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|Ic0.P-AP| ≠ |Ic0.AP-P| due to spin accumulation in
the spin valve and the MTJ magnetoresistance
behavior, respectively. The equivalence of the two
critical currents for a SHE-ST switching device
could be a major technical advantage. From our
measured values of |Ic0| and using Eq. 1 with
m0Meff = 0.76 T (32), we determine JS/Je for
this device to be 0.12 T 0.04 (32), in accord with
our two other spin Hall angle measurements. We
note that our three determinations of JS/Je are
consistent for FM layer thicknesses ranging from
1 to 4 nm and are not sensitive to whether the FM
layer is magnetized in plane or out of plane.

Technology applications. Improvements to
this initial three-terminal SHE device can be very
reasonably expected to result in substantial
reductions in the switching currents for thermally
stable nanomagnets. By reducing the width of the
Ta microstrip to be equal to the dimension of the
long axis of the nanopillar, we can easily decrease
Ic0 by a factor of 3 without affecting thermal sta-
bility. A further reduction in Ic0 could be achieved
by reducing the demagnetization field of the FM
free layer from 700 mT to ≤100 mT (37, 38).
With such improvements, Ic0 could be reduced to
<100 mA, at which point the three-terminal SHE
devices would be competitive with the efficiency

of conventional ST switching in optimized MTJs
(31, 33, 39) while providing the added advantage
of a separation between the low-impedance switch-
ing (write) process and high-impedance sensing
(read) process. This separation solves the reliability
challenges that presently limit applications based
onconventional two-terminalMTJswhile alsogiving
improved output signals. Other three-terminal spin-
torque devices based on conventional spin-filtering
have been demonstrated previously (40–43), but
the SHE-ST design can provide better spin-torque
efficiency and is much easier to fabricate. More-
over, the discovery of materials with even larger
values of the spin Hall angle than in b-Ta could
also add to the competitiveness of the SHE-ST.
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Fig. 3. Spin Hall effect–induced switching for an in-plane magnetized nanomagnet at room
temperature. (A) Schematic of the three-terminal SHE devices and the circuit for measurements. The
direction of the spin Hall spin transfer torque is not the same as in Fig. 1A because the CoFeB layer now
lies above the Ta rather than below. (B) TMR minor loop of the MTJ as a function of the external applied
field Bext applied in-plane along the long axis of the sample. (Inset) TMR major loop of the device. (C)
TMR of the device as a function of applied dc current IDC. An in-plane external field of –3.5 mT is
applied to set the device at the center of the minor loop. (D) Switching currents as a function of the
ramp rate for sweeping current. Red squares indicate switching from AP to P; blue triangles indicate
switching from P to AP. Solid lines represent linear fits of switching current versus log(ramp rate). Error
bars are smaller than the symbol size.
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Magnetic tunnel junctions as memory elements

writing information: 
• spin-transfer torque 
• using spin Hall effect (SHE-torque) 
• spin-orbit torque

reading information: 
• tunnelling magnetoresistance (similar to GMR) 
• anisotropic magnetoresistance (AMR) 
• … and more (tunnelling AMR)
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the resistance depends on magnetization direction
Magnetic (semi)conductor:

Why does the resistance depend on the magnetisation?

ρ|| >,<,= ??? ρ⊥

What couples the magnetism (spin) and the current
coming from (orbital) motion of charge carriers?

... spin-orbit interaction!

W. Thomson, Proc. Roy. Soc. London (1857)

W.  Thomson, Proc. Roy. Soc. London (1857) Fe, Ni ~1%
P.  Wiśniewski, Appl. Phys. Lett. (2007) U3As4 ~50%
A. Rushforth, Phys. Rev. Lett. (2007) GaMnAs few %

Anisotropic magnetoresistance (AMR)



AMR: crystalline and non-crystalline components

∆ρL/ρav =

CI cos 2φ + CI ,C cos(2φ + 4θ) +
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of antiferromagnetic exchange Hex = �AF · J. This interaction
leads to the ferromagnetic alignment of magnetic moments of
Mn ions and equilibrium polarization of hole spins. If further,
non-equilibrium spin polarization of the holes �JE is induced, the
interaction of the hole spins with magnetic moments of Mn ions
enables one to control ferromagnetism bymanipulating J. Magnetic
properties of (Ga,Mn)As are thus tightly related to the electronic
properties of GaAs. For example, strain-induced spin anisotropy of
the hole energy dispersion is largely responsible for the magnetic
anisotropy in this material. (Ga,Mn)As, epitaxially grown on the
(001) surface of GaAs, is compressively strained, which results in
magnetization M lying in the plane of the layer perpendicular to
the growth direction, with two easy axes along the [100] and [010]
crystallographic directions22,23. Recently, control of magnetization
by means of strain modulation has been demonstrated24. In this
letter, we use spin–orbit-generated polarization �JE to manip-
ulate ferromagnetism.

We report measurements on two samples fabricated from
(Ga,Mn)As wafers with different Mn concentrations. The devices
were patterned into circular islands with eight non-magnetic
ohmic contacts, as shown in Fig. 1a and discussed in the Methods
section. In the presence of a strong external magnetic field H,
the magnetization of the ferromagnetic island is aligned with the
field. For weak fields, however, the direction of magnetization
is primarily determined by magnetic anisotropy. As a small field
(5 < H < 20mT) is rotated in the plane of the sample, the
magnetization is re-aligned along the easy axis closest to the field
direction. Such rotation of magnetization by an external field is
demonstrated in Fig. 2. For the current I||[11̄0], the measured Rxy is
positive forM||[100] and negative forM||[010]. Note that Rxy , and
thus also the magnetization, switches direction when the direction
ofH is close to the hard axes [110] and [11̄0], confirming the cubic
magnetic anisotropy of our samples. The switching angles⌅H =\HI
whereRxy changes sign are denoted as ⌅(i)

H on the plot.
In the presence of both external and spin–orbit fields, we

expect to see a combined effect of Hso +H on the direction of
magnetization. For small currents (a few microamperes) H so ⌅ 0,
and Rxy does not depend on the sign or the direction of the
current. At large d.c. currents, the value of ⌅(i)

H becomes current
dependent and we define ⇧⌅(i)

H (I )= ⌅(i)
H (I )�⌅(i)

H (�I ). Specifically,
for I||[11̄0], the switching of magnetization [010] ⇧ [1̄00] occurs
for I = +0.7mA at smaller ⌅(1)

H than for I = �0.7mA, ⇧⌅(1)
H < 0.

For the [01̄0] ⇧ [100] magnetization switching, the I dependence
of the switching angle is reversed, ⇧⌅(3)

H > 0. There is no
measurable difference in switching angle for the [1̄00]⇧ [01̄0] and
[100]⇧ [010] transitions (⇧⌅(2,4)

H ⌅0).When the current is rotated
by 90⇤ (I||[110]), we observe ⇧⌅(2)

H > 0, ⇧⌅(4)
H < 0 and ⇧⌅(1,3)

H ⌅ 0.
Figure 2c shows that ⇧⌅(2)

H (I ) decreases as current decreases and
drops below experimental resolution of 0.5⇤ at I< 50 µA. Similar
data are obtained for sample B (see Supplementary Fig. S4).

The data can be qualitatively understood if we consider an
extra current-induced effective magnetic field Heff, as shown
schematically in Fig. 1b. When an external field H aligns the
magnetization along one of the hard axes, a small perpendicular
field can initiate magnetization switching. For I||[110], the effective
field Heff||[1̄10] aids the [100] ⇧ [010] magnetization switching,
whereas it hinders the [1̄00] ⇧ [01̄0] switching. For ⌅(1)

H ⌅ 90⇤ and
⌅(3)
H ⌅ 270⇤, where [010]⇧ [1̄00] and [01̄0]⇧ [100] magnetization

transitions occur, Heff||H does not affect the transition angle,
⇧⌅(2,4)

H = 0. For I||[11̄0], the direction of the field Heff||[110] is
reversed relative to the direction of the current, compared with
the I||[110] case. The symmetry of the measured Heff with respect
to I coincides with the unique symmetry of the strain-related
spin–orbit field (Fig. 1c).

The dependence of ⇧⌅(i)
H on various magnetic fields and current

orientations is summarized in Fig. 3a,b. Assuming that the angle of
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Figure 2 |Dependence of transverse anisotropic magnetoresistance
on current and field orientation. a,b, Transverse anisotropic
magnetoresistance Rxy as a function of external field direction ⌅H for
H= 10mT and current I= ±0.7mA in sample A. The angles ⌅(i)

H mark
magnetization switchings. c, Magnetization switching between [̄100] and
[01̄0] easy axes for several values of the current.

magnetization switching depends only on the total field Heff +H,
we can extract the magnitude H eff and angle ⇥ = \IHeff from
the measured ⇧⌅(i)

H , thus reconstructing the whole vector Heff.
Following a geometrical construction shown in Fig. 3d and taking
into account that⇧⌅(i)

H is small, we find that

H eff ⌅H sin(⇧⌅(i)
H /2)/sin(⇥ �⌅(i)

H )

and ⇥ can be found from the comparison of switching at two
angles. We find that ⇥ ⌅ 90⇤, or Heff⌥ I for I⌦[110] and I⌦[11̄0].
To further test our procedure, we carried out similar experiments
with small current I =10 µAbut constant extramagnetic field �H⌥I
having the role of Heff. The measured �H (⇧⌅H) coincides with
the applied �H within the precision of our measurements. (See
Supplementary Fig. S5.)

In Fig. 3c, H eff is plotted as a function of the average current
density �j for both samples. There is a small difference in the
H eff versus �j dependence for I⌦[110] and I⌦[11̄0]. The difference
can be explained by considering the current-induced Oersted field
HOe ⌃ I in the metal contacts. The Oersted field is localized
under the pads, which constitutes only 7% (2.5%) of the total
area for sample A (B). The Oersted field has the symmetry
of the field shown in Fig. 1d, and is added to or subtracted
from the spin–orbit field, depending on the current direction.
Thus, H eff = H so + HOe for I⌦[110] and H eff = H so � HOe for
I⌦[11̄0]. We estimate the fields to be as high as 0.6mT under
the contacts at I = 1mA, which corresponds to HOe ⌅ 0.04mT
(0.015mT) averaged over the sample area for sample A (B). These
estimates are reasonably consistent with the measured values of
0.07mT (0.03mT). Finally, we determine H so as an average of H eff

between the two current directions. The spin–orbit field depends
linearly on j, as expected for strain-related spin–orbit interactions:
dH so/dj = 0.53⇥ 10�9 and 0.23⇥ 10�9 T cm2 A�1 for samples A
and B respectively.

We now compare the experimentally measured H so with
theoretically calculated effective spin–orbit field. In (Ga,Mn)As,
the only term allowed by symmetry that generates H so linear
in the electric current is the ⌃⇤ term, which results in the
directional dependence of Hso on j precisely as observed in
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Evidence for reversible control of magnetization in
a ferromagnetic material by means of spin–orbit
magnetic field
Alexandr Chernyshov1*, Mason Overby1*, Xinyu Liu2, Jacek K. Furdyna2, Yuli Lyanda-Geller1
and Leonid P. Rokhinson1†

The current state of information technology accentuates the
dichotomy between processing and storage of information,
with logical operations carried out by charge-based devices and
non-volatile memory based on magnetic materials. The main
obstacle for a wider use of magnetic materials for information
processing is the lack of efficient control of magnetization.
Reorientation of magnetic domains is conventionally carried
out by non-local external magnetic fields or by externally
polarized currents1–3. The efficiency of the latter approach
is enhanced in materials where ferromagnetism is carrier-
mediated4, because in such materials the control of carrier
polarization provides an alternative means for manipulating
the orientation of magnetic domains. In some crystalline
conductors, the charge current couples to the spins by
means of intrinsic spin–orbit interactions, thus generating
non-equilibrium electron spin polarization5–11 tunable by local
electric fields. Here, we show that magnetization can be
reversibly manipulated by the spin–orbit-induced polarization
of carrier spins generated by the injection of unpolarized
currents. Specifically, we demonstrate domain rotation and
hysteretic switching of magnetization between two orthogonal
easy axes in amodel ferromagnetic semiconductor.

