tensors for the triclinic group 1 have
a completely general form and the choice of the coordinate
system is thus irrelevant for this group. For hexagonal and
trigonal groups, we choose the right-handed coordinate system
that satisfies x = a/|a|, z = c/|c|. For the monoclinic groups
we use the unique axis b setting [52] and choose the right-
handed coordinate system that satisfies x = a/|a|, y = b/|b|.

The tensors in Tables I and II apply for two-sublattice
collinear AFMs and FMs. In the case of AFMs the expansion
only applies for the CISP on a sublattice and correspondingly
the site symmetry group has to be used. In FMs, the tensors
apply for the local as well as for the net CISP. In the
latter case the point group of the whole crystal has to be
used. Since the zeroth-order term is independent of magnetic
moments it can be equally considered for any material,
including noncollinear AFMs. In nonmagnetic materials, there
is naturally no dependence on magnetic moments so the
zeroth-order term describes the CISP completely in this case.

The zeroth-order terms that generate the fieldlike torque
are particularly important since they are often dominant.
As discussed in Ref. [48], the tensors corresponding to the
fieldlike torque are in general composed of three distinct
terms: generalized Rashba and Dresselhaus terms and a term
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heavy-metal/FM heterostructures due to spin Hall effect.
Lateral electrical current generates spin current in the perpen-
dicular direction due to the spin Hall effect, which flows in the
FM and exerts a torque via the spin-transfer torque mechanism.
Since the heterostructures have broken inversion symmetry,
the torque due to inverse spin galvanic effect coexists with the
spin Hall torque, rendering the entire physics quite complex
to analyze (see for instance Ref. [37], where both mechanisms
are included). We only consider bulk systems in which the spin
Hall effect does not generate any torque.

To calculate the CISP δSa (a denotes the sublattice) we use
the Kubo linear response formalism. We can define a response
tensor χa such that δSa = χaE, where E is the electrical field.
We assume that the only effect of disorder is a constant band
broadening # and we consider a weak disorder (i.e., small #).
As discussed in Ref. [28], the tensor χa can then be expressed
as a sum of three terms:

χa = χ I
a + χ II(a)

a + χ II(b)
a , (1)

χ I
a,ij = − e!

2#

∑

k,n

⟨ψnk|Ŝa,i |ψnk⟩⟨ψnk|v̂j |ψnk⟩

×δ(εkn − EF ), (2)

χ
II(a)
a,ij = e!

∑

k,n̸=m

Im[⟨ψnk|Ŝa,i |ψmk⟩⟨ψmk|v̂j |ψnk⟩]

× #2 − (εkn − εkm)2

[(εkn − εkm)2 + #2]2
(fkn − fkm), (3)

χ
II(b)
a,ij = 2e!

∑

k,n̸=m

Re[⟨ψnk|Ŝa,i |ψmk⟩⟨ψmk|v̂j |ψnk⟩]

× #(εkn − εkm)
[(εkn − εkm)2 + #2]2

(fkn − fkm), (4)

where n,m are band indices, ψnk and εnk denote Bloch
eigenfunctions and eigenvectors, respectively, EF is the Fermi
energy, fk,n is the Fermi-Dirac distribution function, v̂ is the
velocity operator, e is the (positive) elementary charge, and
Ŝa is the spin-operator projected on sublattice a. Throughout
this text we use a dimensionless spin operator; i.e., for one
electron Ŝ = σ , where σ is a vector of Pauli matrices. The k
sums run over the first Brillouin zone. These equations are the
same as in Ref. [28], except we replace the spin operator by the
spin operator projected on a sublattice. We calculate the CISP
for the AFM spin sublattices. However, the same formalism
applies also for any sublattice in a FM or a nonmagnetic
material. χ I

a is called the intraband term and χ II(a)
a ,χ II(b)

a are
the interband terms. The term χ I

a could also be obtained from
the Boltzmann formula with constant relaxation time (with the
relaxation time τ = !/2#). It is diverging in the limit # −→ 0,
analogously to how, for example, the conductivity diverges
in a perfectly periodic crystal. Thus to evaluate this term we
always have to consider some disorder, i.e., a finite #. The
term χ II(a)

a is constant in the zero-# limit, while the term χ II(b)
a

is zero in this limit. The zero-# limit of the term χ II(a)
a is

called the intrinsic contribution since it is determined only
by the electronic structure of the crystal and not by disorder.
The intrinsic contribution has been studied extensively in the

FIG. 1. Crystal structure of two model AFMs. (a) Crystal struc-
ture of the AFM 2D Rashba model. (b) Crystal structure of AFM
Mn2Au. Note that the unit cell shown is the conventional unit cell,
which is as large as the primitive unit cell. All of the atoms with the
same color are connected by a translation and are thus equivalent.

context of the anomalous Hall effect [38] and the spin Hall
effect [39].

We calculated the CISP for the two tight-binding models
from Ref. [31]. For completeness we give here a description
of the models. The first one is a 2D tight-binding model with
Rashba spin-orbit coupling, which simulates the structural in-
version asymmetry at a surface or an interface. The model was
chosen as a simplest AFM model in which the spin-orbit torque
is expected. We consider a square AFM lattice [see Fig. 1(a)],
where the d-orbital local magnetic moments are treated
classically and only the conduction s electrons are treated
quantum mechanically. The Hamiltonian can be written as

H =
∑

⟨ij⟩
JddM̂i · M̂j + Htb +

∑

i

JsdŜi · M̂i + HR. (5)

Here the indices i,j correspond to lattice sites; M̂i ,M̂j are
directions of magnetic moments, Jdd and Jsd are the exchange
constants for exchange interaction between the magnetic
moments, and between the magnetic moments and conduction
electron spins, respectively. Htb contains the nearest-neighbor
hoppings. HR is the Rashba spin-orbit coupling, given by

HR = α

2al

∑

j

[(c†j↑cj+δx↓ − c
†
j↓cj+δx↑)

− i(c†j↑cj+δy↓ + c
†
j↓cj+δy↑) + H.c.], (6)

where α is the Rashba parameter, al the lattice constant, c†j , cj

are the creation and annihilation operators for electron on
site j , and j + δx, j + δy are nearest neighbors along the
x and y directions, respectively. Reference [31] shows the
band structure of this Hamiltonian. In all calculations we set
t = 3 eV, Jsd = 1 eV, and α

2al
= 0.1 eV, where t is the hopping

parameter. Unless stated otherwise, the Fermi level is set to
EF = −2 eV.

The torque is given by

Ta = Ma × Ba, (7)

where Ma is the magnetic moment on sublattice a and Ba is the
effective current-induced field, which for this model is given
by [23]

Ba = −Jsd
δSa

Ma

, (8)
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TABLE I. Zeroth- and first-order terms in the expansion (20) for the point groups with broken inversion symmetry. The tensors χ (1) have
the spin-axis direction included: χ

(1)
ij = χ

(1)
ij,kn̂k . The x parameters can be chosen arbitrarily for each tensor. Note that the groups −42m and

−4m2, 312 and 321, 3m1 and 31m, and −6m2 and −62m are equivalent and differ only by a coordinate transformation. For completeness we
also give the tensors for the equivalent groups.

Crystal system Point group χ (0) χ (1)

triclinic 1

⎛

⎜⎝
x11 x12 x13

x21 x22 x23

x31 x32 x33

⎞

⎟⎠

⎛

⎜⎝
n̂xx111 + n̂yx112 + n̂zx113 n̂xx121 + n̂yx122 + n̂zx123 n̂xx131 + n̂yx132 + n̂zx133

n̂xx211 + n̂yx212 + n̂zx213 n̂xx221 + n̂yx222 + n̂zx223 n̂xx231 + n̂yx232 + n̂zx233

n̂xx311 + n̂yx312 + n̂zx313 n̂xx321 + n̂yx322 + n̂zx323 n̂xx331 + n̂yx332 + n̂zx333

⎞

⎟⎠

monoclinic 2

⎛

⎜⎝
x11 0 x13

0 x22 0

x31 0 x33

⎞

⎟⎠

⎛

⎜⎝
n̂yx1 n̂xx13 + n̂zx12 n̂yx3

n̂xx5 + n̂zx6 n̂yx11 n̂xx4 + n̂zx7

n̂yx10 n̂xx8 + n̂zx9 n̂yx2

⎞

⎟⎠

m

⎛

⎜⎝
0 x12 0

x21 0 x23

0 x32 0

⎞

⎟⎠

⎛

⎜⎝
n̂xx12 + n̂zx9 n̂yx14 n̂xx13 + n̂zx8

n̂yx3 n̂xx11 + n̂zx10 n̂yx4

n̂xx7 + n̂zx6 n̂yx5 n̂xx1 + n̂zx2

⎞

⎟⎠

orthorhombic 222

⎛

⎜⎝
x11 0 0

0 x22 0

0 0 x33

⎞

⎟⎠

⎛

⎜⎝
0 n̂zx5 n̂yx4

n̂zx1 0 n̂xx6

n̂yx3 n̂xx2 0

⎞

⎟⎠

mm2

⎛

⎜⎝
0 x12 0

x21 0 0

0 0 0

⎞

⎟⎠

⎛

⎜⎝
n̂zx4 0 n̂xx6

0 n̂zx5 n̂yx7

n̂xx3 n̂yx2 n̂zx1

⎞

⎟⎠

tetragonal 4

⎛

⎜⎝
x11 −x21 0

x21 x11 0

0 0 x33

⎞

⎟⎠

⎛

⎜⎝
n̂zx6 −n̂zx2 n̂xx5 − n̂yx7

n̂zx2 n̂zx6 n̂xx7 + n̂yx5

n̂xx4 − n̂yx3 n̂xx3 + n̂yx4 n̂zx1

⎞

⎟⎠

−4

⎛

⎜⎝
x11 x21 0

x21 −x11 0

0 0 0

⎞

⎟⎠

⎛

⎜⎝
n̂zx5 n̂zx1 n̂xx4 + n̂yx6

n̂zx1 −n̂zx5 n̂xx6 − n̂yx4

n̂xx3 + n̂yx2 n̂xx2 − n̂yx3 0

⎞

⎟⎠

422

⎛

⎜⎝
x11 0 0

0 x11 0

0 0 x33

⎞

⎟⎠

⎛

⎜⎝
0 −n̂zx3 −n̂yx2

n̂zx3 0 n̂xx2

−n̂yx1 n̂xx1 0

⎞

⎟⎠

4mm

⎛

⎜⎝
0 −x21 0

x21 0 0

0 0 0

⎞

⎟⎠

⎛

⎜⎝
n̂zx4 0 n̂xx1

0 n̂zx4 n̂yx1

n̂xx3 n̂yx3 n̂zx2

⎞

⎟⎠

−42m

⎛

⎜⎝
x11 0 0

0 −x11 0

0 0 0

⎞

⎟⎠

⎛

⎜⎝
0 n̂zx3 n̂yx2

n̂zx3 0 n̂xx2

n̂yx1 n̂xx1 0

⎞

⎟⎠

−4m2

⎛

⎜⎝
0 x21 0

x21 0 0

0 0 0

⎞

⎟⎠

⎛

⎜⎝
n̂zx3 0 n̂xx1

0 −n̂zx3 −n̂yx1

n̂xx2 −n̂yx2 0

⎞

⎟⎠

trigonal 3

⎛

⎜⎝
x11 −x21 0

x21 x11 0

0 0 x33

⎞

⎟⎠

⎛

⎜⎝
n̂xx7 + n̂yx2 + n̂zx8 n̂xx2 − n̂yx7 − n̂zx3 n̂xx6 − n̂yx9

n̂xx2 − n̂yx7 + n̂zx3 −n̂xx7 − n̂yx2 + n̂zx8 n̂xx9 + n̂yx6

n̂xx5 − n̂yx4 n̂xx4 + n̂yx5 n̂zx1

⎞

⎟⎠

312

⎛

⎜⎝
x11 0 0

0 x11 0

0 0 x33

⎞

⎟⎠

⎛

⎜⎝
n̂yx3 n̂xx3 − n̂zx4 −n̂yx2

n̂xx3 + n̂zx4 −n̂yx3 n̂xx2

−n̂yx1 n̂xx1 0

⎞

⎟⎠

321

⎛

⎜⎝
x11 0 0

0 x11 0

0 0 x33

⎞

⎟⎠

⎛

⎜⎝
n̂xx3 −n̂yx3 − n̂zx4 −n̂yx2

−n̂yx3 + n̂zx4 −n̂xx3 n̂xx2

−n̂yx1 n̂xx1 0

⎞

⎟⎠
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TABLE I. Zeroth- and first-order terms in the expansion (20) for the point groups with broken inversion symmetry. The tensors χ (1) have
the spin-axis direction included: χ

(1)
ij = χ

(1)
ij,kn̂k . The x parameters can be chosen arbitrarily for each tensor. Note that the groups −42m and

−4m2, 312 and 321, 3m1 and 31m, and −6m2 and −62m are equivalent and differ only by a coordinate transformation. For completeness we
also give the tensors for the equivalent groups.

Crystal system Point group χ (0) χ (1)

triclinic 1

⎛

⎜⎝
x11 x12 x13

x21 x22 x23

x31 x32 x33

⎞

⎟⎠

⎛

⎜⎝
n̂xx111 + n̂yx112 + n̂zx113 n̂xx121 + n̂yx122 + n̂zx123 n̂xx131 + n̂yx132 + n̂zx133

n̂xx211 + n̂yx212 + n̂zx213 n̂xx221 + n̂yx222 + n̂zx223 n̂xx231 + n̂yx232 + n̂zx233

n̂xx311 + n̂yx312 + n̂zx313 n̂xx321 + n̂yx322 + n̂zx323 n̂xx331 + n̂yx332 + n̂zx333

⎞

⎟⎠

monoclinic 2

⎛

⎜⎝
x11 0 x13

0 x22 0

x31 0 x33

⎞

⎟⎠

⎛

⎜⎝
n̂yx1 n̂xx13 + n̂zx12 n̂yx3

n̂xx5 + n̂zx6 n̂yx11 n̂xx4 + n̂zx7

n̂yx10 n̂xx8 + n̂zx9 n̂yx2

⎞

⎟⎠

m

⎛

⎜⎝
0 x12 0

x21 0 x23

0 x32 0

⎞

⎟⎠

⎛

⎜⎝
n̂xx12 + n̂zx9 n̂yx14 n̂xx13 + n̂zx8

n̂yx3 n̂xx11 + n̂zx10 n̂yx4

n̂xx7 + n̂zx6 n̂yx5 n̂xx1 + n̂zx2

⎞

⎟⎠

orthorhombic 222

⎛

⎜⎝
x11 0 0

0 x22 0

0 0 x33

⎞

⎟⎠

⎛

⎜⎝
0 n̂zx5 n̂yx4

n̂zx1 0 n̂xx6

n̂yx3 n̂xx2 0

⎞

⎟⎠

mm2

⎛

⎜⎝
0 x12 0

x21 0 0

0 0 0

⎞

⎟⎠

⎛

⎜⎝
n̂zx4 0 n̂xx6

0 n̂zx5 n̂yx7

n̂xx3 n̂yx2 n̂zx1

⎞

⎟⎠

tetragonal 4

⎛

⎜⎝
x11 −x21 0

x21 x11 0

0 0 x33

⎞

⎟⎠

⎛

⎜⎝
n̂zx6 −n̂zx2 n̂xx5 − n̂yx7

n̂zx2 n̂zx6 n̂xx7 + n̂yx5

n̂xx4 − n̂yx3 n̂xx3 + n̂yx4 n̂zx1

⎞

⎟⎠

−4

⎛

⎜⎝
x11 x21 0

x21 −x11 0

0 0 0

⎞

⎟⎠

⎛

⎜⎝
n̂zx5 n̂zx1 n̂xx4 + n̂yx6

n̂zx1 −n̂zx5 n̂xx6 − n̂yx4

n̂xx3 + n̂yx2 n̂xx2 − n̂yx3 0

⎞

⎟⎠

422

⎛

⎜⎝
x11 0 0

0 x11 0

0 0 x33

⎞

⎟⎠

⎛

⎜⎝
0 −n̂zx3 −n̂yx2

n̂zx3 0 n̂xx2

−n̂yx1 n̂xx1 0

⎞

⎟⎠

4mm

⎛

⎜⎝
0 −x21 0

x21 0 0

0 0 0

⎞

⎟⎠

⎛

⎜⎝
n̂zx4 0 n̂xx1

0 n̂zx4 n̂yx1

n̂xx3 n̂yx3 n̂zx2

⎞

⎟⎠

−42m

⎛

⎜⎝
x11 0 0

0 −x11 0

0 0 0

⎞

⎟⎠

⎛

⎜⎝
0 n̂zx3 n̂yx2

n̂zx3 0 n̂xx2

n̂yx1 n̂xx1 0

⎞

⎟⎠

−4m2

⎛

⎜⎝
0 x21 0

x21 0 0

0 0 0

⎞

⎟⎠

⎛

⎜⎝
n̂zx3 0 n̂xx1

0 −n̂zx3 −n̂yx1

n̂xx2 −n̂yx2 0

⎞

⎟⎠

trigonal 3

⎛

⎜⎝
x11 −x21 0

x21 x11 0

0 0 x33

⎞

⎟⎠

⎛

⎜⎝
n̂xx7 + n̂yx2 + n̂zx8 n̂xx2 − n̂yx7 − n̂zx3 n̂xx6 − n̂yx9

n̂xx2 − n̂yx7 + n̂zx3 −n̂xx7 − n̂yx2 + n̂zx8 n̂xx9 + n̂yx6

n̂xx5 − n̂yx4 n̂xx4 + n̂yx5 n̂zx1

⎞

⎟⎠

312

⎛

⎜⎝
x11 0 0

0 x11 0

0 0 x33

⎞

⎟⎠

⎛

⎜⎝
n̂yx3 n̂xx3 − n̂zx4 −n̂yx2

n̂xx3 + n̂zx4 −n̂yx3 n̂xx2

−n̂yx1 n̂xx1 0

⎞

⎟⎠

321

⎛

⎜⎝
x11 0 0

0 x11 0

0 0 x33

⎞

⎟⎠

⎛

⎜⎝
n̂xx3 −n̂yx3 − n̂zx4 −n̂yx2

−n̂yx3 + n̂zx4 −n̂xx3 n̂xx2

−n̂yx1 n̂xx1 0

⎞

⎟⎠
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in the AFM 2D Rashba model, a simultaneous translation and
time inversion will always be a symmetry of the model that
transforms one AFM spin-sublattice into the other. For such
a symmetry operation, D = I , where I is the identity matrix,
and therefore

χ even
A = χ even

B , (16)

χodd
A = −χodd

B . (17)

This implies that the efficient torque driven by a staggered field
is generated by the odd component of the response tensor.

In the Mn2Au type of crystal, the AFM spin sublattices are
not connected by translation. Instead they are connected by
inversion around the unit cell center so that a combination of
inversion and time reversal is a symmetry of the model. Since
in this case D = −I , we find

χ even
A = −χ even

B , (18)

χodd
A = χodd

B , (19)

and now it is the even component of the response tensor that
generates the staggered CISP. The two models illustrate a
general phenomenology of CISPs in collinear AFMs, in which
the two AFM spin sublattices are typically connected either
by a translation or by an inversion.

By considering the magnetic space group of a given
material, one can find using the Eqs. (13) and (14) the most
general form of the tensor χa as well as relations between
tensors χa on different sublattices. Note that for the CISP
projected on a sublattice it is not enough to consider the
point group of the crystal because then the information on
the relationship between the sublattices would be lost. We
provide a free program which outputs the symmetry of the
CISP for any type of crystal and magnetic structure [49]. See
the Appendix B for a brief description of the code. Symmetry
of the tensors, which describe the global spin-orbit torque, can
be found in Ref. [50] for every magnetic point group. These
also apply for the local spin-orbit torque, if one uses the site
symmetry group (of the site which forms the sublattice), i.e.,
the group of symmetry operations of the whole crystal that
leave the sublattice invariant.

In a magnetic material, the CISP in general depends on
the direction of the magnetic moments. This is because
the CISP is determined by the electronic structure and in
the presence of spin-orbit coupling the electronic structure
depends on the direction of magnetic moments. Understanding
this dependence is important because it determines what kind
of magnetic dynamics the spin-orbit torque will induce. Note
that a CISP strongly dependent on the direction of magnetic
moments has been observed experimentally [24]. To describe
the dependence of the CISP on the direction of magnetic
moments, it is useful to expand the linear response tensor
in powers of magnetic moments. In general χa depends
on the directions of all magnetic moments in the system.
We consider only FMs and collinear two-sublattice AFMs.
We again assume that the magnetic moments will always
stay approximately collinear. Since the intra-spin-sublattice
exchange is typically very large, we also assume that the
magnitude of the spin-sublattice magnetic moments will not

change during dynamics. Then χa will be a function of
only the spin-axis direction n̂. In the case of two-sublattice
collinear AFMs, n̂ = L̂ = L̂/|L|, where L is the Néel vector:
L = MA − MB . In FMs n̂ = M/|M|. We can then write the
tensor χa in the following way [51]:

χa,ij (n̂) = χ
(0)
a,ij + χ

(1)
a,ij,kn̂k + χ

(2)
a,ij,kl n̂kn̂l + · · · . (20)

Here the Einstein summation notation is used. Note that since
n̂ is a unit vector, the expansion could be done using two
variables only. We find it more practical, however, to use
all three components of n̂. The odd terms in the expansion
correspond to the odd part of the CISP, while the even terms
correspond to the even part.

