Manipulation of magnetic moments in antiferromagnets

or spin flop, magnetic anisotropies, spin-orbit torque and more K. Vyborny (IoP, Praha)
C.A. Correa (Charles U)
J. Zelezny (IoP, Praha)
T. Jungwirth (Praha+Nottingham)
V. Novak (IoP, Praha)
... and more

Manipulation of magnetic moments in antiferromagnets (AFM)

magnetic moments in AFM are insensitive to magnetic field

Manipulation of magnetic moments in antiferromagnets (AFM)

magnetic moments in AFM are insensitive to magnetic field

- not completely true, but indeed, the response is typically weak
- example: MnTe (T_N ~ 310 K), magnetic moments in-plane
- weak anisotropy within the easy plane, multiple domains

Kriegner et al. '17 Phys Rev B 96, 214418

Take a simpler example: rutile structure TM difluorides

 NiF_2

 MnF_2

Manipulation of magnetic moments in antiferromagnets (AFM)

Magnetic order in TM difluorides

vanadium Mn, Fe, Co nickel zinc

 $T_N = 7 \text{ K}$

Manipulation of magnetic moments in antiferromagnets (AFM)

FIG. 1. Magnetization data for powder and various crystal orientations. Solid curves calculated from simplified theory.

How does this work?

Manipulation of magnetic moments in antiferromagnets (AFM)

Any other option?

Manipulation of magnetic moments in antiferromagnets (AFM)

Any other option?

... spin-orbit torques

originate from

current-induced spin polarisation S, i.e. linear response of S to applied electric field

Magnetic memories: beyond HDD

ferromagnets:

MTJ-based MRAM

0 or 1: free layer magnetisation direction any new ideas? Yes!

Antiferromagnetic memory based on CuMnAs

Olejník et al. '17 [10.1038/ncomms15434]

 $u\iota$

Current-induced spin-orbit torque - for ferromagnets

Edelstein effect...

 $\delta \mathbf{S} = \chi \, \mathbf{E}$

simplest example: Rashba-Bychkov spin-orbit int. (sol. st. comm. 73, 233)

Phil. Tr. R. Soc. London A 369, 3175

$$\vec{T} = \frac{J_{pd}}{M} \delta \vec{S} \times \vec{M}$$

in the context of p-d type Hamiltonian

$$H = H_{KL} + h\hat{e}_M \cdot \mathbf{s}$$

... applicable to (Ga,Mn)As

- ferromagnetism ind. by carriers
- Mn d-states coupled to hole p-states (carrier)

$$H = H_{KL} + J_{pd} \sum_{i,I} \vec{S}_I \cdot \vec{s}_i \delta(\vec{r}_i - \vec{R}_I)$$
$$\vec{M} \propto \sum_i \vec{S}_i \delta(\vec{r}_i - \vec{R}_I)$$

Current-induced spin-orbit torque - ferromagnetic (Ga,Mn)As

$$\delta \mathbf{S} = \chi \mathbf{E}$$
 CISP - in linear response $S_i = \chi_{ij} E_j$

$$\delta \mathbf{S} = \delta \mathbf{S}^{\text{intra}} + \delta \mathbf{S}_1^{\text{inter}} + \delta \mathbf{S}_2^{\text{inter}}$$

$$\delta \mathbf{S}^{\text{intra}} = \frac{1}{V} \frac{e\hbar}{2\Gamma} \sum_{\mathbf{k},a} \langle \psi_{\mathbf{k}a} | \hat{\mathbf{s}} | \psi_{\mathbf{k}a} \rangle \langle \psi_{\mathbf{k}a} | \mathbf{E} \cdot \hat{\mathbf{v}} | \psi_{\mathbf{k}a} \rangle$$
$$\times \delta(E_{\mathbf{k}a} - E_F), \qquad (3)$$

$$\delta \mathbf{S}_{1}^{\text{inter}} = -\frac{e\hbar}{V} \sum_{\mathbf{k}, a \neq b} 2\text{Re}[\langle \psi_{a\mathbf{k}} | \hat{\mathbf{s}} | \psi_{b\mathbf{k}} \rangle \langle \psi_{b\mathbf{k}} | \mathbf{E} \cdot \hat{\mathbf{v}} | \psi_{a\mathbf{k}} \rangle]$$