In crystalline materials with inversion asymmetry, intrinsic
spin–orbit interactions couple the electron spinwith itsmomentum
h̄k. The coupling is given by the Hamiltonian Hso = (h̄/2)⇤̂ ·�(k),
where h̄ is the reduced Planck constant and ⇤̂ is the electron
spin operator (for holes ⇤̂ should be replaced by the total angular
momentum J). Electron states with different spin projection signs
on �(k) are split in energy, analogous to the Zeeman splitting
in an external magnetic field. In zinc-blende crystals such as
GaAs there is a cubic Dresselhaus term12 �D ⇥ k3, whereas strain
introduces a term �⌅ = C⇧⌅(kx ,�ky ,0) that is linear in k, where
⇧⌅ is the difference between strain in the ẑ and x̂, ŷ directions13.
In wurtzite crystals or in multilayered materials with structural
inversion asymmetry, there also exists the Rashba term14 �R,
which has a different symmetry with respect to the direction of k,
�R =�R(�ky ,kx ,0), where ẑ is along the axis of reduced symmetry.
In the presence of an electric field, the electrons acquire an average
momentum h̄⇧k(E), which leads to the generation of an electric
current j= ⇥̂�1E in the conductor, where ⇥̂ is the resistivity tensor.
This current defines the preferential axis for spin precession ⇤⌃(j)⌅.
As a result, a non-equilibrium current-induced spin polarization
⇤JE⌅⇧⇤�(j)⌅ is generated, the magnitude of which ⇤J E⌅ depends
on the strength of various mechanisms of momentum scattering

1Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA, 2Department of Physics, University of
Notre Dame, Notre Dame, Indiana 46556, USA. *These authors contributed equally to this work. †e-mail: leonid@purdue.edu.
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Figure 1 | Layout of the device and symmetry of the spin–orbit fields.
a, Atomic force micrograph of sample A with eight non-magnetic metal
contacts. b, Diagram of device orientation with respect to crystallographic
axes, with easy and hard magnetization axes marked with blue dashed and
red dot–dash lines, respectively. Measured directions of Heff field are
shown for different current directions. c,d, Orientation of effective magnetic
field with respect to current direction for strain-induced (c) and Rashba (d)
spin–orbit interactions. The current-induced Oersted field under the
contacts has the same symmetry as the Rashba field.

and spin relaxation5,15. This spin polarization has been measured
in non-magnetic semiconductors using optical7–9,11,16 and electron
spin resonance17 techniques. It is convenient to parameterize ⇤JE⌅
in terms of an effective magnetic field Hso. Different contributions
to Hso have different current dependencies (⇥ j or j3), as well
as different symmetries with respect to the direction of j, as
schematically shown in Fig. 1c,d, enabling one to distinguish
between spin polarizations in different fields.

To investigate interactions between the spin–orbit-generated
magnetic field and magnetic domains, we have chosen (Ga,Mn)As,
a p-type ferromagnetic semiconductor18,19 with zinc-blende crys-
talline structure similar to GaAs. Ferromagnetic interactions in this
material are carrier-mediated20,21. The total angular momentum of
the holes J couples to the magnetic moment F of Mn ions by means
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Edelstein effect… … action on magnetic moments
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FIG. 1: Fermi surfaces and spin textures in a system with (a)
time reversal, (b) inversion asymmetry.

We use a four-band model for the holes in ferromag-
netic semiconductors. The Hamiltonian of the system
is

H = HKL +Hpd +Hstrain, (8)

where the first term is the Kohn-Luttinger Hamiltonian,
the second is the exchange coupling and the third is
the strain Hamiltonian. The four band Kohn-Luttinger
Hamiltonian is

HKL = ~2k2

2m0

�
�1 +

5
2�2

⇥
I4 � ~2

m0
�3 (k · J)2

+ ~2

m0
(�3 � �2)

�
k2xJ

2
x + k2yJ

2
y + k2zJ

2
z

⇥
.

(9)

Here, k is the momentum of the holes, m0 is the electron
mass, �1,2,3 are the Luttinger parameters, I4 is the 4⇤ 4
identity matrix and J = (Jx, Jy, Jz) are the 4⇤4 spin ma-
trices of the holes. The exchange coupling between the
holes and the d-electrons localized on Mn ions responsi-
ble for magnetism in GaMnAs is given by the exchange
Hamiltonian

Hexch = JpdSMnNMn�̂ · S, (10)

where Jpd is the exchange coupling strength, NMn is the
Mn ions concentration and the hole spin J = 3S, while
the Mn spin is SMn = 5/2. The angle �̂ gives the ori-
entation of the magnetization in the system. The strain
Hamiltonian is

Hstrain = �b

⇧⇤
J2
x � J2

3

⌅
⇤xx + c.p.

⌃

+C4 [Jx (⇤yy � ⇤zz) kx + c.p.] (11)

+C4 [⇤xy(kyJx � kxJy) + c.p.]

where ⇤ij is the stress tensor, b is the axial deformation
potential and C4 gives the magnitude of the momentum-
dependent strain. In a typical situation of pure growth
strain (⇤xy = 0) we use the notation ⇤xx = ⇤yy = 0,

⇤zz = e0. The first term of the strain Hamiltonian
is momentum independent. The other two terms are
momentum-dependent and they are believed to be es-
sential for the generation of CITs.14,15 The second term
has a Dresselhaus symmetry and the third has a Rashba
symmetry. These symmetries pertain to the resulting
CIT too, but this non-trivial statement deserves a closer
attention.

B. Intraband terms — simple case

With all necessary ingredients at hand, let us start
investigating the CIF. First, we look at the intraband
terms which dominate in clean systems (admittedly, this
assumption is not well satisfied in (Ga,Mn)As and we
will discuss appropriate corrections later). According to
Eq. (5), magnitude of the intraband terms is proportional
to E and hole mobility µ = e⇧/m⇥. We further focus on
the ”nontrivial” dependences.

1. Magnetization dependence and symmetry

Experiments typically focus on the CIF dependence
on the current direction, assuming that CIF does not de-
pend on the magnetization direction. Let us examine the
validity of this assumption (within our model, of course).
In Fig. 2, we show CIF calculated using Eq. (5) for an
exemplar system with hole density p = 2.0 nm�3 and
Mn content x = 9%. The spin texture in panel A shows
the CIF as a function of �̂ assuming electric field along
[100]. Although some dependence on �̂ both in the di-
rection and magnitude of the CIF (as shown lower on
the same panel) is clearly seen, on average, the induced
field points in the [100] direction and the whole infor-
mation of panel A can be reasonably collapsed into the
single arrow marked ’A’ at the bottom of Fig. 2. This
arrow represents the average CIF for ⌫E along [100]. Sim-
ilar procedure can be repeated for ⌫E along [010] where
the average CIF points along [01̄0]. If we express the
two average CIFs as (Ehxx, 0) and (0, Ehyy), Eq. (5) im-
plies that the CIF for arbitrary (in-plane) orientation of
electric field equals ⌫E ·(hxx, hyy). The resulting ”Dressel-
haus symmetry pattern” at the bottom of Fig. 5 agrees
with experimental finding.14 We note that by symmetry
of Eq. (5), ⇥Hintra will always remain in-plane as long as
both �̂ and ⌫E do.

Dependence of CIF on the magnitude of magnetization
is even weaker than on its direction. In an attempt to
scan the range of relevant system parameters, we show
in Fig. 3 the dependence of CIF on the hole densities for
several di⇥erent values of Jex as implied by various NMn

in Eq. (10). These Mn concentrations corresponding to
x = 2, 5, and 9% leave the CIF virtually una⇥ected.
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band k·p Hamiltonian.12 This 20-band Hamiltonian was
built from the 14!14 Hamiltonian,17 adding an s-symmetry
band 12 eV under the top of the valence band and two s*
levels to obtain nonmonotonic bands and give access to X, ",
or L valleys in the first conduction band. As these s* levels
were not sufficient to describe simultaneously the L point
and the # effective masses, the contribution of d levels was
mimicked via Luttinger-like parameters which played a part
in the #7C and #8C levels and in the #7V and #8V levels by
second-order perturbations. It explains why Luttinger param-
eters could not be obtained directly from the matrix ele-
ments, contrary to the k·p 30-band method.
Taking into account strain can be made as in Ref. 18. The

same strain Hamiltonian with five parameters has to be
added to the 30!30 Hamiltonian used for bulk semiconduc-
tors.

III. BAND DIAGRAMS OF Si, Ge, AND GaAs

After having built the 30!30 Hamiltonian, we now give
the parameters used in our k·p calculation and describe the
results for Si, Ge, and GaAs. The k=0 energies are presented
in Table II. The left part of this table is known;16 for the right
part of Table II, we take the same values as in Ref. 5 for Si
and Ge. For GaAs, these levels are unknown but Cardona
and Pollak5 explain how to obtain an estimation of these
energies, knowing the form factors used in pseudopotential
calculations19 and assuming that only the pseudopotential in-
teraction between the 30 plane-waves states is important.
Anyway, the k=0 upper energy levels chosen are not key

parameter by themselves: the important data are the couples
energy level/matrix element. Briefly speaking, the k=0 en-
ergy levels are first fixed from Ref. 5 and the matrix elements
are then adjusted to obtain the band diagram; as a result there
are 10 (18) adjustable parameters in Oh!Td".
After having chosen the unknown k=0 energy levels, the

key parameters are the matrix elements. Here, they were first
estimated at the center of the Brillouin zone, especially for
the valence band to obtain Luttinger parameters, and for the
first conduction band for Ge and GaAs, then at the extrema X
and L and finally to respect the continuity between U#1, 14 ,

1
4$

and K#0, 34 ,
3
4$ equivalent points of the Brillouin zone. This

continuity is not obtained by construction as in pseudopoten-
tial or LCAO: on the contrary, it is the strongest numerical
difficulty of this method. Figures 3–5 show the band struc-
tures of Si, Ge, and GaAs obtained with our k·p model.
Numerical results are given in Table III. The band structure
is well reproduced on a width of about 11 eV: it describes
correctly the valence band over a 6 eV scale (see Fig. 6) and
the lowest four conduction bands over a 4 eV scale in four
directions namely #X, #L, #K, XU. All the spin-orbit param-
eters were taken null except "so and "C.16
The 30-band method represents a great improvement of

the k·p method compared to the 20-band Hamiltonian whose
extension was only 1 eV for the valence band and 3 eV for
the conduction band.12 This 20-band method was built to
take into account the d level effects without directly consid-
ering this level in the Hamiltonian. The present calculation
shows that taking into account the real d levels with their

TABLE III. Matrix elements of the momentum p: energies EPj
!!" and matrix elements Pj

!!" are linked by
EPj

!!"= !2m0 /$2"#Pj
!!"$2. Pj

!!" are defined in the text (Sec. III) and in Figs. 2 and 3.