To find the symmetry properties of the expansion (20) we
have to consider the nonmagnetic site symmetry group. This is
a group of symmetry operations of the nonmagnetic crystal that
leave the sublattice a invariant. [See Appendix A for details
on how to find the symmetry properties of the expansion
(20).] Since there are only 21 nonmagnetic point groups
with broken inversion symmetry, it is feasible to calculate
all allowed leading terms of the expansion (20). This was
done for the zeroth-order terms in Ref. [48] that focused on
the CISP in FMs. The zeroth-order terms generate the fieldlike
torque. In Table I we give all allowed first-order terms and
for completeness we also show the zeroth-order terms. The
zeroth-order term vanishes for several point groups. For those
we also give the second-order terms in Table II. Together the
tables give the lowest-order terms for the even and odd part of
the CISP in all 21 noncentrosymmetric point groups.

The tensors in Tables I and II are given in Cartesian
coordinate systems. The Cartesian systems are defined in terms
of the conventional basis vectors a,b,c (see the International
Tables for Crystallography [52]). The choice of the Cartesian
system is straightforward for the orthorhombic, tetragonal,
and cubic groups. The tensors for the triclinic group 1 have
a completely general form and the choice of the coordinate
system is thus irrelevant for this group. For hexagonal and
trigonal groups, we choose the right-handed coordinate system
that satisfies x = a/|a|, z = c/|c|. For the monoclinic groups
we use the unique axis b setting [52] and choose the right-
handed coordinate system that satisfies x = a/|a|, y = b/|b|.

The tensors in Tables I and II apply for two-sublattice
collinear AFMs and FMs. In the case of AFMs the expansion
only applies for the CISP on a sublattice and correspondingly
the site symmetry group has to be used. In FMs, the tensors
apply for the local as well as for the net CISP. In the
latter case the point group of the whole crystal has to be
used. Since the zeroth-order term is independent of magnetic
moments it can be equally considered for any material,
including noncollinear AFMs. In nonmagnetic materials, there
is naturally no dependence on magnetic moments so the
zeroth-order term describes the CISP completely in this case.

The zeroth-order terms that generate the fieldlike torque
are particularly important since they are often dominant.
As discussed in Ref. [48], the tensors corresponding to the
fieldlike torque are in general composed of three distinct
terms: generalized Rashba and Dresselhaus terms and a term
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broadening thatmodels the effect of disorder. For smallΓ, we
can separate the total δ~s into the intraband and interband
contributions, with the intraband term given by

δ~sintra ¼ eEℏ
2Γ

Z
d3k
ð2πÞ3

X

α

ð~sÞ~kαðvIÞ~kαδðE~kα − EFÞ: ð4Þ

Here ð~sÞ~kα denotes the expectation value of the carrier spin,
and ðvIÞ~kα the velocity component along the current direc-
tion. This intraband contribution in the Kubo formalism
is equivalent to the Boltzmann transport theory expression
[14–16,19,21] and, similar to the charge conductivity,
δ~sintra ∼ 1=Γ.
The interband contribution dominating in the clean limit

of Γ → 0 is given by [19]

δ~sinter ¼ ℏ
L2

X

~kα≠β

ðf~kα − f~kβÞIm½ð~sÞαβðe~E · ~vÞβα%

×
ðE~kα − E~kβÞ

2 − Γ2

½ðE~kα − E~kβÞ
2 þ Γ2%2

: ð5Þ

Here, the labels α and β correspond to different bands, and
f~kα;β is the Fermi distribution function.
Results in Mn2Au.—In Figs. 3(b) and 3(c) we show the

Γ-independent intraband NSOT field per applied current for
Mn2Au. It is evaluated from Eq. (4) and projected on each
sublattice, assuming AFM spin-axis rotation in the [100]-
[010] plane (ϕ ¼ 0 corresponds to the [100] spin-axis
direction) and in the [110]-[001] plane (θ ¼ 0 corresponds to
the [110] easy-spin axis inMn2Au). Current is applied along
the [100] direction and the NSOT field is obtained from the
nonequilibrium spin density considering a typical exchange-
coupling energy scale in transition metals ∼1 eV [34].
NSOT fields on each sublattice are nonzero and have

opposite sign. The largest component is in the [100]-[010]
plane in the direction perpendicular to the applied current
for all AFM spin-axis directions. The magnitude of the
NSOT field in the Mn2Au AFM is comparable to the
counterpart SOT fields observed in FM transition metal
structures. Note that for current along the [001] direction
the resulting NSOT field is zero.
The results imply that this intraband NSOT is an AFM

counterpart of the inverse spin galvanic effect [35], or the
intraband, fieldlike, SOT [14–22,25], observed previously
in broken inversion-symmetry, spin-orbit coupled para-
magnets or FMs. We illustrate in Fig. 3(a) how these
current induced nonequilibrium fields arise in structures
with broken inversion symmetry. Here we choose the case
of a Rashba spin-orbit coupled 2D system for simplicity.
The electric field induces an asymmetric nonequilibrium
distribution function of carrier eigenstates and as a result a
net polarization ensues that depends on the scattering time,
hence its link to extrinsic scattering origin. In magnets, the
nonequilibrium carrier spin density acts on magnetic

moments as an effective magnetic field when carrier spins
are exchange coupled to the magnetic moments.
The full lattice of the Mn2Au crystal has an inversion

symmetry and the first expectation would be that there is no
current-induced spin density. However, the lattice is formed
by two sublattices, which, individually, have broken inver-
sion symmetry and form inversion partners along the [001]
axis. These coincide with the spin sublattices of the AFM
ground state in Mn2Au, as highlighted in Fig. 1(a). The two
sublattices forming the inversion partners in the Mn2Au
crystal are at the origin of the observed intraband NSOT.
Results in the model 2D Rashba AFM.—Since both spin

sublattices experience the same inversion symmetry break-
ing Rashba field in our 2D AFM model, the intraband
contribution to the current induced spin polarization has
the same sign on both spin sublattices, i.e., is not staggered.
A NSOT field is found, however, when evaluating the
interband term δ~sinter from Eq. (5). The Néel-order current-
induced field components projected on each sublattice are
shown in Figs. 3(e) and 3(f) for the AFM spin-axis rotation

FIG. 3 (color online). (a) Schematics of the intraband, inverse
spin galvanic effect in a model Rashba system. The left panel
represents the equilibrium distribution of spins (red arrows); the
right panel shows the nonequilibrium redistribution resulting in a
net in-plane spin polarization (thick red arrow) perpendicular to
the current (green arrow). (b) Intraband NSOT field inMn2Au as a
function of the in-plane spin-axis angle. The sublattice index A or
B and component of the field x, y, or z ([100], [010], [001]) are
shown for each curve. (c) Same as (b) for the out-of-plane spin-
axis angle. (d) Schematics of the intrinsic interband contribution
to the nonequilibrium spin polarization. In equilibrium all spins
are approximately aligned with the exchange field, which is
considered to be stronger than the Rashba field. A nonequilibrium
in-plane Rashba field (purple arrows) aligned perpendicular to
the applied current causes an out-of-plane tilt of the carrier
spins on the shifted Fermi surface. (e),(f) Interband NSOT fields
as a function of spin-axis angles in the 2D Rashba AFM for
Γ ¼ 0.01 eV andEF ¼ −2 eV. Other parameters of the model are
as in Fig. 2 In all panels the current is along the [100] axis.
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lattice can be divided into two sublattices, which, individu-
ally, have broken inversion symmetry and form inversion
partners [32]. Each sublattice gives opposite inverse spin
galvanic effects, resulting in the NSOT field. The range of
materials in which the relativistic current-induced torques
can occur is therefore not restricted to FMs and, moreover,
is not restricted to crystals with global broken inversion
symmetry. In Mn2Au, the inversion partner sublattices
coincide with the two AFM spin sublattices, which makes
the material an attractive candidate for observing the NSOT.
In AFMs where the two spin sublattices do not form

inversion partners a NSOT can still occur. We illustrate
it below in a 2D square lattice where the same broken
inversion symmetry term in the Hamiltonian is shared by
both spin sublattices. Here the resulting NSOT is analogous
to the intrinsic antidamping SOT recently observed in
broken bulk inversion symmetry FMs [27].
Models and methods.—In Mn2Au we diagonalized a

microscopicmultiorbital tight-bindingHamiltonian to obtain
the energy spectrum and eigenfunctions used in our transport
calculations. The form of the tight-binding Hamiltonian
was obtained following the procedure for bimetallic alloys
described in Ref. [33]. The accuracy of the tight-binding
energy spectrum is confirmed in Fig. 1(b) by comparing the
electronic structure to the ab initio density-functional theory
(DFT) calculations.
The other model structure comprises a 2D AFM square

lattice with Rashba spin-orbit coupling due to the broken
structural inversion symmetry and is relevant, e.g., to
common experimental geometries in which a thin AFM
film is interfaced with another layer. The model is sketched
in Fig. 2(a) and its Hamiltonian is given by

H ¼
X

hiji
Jdd ~Si · ~Sj þHtb þHR þ

X

i

Jsd~s · ~Si: ð1Þ

Here Jdd is the local moment (e.g., d orbital) exchange
constant, Jsd is the local moment–carrier (e.g., d and s
orbitals) exchange constant, Htb is the tight binding
Hamiltonian for the carriers, and HR is the Rashba spin-
orbit interaction in a 2D system, given by

HR ¼ VSO

X

i

½ðc†i↑ciþδx↓ − c†i↓ciþδx↑Þ

−iðc†i↑ciþδy↓ þ c†i↓ciþδy↑Þ þ H:c:&; ð2Þ

where VSO represents the spin-orbit coupling strength, and
δx, δy label the nearest neighbors direction.
The current-induced nonequilibrium spin density δ~s can

be calculated via the Kubo linear response [19],

δ~s ¼ ℏ
2πL2

Re
X

~kαβ

ð~sÞαβðe~E · ~vÞβα½GA
~kα
GR

~kβ
− GR

~kα
GR

~kβ
&; ð3Þ

where the Green’s functions are GR
~kα
ðEÞjE¼EF

≡GR
~kα

¼
1=ðEF − E~kα þ iΓÞ, with the property GA ¼ ðGRÞ'. Here,
L is the dimension of the 2D system, e is the charge of
electron, ~E is the applied electric field, EF is the Fermi
energy, E~kα is the energy spectrum, and Γ is the spectral

FIG. 1 (color online). (a) Mn2Au crystal structure and anti-
ferromagnetic ordering. The two spin sublattices have broken
inversion symmetry as illustrated by the red and purple colors. The
full crystal is centrosymmetric around the Au atom as also
highlighted in the figure. (b) Total, sublattice, and spin projected
density of states from the ab initio calculation and for the tight-
binding Hamiltonian model.

FIG. 2 (color online). (a) 2D AFM square lattice model with
Rashba spin-orbit coupling. (b),(c) Band structure and the spin-
resolved density of states projected in each sublattice for the
AFM state. (d),(e) Band structure and the spin-resolved density of
states for the FM state. Here the hopping parameter tN ¼ 3.0 eV,
Jsd ¼ 1.0 eV, and VSO ¼ 0.1 eV.
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�broadening thatmodels the effect of disorder. For smallΓ, we
can separate the total δ~s into the intraband and interband
contributions, with the intraband term given by

δ~sintra ¼ eEℏ
2Γ

Z
d3k
ð2πÞ3

X

α

ð~sÞ~kαðvIÞ~kαδðE~kα − EFÞ: ð4Þ

Here ð~sÞ~kα denotes the expectation value of the carrier spin,
and ðvIÞ~kα the velocity component along the current direc-
tion. This intraband contribution in the Kubo formalism
is equivalent to the Boltzmann transport theory expression
[14–16,19,21] and, similar to the charge conductivity,
δ~sintra ∼ 1=Γ.
The interband contribution dominating in the clean limit

of Γ → 0 is given by [19]

δ~sinter ¼ ℏ
L2

X

~kα≠β

ðf~kα − f~kβÞIm½ð~sÞαβðe~E · ~vÞβα%

×
ðE~kα − E~kβÞ

2 − Γ2

½ðE~kα − E~kβÞ
2 þ Γ2%2

: ð5Þ

Here, the labels α and β correspond to different bands, and
f~kα;β is the Fermi distribution function.
Results in Mn2Au.—In Figs. 3(b) and 3(c) we show the

Γ-independent intraband NSOT field per applied current for
Mn2Au. It is evaluated from Eq. (4) and projected on each
sublattice, assuming AFM spin-axis rotation in the [100]-
[010] plane (ϕ ¼ 0 corresponds to the [100] spin-axis
direction) and in the [110]-[001] plane (θ ¼ 0 corresponds to
the [110] easy-spin axis inMn2Au). Current is applied along
the [100] direction and the NSOT field is obtained from the
nonequilibrium spin density considering a typical exchange-
coupling energy scale in transition metals ∼1 eV [34].
NSOT fields on each sublattice are nonzero and have

opposite sign. The largest component is in the [100]-[010]
plane in the direction perpendicular to the applied current
for all AFM spin-axis directions. The magnitude of the
NSOT field in the Mn2Au AFM is comparable to the
counterpart SOT fields observed in FM transition metal
structures. Note that for current along the [001] direction
the resulting NSOT field is zero.
The results imply that this intraband NSOT is an AFM

counterpart of the inverse spin galvanic effect [35], or the
intraband, fieldlike, SOT [14–22,25], observed previously
in broken inversion-symmetry, spin-orbit coupled para-
magnets or FMs. We illustrate in Fig. 3(a) how these
current induced nonequilibrium fields arise in structures
with broken inversion symmetry. Here we choose the case
of a Rashba spin-orbit coupled 2D system for simplicity.
The electric field induces an asymmetric nonequilibrium
distribution function of carrier eigenstates and as a result a
net polarization ensues that depends on the scattering time,
hence its link to extrinsic scattering origin. In magnets, the
nonequilibrium carrier spin density acts on magnetic

moments as an effective magnetic field when carrier spins
are exchange coupled to the magnetic moments.
The full lattice of the Mn2Au crystal has an inversion

symmetry and the first expectation would be that there is no
current-induced spin density. However, the lattice is formed
by two sublattices, which, individually, have broken inver-
sion symmetry and form inversion partners along the [001]
axis. These coincide with the spin sublattices of the AFM
ground state in Mn2Au, as highlighted in Fig. 1(a). The two
sublattices forming the inversion partners in the Mn2Au
crystal are at the origin of the observed intraband NSOT.
Results in the model 2D Rashba AFM.—Since both spin

sublattices experience the same inversion symmetry break-
ing Rashba field in our 2D AFM model, the intraband
contribution to the current induced spin polarization has
the same sign on both spin sublattices, i.e., is not staggered.
A NSOT field is found, however, when evaluating the
interband term δ~sinter from Eq. (5). The Néel-order current-
induced field components projected on each sublattice are
shown in Figs. 3(e) and 3(f) for the AFM spin-axis rotation

FIG. 3 (color online). (a) Schematics of the intraband, inverse
spin galvanic effect in a model Rashba system. The left panel
represents the equilibrium distribution of spins (red arrows); the
right panel shows the nonequilibrium redistribution resulting in a
net in-plane spin polarization (thick red arrow) perpendicular to
the current (green arrow). (b) Intraband NSOT field inMn2Au as a
function of the in-plane spin-axis angle. The sublattice index A or
B and component of the field x, y, or z ([100], [010], [001]) are
shown for each curve. (c) Same as (b) for the out-of-plane spin-
axis angle. (d) Schematics of the intrinsic interband contribution
to the nonequilibrium spin polarization. In equilibrium all spins
are approximately aligned with the exchange field, which is
considered to be stronger than the Rashba field. A nonequilibrium
in-plane Rashba field (purple arrows) aligned perpendicular to
the applied current causes an out-of-plane tilt of the carrier
spins on the shifted Fermi surface. (e),(f) Interband NSOT fields
as a function of spin-axis angles in the 2D Rashba AFM for
Γ ¼ 0.01 eV andEF ¼ −2 eV. Other parameters of the model are
as in Fig. 2 In all panels the current is along the [100] axis.
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lattice can be divided into two sublattices, which, individu-
ally, have broken inversion symmetry and form inversion
partners [32]. Each sublattice gives opposite inverse spin
galvanic effects, resulting in the NSOT field. The range of
materials in which the relativistic current-induced torques
can occur is therefore not restricted to FMs and, moreover,
is not restricted to crystals with global broken inversion
symmetry. In Mn2Au, the inversion partner sublattices
coincide with the two AFM spin sublattices, which makes
the material an attractive candidate for observing the NSOT.
In AFMs where the two spin sublattices do not form

inversion partners a NSOT can still occur. We illustrate
it below in a 2D square lattice where the same broken
inversion symmetry term in the Hamiltonian is shared by
both spin sublattices. Here the resulting NSOT is analogous
to the intrinsic antidamping SOT recently observed in
broken bulk inversion symmetry FMs [27].
Models and methods.—In Mn2Au we diagonalized a

microscopicmultiorbital tight-bindingHamiltonian to obtain
the energy spectrum and eigenfunctions used in our transport
calculations. The form of the tight-binding Hamiltonian
was obtained following the procedure for bimetallic alloys
described in Ref. [33]. The accuracy of the tight-binding
energy spectrum is confirmed in Fig. 1(b) by comparing the
electronic structure to the ab initio density-functional theory
(DFT) calculations.
The other model structure comprises a 2D AFM square

lattice with Rashba spin-orbit coupling due to the broken
structural inversion symmetry and is relevant, e.g., to
common experimental geometries in which a thin AFM
film is interfaced with another layer. The model is sketched
in Fig. 2(a) and its Hamiltonian is given by

H ¼
X

hiji
Jdd ~Si · ~Sj þHtb þHR þ

X

i

Jsd~s · ~Si: ð1Þ

Here Jdd is the local moment (e.g., d orbital) exchange
constant, Jsd is the local moment–carrier (e.g., d and s
orbitals) exchange constant, Htb is the tight binding
Hamiltonian for the carriers, and HR is the Rashba spin-
orbit interaction in a 2D system, given by

HR ¼ VSO

X

i

½ðc†i↑ciþδx↓ − c†i↓ciþδx↑Þ

−iðc†i↑ciþδy↓ þ c†i↓ciþδy↑Þ þ H:c:&; ð2Þ

where VSO represents the spin-orbit coupling strength, and
δx, δy label the nearest neighbors direction.
The current-induced nonequilibrium spin density δ~s can

be calculated via the Kubo linear response [19],

δ~s ¼ ℏ
2πL2

Re
X

~kαβ

ð~sÞαβðe~E · ~vÞβα½GA
~kα
GR

~kβ
− GR

~kα
GR

~kβ
&; ð3Þ

where the Green’s functions are GR
~kα
ðEÞjE¼EF

≡GR
~kα

¼
1=ðEF − E~kα þ iΓÞ, with the property GA ¼ ðGRÞ'. Here,
L is the dimension of the 2D system, e is the charge of
electron, ~E is the applied electric field, EF is the Fermi
energy, E~kα is the energy spectrum, and Γ is the spectral

FIG. 1 (color online). (a) Mn2Au crystal structure and anti-
ferromagnetic ordering. The two spin sublattices have broken
inversion symmetry as illustrated by the red and purple colors. The
full crystal is centrosymmetric around the Au atom as also
highlighted in the figure. (b) Total, sublattice, and spin projected
density of states from the ab initio calculation and for the tight-
binding Hamiltonian model.