$$\times \frac{\Gamma(E_{\mathbf{k}a} - E_{\mathbf{k}b})}{[(E_{\mathbf{k}a} - E_{\mathbf{k}b})^2 + \Gamma^2]^2} (f_{\mathbf{k}a} - f_{\mathbf{k}b}), \qquad (4)$$

$$\delta \mathbf{S}_{2}^{\text{inter}} = -\frac{e\hbar}{V} \sum_{\mathbf{k}, a \neq b} \text{Im}[\langle \psi_{\mathbf{k}a} | \hat{\mathbf{s}} | \psi_{\mathbf{k}b} \rangle \langle \psi_{\mathbf{k}b} | \mathbf{E} \cdot \hat{\mathbf{v}} | \psi_{\mathbf{k}a} \rangle]$$

$$\times \frac{\Gamma^2 - (E_{\mathbf{k}a} - E_{\mathbf{k}b})^2}{[(E_{\mathbf{k}a} - E_{\mathbf{k}b})^2 + \Gamma^2]^2} (f_{\mathbf{k}a} - f_{\mathbf{k}b}).$$
(5)

Li et al. '15 Phys Rev B 91, 134402

Current-induced field - experiment in (Ga,Mn)As static case dynamic case

0.8

Current-induced spin-orbit torque - for antiferromagnets

Edelstein effect...

$$\delta S_{a} = \chi_{a} E \quad (CISP)$$
(sublattice-resolved)
Symmetry considerations:

$$\chi_{a,ij}(\hat{\mathbf{n}}) = \chi_{a,ij}^{(0)} + \chi_{a,ij,k}^{(1)} \hat{n}_{k} + \chi_{a,ij,kl}^{(2)} \hat{n}_{k} \hat{n}_{l} + \cdots$$

$$\dots \text{ staggered CISP}$$

$$Au$$

$$Mn B \qquad Mn_{2}Au$$

$$Mn A \qquad \chi_{A}^{even} = -\chi_{B}^{even}$$

$$\chi_{A}^{odd} = \chi_{B}^{odd},$$

where n is the Néel vector, $\mathbf{L} = L\hat{\mathbf{n}} = \mathbf{M}_1 - \mathbf{M}_2$

Železný et al. '17 Phys Rev B 95, 014403

Crystal system	Point group	$\chi^{(0)}$	χ ⁽¹⁾
tetragonal	4	$\begin{pmatrix} x_{11} & -x_{21} & 0 \\ x_{21} & x_{11} & 0 \\ 0 & 0 & x_{33} \end{pmatrix}$	$\begin{pmatrix} \hat{n}_{z}x_{6} & -\hat{n}_{z}x_{2} & \hat{n}_{x}x_{5} - \hat{n}_{y}x_{7} \\ \hat{n}_{z}x_{2} & \hat{n}_{z}x_{6} & \hat{n}_{x}x_{7} + \hat{n}_{y}x_{5} \\ \hat{n}_{x}x_{4} - \hat{n}_{y}x_{3} & \hat{n}_{x}x_{3} + \hat{n}_{y}x_{4} & \hat{n}_{z}x_{1} \end{pmatrix}$