eV Ge Si GaAs eV Ge Si GaAs

Ep 24.60 19.96 22.37 EPd 0.0051 1.193 0.010
EPX 17.65 14.81 16.79 EPXd 12.23 7.491 4.344
EP3 5.212 4.475 4.916 EP3d 15.76 9.856 8.888
EP2 2.510 3.993 6.280 EP2d 27.59 20.76 23.15
EPS 1.071 1.092 2.434 EPU 17.84 16.36 19.63
EP! 0.0656 EPd! ,EP3! ,EP2! ,EPS! ,EPU! ,EPSd! ,EPUd! 0

FIG. 4. Band diagram of Ge at T=0 K. FIG. 5. Band diagram of GaAs at T=0 K.
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unpolarized spin-orbit coupled carriers from polarized mag-
netic impurities, or !c" via anisotropic scattering of partially
polarized carriers which does not require a magnetic charac-
ter of the scatterers. Transport calculations must of course
always include an account of scattering but it is its aniso-
tropy that is disregarded within mechanism !a"; in mecha-
nisms !b" and !c" it is in turn the anisotropy of the group
velocities that is neglected !a more detailed discussion is
presented in Sec. II C". We point out that the mechanisms !a"
and !c" represent a situation where both fundamental ingre-
dients of the AMR !SOI and magnetization" are present in
the same states of the band structure. The SOI is necessary
for AMR to occur but, at the same time, it weakens the effect
of magnetization so that weaker AMR may be expected
whenever the mechanisms !a" or !c" dominate. On the other
hand, in mechanism !b", the SOI in an unpolarized carrier
band can be strong while the magnetization of the impurities
remains at 100%. Consequently, very large AMR can arise if
this mechanism is important.11

We show in this paper that metallic !Ga,Mn"As is a favor-
able system for the purposes of studying AMR. Not only
because of its relatively simple !effective" Hamiltonian !de-
scribed in Sec. II" and the dominance of the AMR mecha-
nism !b", but also because of the way the AMR model can be
simplified !as shown in Sec. III" down to analytical formulae
revealing the basic AMR trends !see Sec. IV". This analysis
is our main result together with the detailed explanation of
the AMR sign in !Ga,Mn"As !resistance parallel to magneti-
zation is smaller than perpendicular to magnetization" which
is observed experimentally8,9,12–18 and is opposite to most
magnetic metals.19,20 The results in Sec. IV include analyti-
cally evaluated anisotropic conductivity on several levels of
model complexity, and the most simplified model allows to
clearly identify the physical mechanism that determines the
sign of the AMR in !Ga,Mn"As. Our approach21 is based on
the relaxation-time approximation !RTA" and it would be
desirable to put the present results into more precise terms by
exactly solving the Boltzmann equation in its full integral
form as the authors did for the simpler Rashba system
recently.11,22 Although this solution is presently not available,
we explain in a short discussion at the end of Sec. IV that the
RTA reproduces at least the basic features of the AMR as
presented in this work.

II. BASIC MODEL OF AMR IN METALLIC (GA,MN)AS

Three principal ingredients, described in Secs. II A–II C,
are necessary to model the conductivity and its magnetic
anisotropy: !A" The band structure yielding the spectrum and
wave functions, !B" the scattering mechanism, and !C" a
transport formalism which combines the former two and pro-
duces the conductivity tensor. Given that we base our ap-
proach to !C" on relaxation-time approximate solution to the
semiclassical Boltzmann equation, we basically need the
Fermi velocities derived from the band dispersions, and the
relaxation times calculated from the spectrum, wave func-
tions and the relevant form of the impurity potential.

A. Virtual-crystal kinetic-exchange model of (Ga,Mn)As bands

The valence-band kinetic-exchange model of !Ga,Mn"As
with metallic conductivities is an established qualitative and

often semiquantitative theoretical approach.7,23 The descrip-
tion is based on the canonical Schrieffer-Wolff transforma-
tion of the Anderson Hamiltonian24 which for !Ga,Mn"As
replaces hybridization of Mn d orbitals with As and Ga sp
orbitals by an effective spin-spin interaction of !L=0; S
=5 /2" local moments with host valence-band states. This
step proves essential to effectively separate the different
AMR mechanisms !a,b,c", symbolized in Fig. 1, because—
except for the spin-spin interaction which will be treated as
we review below—it completely detaches the Mn states from
the spin-orbit coupled host-valence-band states. These
valence-band states are conveniently parametrized by the
Luttinger parameters !1 ,!2 ,!3 and spin-orbit splitting "SO in
the six-band Kohn-Luttinger Hamiltonian25–27 HKL. The local
interaction between Mn magnetic moments SI !located at RI"
and valence hole spins s !at r", being at the root of the
carrier-mediated ferromagnetism in !Ga,Mn"As, is the ki-
netic exchange and it is described by single parameter7,28 Jpd.
In order to model the band structure of !Ga,Mn"As including
disorder electrical potential V associated with the Mn mag-
netic moments, we treat the Hamiltonian

H = HKL + Vdis = HKL + Jpd#
I

SI · s#!r − RI" + #
I

V!r − RI"

!1"

by the virtual-crystal mean-field26 approximation, whence
we get the single-particle Hamiltonian !in momentum repre-
sentation" of the !Ga,Mn"As valence band

H = HKL + hêM · s . !2"

Here, êM stands for the unit vector in the direction of the
mean-field magnetization, h=JpdNMnSMn, and the magnetic
moment of Mn is SMn=5 /2. In this paper, we will only con-
sider substitutional Mn with volume density NMn as in opti-
mally annealed samples,29 and assume zero temperature. In
the band-structure model, we thus disregard the randomness
in the Mn distribution over the crystal and the ensuing spatial
inhomogeneity of the exchange interaction, and also we
completely ignore the disorder defined by the electrical po-
tential V in Eq. !1" of every single substitutional Mn which is
an ionized acceptor. Within this approximation, the effect of
the Mn atoms present in the crystal is reduced only to the
effective Zeeman-like term in Eq. !2" due to the kinetic ex-
change of the valence holes with the Mn d states. Explicit
form of the k-dependent 6$6 matrix HKL in a convenient
basis is given e.g. by Eq. !A8" of the first of Ref. 26.

As we are aiming at a simple model of the noncrystalline
AMR component only, we will treat HKL in the spherical
approximation, implemented by setting !2 ,!3 to their aver-
age value.25 In this approximation the dispersion of all six
valence bands becomes isotropic in the absence of the
kinetic-exchange field. The 6$6 Hamiltonian !2" can be di-
agonalized numerically and provide the valence bands En!k"
of !Ga,Mn"As which are split by the exchange field h. The
index n labels the two heavy-hole bands !n=1,2", two light-
hole bands !n=3,4", both of the %8 symmetry and total an-
gular momentum J=3 /2 in the %-point, and two split-off
bands !n=5,6" with the %7 symmetry and J=1 /2 in the %

VÝBORNÝ et al. PHYSICAL REVIEW B 80, 165204 !2009"
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Jairo Sinova,2,3,5 T. Jungwirth,5,7 and Aurélien Manchon1,‡
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Intraband and interband contributions to the current-driven spin-orbit torque in magnetic materials lacking
inversion symmetry are theoretically studied using the Kubo formula. In addition to the current-driven fieldlike
torque TFL = τFLm × uso (uso being a unit vector determined by the symmetry of the spin-orbit coupling),
we explore the intrinsic contribution arising from impurity-independent interband transitions and producing an
anti-damping-like torque of the form TDL = τDLm × (uso × m). Analytical expressions are obtained in the model
case of a magnetic Rashba two-dimensional electron gas, while numerical calculations have been performed on
a dilute magnetic semiconductor (Ga,Mn)As modeled by the Kohn-Luttinger Hamiltonian exchange coupled to
the Mn moments. Parametric dependencies of the different torque components and similarities to the analytical
results of the Rashba two-dimensional electron gas in the weak disorder limit are described.
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I. INTRODUCTION

Magnetization dynamics driven electrically by spin-
polarized currents through the spin transfer torque [1–3] has
attracted considerable attention due to its applications in
memory and logic spintronic devices [4,5]. An alternative
mechanism, the spin-orbit torque (SOT), has been recently
proposed as a means to control the magnetization of a
single ferromagnetic [6–8] or even antiferromagnetic [9] layer
without the need of an external spin polarizer. The SOT arises
from the interaction between the nonequilibrium spin density
of carriers and the local magnetization. The nonequilibrium
spin density results from the transfer of angular momentum
between the spin and orbital degrees of freedom of the carriers
[6–8,10–15]. The SOT requires magnetic structures with
strong spin-orbit coupling and inversion symmetry breaking.
Initially observed in epilayers of (Ga,Mn)As dilute magnetic
semiconductors (DMSs) with bulk inversion asymmetry in
their strained zinc-blende crystal [16–18], this effect was soon
widely confirmed in metallic bilayers with structural inversion
symmetry breaking [19–27]. In general, the SOT observed
experimentally possesses two components: a fieldlike torque
TFL = τFLm × uso odd in the magnetization direction m and
an anti-damping-like torque [28] TDL = τDLm × (uso × m)
even in m. Here, uso is a unit vector determined by the
symmetry of the structure and the current direction [29],
and τFL and τDL are the magnitudes of the fieldlike and

*Both authors contributed equally to this work.
†vybornyk@fzu.cz
‡aurelien.manchon@kaust.edu.sa

anti-damping-like torque, respectively. These torques are also
commonly referred to as the out-of-plane and in-plane torques,
respectively, with respect to the (m,uso) plane. The direction
of the fieldlike (out-of-plane) and anti-damping-like (in-plane)
torques and their detailed angular dependence [29] depend on
the crystal structure, while their magnitude has been shown to
strongly depend on the materials considered [22–27].

Two main mechanisms have been invoked to explain the
origin of the current-driven torques in noncentrosymmetric
ferromagnets. In the first scenario, the lack of inversion
symmetry enables the inverse spin galvanic effect [30] (ISGE),
i.e., flowing current directly produces a nonequilibrium spin
density δS locally, whose direction is determined by the
symmetry of the spin-orbit coupling. Recently, it has been
proposed that in noncentrosymmetric magnetic materials
this nonequilibrium spin density may exert a torque on the
magnetization [6–8,10] T = (2Jex/!γNm)m × δS. Here, γ is
the gyromagnetic ratio, Nm the density of magnetic moments,
and Jex the exchange coupling (having the dimension of
energy) between the itinerant electron spins and the local
magnetization M = Msm which, in this paper, is assumed
to arise solely from localized magnetic moments µ so that the
saturated magnetization Ms = µNm. This is the essence of the
ISGE-induced SOT. Alternatively, in ferromagnets adjacent to
a heavy metal, it has also been proposed that the spin Hall effect
(SHE) present in the heavy metal may inject a spin-polarized
current into the adjacent ferromagnet, exerting a spin-transfer
torque (STT) on the magnetization [20,21,31].

A current debate aims at identifying the interplay between
these different mechanisms and their impact in terms of
current-driven spin torque. In the simplest physical picture,
SHE induces an anti-damping-like STT, while the SOT reduces
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Current-induced torques are commonly used to manipulate noncollinear magnetization configurations. In
this paper we discuss current-induced torques present in a certain class of collinear magnetic systems, relating
them to current-induced changes in magnetic anisotropy energy. We present a quantitative estimate of their
characteristics in uniform strained ferromagnetic !Ga,Mn"As.
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I. INTRODUCTION

The interplay between transport currents and magnetiza-
tion dynamics continues to be a major research topic in fer-
romagnetic metal spintronics.1 The current understanding of
this class of phenomena has been derived mainly from nu-
merous studies of spin-transfer torques !STTs", which arise
when spin polarized currents traverse noncollinear magnetic
systems. STTs can be exploited to achieve current-induced
magnetization reversal and current-induced domain-wall mo-
tion, both of which have potentially important technological
applications.