FIG. 2 (color online). (a) 2D AFM square lattice model with
Rashba spin-orbit coupling. (b),(c) Band structure and the spin-
resolved density of states projected in each sublattice for the
AFM state. (d),(e) Band structure and the spin-resolved density of
states for the FM state. Here the hopping parameter tN ¼ 3.0 eV,
Jsd ¼ 1.0 eV, and VSO ¼ 0.1 eV.
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broadening thatmodels the effect of disorder. For smallΓ, we
can separate the total δ~s into the intraband and interband
contributions, with the intraband term given by

δ~sintra ¼ eEℏ
2Γ

Z
d3k
ð2πÞ3

X

α

ð~sÞ~kαðvIÞ~kαδðE~kα − EFÞ: ð4Þ

Here ð~sÞ~kα denotes the expectation value of the carrier spin,
and ðvIÞ~kα the velocity component along the current direc-
tion. This intraband contribution in the Kubo formalism
is equivalent to the Boltzmann transport theory expression
[14–16,19,21] and, similar to the charge conductivity,
δ~sintra ∼ 1=Γ.
The interband contribution dominating in the clean limit

of Γ → 0 is given by [19]

δ~sinter ¼ ℏ
L2

X

~kα≠β

ðf~kα − f~kβÞIm½ð~sÞαβðe~E · ~vÞβα%

×
ðE~kα − E~kβÞ

2 − Γ2

½ðE~kα − E~kβÞ
2 þ Γ2%2

: ð5Þ

Here, the labels α and β correspond to different bands, and
f~kα;β is the Fermi distribution function.
Results in Mn2Au.—In Figs. 3(b) and 3(c) we show the

Γ-independent intraband NSOT field per applied current for
Mn2Au. It is evaluated from Eq. (4) and projected on each
sublattice, assuming AFM spin-axis rotation in the [100]-
[010] plane (ϕ ¼ 0 corresponds to the [100] spin-axis
direction) and in the [110]-[001] plane (θ ¼ 0 corresponds to
the [110] easy-spin axis inMn2Au). Current is applied along
the [100] direction and the NSOT field is obtained from the
nonequilibrium spin density considering a typical exchange-
coupling energy scale in transition metals ∼1 eV [34].
NSOT fields on each sublattice are nonzero and have

opposite sign. The largest component is in the [100]-[010]
plane in the direction perpendicular to the applied current
for all AFM spin-axis directions. The magnitude of the
NSOT field in the Mn2Au AFM is comparable to the
counterpart SOT fields observed in FM transition metal
structures. Note that for current along the [001] direction
the resulting NSOT field is zero.
The results imply that this intraband NSOT is an AFM

counterpart of the inverse spin galvanic effect [35], or the
intraband, fieldlike, SOT [14–22,25], observed previously
in broken inversion-symmetry, spin-orbit coupled para-
magnets or FMs. We illustrate in Fig. 3(a) how these
current induced nonequilibrium fields arise in structures
with broken inversion symmetry. Here we choose the case
of a Rashba spin-orbit coupled 2D system for simplicity.
The electric field induces an asymmetric nonequilibrium
distribution function of carrier eigenstates and as a result a
net polarization ensues that depends on the scattering time,
hence its link to extrinsic scattering origin. In magnets, the
nonequilibrium carrier spin density acts on magnetic

moments as an effective magnetic field when carrier spins
are exchange coupled to the magnetic moments.
The full lattice of the Mn2Au crystal has an inversion

symmetry and the first expectation would be that there is no
current-induced spin density. However, the lattice is formed
by two sublattices, which, individually, have broken inver-
sion symmetry and form inversion partners along the [001]
axis. These coincide with the spin sublattices of the AFM
ground state in Mn2Au, as highlighted in Fig. 1(a). The two
sublattices forming the inversion partners in the Mn2Au
crystal are at the origin of the observed intraband NSOT.
Results in the model 2D Rashba AFM.—Since both spin

sublattices experience the same inversion symmetry break-
ing Rashba field in our 2D AFM model, the intraband
contribution to the current induced spin polarization has
the same sign on both spin sublattices, i.e., is not staggered.
A NSOT field is found, however, when evaluating the
interband term δ~sinter from Eq. (5). The Néel-order current-
induced field components projected on each sublattice are
shown in Figs. 3(e) and 3(f) for the AFM spin-axis rotation

FIG. 3 (color online). (a) Schematics of the intraband, inverse
spin galvanic effect in a model Rashba system. The left panel
represents the equilibrium distribution of spins (red arrows); the
right panel shows the nonequilibrium redistribution resulting in a
net in-plane spin polarization (thick red arrow) perpendicular to
the current (green arrow). (b) Intraband NSOT field inMn2Au as a
function of the in-plane spin-axis angle. The sublattice index A or
B and component of the field x, y, or z ([100], [010], [001]) are
shown for each curve. (c) Same as (b) for the out-of-plane spin-
axis angle. (d) Schematics of the intrinsic interband contribution
to the nonequilibrium spin polarization. In equilibrium all spins
are approximately aligned with the exchange field, which is
considered to be stronger than the Rashba field. A nonequilibrium
in-plane Rashba field (purple arrows) aligned perpendicular to
the applied current causes an out-of-plane tilt of the carrier
spins on the shifted Fermi surface. (e),(f) Interband NSOT fields
as a function of spin-axis angles in the 2D Rashba AFM for
Γ ¼ 0.01 eV andEF ¼ −2 eV. Other parameters of the model are
as in Fig. 2 In all panels the current is along the [100] axis.
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broadening thatmodels the effect of disorder. For smallΓ, we
can separate the total δ~s into the intraband and interband
contributions, with the intraband term given by

δ~sintra ¼ eEℏ
2Γ

Z
d3k
ð2πÞ3

X

α

ð~sÞ~kαðvIÞ~kαδðE~kα − EFÞ: ð4Þ

Here ð~sÞ~kα denotes the expectation value of the carrier spin,
and ðvIÞ~kα the velocity component along the current direc-
tion. This intraband contribution in the Kubo formalism
is equivalent to the Boltzmann transport theory expression
[14–16,19,21] and, similar to the charge conductivity,
δ~sintra ∼ 1=Γ.
The interband contribution dominating in the clean limit

of Γ → 0 is given by [19]

δ~sinter ¼ ℏ
L2

X

~kα≠β

ðf~kα − f~kβÞIm½ð~sÞαβðe~E · ~vÞβα%

×
ðE~kα − E~kβÞ

2 − Γ2

½ðE~kα − E~kβÞ
2 þ Γ2%2

: ð5Þ

Here, the labels α and β correspond to different bands, and
f~kα;β is the Fermi distribution function.
Results in Mn2Au.—In Figs. 3(b) and 3(c) we show the

Γ-independent intraband NSOT field per applied current for
Mn2Au. It is evaluated from Eq. (4) and projected on each
sublattice, assuming AFM spin-axis rotation in the [100]-
[010] plane (ϕ ¼ 0 corresponds to the [100] spin-axis
direction) and in the [110]-[001] plane (θ ¼ 0 corresponds to
the [110] easy-spin axis inMn2Au). Current is applied along
the [100] direction and the NSOT field is obtained from the
nonequilibrium spin density considering a typical exchange-
coupling energy scale in transition metals ∼1 eV [34].
NSOT fields on each sublattice are nonzero and have

opposite sign. The largest component is in the [100]-[010]
plane in the direction perpendicular to the applied current
for all AFM spin-axis directions. The magnitude of the
NSOT field in the Mn2Au AFM is comparable to the
counterpart SOT fields observed in FM transition metal
structures. Note that for current along the [001] direction
the resulting NSOT field is zero.
The results imply that this intraband NSOT is an AFM

counterpart of the inverse spin galvanic effect [35], or the
intraband, fieldlike, SOT [14–22,25], observed previously
in broken inversion-symmetry, spin-orbit coupled para-
magnets or FMs. We illustrate in Fig. 3(a) how these
current induced nonequilibrium fields arise in structures
with broken inversion symmetry. Here we choose the case
of a Rashba spin-orbit coupled 2D system for simplicity.
The electric field induces an asymmetric nonequilibrium
distribution function of carrier eigenstates and as a result a
net polarization ensues that depends on the scattering time,
hence its link to extrinsic scattering origin. In magnets, the
nonequilibrium carrier spin density acts on magnetic

moments as an effective magnetic field when carrier spins
are exchange coupled to the magnetic moments.
The full lattice of the Mn2Au crystal has an inversion

symmetry and the first expectation would be that there is no
current-induced spin density. However, the lattice is formed
by two sublattices, which, individually, have broken inver-
sion symmetry and form inversion partners along the [001]
axis. These coincide with the spin sublattices of the AFM
ground state in Mn2Au, as highlighted in Fig. 1(a). The two
sublattices forming the inversion partners in the Mn2Au
crystal are at the origin of the observed intraband NSOT.
Results in the model 2D Rashba AFM.—Since both spin

sublattices experience the same inversion symmetry break-
ing Rashba field in our 2D AFM model, the intraband
contribution to the current induced spin polarization has
the same sign on both spin sublattices, i.e., is not staggered.
A NSOT field is found, however, when evaluating the
interband term δ~sinter from Eq. (5). The Néel-order current-
induced field components projected on each sublattice are
shown in Figs. 3(e) and 3(f) for the AFM spin-axis rotation

FIG. 3 (color online). (a) Schematics of the intraband, inverse
spin galvanic effect in a model Rashba system. The left panel
represents the equilibrium distribution of spins (red arrows); the
right panel shows the nonequilibrium redistribution resulting in a
net in-plane spin polarization (thick red arrow) perpendicular to
the current (green arrow). (b) Intraband NSOT field inMn2Au as a
function of the in-plane spin-axis angle. The sublattice index A or
B and component of the field x, y, or z ([100], [010], [001]) are
shown for each curve. (c) Same as (b) for the out-of-plane spin-
axis angle. (d) Schematics of the intrinsic interband contribution
to the nonequilibrium spin polarization. In equilibrium all spins
are approximately aligned with the exchange field, which is
considered to be stronger than the Rashba field. A nonequilibrium
in-plane Rashba field (purple arrows) aligned perpendicular to
the applied current causes an out-of-plane tilt of the carrier
spins on the shifted Fermi surface. (e),(f) Interband NSOT fields
as a function of spin-axis angles in the 2D Rashba AFM for
Γ ¼ 0.01 eV andEF ¼ −2 eV. Other parameters of the model are
as in Fig. 2 In all panels the current is along the [100] axis.
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broadening thatmodels the effect of disorder. For smallΓ, we
can separate the total δ~s into the intraband and interband
contributions, with the intraband term given by

δ~sintra ¼ eEℏ
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ð2πÞ3
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ð~sÞ~kαðvIÞ~kαδðE~kα − EFÞ: ð4Þ

Here ð~sÞ~kα denotes the expectation value of the carrier spin,
and ðvIÞ~kα the velocity component along the current direc-
tion. This intraband contribution in the Kubo formalism
is equivalent to the Boltzmann transport theory expression
[14–16,19,21] and, similar to the charge conductivity,
δ~sintra ∼ 1=Γ.
The interband contribution dominating in the clean limit

of Γ → 0 is given by [19]

δ~sinter ¼ ℏ
L2

X

~kα≠β

ðf~kα − f~kβÞIm½ð~sÞαβðe~E · ~vÞβα%

×
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2 − Γ2

½ðE~kα − E~kβÞ
2 þ Γ2%2

: ð5Þ

Here, the labels α and β correspond to different bands, and
f~kα;β is the Fermi distribution function.
Results in Mn2Au.—In Figs. 3(b) and 3(c) we show the

Γ-independent intraband NSOT field per applied current for
Mn2Au. It is evaluated from Eq. (4) and projected on each
sublattice, assuming AFM spin-axis rotation in the [100]-
[010] plane (ϕ ¼ 0 corresponds to the [100] spin-axis
direction) and in the [110]-[001] plane (θ ¼ 0 corresponds to
the [110] easy-spin axis inMn2Au). Current is applied along
the [100] direction and the NSOT field is obtained from the
nonequilibrium spin density considering a typical exchange-
coupling energy scale in transition metals ∼1 eV [34].
NSOT fields on each sublattice are nonzero and have

opposite sign. The largest component is in the [100]-[010]
plane in the direction perpendicular to the applied current
for all AFM spin-axis directions. The magnitude of the
NSOT field in the Mn2Au AFM is comparable to the
counterpart SOT fields observed in FM transition metal
structures. Note that for current along the [001] direction
the resulting NSOT field is zero.
The results imply that this intraband NSOT is an AFM

counterpart of the inverse spin galvanic effect [35], or the
intraband, fieldlike, SOT [14–22,25], observed previously
in broken inversion-symmetry, spin-orbit coupled para-
magnets or FMs. We illustrate in Fig. 3(a) how these
current induced nonequilibrium fields arise in structures
with broken inversion symmetry. Here we choose the case
of a Rashba spin-orbit coupled 2D system for simplicity.
The electric field induces an asymmetric nonequilibrium
distribution function of carrier eigenstates and as a result a
net polarization ensues that depends on the scattering time,
hence its link to extrinsic scattering origin. In magnets, the
nonequilibrium carrier spin density acts on magnetic

moments as an effective magnetic field when carrier spins
are exchange coupled to the magnetic moments.
The full lattice of the Mn2Au crystal has an inversion

symmetry and the first expectation would be that there is no
current-induced spin density. However, the lattice is formed
by two sublattices, which, individually, have broken inver-
sion symmetry and form inversion partners along the [001]
axis. These coincide with the spin sublattices of the AFM
ground state in Mn2Au, as highlighted in Fig. 1(a). The two
sublattices forming the inversion partners in the Mn2Au
crystal are at the origin of the observed intraband NSOT.
Results in the model 2D Rashba AFM.—Since both spin

sublattices experience the same inversion symmetry break-
ing Rashba field in our 2D AFM model, the intraband
contribution to the current induced spin polarization has
the same sign on both spin sublattices, i.e., is not staggered.
A NSOT field is found, however, when evaluating the
interband term δ~sinter from Eq. (5). The Néel-order current-
induced field components projected on each sublattice are
shown in Figs. 3(e) and 3(f) for the AFM spin-axis rotation

FIG. 3 (color online). (a) Schematics of the intraband, inverse
spin galvanic effect in a model Rashba system. The left panel
represents the equilibrium distribution of spins (red arrows); the
right panel shows the nonequilibrium redistribution resulting in a
net in-plane spin polarization (thick red arrow) perpendicular to
the current (green arrow). (b) Intraband NSOT field inMn2Au as a
function of the in-plane spin-axis angle. The sublattice index A or
B and component of the field x, y, or z ([100], [010], [001]) are
shown for each curve. (c) Same as (b) for the out-of-plane spin-
axis angle. (d) Schematics of the intrinsic interband contribution
to the nonequilibrium spin polarization. In equilibrium all spins
are approximately aligned with the exchange field, which is
considered to be stronger than the Rashba field. A nonequilibrium
in-plane Rashba field (purple arrows) aligned perpendicular to
the applied current causes an out-of-plane tilt of the carrier
spins on the shifted Fermi surface. (e),(f) Interband NSOT fields
as a function of spin-axis angles in the 2D Rashba AFM for
Γ ¼ 0.01 eV andEF ¼ −2 eV. Other parameters of the model are
as in Fig. 2 In all panels the current is along the [100] axis.
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broadening thatmodels the effect of disorder. For smallΓ, we
can separate the total δ~s into the intraband and interband
contributions, with the intraband term given by
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Here ð~sÞ~kα denotes the expectation value of the carrier spin,
and ðvIÞ~kα the velocity component along the current direc-
tion. This intraband contribution in the Kubo formalism
is equivalent to the Boltzmann transport theory expression
[14–16,19,21] and, similar to the charge conductivity,
δ~sintra ∼ 1=Γ.
The interband contribution dominating in the clean limit

of Γ → 0 is given by [19]

δ~sinter ¼ ℏ
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Here, the labels α and β correspond to different bands, and
f~kα;β is the Fermi distribution function.
Results in Mn2Au.—In Figs. 3(b) and 3(c) we show the

Γ-independent intraband NSOT field per applied current for
Mn2Au. It is evaluated from Eq. (4) and projected on each
sublattice, assuming AFM spin-axis rotation in the [100]-
[010] plane (ϕ ¼ 0 corresponds to the [100] spin-axis
direction) and in the [110]-[001] plane (θ ¼ 0 corresponds to
the [110] easy-spin axis inMn2Au). Current is applied along
the [100] direction and the NSOT field is obtained from the
nonequilibrium spin density considering a typical exchange-
coupling energy scale in transition metals ∼1 eV [34].
NSOT fields on each sublattice are nonzero and have

opposite sign. The largest component is in the [100]-[010]
plane in the direction perpendicular to the applied current
for all AFM spin-axis directions. The magnitude of the
NSOT field in the Mn2Au AFM is comparable to the
counterpart SOT fields observed in FM transition metal
structures. Note that for current along the [001] direction
the resulting NSOT field is zero.
The results imply that this intraband NSOT is an AFM

counterpart of the inverse spin galvanic effect [35], or the
intraband, fieldlike, SOT [14–22,25], observed previously
in broken inversion-symmetry, spin-orbit coupled para-
magnets or FMs. We illustrate in Fig. 3(a) how these
current induced nonequilibrium fields arise in structures
with broken inversion symmetry. Here we choose the case
of a Rashba spin-orbit coupled 2D system for simplicity.
The electric field induces an asymmetric nonequilibrium
distribution function of carrier eigenstates and as a result a
net polarization ensues that depends on the scattering time,
hence its link to extrinsic scattering origin. In magnets, the
nonequilibrium carrier spin density acts on magnetic

moments as an effective magnetic field when carrier spins
are exchange coupled to the magnetic moments.
The full lattice of the Mn2Au crystal has an inversion

symmetry and the first expectation would be that there is no
current-induced spin density. However, the lattice is formed
by two sublattices, which, individually, have broken inver-
sion symmetry and form inversion partners along the [001]
axis. These coincide with the spin sublattices of the AFM
ground state in Mn2Au, as highlighted in Fig. 1(a). The two
sublattices forming the inversion partners in the Mn2Au
crystal are at the origin of the observed intraband NSOT.
Results in the model 2D Rashba AFM.—Since both spin

sublattices experience the same inversion symmetry break-
ing Rashba field in our 2D AFM model, the intraband
contribution to the current induced spin polarization has
the same sign on both spin sublattices, i.e., is not staggered.
A NSOT field is found, however, when evaluating the
interband term δ~sinter from Eq. (5). The Néel-order current-
induced field components projected on each sublattice are
shown in Figs. 3(e) and 3(f) for the AFM spin-axis rotation

FIG. 3 (color online). (a) Schematics of the intraband, inverse
spin galvanic effect in a model Rashba system. The left panel
represents the equilibrium distribution of spins (red arrows); the
right panel shows the nonequilibrium redistribution resulting in a
net in-plane spin polarization (thick red arrow) perpendicular to
the current (green arrow). (b) Intraband NSOT field inMn2Au as a
function of the in-plane spin-axis angle. The sublattice index A or
B and component of the field x, y, or z ([100], [010], [001]) are
shown for each curve. (c) Same as (b) for the out-of-plane spin-
axis angle. (d) Schematics of the intrinsic interband contribution
to the nonequilibrium spin polarization. In equilibrium all spins
are approximately aligned with the exchange field, which is
considered to be stronger than the Rashba field. A nonequilibrium
in-plane Rashba field (purple arrows) aligned perpendicular to
the applied current causes an out-of-plane tilt of the carrier
spins on the shifted Fermi surface. (e),(f) Interband NSOT fields
as a function of spin-axis angles in the 2D Rashba AFM for
Γ ¼ 0.01 eV andEF ¼ −2 eV. Other parameters of the model are
as in Fig. 2 In all panels the current is along the [100] axis.
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Spin-orbit torque in model systems



Spin-orbit torque in CuMnAs

Large and bistable magnetoresistance signals have been
observed in tunnelling devices with an antiferromagnetic
(AFM) IrMn layer on one side and a non-magnetic metal on

the other side of the tunnel barrier1,2. The work has
experimentally demonstrated the feasibility of a spintronic
concept3–5 in which the electronic device characteristics are
governed by the staggered magnetization axis in an AFM. It has
been shown that the AFM moments can be manipulated via an
exchange-coupled ferromagnet (FM)1,2,6 and that the AFM
magnetoresistance signals can persist to room temperature6. No
stray fields and the relative insensitivity to external magnetic
fields are among the features that make AFMs attractive
complements to the conventionally utilized FMs in the design
of spintronic devices, as highlighted in a recent study of AFM
linear chains of a few Fe atoms7 and in the demonstration of the
concept of an AFM memory8. The possibility to design spintronic
elements based on AFMs becomes even more attractive in the
context of magnetic counterparts of conventional compound
semiconductors, which may enable new devices combining
spintronic and nanoelectronic functionalities. In this paper, we
report the discovery of a new member of this family: tetragonal
epitaxial CuMnAs, a room-temperature AFM whose in-plane lattice
constant matches GaP or Si.

Over the past two decades, the introduction of magnetism into
common semiconductor hosts has driven a number of new
research areas in spintronics. Inspired by spintronics research and
applications based on transition metal ferromagnets (FMs), the
focus has been on magnetic counterparts of semiconductors with
the FM order. (Ga,Mn)As and related (III,Mn)V compounds9–11

have become archetypes among these materials, resulting in
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LiMnAs and NaMnAs are among the examples of AFM I–II–V
semiconductors4,21–24, whose equilibrium crystal structure
changes from the cubic half-Heusler lattice of their non-
magnetic counterparts to a layered tetragonal structure
(Fig. 1d). This more-anisotropic-crystal arrangement removes
the frustration in the nearest-neighbour magnetic coupling,
resulting in TN’s far above the room temperature. Single-crystal
thin films of the LiMnAs AFM semiconductor were recently
prepared by molecular beam epitaxy (MBE) on lattice-matched
InAs substrate4,24,25. The inclusion of alkali metal elements
represents, however, a challenge both in terms of the growth and
the stability of devices. Group Ib transition metal elements may
represent the solution to this problem: NaZnAs and AgZnAs are
known to be twin compounds with identical crystal structure and
lattice constants, and CuZnAs is also very similar17. This
has motivated our interest in CuMnAs as a suitable I–Mn–V
AFM compound for spintronics20. The bulk equilibrium phase
of CuMnAs displays room-temperature AFM ordering26, as
confirmed in our recent study of chemically synthesized bulk
samples20. However, the orthorhombic crystal structure (Fig. 1e)

III–V I–II–Va b

CuMnSbc LiMnAsd

CuMnAs orthorhombice CuMnAs tetragonalf

Figure 1 | Unit cell structures of non-magnetic semiconductors and their
magnetic counterparts. (a) III–V zincblende structure. (b) I–II–V half-
Heusler structure. (c) Half-Heusler CuMnSb. (d) Tetragonal LiMnAs.
(e) Orthorhombic CuMnAs. (f) Tetragonal CuMnAs. The bonds in (c),
highlighted in green and red, show the AFM and FM nearest-neighbour-
exchange coupling of Mn present in the half-Heusler CuMnSb. The bonds
in (f), highlighted in green, show that all Mn nearest neighbours are
coupled antiferromagnetically in the tetragonal CuMnAs, which is favorable
for high TN.
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Antiferromagnets are hard to control by external magnetic fields because of the alternating
directions of magnetic moments on individual atoms and the resulting zero net magnetization.
However, relativistic quantum mechanics allows for generating current-induced internal fields
whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields,
which couple strongly to the antiferromagnetic order, we demonstrate room-temperature
electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film
devices by applied current with magnitudes of order 106 ampere per square centimeter.
Electrical writing is combined in our solid-state memory with electrical readout and the stored
magnetic state is insensitive to and produces no external magnetic field perturbations, which
illustrates the unique merits of antiferromagnets for spintronics.