constant, J_{sd} is the local moment-carrier (e.g., d and s ractive candidate for observing the NSOT. orbitals). exchange constant, H^{tb} is the tight binding to the carses, and H_R^{tb} is the Rashba spinre the two spin sublattices do not form s a NSOT can still occup We illustrate orbit interaction in a 2D system, given by) square lattice where the same broken try term in the Hamiltonian is shared by ces. Here the resulting NSOF IS Yakal de outs $H_{R} = V_{SO} \sum_{i} \begin{bmatrix} (c_{i\uparrow}^{\dagger} c_{i+\delta_{x}\downarrow} - c_{i\downarrow}^{\dagger} c_{i+\delta_{x}\uparrow}) \\ \text{intra} \end{bmatrix} \text{inter}$ SIC antidamping SOT recently observed 15720 $-i(c_{i\uparrow}^{\dagger}c_{i+\delta_{y}\downarrow}+c_{i\downarrow}^{\dagger}c_{i+\delta_{y}\uparrow})+\text{H.c.}],$ rsion symmetry FMs[[][27]. (2)nethods.—Fa Mn Any we diagonalized a orbital tigh binding Hamiltonian to obtain where V_{s} represents the state of the s im and eigenfunctions used in our transport form of the fight-binding Hamiltonian The current-induced nonequilibrium spin density $\delta \vec{s}$ can owing the procedure for pimetallic alloys be calculated print the Kuby dinear nesponse [19] HYSICAL [33]. The faccuracy of the tight-binding Rashba to M $\delta \vec{s} = \frac{\hbar}{2\pi L^2} \operatorname{Re}_{\text{can}}^{\text{breadening that fields ike effect of tig and prime the total of the intraband and interbands into the intraband and interbands interba$ s confirmed in Fig. 1(b) by comparing the re to the *ab initio* density⁴ functional theory $\phi |\text{deg}|$ contrabution with the intraband term IS. [010]where the Green's functions are G^{R} el structure comprises a 2D AFM square $\frac{\beta}{\beta}$ ba spin-orbit coupling due to the broken β on symmetry and is relevant e.g., to nental gebrielles in which a thin AFM = G $/(E_F - E_{\vec{k}\alpha} + i \mathbf{P}^{\mathbf{D}}),$ with the property G)* Here nental geometries in which a thin ArM with another layer. The model is sketched its Hamilton are given by $\frac{d^3k}{(2\pi)^3} \sum_{\alpha} (\vec{s})^A_{k\alpha}(\vec{r}_1)^\beta_{k\alpha} \delta h E_{k\alpha} (\vec{r}_2, E_{k\alpha})$ is the chergy spectrum and contribution (E the spectral of the current of Fix equivalent to the Boltzmann transport theory express ferronhagnezic] onderingmilanetowthespinargeblaoridestin 157201-2 inversionly mmetry as illustrated by the red and purple

full They interband contribution dominating in the Acanali

 $1 \circ f_1 F_2 \rightarrow 0$ is given by [19h > T + 1 + 1]

Spin-orbit torque in CuMnAs

Wadley et al. '16 Science 351, 587

ab initio modelling - CuMnAs

ellipsometry

Barrier to spin switching: magnetic anisotropy

... back to spin flop

$$B_{sf} = 2\sqrt{B_a B_e}$$

Why spin flop?

- consider only AFM exchange & "Zeeman"
- no energy gain possible

- rotate & cant loss in exchange energy
- compensated by "Zeeman"

- $\Lambda F \propto \sin \alpha$

+: $\Delta E \propto 1 - \cos \alpha$

-: $\Delta E \propto \sin \alpha$

Comparison between experiment and model

- let's make a theoretical estimate of B_{sf}
- microscopic origin of magnetic anisotropy in an antiferromagnet

dipole-dipole int.

magnetocrystalline anisotropy (MCA)

The three fluorides

spin flop [T]	9.3	41.9	14.0
mag. anisotropy [T]	0.7	14.9	3.2
dominant source	dipolar	MCA	MCA

$$B_{sf} = 2\sqrt{B_a B_e}$$

The three fluorides

spin flop [T]	9.3	41.9	14.0
mag. anisotropy [T]	0.7	14.9	3.2
dominant source	dipolar	MCA	MCA

Beware of the definition!

$$\frac{E}{MV} = B_e \vec{m}_1 \cdot \vec{m}_2 - B \vec{b} \cdot (\vec{m}_1 + \vec{m}_2) + B_a [(\vec{m}_1 \cdot \hat{z})^2 + (\vec{m}_2 \cdot \hat{z})^2].$$
(Stoner-Wohlfarth)

spin flop field:
$$B_{sf} = 2\sqrt{B_a B_e}$$

The path to Ba

- measured: $B_{sf} \& T_N$
- mean-field mapping of SW to spin model:

$$\frac{kT_N}{J} = \frac{1}{3}S(S+1)$$

- spin-lattice Hamiltonian: $H = J \sum \vec{S}_i \cdot \vec{S}_j$
- effective field

$$B_e = NJS^2/MV$$

 $\langle i,j \rangle$

• combine B_{sf} and B_e

MA: quantitative summary

TABLE I. Parameters of MnF_2 , FeF_2 , CoF_2 and NiF_2 related to magnetism. Note that definitions of B_e and B_a vary through literature.