There have been comparatively few studies of the influ-
ence of transport currents on magnetization in uniform ferro-
magnets, presumably because spin transfer torques vanish in
these systems. Yet, as pointed out independently by several
researchers,2–4 current-induced reorientation of magnetiza-
tion does occur in some uniform ferromagnets. The first ex-
perimental fingerprint of this phenomenon was uncovered by
Chernyshov et al.3 who demonstrated that an electric current
alters magnetization reversal characteristics in strained
!Ga,Mn"As films with a single magnetic domain.

STTs can be considered to be one member of a family of
current-induced torque !CIT" effects by which transport cur-
rents influence magnetization in ferromagnetic or
antiferromagnetic5 systems. The aim of this paper is to con-
tribute to the theoretical analysis of current-induced torques
in uniformly magnetized ferromagnets.

In Sec. II we study the effect responsible for this type of
torque, which we refer to as the ferromagnetic inverse spin-
galvanic effect.6,7 In nonmagnetic conductors the inverse
spin-galvanic effect !ISGE" refers to current-induced spin
density. Since a nonzero spin-density already appears in the
equilibrium state of a ferromagnet, the ferromagnetic inverse
spin-galvanic effect has a distinct experimental signature.
Specifically, we find that in gyrotropic ferromagnets the
magnetization direction is altered by a steady-state transport
current. At a conceptual level, we associate this reorientation
with a change in magnetic anisotropy in the presence of a
transport current. An important implication of this connec-
tion is that the magnetic anisotropy energy in the transport
steady state of a ferromagnet which exhibits the ISGE is not
invariant under magnetization reversal, essentially because
the applied current breaks time reversal invariance. At a
practical level, we provide a concise analytical expression
for the current-induced change in the magnetic anisotropy.

This expression is suitable for evaluation from first prin-
ciples because it requires knowledge of only the band struc-
ture of the ferromagnet and the lifetime of the Bloch states.
At a technical level, our theory allows for the spatial inho-
mogeneities that inevitably occur in the magnitude of the
ferromagnet’s exchange field at atomic lengthscales.

In Sec. III we carry out quantitative calculations for the
ISGE of strained !Ga,Mn"As using a four-band Kohn-
Luttinger model. This calculation directly addresses the ex-
periment by Chernyshov et al.3 and corroborates their inter-
pretation of the data. By computing the anisotropy field both
in the absence and in the presence of an electric current, we
find that in !Ga,Mn"As magnetization reversal may in prin-
ciple be achieved solely by electric means: the required criti-
cal current densities are in the order of 106–107 A /cm2 and
depend on the strain, Mn concentration and hole density.
Section IV contains a brief summary and presents our con-
clusions.

The main conclusions of our work coincide with those
reached by Manchon and Zhang in their independent and
previously published work described in Ref. 2. Yet, our
analysis highlights aspects that have not been emphasized
previously. First, we assert that in ferromagnets with inver-
sion symmetry, the current-induced spin-density vanishes to
all orders in the strength of the spin-orbit interaction. Sec-
ond, when evaluating the current-induced spin polarization
we include a contribution from interband coherence which
can become quantitatively important in disordered ferromag-
nets such as !Ga,Mn"As. Third, we identify the current-
induced transverse spin-density associated with the ISGE in
ferromagnets as a consequence of a change in magnetic an-
isotropy in the presence of an electric current. We thus pro-
mote transport currents to the same status as temperature,8

gate voltages,9–11 strain,12,13 and chemical processes,14 all of
which are well-established control parameters for the tuning
of magnetic anisotropy.

II. THEORY OF THE FERROMAGNETIC INVERSE
SPIN-GALVANIC EFFECT

In nonmagnetic metals or semiconductors that are gyro-
tropic, a dc charge current is generically accompanied by a
nonzero spin polarization.6 This phenomenon is sometimes
referred to as the inverse spin-galvanic effect.7 Since spin is
an axial vector and current is a polar vector, they can be
coupled only by an axial tensor of second rank. The matrix
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to a fieldlike torque generated by ISGE [31]. However, it
has been recently proposed that the incomplete absorption
of the SHE-induced spin current by the ferromagnet (or,
equivalently, the nonvanishing imaginary part of the interfacial
spin mixing conductance) may result in a fieldlike STT
component [31]. Similarly, in the context of ISGE-induced
SOT, recent theories have suggested that spin relaxation
and dephasing may also lead to a correction in the SOT
in the form of a anti-damping-like component [11–14].
In Refs. [12] and [13], the anti-damping-like SOT term
arises from the electron-scattering-induced spin relaxation.
In Ref. [31], the semiclassical diffusion formalism was used,
whereas in Refs. [11] and [14], the anti-damping-like SOT is
obtained within a quantum kinetic formalism. It is ascribed
to spin-dependent carrier lifetimes [11] or to a term arising
from the weak-diffusion limit, which in the leading order is
proportional to a constant carrier lifetime [14].

Intriguing material dependence of the SOTs has been
unraveled in various experiments keeping the debate on the
origin of these components open [22–27]. The difficulty in
determining the physical origin of the torques partly lies in the
complexity of the ultrathin bilayer considered, involving both
bulk and interfacial transport in the current-in-plane config-
uration. First-principles calculations have indeed pointed out
the significant sensitivity of the torques to the nature of the
interfaces [32].

In a recent publication, Kurebayashi et al. [33] investigated
the SOT in a bulk DMS. They observed a large anti-damping-
like torque that is not ascribed to the SHE since no adjacent
spin-orbit-coupled paramagnet is present. It was then proposed
that such a torque has a scattering-independent origin in the
Berry curvature of the band structure, in a similar spirit as the
intrinsic SHE was introduced about ten years ago [34,35].

In this paper, we present a systematic theoretical study of
SOTs arising from the ISGE and Berry curvature mechanisms
in a spin-independent relaxation time approximation. We focus
our attention on the current-driven spin-orbit field (called the
SOT field), hso, producing the spin-orbit torque T = M × hso.
This SOT field has an in-plane component of the ISGE
origin [29] hso

∥ = τFLuso [i.e., lying in the (m,uso) plane
and producing an out-of-plane torque] and also an intrinsic
contribution arising from interband transitions. The latter [33]
produces an out-of-plane field of the form hso

⊥ = τDLuso × m
[i.e., lying perpendicular to the (m,uso) plane]. Analytical
expressions are obtained in the model case of a magnetic
Rashba two-dimensional electron gas (2DEG), while numer-
ical calculations are performed on DMSs described by the
kinetic-exchange Kohn-Luttinger Hamiltonian [36]. Paramet-
ric dependencies of the different torque components and simi-
larities to the analytical results of the Rashba two-dimensional
electron gas in the weak disorder limit are described.

II. NONEQUILIBRIUM SPIN DENSITY: INTRABAND AND
INTERBAND CONTRIBUTIONS IN KUBO FORMULA

In the present study, we start from a general single-particle
Hamiltonian

Ĥsys = Ĥ0 + ĤSOC + Ĥex + Vimp(r) − eE · r̂, (1)

where the first term includes the spin-independent kinetic and
potential energies of the particle, the second term denotes
the coupling between the carrier spin and its orbital angular
momentum, and the third one represents the interaction
between the spin of the carrier and the magnetization of the
ferromagnetic system. Below, we refer to these first three
terms as the unperturbed part of the Hamiltonian. The fourth
term is the impurity potential and the fifth term is the electric
field applied through the system. Impurities are treated within
the constant relaxation time approximation while the electric
field is treated within the framework of the linear response
theory. As discussed below, this electric field has two distinct
effects on the electronic system: (i) it modifies the carrier
distribution function from its equilibrium Fermi-Dirac form
and (ii) it distorts the carrier wave functions. The former leads
to intraband ISGE contributions, while the latter is responsible
for the interband (Berry curvature) contribution. To calculate
the SOT field, we evaluate first the nonequilibrium spin density
δS using the Kubo formula

δS = e!
2πV

Re
∑

k,a,b

⟨ψka|ŝ|ψkb⟩⟨ψkb|E · v̂|ψka⟩

×
[
GR

kaG
A
kb − GR

kaG
R
kb

]
, (2)

where GR
ka = (GA

ka)∗ = 1/(EF − Eka + i%), EF is the Fermi
energy, Eka is the energy dispersion of band a, V is the system
volume, and % is the spectral broadening due to the finite
lifetime of the particle in the presence of impurities. The
Bloch state |ψka⟩ in band a can be found by diagonalizing
the unperturbed part of the Hamiltonian in Eq. (1). This
expression contains both intraband (a = b) and interband
(a ̸= b) contributions to the nonequilibrium spin density.
Numerical results in Sec. IV B are calculated with the above
equation.

In order to understand the numerical results, Eq. (2) can
be rewritten [37] as δS = δSintra + δSinter

1 + δSinter
2 when weak

impurity scattering (namely, small spectral broadening, % →
0) is assumed. The three contributions are

δSintra = 1
V

e!
2%

∑

k,a

⟨ψka|ŝ|ψka⟩⟨ψka|E · v̂|ψka⟩

× δ(Eka − EF ), (3)

δSinter
1 = −e!

V

∑

k,a ̸=b

2Re[⟨ψak|ŝ|ψbk⟩⟨ψbk|E · v̂|ψak⟩]

× %(Eka − Ekb)
[(Eka − Ekb)2 + %2]2

(fka − fkb), (4)

δSinter
2 = −e!

V

∑

k,a ̸=b

Im[⟨ψka|ŝ|ψkb⟩⟨ψkb|E · v̂|ψka⟩]

× %2 − (Eka − Ekb)2

[(Eka − Ekb)2 + %2]2
(fka − fkb). (5)

The first term, Eq. (3), is the intraband (a = b) contribution
arising from the perturbation of the carrier distribution function
by the electric field. It is proportional to the momentum
scattering time (τ = !/2%) and is therefore an extrinsic
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to a fieldlike torque generated by ISGE [31]. However, it
has been recently proposed that the incomplete absorption
of the SHE-induced spin current by the ferromagnet (or,
equivalently, the nonvanishing imaginary part of the interfacial
spin mixing conductance) may result in a fieldlike STT
component [31]. Similarly, in the context of ISGE-induced
SOT, recent theories have suggested that spin relaxation
and dephasing may also lead to a correction in the SOT
in the form of a anti-damping-like component [11–14].
In Refs. [12] and [13], the anti-damping-like SOT term
arises from the electron-scattering-induced spin relaxation.
In Ref. [31], the semiclassical diffusion formalism was used,
whereas in Refs. [11] and [14], the anti-damping-like SOT is
obtained within a quantum kinetic formalism. It is ascribed
to spin-dependent carrier lifetimes [11] or to a term arising
from the weak-diffusion limit, which in the leading order is
proportional to a constant carrier lifetime [14].

Intriguing material dependence of the SOTs has been
unraveled in various experiments keeping the debate on the
origin of these components open [22–27]. The difficulty in
determining the physical origin of the torques partly lies in the
complexity of the ultrathin bilayer considered, involving both
bulk and interfacial transport in the current-in-plane config-
uration. First-principles calculations have indeed pointed out
the significant sensitivity of the torques to the nature of the
interfaces [32].

In a recent publication, Kurebayashi et al. [33] investigated
the SOT in a bulk DMS. They observed a large anti-damping-
like torque that is not ascribed to the SHE since no adjacent
spin-orbit-coupled paramagnet is present. It was then proposed
that such a torque has a scattering-independent origin in the
Berry curvature of the band structure, in a similar spirit as the
intrinsic SHE was introduced about ten years ago [34,35].