I
n charge-based information devices, per-
turbations such as ionizing radiation can
lead to data loss. In contrast, spin-based
devices, in which different magnetic moment
orientations in a ferromagnet (FM) represent

the zeros and ones (1), are robust against charge
perturbations. However, the FM moments can be
unintentionally reoriented and the data erased
by perturbing magnetic fields generated exter-
nally or internally within the memory circuitry.
If magnetic memories were based on antiferro-
magnets (AFMs) instead, they would be robust
against charge and magnetic field perturbations.
Additional advantages of AFMs compared to FMs
include the invisibility of data stored in AFMs
to external magnetic probes, ultrafast spin dyna-

mics in AFMs, and the broad range of metal,
semiconductor, or insulator materials with room-
temperature AFM order (2–7).
The energy barrier separating stable orienta-

tions of ordered spins is due to the magnetic
anisotropy energy. It is an even function of the
magnetic moment, which implies that the mag-
netic anisotropy and the corresponding memory
functionality are readily present in both FMs and
AFMs (8, 9). The magneto-transport counterpart
of the magnetic anisotropy energy is the aniso-
tropic magnetoresistance (AMR). In the early
1990s, the first generation of FM magnetic ran-
dom access memory (MRAM) microdevices used
AMR for the electrical readout of the memory
state (10). AMR is an even function of the mag-

netic moment, which again implies its presence
in AFMs (11). Although AMR in AFMs was ex-
perimentally confirmed in several recent studies
(12–17), efficient means for manipulating AFM
moments have remained elusive.
It has been proposed that current-induced

spin transfer torques of the form dM=dt ∼ M!
ðM ! pÞ, which are used for electrical writing in
the most advanced FM MRAMs (1), could also
produce large-angle reorientation of the AFM
moments (18). In these antidamping-like torques,
M is the magnetic moment vector and p is the
electrically injected carrier spinpolarization. Trans-
lated to AFMs, the effective field proportional
to ðMA;B ! pÞ that drives the antidamping-like
torque dMA;B=dt ∼ MA;B ! ðMA;B ! pÞ on indi-
vidual spin sublattices A and B has the favorable
staggered property, i.e., alternates in sign be-
tween the opposite spin sublattices.
In FM spin-transfer-torque MRAMs, spin-

polarized carriers are injected into the free
FM layer from a fixed FM polarizer by an out-
of-plane electrical current driven through the
FM-FM stack. In analogy, (18) assumes injec-
tion of the spin-polarized carriers into the AFM
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Fig. 1. Theory of the staggered current-induced field in CuMnAs. (A)
Schematic of the inverse spin-galvanic effect in a model inversion asymmetric
Rashba spin texture (red arrows). kx;y are the in-planemomentumcomponents.
The nonequilibrium redistribution of carriers from the left side to the right
side of the Fermi surface results in a net in-plane spin polarization (thick red
arrow) along þz! J direction, where J is the applied current (black arrow).
(B) Same as (A) for opposite sense of the inversion asymmetry, resulting in
a net in-plane spin polarization (thick purple arrow) along −z! J direction.
(C) CuMnAs crystal structure and AFM ordering.The two Mn spin-sublattices
A and B (red and purple) are inversion partners.This and panels A and B imply
opposite sign of the respective local current–induced spin polarizations,

pA ¼ −pB, at spin sublattices A and B. The full CuMnAs crystal is centro-
symmetric around the interstitial position highlighted by the green ball. (D) Mi-
croscopic calculations of the components of the spin-orbit field transverse to
the magnetic moments per current density 107 A cm−2 at spin sublattices A
and B as a function of themagneticmoment angle φmeasured from the x axis
([100] crystal direction).The electrical current is applied along the x and y axes.
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which couple strongly to the antiferromagnetic order, we demonstrate room-temperature
electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film
devices by applied current with magnitudes of order 106 ampere per square centimeter.
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magnetic state is insensitive to and produces no external magnetic field perturbations, which
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lead to data loss. In contrast, spin-based
devices, in which different magnetic moment
orientations in a ferromagnet (FM) represent

the zeros and ones (1), are robust against charge
perturbations. However, the FM moments can be
unintentionally reoriented and the data erased
by perturbing magnetic fields generated exter-
nally or internally within the memory circuitry.
If magnetic memories were based on antiferro-
magnets (AFMs) instead, they would be robust
against charge and magnetic field perturbations.
Additional advantages of AFMs compared to FMs
include the invisibility of data stored in AFMs
to external magnetic probes, ultrafast spin dyna-

mics in AFMs, and the broad range of metal,
semiconductor, or insulator materials with room-
temperature AFM order (2–7).
The energy barrier separating stable orienta-

tions of ordered spins is due to the magnetic
anisotropy energy. It is an even function of the
magnetic moment, which implies that the mag-
netic anisotropy and the corresponding memory
functionality are readily present in both FMs and
AFMs (8, 9). The magneto-transport counterpart
of the magnetic anisotropy energy is the aniso-
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netic moment, which again implies its presence
in AFMs (11). Although AMR in AFMs was ex-
perimentally confirmed in several recent studies
(12–17), efficient means for manipulating AFM
moments have remained elusive.
It has been proposed that current-induced

spin transfer torques of the form dM=dt ∼ M!
ðM ! pÞ, which are used for electrical writing in
the most advanced FM MRAMs (1), could also
produce large-angle reorientation of the AFM
moments (18). In these antidamping-like torques,
M is the magnetic moment vector and p is the
electrically injected carrier spinpolarization. Trans-
lated to AFMs, the effective field proportional
to ðMA;B ! pÞ that drives the antidamping-like
torque dMA;B=dt ∼ MA;B ! ðMA;B ! pÞ on indi-
vidual spin sublattices A and B has the favorable
staggered property, i.e., alternates in sign be-
tween the opposite spin sublattices.
In FM spin-transfer-torque MRAMs, spin-

polarized carriers are injected into the free
FM layer from a fixed FM polarizer by an out-
of-plane electrical current driven through the
FM-FM stack. In analogy, (18) assumes injec-
tion of the spin-polarized carriers into the AFM
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Fig. 1. Theory of the staggered current-induced field in CuMnAs. (A)
Schematic of the inverse spin-galvanic effect in a model inversion asymmetric
Rashba spin texture (red arrows). kx;y are the in-planemomentumcomponents.
The nonequilibrium redistribution of carriers from the left side to the right
side of the Fermi surface results in a net in-plane spin polarization (thick red
arrow) along þz! J direction, where J is the applied current (black arrow).
(B) Same as (A) for opposite sense of the inversion asymmetry, resulting in
a net in-plane spin polarization (thick purple arrow) along −z! J direction.
(C) CuMnAs crystal structure and AFM ordering.The two Mn spin-sublattices
A and B (red and purple) are inversion partners.This and panels A and B imply
opposite sign of the respective local current–induced spin polarizations,

pA ¼ −pB, at spin sublattices A and B. The full CuMnAs crystal is centro-
symmetric around the interstitial position highlighted by the green ball. (D) Mi-
croscopic calculations of the components of the spin-orbit field transverse to
the magnetic moments per current density 107 A cm−2 at spin sublattices A
and B as a function of themagneticmoment angle φmeasured from the x axis
([100] crystal direction).The electrical current is applied along the x and y axes.
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include the invisibility of data stored in AFMs
to external magnetic probes, ultrafast spin dyna-

mics in AFMs, and the broad range of metal,
semiconductor, or insulator materials with room-
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functionality are readily present in both FMs and
AFMs (8, 9). The magneto-transport counterpart
of the magnetic anisotropy energy is the aniso-
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netic moment, which again implies its presence
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perimentally confirmed in several recent studies
(12–17), efficient means for manipulating AFM
moments have remained elusive.
It has been proposed that current-induced

spin transfer torques of the form dM=dt ∼ M!
ðM ! pÞ, which are used for electrical writing in
the most advanced FM MRAMs (1), could also
produce large-angle reorientation of the AFM
moments (18). In these antidamping-like torques,
M is the magnetic moment vector and p is the
electrically injected carrier spinpolarization. Trans-
lated to AFMs, the effective field proportional
to ðMA;B ! pÞ that drives the antidamping-like
torque dMA;B=dt ∼ MA;B ! ðMA;B ! pÞ on indi-
vidual spin sublattices A and B has the favorable
staggered property, i.e., alternates in sign be-
tween the opposite spin sublattices.
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polarized carriers are injected into the free
FM layer from a fixed FM polarizer by an out-
of-plane electrical current driven through the
FM-FM stack. In analogy, (18) assumes injec-
tion of the spin-polarized carriers into the AFM

SCIENCE sciencemag.org 5 FEBRUARY 2016 • VOL 351 ISSUE 6273 587

1School of Physics and Astronomy, University of Nottingham,
Nottingham NG7 2RD, UK. 2Institute of Physics, Academy of
Sciences of the Czech Republic, Cukrovarnická 10, 162 00
Praha 6, Czech Republic. 3Faculty of Mathematics and
Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2,
Czech Republic. 4Diamond Light Source, Chilton, Didcot,
Oxfordshire, OX11 0DE, UK. 5Hitachi Cambridge Laboratory,
J. J. Thomson Avenue, Cambridge CB3 0HE, UK.
6Department of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0HE, UK. 7Peter Grünberg
Institut and Institute for Advanced Simulation,
Forschungszentrum Jülich and JARA, 52425 Jülich, Germany.
8Institute of Physics, Academy of Sciences of the Czech
Republic, Na Slovance 2, 182 21 Praha 8, Czech Republic.
9Institute of Physics, Polish Academy of Sciences, al.
Lotnikow 32/46, PL-02-668 Warsaw, Poland.
*These authors contributed equally to this work. †Corresponding
author. E-mail: peter.wadley@nottingham.ac.uk

Fig. 1. Theory of the staggered current-induced field in CuMnAs. (A)
Schematic of the inverse spin-galvanic effect in a model inversion asymmetric
Rashba spin texture (red arrows). kx;y are the in-planemomentumcomponents.
The nonequilibrium redistribution of carriers from the left side to the right
side of the Fermi surface results in a net in-plane spin polarization (thick red
arrow) along þz! J direction, where J is the applied current (black arrow).
(B) Same as (A) for opposite sense of the inversion asymmetry, resulting in
a net in-plane spin polarization (thick purple arrow) along −z! J direction.
(C) CuMnAs crystal structure and AFM ordering.The two Mn spin-sublattices
A and B (red and purple) are inversion partners.This and panels A and B imply
opposite sign of the respective local current–induced spin polarizations,

pA ¼ −pB, at spin sublattices A and B. The full CuMnAs crystal is centro-
symmetric around the interstitial position highlighted by the green ball. (D) Mi-
croscopic calculations of the components of the spin-orbit field transverse to
the magnetic moments per current density 107 A cm−2 at spin sublattices A
and B as a function of themagneticmoment angle φmeasured from the x axis
([100] crystal direction).The electrical current is applied along the x and y axes.
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from a fixed FM polarizer by out-of-plane elec-
trical current driven in a FM-AFM stack. How-
ever, relativistic spin-orbit coupling may offer
staggered current-induced fields, which do not
require external polarizers and which act in bare
AFMcrystals (19). The effect occurs in AFMswith
specific crystal and magnetic structures for which
the spin sublattices form space-inversion part-
ners. Among these materials is a high–Néel
temperature AFM, tetragonal-phase CuMnAs,
which was recently synthesized in the form of
single-crystal epilayers on III-V semiconductor
substrates (20).
Relativistic current-induced fields observed

previously in broken inversion-symmetry FM
crystals (21–29) can originate from the inverse
spin-galvanic effect (30–34) (Fig. 1, A and B).
The full lattice of the CuMnAs crystal (Fig. 1C)
has an inversion symmetry with the center of
inversion at an interstitial position (green ball
in the figure). This implies that the mechanism
described in Fig. 1, A and B, will not generate a
net current-induced spin density when integrated
over the entire crystal. However, Mn atoms form
two sublattices (depicted in Fig. 1C in red and
purple) whose local environment has broken in-
version symmetry, and the two Mn sublattices
form inversion partners. The inverse spin-galvanic
mechanisms of Fig. 1, A and B, will generate
locally nonequilibrium spin polarizations of op-
posite signs on the inversion-partner Mn sublat-
tices. For these staggered fields to couple strongly
to the AFM order, it is essential that the inversion-
partner Mn sublattices coincide with the two
spin sublattices A and B of the AFM ground
state (19). The resulting spin-orbit torques have
the form dMA;B=dt ∼ MA;B ! pA;B, where the
effective field proportional to pA ¼ −pB acting on
the spin-sublattice magnetizations MA;B alter-
nates in sign between the two sublattices. The
CuMnAs crystal and magnetic structures (Fig. 1C)
fulfill these symmetry requirements (20).
To quantitatively estimate the strength of the

staggered current-induced field, we performed
microscopic calculations based on the Kubo
linear response formalism (35) (see supplemen-
tary text for details). The calculations (Fig. 1D)
confirm the desired opposite sign of the current-
induced field on the two spin sublattices and
highlight the expected dependence on the mag-
neticmoment angle, which implies that the AFM
moments will tend to align perpendicular to the
applied current. For reversible electrical switch-
ing between two stable states and the subsequent
electrical detection by the AMR, the setting cur-
rent pulses can therefore be applied along two
orthogonal in-plane cubic axes of CuMnAs. The
magnitude of the effect seen in Fig. 1D is com-
parable to that of typical current-induced fields
applied in FMs, suggesting that CuMnAs is a
favorable material for observing current-induced
switching in an AFM.
Our experiments were conducted on epitaxial

films of the tetragonal phase of CuMnAs, which
is amember of a broad family of high-temperature
I-Mn-V AFM compounds (6, 7, 20). We have
observed the electrical switching and readout

588 5 FEBRUARY 2016 • VOL 351 ISSUE 6273 sciencemag.org SCIENCE

Fig. 2. Electrical switching of the AFM CuMnAs. (A) Scanning transmission electron microscopy
image of CuMnAs/GaP in the [100]–[001] plane. (B) Magnetization versus applied field of an un-
patterned piece of the CuMnAs/GaP wafer measured by SQUIDmagnetometer. (C) XMLD-PEEM image
of the CuMnAs film with x-rays at the Mn L3 absorption edge incident at 16° from the surface along the
[100] axis. (D) Optical microscopy image of the device and schematic of the measurement geometry.
(E) Change in the transverse resistance after applying three successive 50-ms writing pulses of am-

plitude Jwrite ¼ 4! 106 A cm−2 alternately along the [100] crystal direction of CuMnAs (black arrow in
panel D and black points in panel E) and along the [010] axis (red arrow in panel D and red points in

panel E).The reading current Jread is applied along the [110] axis, and transverse resistance signals R⊥

are recorded 10 s after each writing pulse. A constant offset is subtracted fromR⊥. Measurements were
done at a sample temperature of 273 K.

Fig. 3. Dependence of the switching on the writing pulse length and amplitude. Transverse resist-
ance after successive writing pulses along the [100] axis (black points) and [010] axis (red points) for
different current amplitudes (A) or pulse lengths (B). R⊥ is recorded 10 s after each writing pulse. R is the
average of the longitudinal resistance R. Measurements were done at sample temperature of 273 K. A
constant offset is subtracted from R⊥.
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from a fixed FM polarizer by out-of-plane elec-
trical current driven in a FM-AFM stack. How-
ever, relativistic spin-orbit coupling may offer
staggered current-induced fields, which do not
require external polarizers and which act in bare
AFMcrystals (19). The effect occurs in AFMswith
specific crystal and magnetic structures for which
the spin sublattices form space-inversion part-
ners. Among these materials is a high–Néel
temperature AFM, tetragonal-phase CuMnAs,
which was recently synthesized in the form of
single-crystal epilayers on III-V semiconductor
substrates (20).
Relativistic current-induced fields observed

previously in broken inversion-symmetry FM
crystals (21–29) can originate from the inverse
spin-galvanic effect (30–34) (Fig. 1, A and B).
The full lattice of the CuMnAs crystal (Fig. 1C)
has an inversion symmetry with the center of
inversion at an interstitial position (green ball
in the figure). This implies that the mechanism
described in Fig. 1, A and B, will not generate a
net current-induced spin density when integrated
over the entire crystal. However, Mn atoms form
two sublattices (depicted in Fig. 1C in red and
purple) whose local environment has broken in-
version symmetry, and the two Mn sublattices
form inversion partners. The inverse spin-galvanic
mechanisms of Fig. 1, A and B, will generate
locally nonequilibrium spin polarizations of op-
posite signs on the inversion-partner Mn sublat-
tices. For these staggered fields to couple strongly
to the AFM order, it is essential that the inversion-
partner Mn sublattices coincide with the two
spin sublattices A and B of the AFM ground
state (19). The resulting spin-orbit torques have
the form dMA;B=dt ∼ MA;B ! pA;B, where the
effective field proportional to pA ¼ −pB acting on
the spin-sublattice magnetizations MA;B alter-
nates in sign between the two sublattices. The
CuMnAs crystal and magnetic structures (Fig. 1C)
fulfill these symmetry requirements (20).
To quantitatively estimate the strength of the

staggered current-induced field, we performed
microscopic calculations based on the Kubo
linear response formalism (35) (see supplemen-
tary text for details). The calculations (Fig. 1D)
confirm the desired opposite sign of the current-
induced field on the two spin sublattices and
highlight the expected dependence on the mag-
neticmoment angle, which implies that the AFM
moments will tend to align perpendicular to the
applied current. For reversible electrical switch-
ing between two stable states and the subsequent
electrical detection by the AMR, the setting cur-
rent pulses can therefore be applied along two
orthogonal in-plane cubic axes of CuMnAs. The
magnitude of the effect seen in Fig. 1D is com-
parable to that of typical current-induced fields
applied in FMs, suggesting that CuMnAs is a
favorable material for observing current-induced
switching in an AFM.
Our experiments were conducted on epitaxial

films of the tetragonal phase of CuMnAs, which
is amember of a broad family of high-temperature
I-Mn-V AFM compounds (6, 7, 20). We have
observed the electrical switching and readout
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Fig. 2. Electrical switching of the AFM CuMnAs. (A) Scanning transmission electron microscopy
image of CuMnAs/GaP in the [100]–[001] plane. (B) Magnetization versus applied field of an un-
patterned piece of the CuMnAs/GaP wafer measured by SQUIDmagnetometer. (C) XMLD-PEEM image
of the CuMnAs film with x-rays at the Mn L3 absorption edge incident at 16° from the surface along the
[100] axis. (D) Optical microscopy image of the device and schematic of the measurement geometry.
(E) Change in the transverse resistance after applying three successive 50-ms writing pulses of am-

plitude Jwrite ¼ 4! 106 A cm−2 alternately along the [100] crystal direction of CuMnAs (black arrow in
panel D and black points in panel E) and along the [010] axis (red arrow in panel D and red points in

panel E).The reading current Jread is applied along the [110] axis, and transverse resistance signals R⊥

are recorded 10 s after each writing pulse. A constant offset is subtracted fromR⊥. Measurements were
done at a sample temperature of 273 K.

Fig. 3. Dependence of the switching on the writing pulse length and amplitude. Transverse resist-
ance after successive writing pulses along the [100] axis (black points) and [010] axis (red points) for
different current amplitudes (A) or pulse lengths (B). R⊥ is recorded 10 s after each writing pulse. R is the
average of the longitudinal resistance R. Measurements were done at sample temperature of 273 K. A
constant offset is subtracted from R⊥.
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ab initio modelling - CuMnAs
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FIG. 4. Based on the comparison between ellipsometry and
GGA+U calculations [23], this band structure (U = 1.7 eV) seems
to describe well CuMnAs in tetragonal phase.

checked in situ by x-ray photoemission spectroscopy (XPS):
The disappearance of core-level peaks O 1s and C 1s indicates
that the surface is clean (the residual contamination is well
below 1% of surface coverage). The UPS spectrum, shown in
Fig. 5 by black squares, was recorded using a helium lamp
as excitation source (HeI-α = 21.2 eV) and a hemispherical
energy analyzer Phoibos 150 (SPECSTM), with an acceptance
angle of ∼6◦ and a field view of 1.4 mm2. Results of the
investigation of empty states above the Fermi level by IPES
is shown only in the Supplemental Material [12] (Section IV).
The calculated DOS above the Fermi level is less sensitive to
variations of U and, moreover, fine details cannot be accessed
by IPES because of the large experimental broadening [28]
characteristic of these spectra.

Photoemission spectroscopies access the electronic struc-
ture associated with top ≈1 nm of the thin layer [29]. In
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FIG. 5. Experimental angle-integrated photoemission (UPS,
black squares) compared to the corresponding one-step model of
photoemission. Theoretical data are shown for three values of U ;
labeled features are described in the text.

the simplest approximation, the measured angle-integrated
UPS and IPES should reflect rather directly the DOS. This
approximation works reasonably well in the high energy
regime (XPS) and led [30] to a larger estimate of U around
4.5 eV. However, this approach ignores the influence of specific
matrix elements that, in general, introduce an energy- and
element-dependent weight to DOS. Also, in the regime of
low photon energies (as measured here), additional aspects
may have a very pronounced impact on the angle-integrated
photoemission spectra (for example, final states or surface
effects).

Here we used the recently developed full spin-density
matrix formulation for the photocurrent [31,32] in the one-
step model [33,34] (see details in Supplemental Material
[12]) within the relativistic Korringa-Kohn-Rostoker Green
function method. This method is implemented in the SPR-KKR
program package [35]. Regarding the value of U , we arrive
at a somewhat different conclusion than what was made in
Ref. [30]. Nevertheless, the DOS shown in the inset of Fig. 3
still provides a good means for interpreting, on an elementary
level, both the calculated and the measured spectra. They are
dominated by the Mn states located at ≈1 eV and −4 eV
(with respect to the Fermi level), the latter having a significant
admixture of Cu states. The peak at ≈−2 eV with dominantly
Cu character is not visible in the UPS spectra, being probably
hidden in the main peak of the measured data. The three main
features in experimental spectra are labeled by capital letters in
Fig. 5. It turns out that the main strong peak (A), both in terms
of its position and width, serves as the best test for calculated
spectra and their dependence of the value of U . As this value
increases, the peak blueshifts and broadens and the best match
with the experiment occurs around U = 2.5 eV. For larger U ,
a shoulder develops in model calculations which is absent in
experimental data while for smaller U the good agreement of
peak position is lost. Both this feature and (C) which is also
clearly visible in the model calculations, can be backtracked
to the Mn d states which are shifted to higher binding energies
when U increases. The broad peak (B) located close to the
Fermi level shows a strong surface character. We confirmed
this theoretically by modifying the surface barrier [36] (see
Sec. IV. in Supplemental Material [12]). Given that the surface
was probably damaged by ion milling used to remove the cap,
only little information about the bulk electronic structure can be
extracted from this part of UPS. Finally, regarding the inverted
structure, we find that the photoemission spectra qualitatively
differ from experimental data if we use band structure consis-
tent with ellipsometry. The level of agreement between UPS
data and DFT+U calculations for the RTP suggests that it is
this structure and the aforementioned U − J ≈ 2 eV which
provide a plausible input for the band structure calculations.