	Mn	F_2	Fe	F_2		CoF_2		NiF ₂
	\exp	calc	exp	calc	exp	calc	exp	calc
mag.mom. $[\mu]$	$_{B}] 5.04^{5}$	4.4	$3.93, {}^53.75^6$	3.6	2.21^{5}	2.6	1.96^{5}	1.63
ideal S	2.5		2		1.5		1	
B_e [T]	$46.5^7, 57.5^3$	85.5	$43.4^7, 62^3$	116.7	32.4^{7}	67.4		163.5
B_a [T]	$0.697^7, 0.8^3$	0.42	$14.9^7, 19.2^3$	2.6	3.2^{7}	0.73^{*}		-0.50
$B_{a}^{(1)}$ [T]		$0.2 \cdot 10^{-3}$		2.3		0.52^{*}		-0.71
dipolar term		$418 \mathrm{mT}$		$317 \mathrm{mT}$		211 mT		$203 \mathrm{mT}$
B_{sf} [T]	9.27^{8}	12.0	41.9 ⁹	34.8	14.0^{7}	***		
T_N [K]	67.7^{5}		75.8^{5}		37.7^{10}		74.1^5	

electronic config.:

MA: magnetocrystalline contribution (MCA)

Theoretical estimates

MnF_2	FeF_2	CoF_2
---------	------------------	------------------

mag. anisotropy	0.42 T	2.6 T	n/a
MCA	< 1 mT	2.3 T	~1 T

$$\frac{\partial \mathbf{m}}{\partial t} = \gamma \mathbf{m} \times \mathbf{H}^{\text{eff}} + \frac{\alpha}{|\mathbf{m}|} \mathbf{m} \times \frac{\partial \mathbf{m}}{\partial t}$$

for ferromagnets: Landau-Lifshitz-Gilbert eq.

$$\frac{\partial \mathbf{m}}{\partial t} = \gamma \mathbf{m} \times \mathbf{H}^{\text{eff}} + \frac{\alpha}{|\mathbf{m}|} \mathbf{m} \times \frac{\partial \mathbf{m}}{\partial t}$$

(Landau-Lifshitz-Gilbert eq.)

Switching AFM in a multilayer by current pulses ... extend LLG

Gomonay & Loktev, '10 Phys Rev B 81, 144427

$$\dot{\mathbf{M}}_{j} = -\gamma (\mathbf{M}_{j} \times \mathbf{H}_{j}) + \frac{\alpha_{G}}{M_{0j}} (\mathbf{M}_{j} \times \dot{\mathbf{M}}_{j}) + \frac{\sigma_{j}J}{M_{0j}} [\mathbf{M}_{j} \times (\mathbf{M}_{j} \times \mathbf{p}_{cur})],$$

introduce the Néel vector

$$\vec{m} = \vec{M}_1 + \vec{M}_2$$

 $\vec{l} = \vec{M}_1 - \vec{M}_2$

Switching AFM in a multilayer by current pulses

Gomonay & Loktev, '10 Phys Rev B 81, 144427

Switching AFM in a multilayer by current pulses

$$w_{\rm an} = \frac{H_{\rm an\perp}}{M_0} l_X^2 - \frac{H_{\rm an\parallel}}{8M_0^3} (l_X^4 + l_Y^4 + l_Z^4)$$

Gomonay & Loktev, '10 Phys Rev B 81, 144427

Summary

- antiferromagnets do respond to magnetic fields
- ... but spin-orbit torques are much more efficient
- barrier to "free manipulation" = magnetic anisotropy
 - magnetocrystalline (spin-orbit)
 - dipolar interaction
- dynamics: generalised LLG (and beyond...)