In this paper, we present a systematic theoretical study of
SOTs arising from the ISGE and Berry curvature mechanisms
in a spin-independent relaxation time approximation. We focus
our attention on the current-driven spin-orbit field (called the
SOT field), hso, producing the spin-orbit torque T = M × hso.
This SOT field has an in-plane component of the ISGE
origin [29] hso

∥ = τFLuso [i.e., lying in the (m,uso) plane
and producing an out-of-plane torque] and also an intrinsic
contribution arising from interband transitions. The latter [33]
produces an out-of-plane field of the form hso

⊥ = τDLuso × m
[i.e., lying perpendicular to the (m,uso) plane]. Analytical
expressions are obtained in the model case of a magnetic
Rashba two-dimensional electron gas (2DEG), while numer-
ical calculations are performed on DMSs described by the
kinetic-exchange Kohn-Luttinger Hamiltonian [36]. Paramet-
ric dependencies of the different torque components and simi-
larities to the analytical results of the Rashba two-dimensional
electron gas in the weak disorder limit are described.

II. NONEQUILIBRIUM SPIN DENSITY: INTRABAND AND
INTERBAND CONTRIBUTIONS IN KUBO FORMULA

In the present study, we start from a general single-particle
Hamiltonian

Ĥsys = Ĥ0 + ĤSOC + Ĥex + Vimp(r) − eE · r̂, (1)

where the first term includes the spin-independent kinetic and
potential energies of the particle, the second term denotes
the coupling between the carrier spin and its orbital angular
momentum, and the third one represents the interaction
between the spin of the carrier and the magnetization of the
ferromagnetic system. Below, we refer to these first three
terms as the unperturbed part of the Hamiltonian. The fourth
term is the impurity potential and the fifth term is the electric
field applied through the system. Impurities are treated within
the constant relaxation time approximation while the electric
field is treated within the framework of the linear response
theory. As discussed below, this electric field has two distinct
effects on the electronic system: (i) it modifies the carrier
distribution function from its equilibrium Fermi-Dirac form
and (ii) it distorts the carrier wave functions. The former leads
to intraband ISGE contributions, while the latter is responsible
for the interband (Berry curvature) contribution. To calculate
the SOT field, we evaluate first the nonequilibrium spin density
δS using the Kubo formula

δS = e!
2πV

Re
∑

k,a,b

⟨ψka|ŝ|ψkb⟩⟨ψkb|E · v̂|ψka⟩

×
[
GR

kaG
A
kb − GR

kaG
R
kb

]
, (2)

where GR
ka = (GA

ka)∗ = 1/(EF − Eka + i%), EF is the Fermi
energy, Eka is the energy dispersion of band a, V is the system
volume, and % is the spectral broadening due to the finite
lifetime of the particle in the presence of impurities. The
Bloch state |ψka⟩ in band a can be found by diagonalizing
the unperturbed part of the Hamiltonian in Eq. (1). This
expression contains both intraband (a = b) and interband
(a ̸= b) contributions to the nonequilibrium spin density.
Numerical results in Sec. IV B are calculated with the above
equation.

In order to understand the numerical results, Eq. (2) can
be rewritten [37] as δS = δSintra + δSinter

1 + δSinter
2 when weak

impurity scattering (namely, small spectral broadening, % →
0) is assumed. The three contributions are

δSintra = 1
V

e!
2%

∑
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⟨ψka|ŝ|ψka⟩⟨ψka|E · v̂|ψka⟩

× δ(Eka − EF ), (3)
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1 = −e!

V

∑

k,a ̸=b

2Re[⟨ψak|ŝ|ψbk⟩⟨ψbk|E · v̂|ψak⟩]

× %(Eka − Ekb)
[(Eka − Ekb)2 + %2]2

(fka − fkb), (4)

δSinter
2 = −e!

V

∑

k,a ̸=b

Im[⟨ψka|ŝ|ψkb⟩⟨ψkb|E · v̂|ψka⟩]

× %2 − (Eka − Ekb)2

[(Eka − Ekb)2 + %2]2
(fka − fkb). (5)

The first term, Eq. (3), is the intraband (a = b) contribution
arising from the perturbation of the carrier distribution function
by the electric field. It is proportional to the momentum
scattering time (τ = !/2%) and is therefore an extrinsic
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ferromagnetic Rashba 2DEG described by Eqs. (16) and (17).
The out-of-plane component hinter

⊥ converges to a finite value
when ! vanishes, indicating the intrinsic character of this part
of the SOT field. These results are consistent with the analytical
solutions obtained in Eqs. (13)–(15) in the ferromagnetic
Rashba 2DEG and weak scattering limit. It is worth noticing
that this dependence on spectral broadening holds over a wide
range of ! in the case of intraband contribution [see inset in
Fig. 2(a)], while it breaks down already for ! equal to few
meV for the interband contributions.

2. Ferromagnetic splitting

The band structure of (Ga,Mn)As changes with the Mn
doping that would, in the absence of the SOI, lead to a
rigid mutual shift of the majority- and minority-spin bands.
Such ferromagnetic splitting would be proportional to Jex =
JpdNMnSa and we can distinguish two limiting situations in a
system where the SOI is present: Eso ≪ Jex and Eso ≫ Jex.
In view of the analytical results presented in Sec. III, it is
meaningful to take Eso = αkF in the Rashba 2D system. For
each component of the nonequilibrium spin-density δSintra,
δSinter

1 , δSinter
2 , there is a transition between different types

of behavior in the two limits. For example, the out-of-plane
component of the SOT field h changes from the ∝J 2

ex
behavior in the αkF ≫ Jex limit implied by Eq. (12) into
a Jex-independent behavior in the opposite αkF ≪ Jex limit
implied by Eq. (15). We checked that this transition occurs
also in the numerical calculations across a range of Jex values.

FIG. 3. (Color online) (a) Intraband and (b),(c) interband SOT
field as a function of exchange interaction Jex = JpdNMn. Varied
values of Jex can be understood as a proxy to different Mn doping
concentrations, e.g., x = 5% corresponds to Jex = 0.06 eV, the
spectral broadening is set to 50 meV, and other parameters are the
same as in Fig. 2.

Contrary to the Rashba 2D system, the situation is more
complicated in (Ga,Mn)As because of the additional SOI terms
in Eq. (19). Due to their mutual competition, it is not obvious
what should be taken for the effective spin-orbit strength Eso.
Looking at the Jex dependence of the individual SOT field
components in Fig. 3, we nevertheless recognize similarities
to the Eso ≫ Jex limit behavior of the Rashba 2D system. To
some extent, this is a surprising finding since the disorder
broadening used for calculations in Fig. 3 is quite large
(! = 50 meV), better corresponding to realistic (Ga,Mn)As
samples but further away from the assumptions used to derive
the analytical results presented in Sec. III. When Jex is small,
both hintra

∥ and hinter
∥ are proportional to Jex as seen in Eqs. (10)

and (11), respectively. On the other hand, hinter
⊥ ∝ J 2

ex in the
bottom panel of Fig. 3, which is reminiscent of Eq. (12). No
similarities to the Rashba 2D system behavior of the opposite
limit (Eso ≪ Jex) are found in our calculations for (Ga,Mn)As.

3. Hole concentration

We display in Fig. 4 the SOT field as a function of the
hole density for different magnitudes of the lattice-mismatch
strain ϵzz. First of all, we notice that the SOT field components
increase linearly with the strain. Second, increase of the hole
concentration results in an increase in the in-plane SOT field h∥
approximatively following a p1/3 law, as shown in Figs. 4(a)
and 4(b). This is consistent with Eq. (17) in Ref. [6] in the
case of the intraband component. Interestingly, the in-plane

FIG. 4. (Color online) (a) Intraband and (b),(c) interband SOT
field as a function of hole concentration for different lattice-mismatch
strain ϵzz. Inset in (c): interband SOT field in the parabolic model.
The dashed lines in panel (a) are calculated using Eq. (17) in Ref. [6]
and follow a p1/3 law. Parameters are the same as in Fig. 3 except for
JpdNMn fixed to a value corresponding to Mn doping x = 5%.
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Figure 2b plots the frequency dependence of the resonance field
Hres, which fits well to a modified Kittel formula (see equation (3)
in the Methods). The FMR linewidth (DH¼ DHinhomoþ av/g)
describes the damping in the ferromagnetic system. The broadband
nature of the setup allows us to determine the inhomogeneous
(2.5 mT) and frequency-dependent contributions to the damping
(Fig. 2c) corresponding to a Gilbert damping constant of
a¼ 0.023. Using a vector field cryostat, we also performed
the SO-FMR measurements for different orientations of the external
magnetic field. In Fig. 2d we present the data from an in-plane scan
of the magnetic field, showing that there is a strong uniaxial aniso-
tropy perpendicular to the bar direction. By analysing the peak
positions (Fig. 2e) using equation (3), we quantify the anisotropy
fields and find m0H2∥¼2180 mT (uniaxial) and m0H4∥¼ 68 mT
(biaxial). In addition to the FMR signal, we also note the presence
of a non-resonant, angle-dependent background signal (Fig. 2d)
owing to a bolometric or thermoelectric effect.

To characterize SO-FMR it is necessary to understand the direc-
tion and amplitude of the effective field heff that drives magnetiza-
tion precession. We are able to perform vector magnetometry on
the driving field from the angle dependence of the amplitude of
the FMR peak2,3. For a vector driving field heff(t)¼ (hx , hy, hz)eivt

in phase with the microwave current I(t)¼ (I, 0, 0)eivt, the
amplitudes of the two components of the FMR peak are (see
Supplementary Information for the derivation)

Vsym(u) =
IDR

2
Asym sin(2u)hz (1)

Vasy(u) =
IDR

2
Aasy sin(2u)(hx sin u+ hy cos u) (2)

where DR is the non-crystalline AMR coefficient of the ferromag-
netic sample, u is the angle between the applied field H0 and the
current I, and Asym(asy) are constants determined by the magnetic
anisotropies. Hence, by decomposing the resonance lineshape
into Vsym and Vasy, and by measurements of the AMR and

magnetic anisotropies, we are able to deduce the components
of heff. In the Supplementary Information, we verify this vector
magnetometry technique in a sample where FMR is driven by
the microwave magnetic field from a short-circuited waveguide.

No component of Vsym is seen to behave as sin(2u), indicating
that the driving field heff is predominantly in-plane. Accordingly,
we restrict our discussion to Vasy (a comparison of Vasy and Vsym
is found in the Supplementary Information). Figure 3a shows the
angle dependence of Vasy for a 500-nm-wide (Ga,Mn)As bar
patterned in the [11̄0] direction. We see that Vasy(u) comprises a
2sin(2u)cos(u) term, indicating that the driving field is perpendicu-
lar to I. In a [110] device (Fig. 3a) the amplitude of Vasy has opposite
sign, indicating that the driving field has reversed. For nanobars
along [100] and [010] (Fig. 3b), the Vasy curve is a superposition
of sin(2u)sin(u) and sin(2u)cos(u) functions, showing that
the driving field consists of components both parallel and per-
pendicular to I.