In conclusion, we presented optical spectra of the complex
permittivity and photoemission spectra in the UV regime
(UPS) of MBE-grown thin layers of CuMnAs, which crys-
tallize in the tetragonal structure, and demonstrated a good
level of agreement with the DFT+U calculations. Together
with the dynamically refined precession electron diffraction
tomography, this agreement strongly suggests that copper
occupies the basal positions of the structure (S1 in Fig. 1); on
the other hand, calculations of UPS and optical permittivity in
the inverted structure cannot be reconciled with one particular
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TABLE I. Crystallographic and dynamical refinement parameters of the RTP and the inverted tetragonal phases, both of P 4/nmm (No. 129)
space group. For RTP: Cu (S1) occupies the Wyckoff position 2a ( 1

2 , 1
2 ,0), Mn (S3) and As (S2) occupy positions 2c (0, 1

2 ,z). In the inverted
tetragonal phase S1 = Mn and S3 = Cu.

Structural parameters:

z/c occupancies ADPs (iso.) [Å
2
]

S2 S3 S1 S2 S3 S1 S2 S3

RTP: 0.2627(2) 0.6628(2) 0.995(8)∼1 1 0.869(7) 0.0147(4) 0.0121(3) 0.0123(4)
inverted: 0.2627(2) 0.6624(2) 0.870(6) 1 0.949(8) 0.0052(4) 0.0124(3) 0.0205(5)
Refinement parameters:
RTP: Nparam. = 338; Nobs/all.=3768/4189; Robs = 10.15; wRall = 11.86
inverted: Nparam. = 338; Nobs/all.=3767/4190; Robs = 10.68; wRall = 12.51

implying a rather robust fit whose result is shown in Fig. 2 as
experimental data.

Our DFT+U calculations [23] for tetragonal CuMnAs
(a = 0.3853 nm, c = 0.6276 nm) based on generalized gra-
dient approximation (GGA) with scalar-relativistic correction
come quite close to the experimental data (Fig. 2), provided
relatively large broadening (! = 0.7 eV) of the interband
terms is used (n ̸= n′ in Eq. (16) of Ref. [24]). Such value is
not unprecedented [25] although still significantly larger than
h̄/2τ implied by Drude-formula relaxation time τ obtained
from measured DC conductivity. That said, one should be
reminded that the intra- and interband relaxation times are
not required to be the same so that parameters used for the
model in Fig. 2 are still plausible. To estimate τ , we used (apart
from the experimental resistivity [10]) the ab initio calculated
plasma frequency ωp. The model data plotted in Fig. 2 also
include the intraband contribution (Drude peak). For the sake
of definiteness, we should mention that they correspond to
ϵxx where x and Mn magnetic moments lay in the ab plane
as defined in Fig. 1(a). In the remainder of this paper, we
will only be discussing the imaginary part of permittivity
since the Kramers-Kronig-related real part bears no additional
information.

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0

ε/
ε

 1  2  3  4  5  6

real part

imaginary part0

Energy [eV]

model
exp. data

FIG. 2. AC permittivity of CuMnAs thin film determined by
ellipsometry (for comparison, Im ϵ/ϵ0 for orthorhombic bulk
CuMnAs grown by other method [21] is shown by the dashed line;
see Supplemental Material [12], Sec. III for growth details [22]). The
GGA+U model uses U = 1.7 eV and ! = 0.7 eV for the interband
part and h̄ωp = 3.26 eV and h̄/2τ = 120 meV for the intraband
contribution.

Accounting for electron correlations turns out to be
essential. We use GGA+U with double-counting corrections
to the DFT part treated in the fully localized limit [26] (FLL)
and find the peak in the imaginary part of the permittivity
blueshifting with increasing value of U (see Fig. 3). Its
experimentally determined position (h̄ω ≈ 2 eV) is recovered
for U = 1.7 eV, and on the theoretical side, the peak stems
from unoccupied Mn states (indicated by an arrow in the inset
of Fig. 3). In Fig. 4, the corresponding band structure is shown.
At this point, we remark that the inverted phase has a markedly
different band structure, but its optical response still resembles
the experimental data in Fig. 2 provided unrealistically large U
is chosen. Returning to the RTP, we now also briefly discuss the
effect of the parameter [26] J > 0. It causes the peak in Im ϵ/ϵ0
to shift to lower energies (in agreement with replacing U and J
by Ueff = U − J and J = 0), and also it adds some additional
structure to the peak. The large broadening, however, renders
such effects unobservable. Based on ellipsometry data, values
of U − J ≈ 2 eV, therefore, seem to give the best results.

Photoemission spectra and also inverse photoemission
spectra (IPES) were measured for CuMnAs thin layers covered
originally (after growth) by an arsenic cap. This protective
layer was removed by Ar ion milling in the UHV environment
for UPS and IPES [27]. The cleanness of the surface was

FIG. 3. The imaginary part of relative permittivity calculated for
several values of U . The peak shifts blue with increasing U , the arrows
indicate the position of the maximum. Inset: density of states per spin
(and Mn-partial density of states shown in red) with a Mn-dominated
peak just above the Fermi level (taken as E = 0).
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FIG. 4. Based on the comparison between ellipsometry and
GGA+U calculations [23], this band structure (U = 1.7 eV) seems
to describe well CuMnAs in tetragonal phase.

checked in situ by x-ray photoemission spectroscopy (XPS):
The disappearance of core-level peaks O 1s and C 1s indicates
that the surface is clean (the residual contamination is well
below 1% of surface coverage). The UPS spectrum, shown in
Fig. 5 by black squares, was recorded using a helium lamp
as excitation source (HeI-α = 21.2 eV) and a hemispherical
energy analyzer Phoibos 150 (SPECSTM), with an acceptance
angle of ∼6◦ and a field view of 1.4 mm2. Results of the
investigation of empty states above the Fermi level by IPES
is shown only in the Supplemental Material [12] (Section IV).
The calculated DOS above the Fermi level is less sensitive to
variations of U and, moreover, fine details cannot be accessed
by IPES because of the large experimental broadening [28]
characteristic of these spectra.

Photoemission spectroscopies access the electronic struc-
ture associated with top ≈1 nm of the thin layer [29]. In
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FIG. 5. Experimental angle-integrated photoemission (UPS,
black squares) compared to the corresponding one-step model of
photoemission. Theoretical data are shown for three values of U ;
labeled features are described in the text.

the simplest approximation, the measured angle-integrated
UPS and IPES should reflect rather directly the DOS. This
approximation works reasonably well in the high energy
regime (XPS) and led [30] to a larger estimate of U around
4.5 eV. However, this approach ignores the influence of specific
matrix elements that, in general, introduce an energy- and
element-dependent weight to DOS. Also, in the regime of
low photon energies (as measured here), additional aspects
may have a very pronounced impact on the angle-integrated
photoemission spectra (for example, final states or surface
effects).

Here we used the recently developed full spin-density
matrix formulation for the photocurrent [31,32] in the one-
step model [33,34] (see details in Supplemental Material
[12]) within the relativistic Korringa-Kohn-Rostoker Green
function method. This method is implemented in the SPR-KKR
program package [35]. Regarding the value of U , we arrive
at a somewhat different conclusion than what was made in
Ref. [30]. Nevertheless, the DOS shown in the inset of Fig. 3
still provides a good means for interpreting, on an elementary
level, both the calculated and the measured spectra. They are
dominated by the Mn states located at ≈1 eV and −4 eV
(with respect to the Fermi level), the latter having a significant
admixture of Cu states. The peak at ≈−2 eV with dominantly
Cu character is not visible in the UPS spectra, being probably
hidden in the main peak of the measured data. The three main
features in experimental spectra are labeled by capital letters in
Fig. 5. It turns out that the main strong peak (A), both in terms
of its position and width, serves as the best test for calculated
spectra and their dependence of the value of U . As this value
increases, the peak blueshifts and broadens and the best match
with the experiment occurs around U = 2.5 eV. For larger U ,
a shoulder develops in model calculations which is absent in
experimental data while for smaller U the good agreement of
peak position is lost. Both this feature and (C) which is also
clearly visible in the model calculations, can be backtracked
to the Mn d states which are shifted to higher binding energies
when U increases. The broad peak (B) located close to the
Fermi level shows a strong surface character. We confirmed
this theoretically by modifying the surface barrier [36] (see
Sec. IV. in Supplemental Material [12]). Given that the surface
was probably damaged by ion milling used to remove the cap,
only little information about the bulk electronic structure can be
extracted from this part of UPS. Finally, regarding the inverted
structure, we find that the photoemission spectra qualitatively
differ from experimental data if we use band structure consis-
tent with ellipsometry. The level of agreement between UPS
data and DFT+U calculations for the RTP suggests that it is
this structure and the aforementioned U − J ≈ 2 eV which
provide a plausible input for the band structure calculations.

In conclusion, we presented optical spectra of the complex
permittivity and photoemission spectra in the UV regime
(UPS) of MBE-grown thin layers of CuMnAs, which crys-
tallize in the tetragonal structure, and demonstrated a good
level of agreement with the DFT+U calculations. Together
with the dynamically refined precession electron diffraction
tomography, this agreement strongly suggests that copper
occupies the basal positions of the structure (S1 in Fig. 1); on
the other hand, calculations of UPS and optical permittivity in
the inverted structure cannot be reconciled with one particular
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Barrier to spin switching: magnetic anisotropy
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FIG. 7. Crystal structure (rutile) applies to all four difluorides under study. Magnetic structure on the left corresponds to
orientation along the easy axis (except for NiF2) and we denote its energy by Ek. Magnetic structure on the right is defined to
have energy E?.

FIG. 8. Band structure of MnF2 calculated with large U
corresponding to Ref. 25 (0.43 Ry)

Appendix C: More about electronic structure

As described in the main text, the main e↵ect of in-
creasing U is to push the group B d-bands away from the
lower quintuplet of the d-states and, if present (as for
FeF2, CoF2 and NiF2), from the group A d-bands. This
can be seen by comparing Fig. 8 to the leftmost panel of
Fig. 2.

Fig. 8 also clearly shows the ’conduction band’ (low-
est lying unoccupied parabolic band). Its e↵ective mass
is moderately anisotropic and smaller than the free elec-
tron rest mass m0; wavefunctions of this band are largely
localised in the interstitial space. Averaged over direc-
tions, we find me↵/m0 about 0.22 for MnF2, 0.25 for
FeF2, 0.51 for CoF2 and 0.36 for NiF2.
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initio, a more advanced approach seems necessary such
as some kind of cluster model, e.g. FeF6, constructed
along the lines of Ref. 28 where a model of MnAs4 cluster
was used to explain certain magnetic anisotropy terms
in (Ga,Mn)As dilute magnetic semiconductor. Such an
attempt to make sense of the ab initio calculations is
nevertheless clearly beyond the scope of this article. On
the other hand, the single-ion model is successful in case
of FeF2 and also29 MnF2.

IV. CONCLUSION

Magnetic anisotropies of MnF2, FeF2, CoF2 and NiF2

have been investigated theoretically and it was found
that, with exception of CoF2, ab initio calculations de-
scribed in Appendix C lead to reliable results. For com-
parison to experiments, we used well-established spin flop
measurements (spin-flop field Bsf , see Tab. I). Regarding
CoF2, we conclude that while the calculations are con-
sistent with experimentally determined Bsf , the magne-
tocrystalline anisotropy depends too sensitively on Hub-
bard parameter U so that quantitative prediction is im-
possible, without knowing in advance what the correct
result is.

We pointed out that band structures should be vali-
dated, for example through optical measurements, before
using them for further calculations. It would be desir-
able to perform such low-temperature measurements for
all four compounds and determine the optical gap. This
would a↵ord greater confidence in the values of U used
in ab initio calculations.
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Appendix A: Dipolar interactions

Dipolar magnetic energy (per unit cell) of an (infinite)
lattice of magnetic moments is E = � 1

2

P
j

~Bj · ~µj where
the sum goes over all magnetic moments ~µj in the unit
cell. Magnetic field generated, at the position of given
~µj , by all other magnetic moments is

~Bj =
µ0

4⇡

X

i

3(µ̂i · r̂ij)~rij � ~µi

|~rij |3
(A1)

where ~rij is the relative position of ~µi with respect to
~µj . The dipolar magnetic energy depends on the orien-
tation of the magnetic moments; values labelled ’dipolar
term’ in Tab. I are E? � Ek recalculated into field us-
ing the same procedure as for MCA (see Sec. III). Mag-
netic moments |~µj | used in Eq. (A1) were taken from
experiments,5 as given in Tab. I.

Dipolar interactions do not contribute to MA in cu-
bic lattices while they may even constitute its dominant
source if the high symmetry is broken (or completely
absent). To explain qualitatively the e↵ect of the bro-
ken symmetry, we consider a five-atom cluster (magnetic
sublattice A atom located at the center of coordinate
system and four atoms of magnetic sublattice B located
at (±a, 0) and (0, ±b) with strictly antiparallel magnetic
moments) and calculate the energy of the four B atoms
in the dipolar field ~BA implied by Eq. (A1). This en-
ergy, E(�), depends in general on the magnetic moment
orientation (sin �, cos �). For a/b = 1, however, E(�) is
constant owing to sin2 �+cos2 � being independent on �.
Once the symmetry is broken (a 6= b), the configuration
with moments parallel to x (� = ⇡/2) ceases to have the
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FIG. 2. Overview of all four fluorides. Left to right: MnF2 without U , FeF2 with U = 0.2 Ry, CoF2 with U = 0.1 Ry and NiF2

again without U .

antibonding orbitals. The lower quintuplet always lies
below EF , the higher is either partly or completely above
EF . Starting with MnF2 in its 3d5 configuration, EF is
located at the top of the lower five TM d-bands and all
other five bands are high above (⇡ 3 eV or more); in
terms of the sketch in Fig. 1, there are no bands in group
A and all five are in group B as the leftmost panel in
Fig. 2 shows. Another highly dispersive band which we
call ’conduction band’ in Fig. 1 crosses these relatively
flat d-bands (we comment on this band in Appendix C).
Now the e↵ect of adding Hubbard U is to push the bands
in group B away from the ’lower five’ so that, since EF re-
mains pinned at the top of the latter, the group B bands
move higher into the conduction band (compare also the
leftmost panel of Fig. 2 to Fig. 8 in Appendix C). In other
words, the band structure of MnF2 does not change sub-
stantially when U is increased even though the gap does
increase slightly; the gap occurs mainly due to the split-
ting between the two quintuplets of d-bands and would
be present even in the absence of correlations. However,
the e↵ect of Hubbard U is much more dramatic for the
other compounds under scrutiny. We do not discuss the
best choice33 of U in MnF2 any further since, by virtue
of the argument of half-filled d-shell, the MCA is anyway
small in this material.

There is one more occupied band in FeF2 than in MnF2

and therefore one band from group B (Fig. 1) has to be
transferred into group A. Because all five d-bands are
very close one to another, forming some kind of local
spaghetti in the band structure, this would render FeF2

metallic (at least on the LDA level). A better treatment
of EEIs is needed. In fact, a gap opens already by switch-
ing to GGA but its size is unrealistically small (<⇠ 0.5 eV).
Fig. 3 shows that within GGA+U, the gap grows with
U and for values used typically in literature,15 it reaches
a reasonable6 size of ⇡ 3 eV. We point out that a room

temperature measurement of optical absorption21 leads
to a similar gap size; however, we will discuss below the
plausibility of using U around 2.5 eV which is somewhat
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FIG. 3. Nominal gap in FeF2 as a function of U . Note that the
apparent optical gap is larger because some optical transitions
may be suppressed.

smaller than usual.22 Our choice of U corresponds to the
second panel from the left in Fig. 2 and seems to give
optical spectra closer to another experimental work on
FeF2. Impact of the choice of U on MCA will be dis-
cussed in Sec. III.

The experimental work in question23 concerns room-
temperature ellipsometry of FeF2 layers. The gap in-
ferred in Fig. 4 of that article is certainly smaller than in
Ref. 21 and moreover, it turns out that the actual theo-
retical gap may be even smaller because of suppressed
transitions from the d-band directly below EF to the
other low-lying bands of group B and the ’conduction
band’ (as defined in Fig. 1). In fact, it is remarkable how
similar are theoretically calculated optical spectra for U
as small as 0.1 Ry (shown in Fig. 4) to the experimental
data23 mentioned above. Given that optical gap at low
temperatures will probably be larger, we opted for show-
ing band structure with U = 0.2 Ry in Fig. 2. Calculated
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2Department of Physics of Materials, Charles University in Prague, Ke Karlovu 5, 121 16 Prague, Czech Republic

(Dated: Jan18, 2018)

We compare GGA+U calculations with available experimental data and analyse the origin of
magnetic anisotropies in MnF2, FeF2, CoF2 and NiF2. We confirm that the magnetic anisotropy
of MnF2 stems almost completely from the dipolar interaction, while magnetocrystalline anisotropy
energy plays dominant role in the other three compounds and discuss how it depends on the details
of band structure. The last mentioned is critically compared to available optical measurements. The
case of CoF2 where magnetocrystalline anisotropy (MCA) energy strongly depends on U is put into
contrast with FeF2 where theoretical predictions of magnetic anisotropies are nearly quantitative.

I. INTRODUCTION

Several rutile-structure difluorides of transition metals
(TMs) such as MnF2 have long been known to be antifer-
romagnetically ordered at low temperatures. Albeit not
the first antiferromagnets (AFMs) ever identified, they
received significant attention in the late fifties and six-
ties when their magnetic anisotropy was e↵ectively de-
termined using measurements of spin flop. These ma-
terials are arguably one of the simplest AFMs one can
imagine: their two magnetic sublattices are oriented in
opposite directions (collinearity) and they exhibit uni-
axial magnetic anisotropy which reduces the complexity
of domain building. Renewed interest in these materials
has arisen recently in the context of antiferromagnetic
spintronics.1 Very recent device concepts using these tra-
ditional AFMs include bilayers where spin pumping by
AFM2 or spin Seebeck e↵ect3 could be observed.

Motivated initially by the lack of theoretical estimates
of magnetocrystalline anisotropy (MCA), we soon re-
alised that not even the band structures of magnanese,
iron, cobalt and nickel difluorides are well established in
the literature. We therefore present DFT+U calculations
(described in detail in Appendix C), compare them to op-
tical measurements where available, identify the missing
information (and propose experiments and calculations
to be still carried out) and finally present the MCA calcu-
lations and discuss their agreement with experimentally
determined magnetic anisotropies of these materials.

For certain purposes, simple (in the sense explained
above) antiferromagnets can be described by Stoner-
Wohlfarth model4 where the energy (per volume) divided
by sublattice magnetisation M reads

E

MV
= Be ~m1·~m2�B~b·(~m1+~m2)+Ba[(~m1·ẑ)2+(~m2·ẑ)2].

(1)

Here, ~m1,2 and ~b are the unit vectors giving the direc-
tion of sublattice magnetisations and magnetic field B,
respectively. The two material-specific parameters of this
model are the exchange field Be and anisotropy field Ba

and typically, Be � Ba, B. For ~b||ẑ, model (1) implies

a spin flop at B = Bsf = 2
p

BaBe, i.e. abrupt ground
state transition from ~m1,2||ẑ with ~m1,2 strictly antiparal-
lel to, approximately ~m1,2 ? ẑ with ~m1,2 slightly canted
(see Fig. 8 in Appendix B). Using this e↵ect, Ba can
be determined from magnetometry provided that the ex-
change field is known or estimated.

We summarise the measured values of Bsf for the first
three compounds of the series in Tab. I and compare them
to theoretically calculated values. The latter are obtained
by combining Ba which comprises MCA and dipolar in-

teraction (the former, B
(1)
a , calculated by ab initio meth-

ods detailed in Sec. III) and Be based on an estimate of
the exchange coupling J from the Néel temperature,32

kTN

J
=

1

3
S(S + 1) (2)

where SµB is the TM atom magnetic moment (rela-
tion between the exchange coupling J and Be is given
in Sec. III). We find a satisfactory agreement between
experimental and theoretical values of spin flop fields
for MnF2 and FeF2 and following conclusions can be
made. Magnetic anisotropy of MnF2 is primarily driven
by dipole interactions (see Appendix A) which is not
surprising given the atomic configuration of manganese
(L = 0 orbital singlet) which does not allow any ap-
preciable MCA (see comments29 on single-ion model in
Sec. III). On the other hand, this does not apply to FeF2

where the TM 3d shell is not half-filled and sizable matrix
elements of ~L · ~S then lead to a strong magnetocrystalline
anisotropy which translates into spin flop fields as large
as 42 T.

Calculations of MCA in CoF2 yield ambiguous results
(see Sec. III) and we, therefore, use opposite reasoning
for this material: using Bsf and Be we estimate Ba which

is then shown to imply B
(1)
a consistent with our ab initio

calculation. Again, this consistency check is explained in

Sec. III and in Tab. 1, the values of Ba, B
(1)
a are marked

with asterisk to indicate that they are calculated using
experimental Bsf . Regarding NiF2, we find negative Ba

in agreement with experimental evidence12 of ~m1,2 ori-
ented in plane. Spin flop measurements are more com-
plicated in this case since there are multiple easy axes

Bsf = 2
p

BaBespin flop field:

Beware of the definition!

(Stoner-Wohlfarth)
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tical measurements where available, identify the missing
information (and propose experiments and calculations
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lations and discuss their agreement with experimentally
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Here, ~m1,2 and ~b are the unit vectors giving the direc-
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model are the exchange field Be and anisotropy field Ba

and typically, Be � Ba, B. For ~b||ẑ, model (1) implies
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BaBe, i.e. abrupt ground
state transition from ~m1,2||ẑ with ~m1,2 strictly antiparal-
lel to, approximately ~m1,2 ? ẑ with ~m1,2 slightly canted
(see Fig. 8 in Appendix B). Using this e↵ect, Ba can
be determined from magnetometry provided that the ex-
change field is known or estimated.

We summarise the measured values of Bsf for the first
three compounds of the series in Tab. I and compare them
to theoretically calculated values. The latter are obtained
by combining Ba which comprises MCA and dipolar in-

teraction (the former, B
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a , calculated by ab initio meth-

ods detailed in Sec. III) and Be based on an estimate of
the exchange coupling J from the Néel temperature,32
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where SµB is the TM atom magnetic moment (rela-
tion between the exchange coupling J and Be is given
in Sec. III). We find a satisfactory agreement between
experimental and theoretical values of spin flop fields
for MnF2 and FeF2 and following conclusions can be
made. Magnetic anisotropy of MnF2 is primarily driven
by dipole interactions (see Appendix A) which is not
surprising given the atomic configuration of manganese
(L = 0 orbital singlet) which does not allow any ap-
preciable MCA (see comments29 on single-ion model in
Sec. III). On the other hand, this does not apply to FeF2

where the TM 3d shell is not half-filled and sizable matrix
elements of ~L · ~S then lead to a strong magnetocrystalline
anisotropy which translates into spin flop fields as large
as 42 T.

Calculations of MCA in CoF2 yield ambiguous results
(see Sec. III) and we, therefore, use opposite reasoning
for this material: using Bsf and Be we estimate Ba which

is then shown to imply B
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a consistent with our ab initio
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(1)
a are marked

with asterisk to indicate that they are calculated using
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• spin-lattice Hamiltonian:  
• effective field
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X
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~Si · ~Sj

Be = NJS2/MV

• combine Bsf and Be
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TABLE I. Parameters of MnF2, FeF2, CoF2 and NiF2 related to magnetism. Note that definitions of Be and Ba vary throughout
literature.

MnF2 FeF2 CoF2 NiF2

exp calc exp calc exp calc exp calc

mag.mom. [µB ] 5.04
5 4.4 3.93,53.756 3.6 2.215 2.6 1.965 1.63

ideal S 2.5 2 1.5 1

Be [T] 46.57, 57.53 85.5 43.47, 623 116.7 32.47 67.4 163.5

Ba [T] 0.6977, 0.83 0.42 14.97, 19.23 2.6 3.27 0.73⇤ �0.50

B
(1)
a [T] 0.2·10�3 2.3 0.52⇤ �0.71

dipolar term 418 mT 317 mT 211 mT 203 mT

Bsf [T] 9.278 12.0 41.99 34.8 14.07 ***

TN [K] 67.75 75.85 37.710 74.15

(such system is prone to build multidomain states) and
therefore no data is given for Bsf in Tab. 1.

Theoretical calculation of MCA relies on a solid knowl-
edge of the band structure. It is essentially the di↵er-
ence between two large numbers Ek and E?, the total
energy of the occupied electron states for ~m1,2||ẑ and
~m1,2 ? ẑ so that even small inaccuracies may lead to
completely wrong results unless such inaccuracies accu-
rately cancel (i.e. any error in the band structure deter-
mination has the same e↵ect on both Ek and E?). It
should be pointed out that these calculations must in-
clude the e↵ect of spin-orbit interaction without which
the MCA vanishes (Ek = E?). Band structures of the
four compounds considered in this article have been cal-
culated previously under various approximations: LSDA
band structures of MnF2 and NiF2 were first calculated
by Dufek, Schwarz and Blaha13 and little later, the same
group also added FeF2 and CoF2 using GGA14 (see also
Appendix C) albeit with unrealistically small gaps. This
improved with the advent of GGA+U15,19 where, how-
ever, not much attention was paid to how large the values
of the model parameters U, J actually should be. Unre-
stricted Hartree-Fock calculations20 produce optical gap
in excess of 10 eV for FeF2 which is beyond any doubt too
large, realistic size being close to 3 eV (see below). We
now proceed to a discussion of band structures calculated
using GGA+U (based on the same package as in ref. 14)
and critical comparison of these to experimentally acces-
sible quantities such as band gap, TM magnetic moment
and lattice parameters.

II. ELECTRONIC STRUCTURE

Given the identical crystal structure (Fig. 7) and the
position of Mn, Fe, Co and Ni in periodic table, it is
not surprising that structures of all four difluorides are
mutually similar. It can explained using sketch in Fig. 1
(see also Fig. 8 in Appendix C). Fermi level (EF ) lies in
the middle of TM d-state bands and other atomic orbitals
(such as fluorine p-states) are relatively far away. The

Z M�

fluorine 2s-states

⇠ 5 eV fluorine 2p-states

      lower five TM d-states

group B  
states of TM

group A states of TM

EF

conduction 
band

⇠ 25 eV

FIG. 1. Schematic band structure of rutile-type MnF2, FeF2,
CoF2 and NiF2 in their AFM state. Spin up and down bands
are degenerate. Note that for MnF2, all five upper d-bands
are in group B (group A is an empty set).

gap that opens within the TM d-state band is partly
due to electron-electron interactions (EEIs), which we
model, within density functional theory, by GGA+U (see
Appendix C) and partly (in the case of Mn and Ni) due
to crystal field e↵ects. Surprisingly, the size of band gaps
at low temperature (i.e. in the AFM phase) is nowhere
to be found in the literature and we can therefore use
only some indirect arguments to support the actual band
structure calculations in Fig. 2.

The band structures for spin up and down are the same
— this is a consequence of the simple antiferromagnetic
order (see Fig. 1 in Ref. 1 for explanation). Focusing on
one spin, the total of ten d-orbitals (for two TM atoms
in the unit cell, see also Fig. 7) divides first into two
quintuplets that could be thought of as of bonding and

3d5 3d6 3d7 3d8

MA: quantitative summary

electronic config.:
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FIG. 6. Calculated MCA (per unit cell containing two for-
mula units) for FeF2 and CoF2 as a function of the Hubbard
parameter U .

that theoretical estimate of Bsf is only about 17% lower
than the measured value). Considering the fact that
sometimes15 the ab initio calculations are extended to
include another Hubbard-like parameter J , we also cal-
culated MCA for U = 0.44 Ry and J = 0.07 Ry and
found it to be somewhat smaller than what would corre-
spond to Ue↵ ⌘ U �J = 0.37 Ry. This further highlights
the limits of quantitative predictions of MCA based on
ab initio calculations.

As an alternative to ab initio calculations, we note that
the sign and, to some extent, also the order of magni-
tude of MCA in FeF2 can be deduced from the single-ion
model.16 Orbital multiplet of the Fe2+ ion (L = 2) is fully
split by the crystal field in the rutile structure and the
action of spin-orbit interaction HSO on the lowest (non-
degenerate) level can be written in terms of a spin S = 2
Hamiltonian, Hs = DS2

z . Corrections to this form of Hs

are small,16 derivation of this result is explained below
when we discuss CoF2; note that the argument in Eq. (5)
explains the negative sign of D as a consequence of level
repulsion. Exchange splitting � oriented along the direc-
tion of the Néel vector êL, combined with Hs leads to a
simple model exhibiting magnetocrystalline anisotropy:
Hs + �~S · êL. The lowest energy (with respect to spin)
for êL k ẑ and êL k x̂, respectively, is thus obtained by
diagonalising

DS2
z + �Sz and DS2

z + �Sx, (3)

which yields 4D�2� and D�2� for the lowest eigenvalue
in the � � D limit. Given D < 0, the former direction
is preferred implying uniaxial anisotropy. The values of
D (around 1 meV) determined by various experimental
techniques17 are consistent, yet not quite in agreement
with, calculated and measured magnetic anisotropy of
FeF2.

A very di↵erent situation is found with CoF2. For
small values of U , MCA even changes sign (see again

Fig. 6) and if we take the experimental value of Bsf in
Tab. I as a means to estimate Ba and, once the dipo-

lar term has been subtracted, also B
(1)
a , we find that the

MCA changes with U rapidly around the corresponding
value (0.05 meV per unit cell). Hence the conclusion, at
minimum, that it is not possible to rely on theoretical
calculations of MCA in this case, unless some additional
guidance is provided. Moreover, values of U that pro-
duce MCA of this size are rather small (below 0.1 Ry)
while more commonly22 larger values are used. It should
be noted, however, that CoF2 seems to be anomalous
within the series of four materials considered in this work
(contrary to the other three, it has a significantly lower
TN ) and it is possible that the estimate of Be in Tab. I

is too large. This would allow for larger B
(1)
a and, in

the spirit of Fig. 6, for larger values of U as well. Re-
liable experimental determination of optical gap (at low
temperatures) could resolve this issue.

Analysis based on the single-ion model18 for Co2+

leads quantitatively to an even worse estimate of MCA
than for FeF2 but still predicts the correct sign and also
the negligible in-plane anisotropies. The orbital multi-
plet (L = 3) is now split by octahedral crystal field and
the lowest lying �4 triplet is further split by27 � ⇡ 0.1 eV
into a ground state doublet and an excited state (singlet
|Lzi = |0i; in the following we will use this notation for
the orbital part of wavefunctions). Rhombohedral crys-
tal field lifts the degeneracy of the doublet, producing
states

|ai =

p
5

4
|�3i +

p
3

4
|�1i +

p
3

4
|1i +

p
5

4
|3i (4)

|bi =

p
5

4
|�3i �

p
3

4
|�1i +

p
3

4
|1i �

p
5

4
|3i

whose energy splitting Eb � Ea is a fraction27 of �. The
perturbative action of HSO = �~L · ~S on the lower state
can now be evaluated to the second order in spin-orbit
interaction �. Provided we neglect coupling to the |Lzi =
|0i state, we obtain

�2 ha|~L · ~S|bihb|~L · ~S|ai
Ea � Eb

=
9
4�2

Ea � Eb
S2

z ⌘ DS2
z (5)

because ~L · ~S = LzSz + 1
2 (L+S� +L�S+) and, given (4),

the matrix elements of the raising (lowering) operators
L+ (L�) vanish. This construction predicts D < 0 by
virtue of Ea < Eb but quantitatively, it implies a larger
MCA than for FeF2 since both � is larger (for CoF2)
and the energy splitting of the lowest two states smaller.
The absent in-plane anisotropy amounts to Hs containing
no Sx, Sy operators and this, in turn, is a consequence
of ha|L±|bi = 0. Perturbative coupling to the |Lzi = |0i
singlet will introduce the Sx,y terms to Hs, however their
coe�cients will be small (� � |Ea � Eb|).

Concerning the quantitative disagreement between the
single-ion model for CoF2 and Ek � E? calculated by ab

MA: magnetocrystalline contribution (MCA)
2
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should be pointed out that these calculations must in-
clude the e↵ect of spin-orbit interaction without which
the MCA vanishes (Ek = E?). Band structures of the
four compounds considered in this article have been cal-
culated previously under various approximations: LSDA
band structures of MnF2 and NiF2 were first calculated
by Dufek, Schwarz and Blaha13 and little later, the same
group also added FeF2 and CoF2 using GGA14 (see also
Appendix C) albeit with unrealistically small gaps. This
improved with the advent of GGA+U15,19 where, how-
ever, not much attention was paid to how large the values
of the model parameters U, J actually should be. Unre-
stricted Hartree-Fock calculations20 produce optical gap
in excess of 10 eV for FeF2 which is beyond any doubt too
large, realistic size being close to 3 eV (see below). We
now proceed to a discussion of band structures calculated
using GGA+U (based on the same package as in ref. 14)
and critical comparison of these to experimentally acces-
sible quantities such as band gap, TM magnetic moment
and lattice parameters.

II. ELECTRONIC STRUCTURE

Given the identical crystal structure (Fig. 7) and the
position of Mn, Fe, Co and Ni in periodic table, it is
not surprising that structures of all four difluorides are
mutually similar. It can explained using sketch in Fig. 1
(see also Fig. 8 in Appendix C). Fermi level (EF ) lies in
the middle of TM d-state bands and other atomic orbitals
(such as fluorine p-states) are relatively far away. The
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FIG. 1. Schematic band structure of rutile-type MnF2, FeF2,
CoF2 and NiF2 in their AFM state. Spin up and down bands
are degenerate. Note that for MnF2, all five upper d-bands
are in group B (group A is an empty set).

gap that opens within the TM d-state band is partly
due to electron-electron interactions (EEIs), which we
model, within density functional theory, by GGA+U (see
Appendix C) and partly (in the case of Mn and Ni) due
to crystal field e↵ects. Surprisingly, the size of band gaps
at low temperature (i.e. in the AFM phase) is nowhere
to be found in the literature and we can therefore use
only some indirect arguments to support the actual band
structure calculations in Fig. 2.

The band structures for spin up and down are the same
— this is a consequence of the simple antiferromagnetic
order (see Fig. 1 in Ref. 1 for explanation). Focusing on
one spin, the total of ten d-orbitals (for two TM atoms
in the unit cell, see also Fig. 7) divides first into two
quintuplets that could be thought of as of bonding and

• pushing d-states 
• size of optical gap

effect of Hubbard U:



Theoretical estimates

MnF2 FeF2 CoF2

mag. anisotropy 0.42 T 2.6 T n/a

MCA < 1 mT 2.3 T ~1 T



Manipulation of magnetic moments - dynamics

ments that obeys the usual precessional behavior.
The lifetime of this effect is given by the lifetime of
the corresponding electronic states. Note, however,
that if this time is much shorter than the precession
period, the effect will be difficult to detect.

!3" And finally, there are nonthermal optomagnetic ef-
fects that do not require the absorption of pump
photons but are based on an optically coherent
stimulated Raman scattering mechanism !Kaby-
chenkov, 1991". The action of this mechanism can be
considered as instantaneous and is limited by the
spin-orbit coupling, which is the driving force be-
hind the change in the magnetization in this case
!#20 fs for a typical 50 meV value of spin-orbit cou-
pling". The lifetime of the effect coincides with that
of optical coherence !100–200 fs". Note that in prac-
tice thermal effects are always present to some
extent.

II. THEORETICAL CONSIDERATIONS

A. Dynamics of magnetic moments: Landau-Lifshitz-Gilbert
equation

The interactions of magnetic moments with magnetic
fields are basic to the understanding of all magnetic phe-
nomena and may be applied in many ways. Homoge-
neously magnetized solids exhibit a magnetic moment,
which for a volume V is given by m=VM, where M is
the magnetization. If V is the atomic volume, then m is
the magnetic moment per atom; if V is the volume of the
magnetic solid, m is the total magnetic moment of the
body. The latter case is often called the “macrospin ap-
proximation.” Also, for the inhomogeneous case, the
magnetic solid can often be subdivided into small re-
gions in which the magnetization can be assumed homo-
geneous. These regions are large enough that the motion
of the magnetization can in most cases be described clas-
sically.

The precessional motion of a magnetic moment in the
absence of damping is described by the torque equation.
According to quantum theory, the angular momentum
associated with a magnetic moment m is

L = m/! , !1"

where ! is the gyromagnetic ratio. The torque on the
magnetic moment m exerted by a magnetic field H is

T = m " H . !2"

The change in angular momentum with time equals the
torque:

dL
dt

=
d
dt

m
!

= m " H . !3"

If the spins not only experience the action of the exter-
nal magnetic field but are also affected by the magneto-
crystalline anisotropy, shape anisotropy, magnetic dipole
interaction, etc., the situation becomes more compli-

cated. All these interactions will contribute to the ther-
modynamical potential #, and the combined action of
all these contributions can be considered as an effective
magnetic field

Heff = − !#/!M . !4"

Thus the motion of the magnetization vector can be
written as the following equation, named after Landau
and Lifshitz !Landau and Lifshitz, 1935":

dm/dt = !m " Heff, !5"

which describes the precession of the magnetic moment
around the effective field Heff. As mentioned, Heff con-
tains many contributions:

Heff = Hext + Hani + Hdem + ¯ , !6"

where Hext is the external applied field, Hani is the an-
isotropy field, and Hdem is the demagnetization field. Ex-
cept for Hext, all other contributions will be material de-
pendent. Consequently, optical excitation of a magnetic
material may result, via optically induced changes in the
material-related fields, in a change in Heff, giving rise to
optically induced magnetization dynamics.

At equilibrium, the change in angular momentum
with time is zero, and thus the torque is zero. A viscous
damping term can be included to describe the motion of
a precessing magnetic moment toward equilibrium. A
dissipative term proportional to the generalized velocity
!−!m /!t" is then added to the effective field. This dissi-
pative term slows down the motion of the magnetic mo-
ment and eventually aligns m parallel to Heff. This gives
the Landau-Lifshitz-Gilbert !LLG" equation of motion
!Gilbert, 1955":

!m
!t

= !m " Heff +
$

$m$
m "

!m
!t

, !7"

where $ is the dimensionless phenomenological Gilbert
damping constant.

Equation !7" may be used to study the switching dy-
namics of small magnetic particles. If the particles are
sufficiently small, the magnetization may be assumed to
remain uniform during this reversal process, and the
only contributions to the effective field are the aniso-
tropy field, the demagnetizing field, and the applied ex-
ternal field. For larger samples, and in the case of inho-
mogeneous dynamics, such as spin waves with k"0, the
magnetic moment becomes a function of spatial coordi-
nates: m=m!r". The effective magnetic field in this case
also acquires a contribution from the exchange interac-
tion. In this case, nonhomogeneous elementary excita-
tions of the magnetic medium may exist, first proposed
by Bloch in 1930 !Bloch, 1930". These excitations are
called spin waves and involve many lattice sites. More
details on these aspects can be found in Hillebrands and
Ounadjela !2002".

The LLG equation can also be used in the atomistic
limit to calculate the evolution of the spin system using
Langevin dynamics, which has proved to be a powerful
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netic field H0, depicted schematically in Figs. 1!c" and 1!d".
For the definiteness, an AFM layer is supposed to have
slightly tetragonal !almost cubic" anisotropy induced, e.g., by
the shape effects or/and interaction with the neighboring lay-
ers !including possible influence of the exchange bias". Two
easy axes !Z and Y" are parallel to the film plane. In this case
the magnetic anisotropy energy wan is modeled with the fol-
lowing expression:

wan =
Han!

M0
lX
2 −

Han#

8M0
3 !lX

4 + lY
4 + lZ

4" , !11"

where Han# is the intrinsic anisotropy field within the film
plane and the small out-of-plane anisotropy field Han!

!Han# is responsible for weak tetragonality of the sample.
In the absence of field and current a single AFM layer has

two equivalent equilibrium orientations of AFM vector $see
Figs. 2!a" and 2!b"%: l #Z and l #Y $as can be easily obtained
from minimization of the magnetic energy, Eq. !11"%. Corre-
spondingly, a FM/AFM bilayer has two stable
configurations25 with l #pcur $Fig. 2!a"% and with l!pcur $Fig.
2!b"%. These two configurations should have different macro-
scopic properties !e.g., different magnetoresistance, different
exchange-bias field, etc." and in this sense are analogous to
the parallel !P" and antiparallel !AP" configurations of
FM/FM multilayers $Figs. 2!c" and 2!d"%. In analogy with
FM/FM systems, the reversible switching between the l #pcur

and l!pcur states can be achieved by application of the ex-
ternal magnetic field to the free !in our case, AFM" layer.

The switching field should be oriented parallel to AFM
vector, its critical value coincides with the spin-flop transi-
tion field Hs-f=2&Han#HE for AFM layer !also exchange en-
hanced".

When the current is injected into bilayer, configuration
with pcur# l is still equilibrium, but not necessarily stable. To
find the values of critical current and field, we analyze the
frequencies of eigenmodes of AFM layer !magnetization of
FM layer pcur and, correspondingly, the current polarization
being fixed".

A. Configuration H0! l

In the crossed initial orientation H0! l $Fig. 1!c"% the lin-
earized equations of motion for the generalized coordinates
lX, lY $lZ'2M0− !lX

2 + lY
2" / !4M0"% take the following form:

l̈X + 2"AFMl̇X + !#X
2 + #H

2 "lX + "HE$JlY = 0,

l̈Y + 2"AFMl̇Y + #Y
2 lY − "HE$JlX = 0. !12"

Here "AFM("HE%G /2!#X,Y is a damping coefficient that
can be estimated from the linewidth of AFM resonance, #H
="H0. The values #X=2"&!Han!+Han#"HE, #Y =2"&Han#HE
are the eigenfrequencies of free oscillations in the absence of
field and current that also could be measured in AFM reso-
nance experiments. It is worth noting that the values of
eigenfrequencies are enhanced due to exchange coupling
!multiple HE" compared to analogous values in FM with the
same value of anisotropy field.

Equations !12" describe the case when the magnetic field
is directed along the hard anisotropy axis, H0 #X. Configura-
tion with H0 #Y $field is parallel to an easy axis !EA"% is
treated in an analogous way.