These data are most clearly seen by plotting the dependence of
the magnitude and direction of the effective field on the current
(nanobar) orientation (Fig. 3c). Two contributions to the driving
field are observed, with different symmetry, heff¼ hDþ hR.
Quantitative microscopic understanding of these contributions is
provided by calculations that are described in detail in the
Supplementary Information. The theory links the SO-FMR
driving fields to the inversion-symmetry-breaking terms in the
relativistic 3D Hamiltonian of the ferromagnetic semiconductor,
HC4 = C4

∑
i Jiki(ei+1 i+1 − ei+2 i+2) + C4

∑
i(Jiki+1 − Ji+1ki)ei i+1

(refs 5,19). These terms originate from the combined effects of
inversion asymmetry of the bulk zinc-blende lattice and uniform
strain. Here J is the hole total angular momentum operator, k is
the wavevector, e is the strain tensor and C4 ≈ 0.5 eV nm for the
GaAs semiconductor host. The first term in HC4, which yields
hD, is present in our samples owing to the substrate–ferromagnet
lattice matching growth strain, exx¼ eyy = ezz. It depends only on
the in-plane (x and y) components of the angular momentum
and wavevector and, up to a prefactor, is identical to the
Dresselhaus SO Hamiltonian of a 2D electron gas. As expected
from the model, our experimental data (Fig. 3c,d) show that hD
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Figure 2 | Spin–orbit-driven ferromagnetic resonance. a, Vdc measured at 8, 10 and 12 GHz (symbols) on the 80-nm-wide device. The resonance peaks are
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changes sign as the strain changes from compressive ((Ga,Mn)As)
to tensile ((Ga,Mn)(As,P)). The second term in HC4 yields the
observed hR if it takes a form analogous to the 2D Rashba SO
Hamiltonian, that is, if exy¼ eyx = 0. This shear strain is not phys-
ically present in the crystal structure of ferromagnetic semiconduc-
tor epilayers. It has been introduced, however, in previous studies to
model the in-plane uniaxial anisotropy present in (Ga,Mn)As, and
the values of this effective off-diagonal strain are typically several
times smaller than the diagonal, growth-induced strain20. This is
consistent with the observed smaller magnitude of hR¼ 6.5 mT than
hD¼ 18 mT (values given at j¼ 1× 105 A cm22). Furthermore,
hR may contain a contribution from the Oersted field (discussed
in the Supplementary Information). Both hD and hR are measured
to be linear in current density (Fig. 3e,f ). This measurement was
performed for bars in the [100] direction, where it is possible to
independently resolve contributions to hR and hD. We observe a
larger magnitude of hD at a given current density in the
(Ga,Mn)(As,P) nanobars. This is explained by the larger magnitude
of the growth strain and larger resistivity (larger E at given j) of
(Ga,Mn)(As,P) as compared with the (Ga,Mn)As film21.

We now demonstrate that SO-FMR can be applied to compara-
tive investigations of nanobars where the anisotropies differ from
bulk values22–25. We first compare the effect of strain relaxation
between 500 nm bars under compressive ((Ga,Mn)As) and tensile
((Ga,Mn)(As,P)) growth strain. The in-plane anisotropies are
studied; although (Ga,Mn)(As,P) is out-of-plane magnetized21,
the applied field H0 brings the magnetization into plane. In
(Ga,Mn)As we observe an additional uniaxial contribution to the
anisotropy (m0HU¼ 32 mT) along the bar (Fig. 4a,c) with a magni-
tude similar to previous reports22,24,25. In contrast, in the
(Ga,Mn)(As,P) nanobar (Fig. 4b,c) the sign of the uniaxial aniso-
tropy (m0HU¼230.5 mT) has reversed and the easy axis is now
perpendicular to the bar. This can be understood in terms of the
sign of the strain relaxation: these materials become magnetically
easier in the direction of most compressive (least tensile) strain.
So when the tensile strain of the (Ga,Mn)(As,P) nanobar relaxes,
it introduces an easy axis perpendicular to the bar. Furthermore,
we measured (Ga,Mn)(As,P) bars of different widths (Fig. 4e) and
observed a decrease in the strain-relaxation-induced anisotropy
from the 80 nm bar (m0HU¼2270 mT) to the 500 nm bar
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out-of-plane non-equilibrium spin density Sz. Our model calcu-
lations in the two-dimensional ferromagnet with Rashba spin–
orbit coupling showed that Sz in the intrinsic SOT is proportional
to the strength of the spin–orbit coupling and inversely proportional
to the strength of the exchange field of the ferromagnet. We can
compare this dependence on the spin–orbit and exchange couplings
with the phenomenology of the competing SHE–STT mechanism.
In ref. 37, it was shown that the intrinsic SHE current is pro-
portional to the strength of the spin–orbit coupling in the paramag-
netic 4d, 5d transition metals. The non-equilibrim spin density
generating the adiabatic (antidamping) STT is proportional to the
spin-density injection rate from the external polarizer and inversely
proportional to the strength of the exchange field in the ferromag-
net47–49. In the SHE–STT, the role of the spin-density injection
rate from the external polarizer is played by the spin current gener-
ated by the SHE in the paramagnet. For the intrinsic
SHE/antidamping (adiabatic) STT we can then conclude that it is
generated by the non-equilibrium spin polarization, which is pro-
portional to the spin–orbit strength in the paramagnet and inversely
proportional to the exchange-field strength in the ferromagnet. For
the intrinsic SOT we inferred the same proportionality to the spin–
orbit strength and inverse proportionality to the exchange-field
strength, but the SOT is considered to act within the few atomic
layers forming the broken inversion-symmetry interface. Owing to
proximity effects, however, the strength of the exchange field on
either side of the interface can be comparable to the exchange
field in the magnetic transition metal, and the same applies to the
respective strengths of the interface and the bulk-paramagnet
spin–orbit coupling. Therefore the SOT and SHE–STT can

provide two comparably strong intrinsic mechanisms driving the
in-plane current-induced spin dynamics in these technologically
important transition-metal bilayers.

Methods
Materials. The 18-nm-thick (Ga0.95,Mn0.05)As epilayer was grown on a GaAs [001]
substrate by molecular beam epitaxy, performed at a substrate temperature of
230 8C. It was subsequently annealed for 8 h at 200 8C. It has a Curie temperature of
132 K, a room-temperature conductivity of 387 V21 cm21 (which increases to
549 V21 cm21 at 5 K), and a carrier concentration at 5 K (determined by a
high-magnetic-field Hall measurement) of 1.1 × 1021 cm23.

Devices. Two terminal microbars were patterned in different crystal directions by
electron-beam lithography to have dimensions of 4 mm × 40 mm. These bars have a
typical low-temperature resistance of 10 kV (Supplementary Table 2).

Experimental procedure. A pulse-modulated (at 789 Hz) microwave signal (at
11 GHz) with a source power of 20 dBm was transmitted down to cryogenic
temperatures using low-loss semirigid cables. The microwave signal was launched
onto a printed circuit board patterned with a coplanar waveguide and then injected
into the sample via a bond wire. The rectification voltage, generated during
microwave precession, was separated from the microwave circuit using a bias tee,
amplified with a voltage amplifier and then detected with a lock-in amplifier. All
measurements were performed with the samples at 6 K.

Calibration of microwave current. The resistance of a (Ga,Mn)As microbar
depends on temperature, and therefore on Joule heating by an electrical current. The
resistance change of the microbar due to Joule heating by a direct current was first
measured. The resistance change was then measured as a function of applied
microwave power. We assumed the same Joule heating (and therefore resistance
change of the microbar) for the same direct and root-mean-square microwave
currents, enabling us to calibrate the unknown microwave current against the known
direct current.

For more details on the methods related to our SOT–FMR experiments and our
(Ga,Mn)As materials see refs 11 and 43 and the Supplementary Information therein.
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in δH and ∆H, the following simplified expression is obtained:

Vdc = −1

2
I∆R sin(2θ)

{
iγhz

ω
− 1

ω(2Hres +H1 +H2)(δH + i∆H)
[
ω(hx sin θ + hy cos θ)(δH +Hres +H1 + i∆H) +

γhz

(
iδH(2Hres +H1 +H2) + i(Hres +H1)(Hres +H2)−

∆H(2Hres +H1 +H2)
)]}

(S14)

The in-phase (real) component of Vdc has the form (keeping only terms linear in α):

Re{Vdc} = Vsym
∆H2

(H0 −Hres)2 +∆H2
+ Vasy

∆H(H0 −∆H)

(H0 −Hres)2 +∆H2
(S15)

with angle-dependent amplitudes

Vsym(θ) =
I∆R

2
Asym sin(2θ)hz (S16)

Vasy(θ) =
I∆R

2
Aasy sin(2θ)(hx sin θ + hy cos θ) (S17)

Eq. (S15) shows that the FMR peak is a combination of symmetric and anti-symmetric Lorentzian functions, as
illustrated in Figure S2. The symmetric Lorentzian function is caused by an out-of-plane driving field hz; whereas
the anti-symmetric Lorentzian results from in-plane driving fields hx & hy, and its amplitude depends on the relative
orientation of the driving field with respect to the current. The terms Asym and Aasy are the scalar amplitudes of the
magnetic susceptibility (Ai = χi/Ms):

Asym =
γ(Hres +H1)(Hres +H2)

ω∆H(2Hres +H1 +H2)
(S18)

Aasy =
(Hres +H1)

∆H(2Hres +H1 +H2)
(S19)

We notice that the saturation magnetisation Ms does not enter the expression of Vdc explicitly. This is a major
convenience as Ms cannot be deduced from FMR experiments, and other measurements such as SQUID and VSM
are required to determined its value. The terms Asym and Aasy are also angle-dependent, since they depend on the
magnetic anisotropy of the device.
On the other hand, the 90o out-of-phase (imaginary) component of Vdc consists of two Lorentzians with the following
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We notice that the saturation magnetisation Ms does not enter the expression of Vdc explicitly. This is a major
convenience as Ms cannot be deduced from FMR experiments, and other measurements such as SQUID and VSM
are required to determined its value. The terms Asym and Aasy are also angle-dependent, since they depend on the
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hn|Ĥ|n0i = 0

hn|@Ĥ/@k
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The trick: (variant of) Hellmann-Feynman theorem

• which we obtain by differentiating 
• and then using                   link to the Kubo formula

implies a momentum-dependent z-component of the non-equilibrium spin,

sz,p ≈ s!2
2αp2

αeEx sin θp . (4)

Clearly the same spin rotation mechanism which generates the uniform bulk spin accumu-

lation in the case of our anti-damping SOT in a ferromagnet (Fig. 1b) is responsible for the

scattering-independent spin-current of the SHE in a paramagnet (Fig. 1d). Note that the

SHE spin-current yields zero spin accumulation in the bulk and a net spin-polarization can

occur only at the edges of the paramagnet.

To complete the picture of the common origin between the microscopic physics of the

Berry curvature SHE and our anti-damping SOT we point out that equivalent expressions

for the SHE spin current and the SOT spin polarization can be obtained from the quantum-

transport Kubo formula. The expression for the out-of-plane non-equilibrium spin polariza-

tion that generates our anti-damping SOT is given by

Sz =
!
V

∑

k,a ̸=b

(fk,a − fk,b)
Im[⟨k, a|sz|k, b⟩⟨k, b|eE · v|k, a⟩]

(Ek,a − Ek,b)2
, (5)

where k is the wavevector, a, b are the band indices, v is the velocity oprator, V is the

volume, and fk,a is the Fermi-Dirac distribution function corresponding to band energies

Ek,a. This expression is analogous to Eq. (9) in Ref. 29 for the Berry curvature intrinsic

SHE.