It can be easily seen from Eq. !12" that below the critical
current

)J) & Jcr
!1" (

1
2"HE$

)#X
2 − #Y

2 + #H
2 ) , !13"

the eigenmodes have linear polarization and correspond to
oscillations of vector l within XZ or YZ plane $Fig. 1!c"%. In
this case the spin torque transferred from the current affects
the eigenfrequencies of spin excitations

'(
2 =

1
2
*#X

2 + #Y
2 + #H

2 ( )#X
2 − #Y

2 + #H
2 )&1 − + J

Jcr
!1",2-

!14"

but does not affect the effective damping coefficients !as it is
the case in FM".

It should be stressed that in the absence of external field
the value of critical current depends upon anisotropy !#X

2

−#Y
2")Han! of the magnetic interactions within and perpen-

dicular to the film plane. The magnetic field applied perpen-
dicular to the vector l enhances !if H0 is parallel to an easy
axis" or weakens !if H0 is parallel to a hard magnetic axis of
AFM" the effective anisotropy. So, magnetic field can be
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FIG. 2. !Color online" Stable magnetic configurations with dif-
ferent macroscopic properties. In FM/AFM bilayer $!a" and !b"% the
magnetization !#pcur" of FM layer is fixed, AFM vector can be
switched from !a" parallel to !b" perpendicular orientation with re-
spect to pcur by application of the external magnetic field H0
*Hs-f within an AFM layer. In FM/FM bilayer $!c" and !d"% the
magnetization of free layer can be switched from !c" parallel to !d"
antiparallel orientation with respect to pcur by the external magnetic
field H0 applied antiparallel to pcur. In both cases !c" and !d" the
switching can be also induced by current.
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ments that obeys the usual precessional behavior.
The lifetime of this effect is given by the lifetime of
the corresponding electronic states. Note, however,
that if this time is much shorter than the precession
period, the effect will be difficult to detect.

!3" And finally, there are nonthermal optomagnetic ef-
fects that do not require the absorption of pump
photons but are based on an optically coherent
stimulated Raman scattering mechanism !Kaby-
chenkov, 1991". The action of this mechanism can be
considered as instantaneous and is limited by the
spin-orbit coupling, which is the driving force be-
hind the change in the magnetization in this case
!#20 fs for a typical 50 meV value of spin-orbit cou-
pling". The lifetime of the effect coincides with that
of optical coherence !100–200 fs". Note that in prac-
tice thermal effects are always present to some
extent.

II. THEORETICAL CONSIDERATIONS

A. Dynamics of magnetic moments: Landau-Lifshitz-Gilbert
equation

The interactions of magnetic moments with magnetic
fields are basic to the understanding of all magnetic phe-
nomena and may be applied in many ways. Homoge-
neously magnetized solids exhibit a magnetic moment,
which for a volume V is given by m=VM, where M is
the magnetization. If V is the atomic volume, then m is
the magnetic moment per atom; if V is the volume of the
magnetic solid, m is the total magnetic moment of the
body. The latter case is often called the “macrospin ap-
proximation.” Also, for the inhomogeneous case, the
magnetic solid can often be subdivided into small re-
gions in which the magnetization can be assumed homo-
geneous. These regions are large enough that the motion
of the magnetization can in most cases be described clas-
sically.

The precessional motion of a magnetic moment in the
absence of damping is described by the torque equation.
According to quantum theory, the angular momentum
associated with a magnetic moment m is

L = m/! , !1"

where ! is the gyromagnetic ratio. The torque on the
magnetic moment m exerted by a magnetic field H is

T = m " H . !2"

The change in angular momentum with time equals the
torque:

dL
dt

=
d
dt

m
!

= m " H . !3"

If the spins not only experience the action of the exter-
nal magnetic field but are also affected by the magneto-
crystalline anisotropy, shape anisotropy, magnetic dipole
interaction, etc., the situation becomes more compli-

cated. All these interactions will contribute to the ther-
modynamical potential #, and the combined action of
all these contributions can be considered as an effective
magnetic field

Heff = − !#/!M . !4"

Thus the motion of the magnetization vector can be
written as the following equation, named after Landau
and Lifshitz !Landau and Lifshitz, 1935":

dm/dt = !m " Heff, !5"

which describes the precession of the magnetic moment
around the effective field Heff. As mentioned, Heff con-
tains many contributions:

Heff = Hext + Hani + Hdem + ¯ , !6"

where Hext is the external applied field, Hani is the an-
isotropy field, and Hdem is the demagnetization field. Ex-
cept for Hext, all other contributions will be material de-
pendent. Consequently, optical excitation of a magnetic
material may result, via optically induced changes in the
material-related fields, in a change in Heff, giving rise to
optically induced magnetization dynamics.

At equilibrium, the change in angular momentum
with time is zero, and thus the torque is zero. A viscous
damping term can be included to describe the motion of
a precessing magnetic moment toward equilibrium. A
dissipative term proportional to the generalized velocity
!−!m /!t" is then added to the effective field. This dissi-
pative term slows down the motion of the magnetic mo-
ment and eventually aligns m parallel to Heff. This gives
the Landau-Lifshitz-Gilbert !LLG" equation of motion
!Gilbert, 1955":

!m
!t

= !m " Heff +
$

$m$
m "

!m
!t

, !7"

where $ is the dimensionless phenomenological Gilbert
damping constant.

Equation !7" may be used to study the switching dy-
namics of small magnetic particles. If the particles are
sufficiently small, the magnetization may be assumed to
remain uniform during this reversal process, and the
only contributions to the effective field are the aniso-
tropy field, the demagnetizing field, and the applied ex-
ternal field. For larger samples, and in the case of inho-
mogeneous dynamics, such as spin waves with k"0, the
magnetic moment becomes a function of spatial coordi-
nates: m=m!r". The effective magnetic field in this case
also acquires a contribution from the exchange interac-
tion. In this case, nonhomogeneous elementary excita-
tions of the magnetic medium may exist, first proposed
by Bloch in 1930 !Bloch, 1930". These excitations are
called spin waves and involve many lattice sites. More
details on these aspects can be found in Hillebrands and
Ounadjela !2002".

The LLG equation can also be used in the atomistic
limit to calculate the evolution of the spin system using
Langevin dynamics, which has proved to be a powerful
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netic field H0, depicted schematically in Figs. 1!c" and 1!d".
For the definiteness, an AFM layer is supposed to have
slightly tetragonal !almost cubic" anisotropy induced, e.g., by
the shape effects or/and interaction with the neighboring lay-
ers !including possible influence of the exchange bias". Two
easy axes !Z and Y" are parallel to the film plane. In this case
the magnetic anisotropy energy wan is modeled with the fol-
lowing expression:

wan =
Han!

M0
lX
2 −

Han#

8M0
3 !lX

4 + lY
4 + lZ

4" , !11"

where Han# is the intrinsic anisotropy field within the film
plane and the small out-of-plane anisotropy field Han!

!Han# is responsible for weak tetragonality of the sample.
In the absence of field and current a single AFM layer has

two equivalent equilibrium orientations of AFM vector $see
Figs. 2!a" and 2!b"%: l #Z and l #Y $as can be easily obtained
from minimization of the magnetic energy, Eq. !11"%. Corre-
spondingly, a FM/AFM bilayer has two stable
configurations25 with l #pcur $Fig. 2!a"% and with l!pcur $Fig.
2!b"%. These two configurations should have different macro-
scopic properties !e.g., different magnetoresistance, different
exchange-bias field, etc." and in this sense are analogous to
the parallel !P" and antiparallel !AP" configurations of
FM/FM multilayers $Figs. 2!c" and 2!d"%. In analogy with
FM/FM systems, the reversible switching between the l #pcur

and l!pcur states can be achieved by application of the ex-
ternal magnetic field to the free !in our case, AFM" layer.

The switching field should be oriented parallel to AFM
vector, its critical value coincides with the spin-flop transi-
tion field Hs-f=2&Han#HE for AFM layer !also exchange en-
hanced".

When the current is injected into bilayer, configuration
with pcur# l is still equilibrium, but not necessarily stable. To
find the values of critical current and field, we analyze the
frequencies of eigenmodes of AFM layer !magnetization of
FM layer pcur and, correspondingly, the current polarization
being fixed".

A. Configuration H0! l

In the crossed initial orientation H0! l $Fig. 1!c"% the lin-
earized equations of motion for the generalized coordinates
lX, lY $lZ'2M0− !lX

2 + lY
2" / !4M0"% take the following form:

l̈X + 2"AFMl̇X + !#X
2 + #H

2 "lX + "HE$JlY = 0,

l̈Y + 2"AFMl̇Y + #Y
2 lY − "HE$JlX = 0. !12"

Here "AFM("HE%G /2!#X,Y is a damping coefficient that
can be estimated from the linewidth of AFM resonance, #H
="H0. The values #X=2"&!Han!+Han#"HE, #Y =2"&Han#HE
are the eigenfrequencies of free oscillations in the absence of
field and current that also could be measured in AFM reso-
nance experiments. It is worth noting that the values of
eigenfrequencies are enhanced due to exchange coupling
!multiple HE" compared to analogous values in FM with the
same value of anisotropy field.

Equations !12" describe the case when the magnetic field
is directed along the hard anisotropy axis, H0 #X. Configura-
tion with H0 #Y $field is parallel to an easy axis !EA"% is
treated in an analogous way.

It can be easily seen from Eq. !12" that below the critical
current

)J) & Jcr
!1" (

1
2"HE$

)#X
2 − #Y

2 + #H
2 ) , !13"

the eigenmodes have linear polarization and correspond to
oscillations of vector l within XZ or YZ plane $Fig. 1!c"%. In
this case the spin torque transferred from the current affects
the eigenfrequencies of spin excitations
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!14"

but does not affect the effective damping coefficients !as it is
the case in FM".

It should be stressed that in the absence of external field
the value of critical current depends upon anisotropy !#X

2

−#Y
2")Han! of the magnetic interactions within and perpen-

dicular to the film plane. The magnetic field applied perpen-
dicular to the vector l enhances !if H0 is parallel to an easy
axis" or weakens !if H0 is parallel to a hard magnetic axis of
AFM" the effective anisotropy. So, magnetic field can be
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FIG. 2. !Color online" Stable magnetic configurations with dif-
ferent macroscopic properties. In FM/AFM bilayer $!a" and !b"% the
magnetization !#pcur" of FM layer is fixed, AFM vector can be
switched from !a" parallel to !b" perpendicular orientation with re-
spect to pcur by application of the external magnetic field H0
*Hs-f within an AFM layer. In FM/FM bilayer $!c" and !d"% the
magnetization of free layer can be switched from !c" parallel to !d"
antiparallel orientation with respect to pcur by the external magnetic
field H0 applied antiparallel to pcur. In both cases !c" and !d" the
switching can be also induced by current.
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= !m " Heff +
$

$m$
m "

!m
!t

,

(Landau-Lifshitz-Gilbert eq.)

following way. When a free electron transverses !or reflects
from" an interface between the nonmagnetic and FM layers,
its spin state can be reversed due to exchange interaction
with the localized magnetic moments of FM. This process
results in rotation of the localized moments in a way that
ensures conservation of the total spin of the system.

Generalization of the Berger’s and Slonczewski’s ideas to
the case of multisublattice materials is not straightforward
due to more complex character of the magnetic ordering.
Particularly, in AFMs the direction of the atomic magnetic
moments varies on the length scale of atomic distances lead-
ing to zero net magnetization if averaged over few lattice
constants. However, just as in FMs, the spin-polarized elec-
trons transfer spin torques on each of atomic sites.16,18,20,21

The magnetic structure of AFM may be described with
the use of a few macroscopic vectors M j !in the simplest
case j=1,2" called the sublattice magnetizations !per unit
volume" that are formed due to strong exchange coupling.
So, it seems reasonable to assume that while entering an
AFM, the conduction electron transfers spin angular momen-
tum to any of the magnetic sublattices #see Fig. 1!b"$. Cor-
responding STT T j exerted by the jth sublattice is then pre-
sented in a standard form as follows:

T j =
! jJ

M0j
#M j " !M j " pcur"$ , !1"

where J is the current spin polarized in pcur direction, %pcur%
=1, the constant ! j =#$% / !2M0jVe" is proportional to the

efficiency # of scattering processes, V is the volume of AFM
region, $ is the Plank constant, e is the electron charge, % is
the modulus of the gyromagnetic ratio, and M0j = %M j% is the
saturation magnetization of jth sublattice !the value of M0j is
supposed to be unchanged under external fields". Positive
current !J&0" corresponds to injection of electrons into
AFM layer.

Then, the dynamics of AFM can be described by a set of
Landau-Lifshitz-Gilbert equations for M j vectors supple-
mented with the Slonczewski term !1",

Ṁ j = − %!M j " H j" +
'G

M0j
!M j " Ṁ j"

+
! jJ

M0j
#M j " !M j " pcur"$ , !2"

where H j &−!w /!M j is the “generalized force” !an effective
local field acting on the magnetic moment of a sublattice"
and w is free energy !per unit volume" of an AFM layer. For
the sake of clarity we describe relaxation of an AFM layer in
the simplest form with the use of a single Gilbert damping
parameter 'G equal for all magnetic sublattices !although the
relaxation mechanisms in AFM crystals are very complicated
and diverse22".

The last two terms on the right-hand side !rhs" of Eq. !2"
are responsible for dissipation processes in the AFM layer.
To illustrate this fact we calculate the rate of free energy
losses in assumption that dissipation is small and in zero
approximation Ṁ j =−%#M j "H j$. Thus,

dw

dt
= − '

j
!H j · Ṁ j"

= − '
j
( 'G

%M0j
Ṁ j

2 −
! jJ

%M0j
!pcur · #M j " Ṁ j$") . !3"

In principle, Eqs. !2" and !3" could be used for description
of different complicated magnetic structures !compensated
AFMs, weak FMs, ferrimagnets". In the limiting case of the
completely equivalent sublattices !M1=M2=¯" the set of
Eq. !2" turns into a standard Landau-Lifshitz-Gilbert-
Slonczewski equation for FMs.

In the particular case of AFM with two magnetic sublat-
tices it is more suitable to rewrite Eq. !2" in terms of mac-
roscopic magnetization !FM vector" m&M1+M2 and AFM
order parameter !AFM vector" l&M1−M2,

ṁ = %#!HM " m" + !HL " l"$ +
'G

2M0
#!m " ṁ" + !l " l̇"$

+
!J

2M0
*#m " !m " pcur"$ + #l " !l " pcur"$+ , !4"

l̇ = %#!HM " l" + !HL " m"$ +
'G

2M0
#!m " l̇" + !l " ṁ"$

+
!J

2M0
*#m " !l " pcur"$ + #l " !m " pcur"$+ . !5"

Here HM =−!w /!m is an effective magnetic field within an
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FIG. 1. !Color online" Effect of spin transfer torque within a
pinned layer. !a" General structure of a pinned layer. Due to ex-
change coupling, an AFM layer pins the direction of magnetization
pcur of the adjacent FM layer. In turn, the FM layer polarizes the
spin current flowing to AFM. !b" Transfer of spin torques T1,2 from
free electrons !e−" to sublattice magnetizations M1 and M2 !solid
arrows, before and dotted arrows, after an interaction with the con-
duction electrons". STT produces small FM moment m which, in
turn, sets up a solidlike rotation of M1, M2 around m !arc arrows",
according to Eq. !6". #!c" and !d"$ Sketch of eigenmodes of an AFM
vector for different orientations of the external magnetic field. Easy
axes !EA" are parallel to the film plane.
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netic field H0, depicted schematically in Figs. 1!c" and 1!d".
For the definiteness, an AFM layer is supposed to have
slightly tetragonal !almost cubic" anisotropy induced, e.g., by
the shape effects or/and interaction with the neighboring lay-
ers !including possible influence of the exchange bias". Two
easy axes !Z and Y" are parallel to the film plane. In this case
the magnetic anisotropy energy wan is modeled with the fol-
lowing expression:

wan =
Han!

M0
lX
2 −

Han#

8M0
3 !lX

4 + lY
4 + lZ

4" , !11"

where Han# is the intrinsic anisotropy field within the film
plane and the small out-of-plane anisotropy field Han!

!Han# is responsible for weak tetragonality of the sample.
In the absence of field and current a single AFM layer has

two equivalent equilibrium orientations of AFM vector $see
Figs. 2!a" and 2!b"%: l #Z and l #Y $as can be easily obtained
from minimization of the magnetic energy, Eq. !11"%. Corre-
spondingly, a FM/AFM bilayer has two stable
configurations25 with l #pcur $Fig. 2!a"% and with l!pcur $Fig.
2!b"%. These two configurations should have different macro-
scopic properties !e.g., different magnetoresistance, different
exchange-bias field, etc." and in this sense are analogous to
the parallel !P" and antiparallel !AP" configurations of
FM/FM multilayers $Figs. 2!c" and 2!d"%. In analogy with
FM/FM systems, the reversible switching between the l #pcur

and l!pcur states can be achieved by application of the ex-
ternal magnetic field to the free !in our case, AFM" layer.

The switching field should be oriented parallel to AFM
vector, its critical value coincides with the spin-flop transi-
tion field Hs-f=2&Han#HE for AFM layer !also exchange en-
hanced".

When the current is injected into bilayer, configuration
with pcur# l is still equilibrium, but not necessarily stable. To
find the values of critical current and field, we analyze the
frequencies of eigenmodes of AFM layer !magnetization of
FM layer pcur and, correspondingly, the current polarization
being fixed".

A. Configuration H0! l

In the crossed initial orientation H0! l $Fig. 1!c"% the lin-
earized equations of motion for the generalized coordinates
lX, lY $lZ'2M0− !lX

2 + lY
2" / !4M0"% take the following form:

l̈X + 2"AFMl̇X + !#X
2 + #H

2 "lX + "HE$JlY = 0,

l̈Y + 2"AFMl̇Y + #Y
2 lY − "HE$JlX = 0. !12"

Here "AFM("HE%G /2!#X,Y is a damping coefficient that
can be estimated from the linewidth of AFM resonance, #H
="H0. The values #X=2"&!Han!+Han#"HE, #Y =2"&Han#HE
are the eigenfrequencies of free oscillations in the absence of
field and current that also could be measured in AFM reso-
nance experiments. It is worth noting that the values of
eigenfrequencies are enhanced due to exchange coupling
!multiple HE" compared to analogous values in FM with the
same value of anisotropy field.

Equations !12" describe the case when the magnetic field
is directed along the hard anisotropy axis, H0 #X. Configura-
tion with H0 #Y $field is parallel to an easy axis !EA"% is
treated in an analogous way.

It can be easily seen from Eq. !12" that below the critical
current
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the eigenmodes have linear polarization and correspond to
oscillations of vector l within XZ or YZ plane $Fig. 1!c"%. In
this case the spin torque transferred from the current affects
the eigenfrequencies of spin excitations
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but does not affect the effective damping coefficients !as it is
the case in FM".

It should be stressed that in the absence of external field
the value of critical current depends upon anisotropy !#X

2

−#Y
2")Han! of the magnetic interactions within and perpen-

dicular to the film plane. The magnetic field applied perpen-
dicular to the vector l enhances !if H0 is parallel to an easy
axis" or weakens !if H0 is parallel to a hard magnetic axis of
AFM" the effective anisotropy. So, magnetic field can be
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FIG. 2. !Color online" Stable magnetic configurations with dif-
ferent macroscopic properties. In FM/AFM bilayer $!a" and !b"% the
magnetization !#pcur" of FM layer is fixed, AFM vector can be
switched from !a" parallel to !b" perpendicular orientation with re-
spect to pcur by application of the external magnetic field H0
*Hs-f within an AFM layer. In FM/FM bilayer $!c" and !d"% the
magnetization of free layer can be switched from !c" parallel to !d"
antiparallel orientation with respect to pcur by the external magnetic
field H0 applied antiparallel to pcur. In both cases !c" and !d" the
switching can be also induced by current.
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following way. When a free electron transverses !or reflects
from" an interface between the nonmagnetic and FM layers,
its spin state can be reversed due to exchange interaction
with the localized magnetic moments of FM. This process
results in rotation of the localized moments in a way that
ensures conservation of the total spin of the system.

Generalization of the Berger’s and Slonczewski’s ideas to
the case of multisublattice materials is not straightforward
due to more complex character of the magnetic ordering.
Particularly, in AFMs the direction of the atomic magnetic
moments varies on the length scale of atomic distances lead-
ing to zero net magnetization if averaged over few lattice
constants. However, just as in FMs, the spin-polarized elec-
trons transfer spin torques on each of atomic sites.16,18,20,21

The magnetic structure of AFM may be described with
the use of a few macroscopic vectors M j !in the simplest
case j=1,2" called the sublattice magnetizations !per unit
volume" that are formed due to strong exchange coupling.
So, it seems reasonable to assume that while entering an
AFM, the conduction electron transfers spin angular momen-
tum to any of the magnetic sublattices #see Fig. 1!b"$. Cor-
responding STT T j exerted by the jth sublattice is then pre-
sented in a standard form as follows:

T j =
! jJ

M0j
#M j " !M j " pcur"$ , !1"

where J is the current spin polarized in pcur direction, %pcur%
=1, the constant ! j =#$% / !2M0jVe" is proportional to the

efficiency # of scattering processes, V is the volume of AFM
region, $ is the Plank constant, e is the electron charge, % is
the modulus of the gyromagnetic ratio, and M0j = %M j% is the
saturation magnetization of jth sublattice !the value of M0j is
supposed to be unchanged under external fields". Positive
current !J&0" corresponds to injection of electrons into
AFM layer.