Measurement of the anti-damping spin-orbit torque in (Ga,Mn)As

Previous studies of the SOT in (Ga,Mn)As epilayers have focused in the scattering-

related, field-like SOT generated by the in-plane component of the non-equilibrium spin-

polarization of carriers.8,9,11 We now discuss our low-temperature (6 K) experiments in which

we identify the presence of the anti-damping SOT due to the out-of-pane component of the

non-equilibrium spin density in our in-plane magnetized (Ga,Mn)As samples. We follow the

methodology of several previous experiments2,11 and use current induced ferromagnetic res-

onance (FMR) to investigate the magnitude and symmetries of the alternating fields respon-

sible for resonantly driving the magnetisation. In our experiment, illustrated schematically

in Fig. 2a, a signal generator drives a microwave frequency current through a 4 µm× 40 µm

micro-bar patterned from a 18 nm thick (Ga,Mn)As epilayer with nominal 5% Mn-doping. A

6
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Figure 2 |Differential Kerr microscopy images recorded after current pulse injection. a,b, Positive (a) and negative (b) current values with external field
µ0Hext =0, ±47.5mT applied parallel to ŷ. The pulse amplitude is set to 7.8⇥ 107 A cm�2 in all cases. Note that the topographic contrast in each image
varies depending on the drift between pre-pulse and post-pulse images.
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Figure 3 | Percentage of wires that present reversed magnetic domains after the injection of a current pulse as a function of current density and
external field. a,b, Pt/Co/AlOx wire array for Hext � ŷ (a) and Hext ��ŷ (b). c, Pt/Co/Pt wire array, Hext ��ŷ. The nucleation rate curves shift by an amount
⇤je proportional to Hext, as indicated by red and blue arrows, reflecting the direction and magnitude of Hsd. Values of µ0Hext are 0mT (black squares),
±47.5mT (blue dots), ±95mT (red triangles).

effect of the current sign becomes obvious leading to either strong
amplification or suppression of domain nucleation depending
on the orientation of the current density vector je. Experiments
repeated with M initially saturated along ẑ showed that this
behaviour is independent of M being up or down (Supplementary
Fig. S3). These measurements, carried out at constant current
density, exclude thermal effects as the origin of the observed
domain nucleation rate asymmetry. Furthermore, artefacts owing
to a small unintentional misalignment of Hext outside the xy
plane may also be ruled out, as these would be independent of
the sign of je.

These results qualitatively prove the presence of a current-
induced torque acting on M with the symmetry properties
predicted by theory9,10. To quantitatively determine the dependence
of Hsd on je, we make systematic use of Hext as a known reference
field, plotting in Fig. 3 the percentage of wires for which at least one
nucleation event is observed for a given combination of (Hext,je).
In agreement with the above behaviour, we find that the nucleation
rate obtained in the absence of external field is symmetric with
respect to je, whereas forHext ⇧= 0 curves corresponding to opposite
current polarity shift proportionally to Hext. The sign of the shift
depends on the orientation ofHext asmore or less current is required
to attain a given nucleation rate when Hext opposes or favours Hsd .
Note that other criteria for quantifying the nucleation of reversed
domains have been tested, such as the total area of reversed Kerr
contrast, and yield equivalent results to Fig. 3.

Figure 4 shows that the magnitude of the current shift is a linear
function of Hext. As Hsd acts analogously to an external field, the
inverse slope of the linear fit in Fig. 4 provides a direct estimate of

the Hsd/je ratio, yielding (1.0± 0.1)⇥ 10�8 T cm2 A�1. This value
can be compared to themagnitude of the field predicted in ref. 9,

µ0Hsd ⌅ �R

µBM
P(ẑ⇥ je) (1)

where µB is the Bohr magneton and P is a parameter that
depends on the s–d coupling strength, which can be approximated
by the degree of polarization of the conduction electrons. After
substituting P ⌅ 0.5 and M = 1.09 ⇥ 106 Am�1 for the Co
layer in Pt/Co/AlOx, our data agree with equation (1) provided
that we assume �R = 10�10 eVm, which is a realistic estimate
considering that �R ranges from 4⇥ 10�11 to 3⇥ 10�10 eVm at
the interface of heavy-metal systems25,29 and that oxidation further
enhances �R (ref. 26).

To further checkwhether the observed current–field relationship
is associated with the SIA of the layer structure, as expected for
the Rashba effect, we have carried out a control experiment on
a symmetric Pt/Co/Pt structure, replacing AlOx by a 3-nm-thick
Pt film. Similarly to Pt/Co/AlOx, Pt/Co/Pt presents strong out-
of-plane anisotropy and uniaxial anisotropy field µ0HK = 0.57 T,
as reported in Fig. 1d and Supplementary Fig. S1. In Pt/Co/Pt,
however, we detected no significant shift of the nucleation rate
depending on the sign of je (Fig. 3c) or initial saturation direction
(Fig. 4). We thus prove that SIA is required to produce an in-plane
effective field and confirm the Rashba field scenario.

The action of Hsd enters into the dynamic equation of motion
of the magnetization on equal footing with an external field and
is independent of the magnetic configuration of the layer. Thus,
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switches between the [010] and [̄100] directions when alternating ±1.0 mA
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experiment. As for the magnitude of H so, for three-dimensional
J = 3/2 holes we obtain

Hso(E)= eC1"

g ⇤µB

(�38nh⌧h +18nl⌧l)
217(nh +nl)

· (Ex ,�Ey ,0)

where E is the electric field, g ⇤ is the Luttinger Landé factor for
holes, µB is the Bohr magneton and nh,l and ⌧h,l are densities and
lifetimes for the heavy (h) and light (l) holes. Detailed derivation of
H so is given in the Supplementary Information. Using this result, we
estimate dH so/dj = 0.6⇥10�9 T cm2 A�1 assuming nh =n�nl and
⌧h =mh/(e2⇢n), where ⇢ is the resistivity measured experimentally,
and using 1" = 10�3, n = 2⇥ 1020 cm�3. The agreement between
theory and experiment is excellent. It is important to note, however,
that we used GaAs band parameters25 mh = 0.4m0, where m0
is the free electron mass, g ⇤ = 1.2 and C = 2.1 eVÅ. Although
the corresponding parameters for (Ga,Mn)As are not known, the
use of GaAs parameters seems reasonable. We note, for example,

that GaAs parameters adequately described tunnelling anisotropic
magnetoresistance in recent experiments26.

Finally, we demonstrate that the current-induced effective spin–
orbit field H so is sufficient to reversibly manipulate the direction
of magnetization. Figure 4a shows the 'H dependence of Rxy for
sample A, showing the [010] ! [1̄00] magnetization switching. If
we fix H = 6mT at 'H = 72�, Rxy forms a hysteresis loop as current
is swept between ±1mA. Rxy is changing between ±5�, indicating
that M is switching between the [010] and [1̄00] directions. Short
(100ms) 1mA current pulses of alternating polarity are sufficient to
permanently rotate the direction of magnetization. The device thus
performs as a non-volatile memory cell, with two states encoded in
the magnetization direction, the direction being controlled by the
unpolarized current passing through the device. The device can be
potentially operated as a four-state memory cell if both the [110]
and [1̄10] directions can be used to inject current. We find that
we can reversibly switch the magnetization with currents as low as
0.5mA (current densities 7⇥ 105 A cm�2), an order of magnitude
smaller than by polarized current injection in ferromagnetic
metals1–3, and just a few times larger than by externally polarized
current injection in ferromagnetic semiconductors4.

Methods
The (Ga,Mn)As wafers were grown by molecular beam epitaxy at 265 �C and
subsequently annealed at 280 �C for 1 h in nitrogen atmosphere. Sample A
was fabricated from a 15-nm-thick epilayer with 6% Mn, and sample B from a
10-nm-thick epilayer with 7%Mn. Both wafers have a Curie temperature Tc ⇡80K.
The devices were patterned into 6- and 10-µm-diameter circular islands to decrease
domain pinning. Cr/Zn/Au (5 nm/10 nm/300 nm) ohmic contacts were thermally
evaporated. All measurements were carried out in a variable-temperature cryostat
at T = 40K for sample A and at 25K for sample B, well below the temperature of
(Ga,Mn)As-specific cubic-to-uniaxial magnetic anisotropy transitions27, which has
been measured to be 60 and 50K for the two wafers. The temperature rise for the
largest currents used in the reported experiments wasmeasured to be<3K.

Transverse anisotropic magnetoresistance Rxy =Vy/Ix is measured using
the four-probe technique, which ensures that possible interfacial resistances, for
example, those related to the antiferromagnetic ordering in the Cr wetting layer28,
do not contribute to the measured Rxy . The d.c. current Ix was applied either along
the [110] (contacts 4–8 in Fig. 1a) or along the [11̄0] (contacts 2–6) direction.
Transverse voltage was measured in the Hall configuration, for example, between
contacts 2–6 for Ixk[110]. To ensure uniformmagnetization of the island, magnetic
field was ramped to 0.5 T after adjusting the current at the beginning of each field
rotation scan. We monitor Vx between different contact sets (for example, 1–7, 4–6
and 3–5) to confirm the uniformity ofmagnetizationwithin the island.

To determine the direction of magnetization M, we use the dependence of
Rxy on magnetization29:

Rxy = 1⇢ sin'Mcos'M

where 1⇢ = ⇢k �⇢?, ⇢k < ⇢? are the resistivities for magnetization oriented
parallel and perpendicular to the current, and 'M = \MI is an angle between
magnetization and current. In a circular sample, the current distribution is
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So far: ferromagnets

Now: antiferromagnets
broadening thatmodels the effect of disorder. For smallΓ, we
can separate the total δ~s into the intraband and interband
contributions, with the intraband term given by

δ~sintra ¼ eEℏ
2Γ

Z
d3k
ð2πÞ3

X

α

ð~sÞ~kαðvIÞ~kαδðE~kα − EFÞ: ð4Þ

Here ð~sÞ~kα denotes the expectation value of the carrier spin,
and ðvIÞ~kα the velocity component along the current direc-
tion. This intraband contribution in the Kubo formalism
is equivalent to the Boltzmann transport theory expression
[14–16,19,21] and, similar to the charge conductivity,
δ~sintra ∼ 1=Γ.
The interband contribution dominating in the clean limit

of Γ → 0 is given by [19]

δ~sinter ¼ ℏ
L2

X

~kα≠β

ðf~kα − f~kβÞIm½ð~sÞαβðe~E · ~vÞβα%

×
ðE~kα − E~kβÞ

2 − Γ2

½ðE~kα − E~kβÞ
2 þ Γ2%2

: ð5Þ

Here, the labels α and β correspond to different bands, and
f~kα;β is the Fermi distribution function.
Results in Mn2Au.—In Figs. 3(b) and 3(c) we show the

Γ-independent intraband NSOT field per applied current for
Mn2Au. It is evaluated from Eq. (4) and projected on each
sublattice, assuming AFM spin-axis rotation in the [100]-
[010] plane (ϕ ¼ 0 corresponds to the [100] spin-axis
direction) and in the [110]-[001] plane (θ ¼ 0 corresponds to
the [110] easy-spin axis inMn2Au). Current is applied along
the [100] direction and the NSOT field is obtained from the
nonequilibrium spin density considering a typical exchange-
coupling energy scale in transition metals ∼1 eV [34].
NSOT fields on each sublattice are nonzero and have

opposite sign. The largest component is in the [100]-[010]
plane in the direction perpendicular to the applied current
for all AFM spin-axis directions. The magnitude of the
NSOT field in the Mn2Au AFM is comparable to the
counterpart SOT fields observed in FM transition metal
structures. Note that for current along the [001] direction
the resulting NSOT field is zero.
The results imply that this intraband NSOT is an AFM

counterpart of the inverse spin galvanic effect [35], or the
intraband, fieldlike, SOT [14–22,25], observed previously
in broken inversion-symmetry, spin-orbit coupled para-
magnets or FMs. We illustrate in Fig. 3(a) how these
current induced nonequilibrium fields arise in structures
with broken inversion symmetry. Here we choose the case
of a Rashba spin-orbit coupled 2D system for simplicity.
The electric field induces an asymmetric nonequilibrium
distribution function of carrier eigenstates and as a result a
net polarization ensues that depends on the scattering time,
hence its link to extrinsic scattering origin. In magnets, the
nonequilibrium carrier spin density acts on magnetic

moments as an effective magnetic field when carrier spins
are exchange coupled to the magnetic moments.
The full lattice of the Mn2Au crystal has an inversion

symmetry and the first expectation would be that there is no
current-induced spin density. However, the lattice is formed
by two sublattices, which, individually, have broken inver-
sion symmetry and form inversion partners along the [001]
axis. These coincide with the spin sublattices of the AFM
ground state in Mn2Au, as highlighted in Fig. 1(a). The two
sublattices forming the inversion partners in the Mn2Au
crystal are at the origin of the observed intraband NSOT.
Results in the model 2D Rashba AFM.—Since both spin

sublattices experience the same inversion symmetry break-
ing Rashba field in our 2D AFM model, the intraband
contribution to the current induced spin polarization has
the same sign on both spin sublattices, i.e., is not staggered.
A NSOT field is found, however, when evaluating the
interband term δ~sinter from Eq. (5). The Néel-order current-
induced field components projected on each sublattice are
shown in Figs. 3(e) and 3(f) for the AFM spin-axis rotation