Then, the dynamics of AFM can be described by a set of
Landau-Lifshitz-Gilbert equations for M j vectors supple-
mented with the Slonczewski term !1",

Ṁ j = − %!M j " H j" +
'G

M0j
!M j " Ṁ j"

+
! jJ

M0j
#M j " !M j " pcur"$ , !2"

where H j &−!w /!M j is the “generalized force” !an effective
local field acting on the magnetic moment of a sublattice"
and w is free energy !per unit volume" of an AFM layer. For
the sake of clarity we describe relaxation of an AFM layer in
the simplest form with the use of a single Gilbert damping
parameter 'G equal for all magnetic sublattices !although the
relaxation mechanisms in AFM crystals are very complicated
and diverse22".

The last two terms on the right-hand side !rhs" of Eq. !2"
are responsible for dissipation processes in the AFM layer.
To illustrate this fact we calculate the rate of free energy
losses in assumption that dissipation is small and in zero
approximation Ṁ j =−%#M j "H j$. Thus,

dw

dt
= − '

j
!H j · Ṁ j"

= − '
j
( 'G

%M0j
Ṁ j

2 −
! jJ

%M0j
!pcur · #M j " Ṁ j$") . !3"

In principle, Eqs. !2" and !3" could be used for description
of different complicated magnetic structures !compensated
AFMs, weak FMs, ferrimagnets". In the limiting case of the
completely equivalent sublattices !M1=M2=¯" the set of
Eq. !2" turns into a standard Landau-Lifshitz-Gilbert-
Slonczewski equation for FMs.

In the particular case of AFM with two magnetic sublat-
tices it is more suitable to rewrite Eq. !2" in terms of mac-
roscopic magnetization !FM vector" m&M1+M2 and AFM
order parameter !AFM vector" l&M1−M2,

ṁ = %#!HM " m" + !HL " l"$ +
'G

2M0
#!m " ṁ" + !l " l̇"$

+
!J

2M0
*#m " !m " pcur"$ + #l " !l " pcur"$+ , !4"

l̇ = %#!HM " l" + !HL " m"$ +
'G

2M0
#!m " l̇" + !l " ṁ"$

+
!J

2M0
*#m " !l " pcur"$ + #l " !m " pcur"$+ . !5"

Here HM =−!w /!m is an effective magnetic field within an
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FIG. 1. !Color online" Effect of spin transfer torque within a
pinned layer. !a" General structure of a pinned layer. Due to ex-
change coupling, an AFM layer pins the direction of magnetization
pcur of the adjacent FM layer. In turn, the FM layer polarizes the
spin current flowing to AFM. !b" Transfer of spin torques T1,2 from
free electrons !e−" to sublattice magnetizations M1 and M2 !solid
arrows, before and dotted arrows, after an interaction with the con-
duction electrons". STT produces small FM moment m which, in
turn, sets up a solidlike rotation of M1, M2 around m !arc arrows",
according to Eq. !6". #!c" and !d"$ Sketch of eigenmodes of an AFM
vector for different orientations of the external magnetic field. Easy
axes !EA" are parallel to the film plane.
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Switching AFM in a multilayer 
by current pulses

Gomonay & Loktev, ‘10 
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~l = ~M1 � ~M2

netic field H0, depicted schematically in Figs. 1!c" and 1!d".
For the definiteness, an AFM layer is supposed to have
slightly tetragonal !almost cubic" anisotropy induced, e.g., by
the shape effects or/and interaction with the neighboring lay-
ers !including possible influence of the exchange bias". Two
easy axes !Z and Y" are parallel to the film plane. In this case
the magnetic anisotropy energy wan is modeled with the fol-
lowing expression:

wan =
Han!

M0
lX
2 −

Han#

8M0
3 !lX

4 + lY
4 + lZ

4" , !11"

where Han# is the intrinsic anisotropy field within the film
plane and the small out-of-plane anisotropy field Han!

!Han# is responsible for weak tetragonality of the sample.
In the absence of field and current a single AFM layer has

two equivalent equilibrium orientations of AFM vector $see
Figs. 2!a" and 2!b"%: l #Z and l #Y $as can be easily obtained
from minimization of the magnetic energy, Eq. !11"%. Corre-
spondingly, a FM/AFM bilayer has two stable
configurations25 with l #pcur $Fig. 2!a"% and with l!pcur $Fig.
2!b"%. These two configurations should have different macro-
scopic properties !e.g., different magnetoresistance, different
exchange-bias field, etc." and in this sense are analogous to
the parallel !P" and antiparallel !AP" configurations of
FM/FM multilayers $Figs. 2!c" and 2!d"%. In analogy with
FM/FM systems, the reversible switching between the l #pcur

and l!pcur states can be achieved by application of the ex-
ternal magnetic field to the free !in our case, AFM" layer.

The switching field should be oriented parallel to AFM
vector, its critical value coincides with the spin-flop transi-
tion field Hs-f=2&Han#HE for AFM layer !also exchange en-
hanced".

When the current is injected into bilayer, configuration
with pcur# l is still equilibrium, but not necessarily stable. To
find the values of critical current and field, we analyze the
frequencies of eigenmodes of AFM layer !magnetization of
FM layer pcur and, correspondingly, the current polarization
being fixed".

A. Configuration H0! l

In the crossed initial orientation H0! l $Fig. 1!c"% the lin-
earized equations of motion for the generalized coordinates
lX, lY $lZ'2M0− !lX

2 + lY
2" / !4M0"% take the following form:

l̈X + 2"AFMl̇X + !#X
2 + #H

2 "lX + "HE$JlY = 0,

l̈Y + 2"AFMl̇Y + #Y
2 lY − "HE$JlX = 0. !12"

Here "AFM("HE%G /2!#X,Y is a damping coefficient that
can be estimated from the linewidth of AFM resonance, #H
="H0. The values #X=2"&!Han!+Han#"HE, #Y =2"&Han#HE
are the eigenfrequencies of free oscillations in the absence of
field and current that also could be measured in AFM reso-
nance experiments. It is worth noting that the values of
eigenfrequencies are enhanced due to exchange coupling
!multiple HE" compared to analogous values in FM with the
same value of anisotropy field.

Equations !12" describe the case when the magnetic field
is directed along the hard anisotropy axis, H0 #X. Configura-
tion with H0 #Y $field is parallel to an easy axis !EA"% is
treated in an analogous way.

It can be easily seen from Eq. !12" that below the critical
current

)J) & Jcr
!1" (

1
2"HE$

)#X
2 − #Y

2 + #H
2 ) , !13"

the eigenmodes have linear polarization and correspond to
oscillations of vector l within XZ or YZ plane $Fig. 1!c"%. In
this case the spin torque transferred from the current affects
the eigenfrequencies of spin excitations
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but does not affect the effective damping coefficients !as it is
the case in FM".

It should be stressed that in the absence of external field
the value of critical current depends upon anisotropy !#X

2

−#Y
2")Han! of the magnetic interactions within and perpen-

dicular to the film plane. The magnetic field applied perpen-
dicular to the vector l enhances !if H0 is parallel to an easy
axis" or weakens !if H0 is parallel to a hard magnetic axis of
AFM" the effective anisotropy. So, magnetic field can be
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FIG. 2. !Color online" Stable magnetic configurations with dif-
ferent macroscopic properties. In FM/AFM bilayer $!a" and !b"% the
magnetization !#pcur" of FM layer is fixed, AFM vector can be
switched from !a" parallel to !b" perpendicular orientation with re-
spect to pcur by application of the external magnetic field H0
*Hs-f within an AFM layer. In FM/FM bilayer $!c" and !d"% the
magnetization of free layer can be switched from !c" parallel to !d"
antiparallel orientation with respect to pcur by the external magnetic
field H0 applied antiparallel to pcur. In both cases !c" and !d" the
switching can be also induced by current.
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netic field H0, depicted schematically in Figs. 1!c" and 1!d".
For the definiteness, an AFM layer is supposed to have
slightly tetragonal !almost cubic" anisotropy induced, e.g., by
the shape effects or/and interaction with the neighboring lay-
ers !including possible influence of the exchange bias". Two
easy axes !Z and Y" are parallel to the film plane. In this case
the magnetic anisotropy energy wan is modeled with the fol-
lowing expression:

wan =
Han!

M0
lX
2 −

Han#

8M0
3 !lX

4 + lY
4 + lZ

4" , !11"

where Han# is the intrinsic anisotropy field within the film
plane and the small out-of-plane anisotropy field Han!

!Han# is responsible for weak tetragonality of the sample.
In the absence of field and current a single AFM layer has

two equivalent equilibrium orientations of AFM vector $see
Figs. 2!a" and 2!b"%: l #Z and l #Y $as can be easily obtained
from minimization of the magnetic energy, Eq. !11"%. Corre-
spondingly, a FM/AFM bilayer has two stable
configurations25 with l #pcur $Fig. 2!a"% and with l!pcur $Fig.
2!b"%. These two configurations should have different macro-
scopic properties !e.g., different magnetoresistance, different
exchange-bias field, etc." and in this sense are analogous to
the parallel !P" and antiparallel !AP" configurations of
FM/FM multilayers $Figs. 2!c" and 2!d"%. In analogy with
FM/FM systems, the reversible switching between the l #pcur

and l!pcur states can be achieved by application of the ex-
ternal magnetic field to the free !in our case, AFM" layer.

The switching field should be oriented parallel to AFM
vector, its critical value coincides with the spin-flop transi-
tion field Hs-f=2&Han#HE for AFM layer !also exchange en-
hanced".

When the current is injected into bilayer, configuration
with pcur# l is still equilibrium, but not necessarily stable. To
find the values of critical current and field, we analyze the
frequencies of eigenmodes of AFM layer !magnetization of
FM layer pcur and, correspondingly, the current polarization
being fixed".

A. Configuration H0! l

In the crossed initial orientation H0! l $Fig. 1!c"% the lin-
earized equations of motion for the generalized coordinates
lX, lY $lZ'2M0− !lX

2 + lY
2" / !4M0"% take the following form:

l̈X + 2"AFMl̇X + !#X
2 + #H

2 "lX + "HE$JlY = 0,

l̈Y + 2"AFMl̇Y + #Y
2 lY − "HE$JlX = 0. !12"

Here "AFM("HE%G /2!#X,Y is a damping coefficient that
can be estimated from the linewidth of AFM resonance, #H
="H0. The values #X=2"&!Han!+Han#"HE, #Y =2"&Han#HE
are the eigenfrequencies of free oscillations in the absence of
field and current that also could be measured in AFM reso-
nance experiments. It is worth noting that the values of
eigenfrequencies are enhanced due to exchange coupling
!multiple HE" compared to analogous values in FM with the
same value of anisotropy field.

Equations !12" describe the case when the magnetic field
is directed along the hard anisotropy axis, H0 #X. Configura-
tion with H0 #Y $field is parallel to an easy axis !EA"% is
treated in an analogous way.

It can be easily seen from Eq. !12" that below the critical
current
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the eigenmodes have linear polarization and correspond to
oscillations of vector l within XZ or YZ plane $Fig. 1!c"%. In
this case the spin torque transferred from the current affects
the eigenfrequencies of spin excitations

'(
2 =

1
2
*#X

2 + #Y
2 + #H

2 ( )#X
2 − #Y

2 + #H
2 )&1 − + J

Jcr
!1",2-

!14"

but does not affect the effective damping coefficients !as it is
the case in FM".

It should be stressed that in the absence of external field
the value of critical current depends upon anisotropy !#X

2

−#Y
2")Han! of the magnetic interactions within and perpen-

dicular to the film plane. The magnetic field applied perpen-
dicular to the vector l enhances !if H0 is parallel to an easy
axis" or weakens !if H0 is parallel to a hard magnetic axis of
AFM" the effective anisotropy. So, magnetic field can be
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FIG. 2. !Color online" Stable magnetic configurations with dif-
ferent macroscopic properties. In FM/AFM bilayer $!a" and !b"% the
magnetization !#pcur" of FM layer is fixed, AFM vector can be
switched from !a" parallel to !b" perpendicular orientation with re-
spect to pcur by application of the external magnetic field H0
*Hs-f within an AFM layer. In FM/FM bilayer $!c" and !d"% the
magnetization of free layer can be switched from !c" parallel to !d"
antiparallel orientation with respect to pcur by the external magnetic
field H0 applied antiparallel to pcur. In both cases !c" and !d" the
switching can be also induced by current.
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Switching AFM: critical current

netic field H0, depicted schematically in Figs. 1!c" and 1!d".
For the definiteness, an AFM layer is supposed to have
slightly tetragonal !almost cubic" anisotropy induced, e.g., by
the shape effects or/and interaction with the neighboring lay-
ers !including possible influence of the exchange bias". Two
easy axes !Z and Y" are parallel to the film plane. In this case
the magnetic anisotropy energy wan is modeled with the fol-
lowing expression:

wan =
Han!

M0
lX
2 −

Han#

8M0
3 !lX

4 + lY
4 + lZ

4" , !11"

where Han# is the intrinsic anisotropy field within the film
plane and the small out-of-plane anisotropy field Han!

!Han# is responsible for weak tetragonality of the sample.
In the absence of field and current a single AFM layer has

two equivalent equilibrium orientations of AFM vector $see
Figs. 2!a" and 2!b"%: l #Z and l #Y $as can be easily obtained
from minimization of the magnetic energy, Eq. !11"%. Corre-
spondingly, a FM/AFM bilayer has two stable
configurations25 with l #pcur $Fig. 2!a"% and with l!pcur $Fig.
2!b"%. These two configurations should have different macro-
scopic properties !e.g., different magnetoresistance, different
exchange-bias field, etc." and in this sense are analogous to
the parallel !P" and antiparallel !AP" configurations of
FM/FM multilayers $Figs. 2!c" and 2!d"%. In analogy with
FM/FM systems, the reversible switching between the l #pcur

and l!pcur states can be achieved by application of the ex-
ternal magnetic field to the free !in our case, AFM" layer.

The switching field should be oriented parallel to AFM
vector, its critical value coincides with the spin-flop transi-
tion field Hs-f=2&Han#HE for AFM layer !also exchange en-
hanced".

When the current is injected into bilayer, configuration
with pcur# l is still equilibrium, but not necessarily stable. To
find the values of critical current and field, we analyze the
frequencies of eigenmodes of AFM layer !magnetization of
FM layer pcur and, correspondingly, the current polarization
being fixed".

A. Configuration H0! l

In the crossed initial orientation H0! l $Fig. 1!c"% the lin-
earized equations of motion for the generalized coordinates
lX, lY $lZ'2M0− !lX

2 + lY
2" / !4M0"% take the following form:

l̈X + 2"AFMl̇X + !#X
2 + #H

2 "lX + "HE$JlY = 0,

l̈Y + 2"AFMl̇Y + #Y
2 lY − "HE$JlX = 0. !12"

Here "AFM("HE%G /2!#X,Y is a damping coefficient that
can be estimated from the linewidth of AFM resonance, #H
="H0. The values #X=2"&!Han!+Han#"HE, #Y =2"&Han#HE
are the eigenfrequencies of free oscillations in the absence of
field and current that also could be measured in AFM reso-
nance experiments. It is worth noting that the values of
eigenfrequencies are enhanced due to exchange coupling
!multiple HE" compared to analogous values in FM with the
same value of anisotropy field.

Equations !12" describe the case when the magnetic field
is directed along the hard anisotropy axis, H0 #X. Configura-
tion with H0 #Y $field is parallel to an easy axis !EA"% is
treated in an analogous way.

It can be easily seen from Eq. !12" that below the critical
current
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the eigenmodes have linear polarization and correspond to
oscillations of vector l within XZ or YZ plane $Fig. 1!c"%. In
this case the spin torque transferred from the current affects
the eigenfrequencies of spin excitations
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but does not affect the effective damping coefficients !as it is
the case in FM".

It should be stressed that in the absence of external field
the value of critical current depends upon anisotropy !#X

2

−#Y
2")Han! of the magnetic interactions within and perpen-

dicular to the film plane. The magnetic field applied perpen-
dicular to the vector l enhances !if H0 is parallel to an easy
axis" or weakens !if H0 is parallel to a hard magnetic axis of
AFM" the effective anisotropy. So, magnetic field can be
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FIG. 2. !Color online" Stable magnetic configurations with dif-
ferent macroscopic properties. In FM/AFM bilayer $!a" and !b"% the
magnetization !#pcur" of FM layer is fixed, AFM vector can be
switched from !a" parallel to !b" perpendicular orientation with re-
spect to pcur by application of the external magnetic field H0
*Hs-f within an AFM layer. In FM/FM bilayer $!c" and !d"% the
magnetization of free layer can be switched from !c" parallel to !d"
antiparallel orientation with respect to pcur by the external magnetic
field H0 applied antiparallel to pcur. In both cases !c" and !d" the
switching can be also induced by current.
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netic field H0, depicted schematically in Figs. 1!c" and 1!d".
For the definiteness, an AFM layer is supposed to have
slightly tetragonal !almost cubic" anisotropy induced, e.g., by
the shape effects or/and interaction with the neighboring lay-
ers !including possible influence of the exchange bias". Two
easy axes !Z and Y" are parallel to the film plane. In this case
the magnetic anisotropy energy wan is modeled with the fol-
lowing expression:

wan =
Han!

M0
lX
2 −

Han#

8M0
3 !lX

4 + lY
4 + lZ

4" , !11"

where Han# is the intrinsic anisotropy field within the film
plane and the small out-of-plane anisotropy field Han!

!Han# is responsible for weak tetragonality of the sample.
In the absence of field and current a single AFM layer has

two equivalent equilibrium orientations of AFM vector $see
Figs. 2!a" and 2!b"%: l #Z and l #Y $as can be easily obtained
from minimization of the magnetic energy, Eq. !11"%. Corre-
spondingly, a FM/AFM bilayer has two stable
configurations25 with l #pcur $Fig. 2!a"% and with l!pcur $Fig.
2!b"%. These two configurations should have different macro-
scopic properties !e.g., different magnetoresistance, different
exchange-bias field, etc." and in this sense are analogous to
the parallel !P" and antiparallel !AP" configurations of
FM/FM multilayers $Figs. 2!c" and 2!d"%. In analogy with
FM/FM systems, the reversible switching between the l #pcur

and l!pcur states can be achieved by application of the ex-
ternal magnetic field to the free !in our case, AFM" layer.

The switching field should be oriented parallel to AFM
vector, its critical value coincides with the spin-flop transi-
tion field Hs-f=2&Han#HE for AFM layer !also exchange en-
hanced".

When the current is injected into bilayer, configuration
with pcur# l is still equilibrium, but not necessarily stable. To
find the values of critical current and field, we analyze the
frequencies of eigenmodes of AFM layer !magnetization of
FM layer pcur and, correspondingly, the current polarization
being fixed".

A. Configuration H0! l

In the crossed initial orientation H0! l $Fig. 1!c"% the lin-
earized equations of motion for the generalized coordinates
lX, lY $lZ'2M0− !lX

2 + lY
2" / !4M0"% take the following form:

l̈X + 2"AFMl̇X + !#X
2 + #H

2 "lX + "HE$JlY = 0,

l̈Y + 2"AFMl̇Y + #Y
2 lY − "HE$JlX = 0. !12"

Here "AFM("HE%G /2!#X,Y is a damping coefficient that
can be estimated from the linewidth of AFM resonance, #H
="H0. The values #X=2"&!Han!+Han#"HE, #Y =2"&Han#HE
are the eigenfrequencies of free oscillations in the absence of
field and current that also could be measured in AFM reso-
nance experiments. It is worth noting that the values of
eigenfrequencies are enhanced due to exchange coupling
!multiple HE" compared to analogous values in FM with the
same value of anisotropy field.

Equations !12" describe the case when the magnetic field
is directed along the hard anisotropy axis, H0 #X. Configura-
tion with H0 #Y $field is parallel to an easy axis !EA"% is
treated in an analogous way.

It can be easily seen from Eq. !12" that below the critical
current

)J) & Jcr
!1" (

1
2"HE$

)#X
2 − #Y

2 + #H
2 ) , !13"

the eigenmodes have linear polarization and correspond to
oscillations of vector l within XZ or YZ plane $Fig. 1!c"%. In
this case the spin torque transferred from the current affects
the eigenfrequencies of spin excitations

'(
2 =

1
2
*#X

2 + #Y
2 + #H

2 ( )#X
2 − #Y

2 + #H
2 )&1 − + J

Jcr
!1",2-

!14"

but does not affect the effective damping coefficients !as it is
the case in FM".

It should be stressed that in the absence of external field
the value of critical current depends upon anisotropy !#X

2

−#Y
2")Han! of the magnetic interactions within and perpen-

dicular to the film plane. The magnetic field applied perpen-
dicular to the vector l enhances !if H0 is parallel to an easy
axis" or weakens !if H0 is parallel to a hard magnetic axis of
AFM" the effective anisotropy. So, magnetic field can be

X

Z

H0

(a)

Z

Y Y

X

H0

J
J

(b)

X

Z

H0

(c)
Z

Y Y

X

H0

J
J

(d)

FM
(fixed)

AFM AFM

FM
(free)

pcur pcur

pcur pcur

FM
(fixed)

FM
(fixed)

FM
(fixed)

FM
(free)

FIG. 2. !Color online" Stable magnetic configurations with dif-
ferent macroscopic properties. In FM/AFM bilayer $!a" and !b"% the
magnetization !#pcur" of FM layer is fixed, AFM vector can be
switched from !a" parallel to !b" perpendicular orientation with re-
spect to pcur by application of the external magnetic field H0
*Hs-f within an AFM layer. In FM/FM bilayer $!c" and !d"% the
magnetization of free layer can be switched from !c" parallel to !d"
antiparallel orientation with respect to pcur by the external magnetic
field H0 applied antiparallel to pcur. In both cases !c" and !d" the
switching can be also induced by current.
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Summary

• antiferromagnets do respond to magnetic fields 
• … but spin-orbit torques are much more efficient 
• barrier to “free manipulation” = magnetic anisotropy 

• dynamics: generalised LLG (and beyond…)

• magnetocrystalline (spin-orbit) 
• dipolar interaction