FIG. 3 (color online). (a) Schematics of the intraband, inverse
spin galvanic effect in a model Rashba system. The left panel
represents the equilibrium distribution of spins (red arrows); the
right panel shows the nonequilibrium redistribution resulting in a
net in-plane spin polarization (thick red arrow) perpendicular to
the current (green arrow). (b) Intraband NSOT field inMn2Au as a
function of the in-plane spin-axis angle. The sublattice index A or
B and component of the field x, y, or z ([100], [010], [001]) are
shown for each curve. (c) Same as (b) for the out-of-plane spin-
axis angle. (d) Schematics of the intrinsic interband contribution
to the nonequilibrium spin polarization. In equilibrium all spins
are approximately aligned with the exchange field, which is
considered to be stronger than the Rashba field. A nonequilibrium
in-plane Rashba field (purple arrows) aligned perpendicular to
the applied current causes an out-of-plane tilt of the carrier
spins on the shifted Fermi surface. (e),(f) Interband NSOT fields
as a function of spin-axis angles in the 2D Rashba AFM for
Γ ¼ 0.01 eV andEF ¼ −2 eV. Other parameters of the model are
as in Fig. 2 In all panels the current is along the [100] axis.
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lattice can be divided into two sublattices, which, individu-
ally, have broken inversion symmetry and form inversion
partners [32]. Each sublattice gives opposite inverse spin
galvanic effects, resulting in the NSOT field. The range of
materials in which the relativistic current-induced torques
can occur is therefore not restricted to FMs and, moreover,
is not restricted to crystals with global broken inversion
symmetry. In Mn2Au, the inversion partner sublattices
coincide with the two AFM spin sublattices, which makes
the material an attractive candidate for observing the NSOT.
In AFMs where the two spin sublattices do not form

inversion partners a NSOT can still occur. We illustrate
it below in a 2D square lattice where the same broken
inversion symmetry term in the Hamiltonian is shared by
both spin sublattices. Here the resulting NSOT is analogous
to the intrinsic antidamping SOT recently observed in
broken bulk inversion symmetry FMs [27].
Models and methods.—In Mn2Au we diagonalized a

microscopicmultiorbital tight-bindingHamiltonian to obtain
the energy spectrum and eigenfunctions used in our transport
calculations. The form of the tight-binding Hamiltonian
was obtained following the procedure for bimetallic alloys
described in Ref. [33]. The accuracy of the tight-binding
energy spectrum is confirmed in Fig. 1(b) by comparing the
electronic structure to the ab initio density-functional theory
(DFT) calculations.
The other model structure comprises a 2D AFM square

lattice with Rashba spin-orbit coupling due to the broken
structural inversion symmetry and is relevant, e.g., to
common experimental geometries in which a thin AFM
film is interfaced with another layer. The model is sketched
in Fig. 2(a) and its Hamiltonian is given by

H ¼
X

hiji
Jdd ~Si · ~Sj þHtb þHR þ

X

i

Jsd~s · ~Si: ð1Þ

Here Jdd is the local moment (e.g., d orbital) exchange
constant, Jsd is the local moment–carrier (e.g., d and s
orbitals) exchange constant, Htb is the tight binding
Hamiltonian for the carriers, and HR is the Rashba spin-
orbit interaction in a 2D system, given by

HR ¼ VSO

X

i

½ðc†i↑ciþδx↓ − c†i↓ciþδx↑Þ

−iðc†i↑ciþδy↓ þ c†i↓ciþδy↑Þ þ H:c:&; ð2Þ

where VSO represents the spin-orbit coupling strength, and
δx, δy label the nearest neighbors direction.
The current-induced nonequilibrium spin density δ~s can

be calculated via the Kubo linear response [19],

δ~s ¼ ℏ
2πL2

Re
X

~kαβ

ð~sÞαβðe~E · ~vÞβα½GA
~kα
GR

~kβ
− GR

~kα
GR

~kβ
&; ð3Þ

where the Green’s functions are GR
~kα
ðEÞjE¼EF

≡GR
~kα

¼
1=ðEF − E~kα þ iΓÞ, with the property GA ¼ ðGRÞ'. Here,
L is the dimension of the 2D system, e is the charge of
electron, ~E is the applied electric field, EF is the Fermi
energy, E~kα is the energy spectrum, and Γ is the spectral

FIG. 1 (color online). (a) Mn2Au crystal structure and anti-
ferromagnetic ordering. The two spin sublattices have broken
inversion symmetry as illustrated by the red and purple colors. The
full crystal is centrosymmetric around the Au atom as also
highlighted in the figure. (b) Total, sublattice, and spin projected
density of states from the ab initio calculation and for the tight-
binding Hamiltonian model.

FIG. 2 (color online). (a) 2D AFM square lattice model with
Rashba spin-orbit coupling. (b),(c) Band structure and the spin-
resolved density of states projected in each sublattice for the
AFM state. (d),(e) Band structure and the spin-resolved density of
states for the FM state. Here the hopping parameter tN ¼ 3.0 eV,
Jsd ¼ 1.0 eV, and VSO ¼ 0.1 eV.
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• two sublattices, 
    opposite mag. moments

• current-induced fields 
    resolved by sublattice
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(A)"SchemaBc"showing"the"probe"current"direcBons"(green)"and"the"inferred"spin"axis"(red/
black)."(B)"Normalised"transverse"resistance"aFer"current"pulse"1H5"(red)"and"3H7"(black)"for"the"
probe"current"direcBons"shown"in"(A)."(C)"As"for"(B)"but"for"the"longitudinal"resistance."
"
"
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Figure 3: (A) Schematic showing the probe current directions (green) and the inferred spin axis
(red/black). (B) Normalised transverse resistance change after setting current pulse 1-5 (red)
and 3-7 (black) for the probe current directions shown in (A) in a 28 µm device. (C) As for (B)
but for the normalised longitudinal resistance change.
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FIG. 5. (Color online) Angular dependence of the second har-
monic signals R2ω

xx (a)–(c) and R2ω
xy (d)–(f) measured in a saturating

in-plane magnetic field in the Ta/IrMn/CoFeB samples at 300 K
and 5 K and in the reference Ta/CoFeB sample (independent of
temperature, example of data measured at 5 K). Data measured at
two current densities are shown in each panel.

sample. As in a number of previous studies of NM/FM bilayers,
the additional R2ω

xy (α) signal is attributed to the current-induced
antidampinglike torque acting in CoFeB. The corresponding
out-of-plane effective field HAD can originate from the spin
current polarized along the y axis which is generated by the
SHE in Ta and absorbed in the CoFeB FM. The R2ω

xy ∼ cos α
symmetry reflects the out-of-plane tilt of the magnetization due
to HAD which is sensed electrically via the AHE in CoFeB.

By the same procedure, the signal due to the antidamp-
inglike torque in the Ta/IrMn/CoFeB sample is detected only
at low temperatures. In the high-temperature paramagnetic
phase of IrMn the ratio of the amplitudes of R2ω

xx (α) and
R2ω

xy (α) signals corresponds to the Hall bar aspect ratio [see
Figs. 5(a) and 5(d)] implying that the SSE dominates and the
current-induced torque is diminished.

As further detailed in Appendix C, we can obtain quanti-
tative estimates of the antidampinglike torque by subtracting
the SSE contribution from R2ω

xy (α) using the SSE dominated
R2ω

xx (α) and the Hall bar aspect ratio. The values are then

FIG. 6. (Color online) Inferred Fourier coefficients from R2ω
xy

data as a function of the current density. Only nonzero coefficients
linearly increasing with j are shown; these are cos α and sin β in
panels (a) and (b), respectively. Trilayer Ta/IrMn/CoFeB data at 5 K
(green points), 300 K (magenta points), and bilayer Ta/CoFeB (black
points) data are shown. Note that Fourier coefficients of the bilayer
sample are divided by 10.

FIG. 7. (Color online) (a) Current density dependence of the SSE
contribution recalculated for one square obtained from α rotation
(black dots) and γ rotation (triangles). (b) Current density dependence
of the current-induced effective out-of-plane field HAD in the
reference Ta/CoFeB sample obtained from α rotation (black dots) and
β rotation (triangles). (c),(d) Same as (a),(b) for the Ta/IrMn/CoFeB
sample at 5 K and 300 K.

recalculated to a corresponding effective field HAD from the
calibration based on the first harmonic signal.

The results are summarized in Fig. 7. We show the low
and high-temperature measurements in the Ta/IrMn/CoFeB
sample and compare with the temperature-independent results
in the control Ta/CoFeB sample. SSE signal is shown in
Figs. 7(a) and 7(b). As expected, one finds that it scales linearly
with current density and is independent of base temperature
(for details see Appendix C). The evaluated HAD for the
bilayer and trilayer samples is shown in Figs. 7(c) and 7(d).
Similar to the SSE signal, HAD scales linearly with the density
of the driving ac current since the generated changes in the
magnetization direction are small and the AHE varies linearly
in this small tilt regime.

Figure 7 highlights the SHE origin of HAD which, as in the
SSE case, changes sign when CoFeB is interfaced with either
Ta or IrMn. The inferred spin Hall angle in the Ta layer from
measurements in the Ta/CoFeB bilayer is ≈−0.036 ± 0.020.
The effective spin Hall angle recalculated to the current flowing
in the IrMn layer of the Ta/IrMn/CoFeB stack at 5 K is ≈
+0.029 ± 0.015.

We point out that the SSE and the antidampinglike spin
torque, including the inferred magnitudes of HAD and the
spin Hall angles, were confirmed by analyzing the data for
magnetization rotations in all three orthogonal planes. In Fig. 7
we show the SSE signal inferred from α and γ -dependent
R2ω

xx and HAD obtained from α and β-dependent R2ω
xy . The

respective values agree within the experimental error bars. We
also point out that R2ω

xx (β) has the expected sin 2β dependence
due to HAD , and the inferred amplitude is again consistent
with HAD obtained from the R2ω

xy (α) and R2ω
xy (β) data.

We also note that angular-dependent components with a
symmetry corresponding to the effective field HF driving
a fieldlike torque were not identified in the measured data.
One source of the fieldlike torque is the Oersted field which
in our experiments does not exceed 0.1 mT. In data shown
in Figs. 5(a)–5(c), for example, the corresponding R2ω

xx ∼
sin 2α cos α term would contribute via AMR with an amplitude
below ∼10−4 %, i.e., within the noise in Figs. 5(a)–5(c).
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difficult to discriminate 
from other effects (IrMn)

switching observed  
in CuMnAs



Summary

• current-induced spin-orbit torques observed in 
    various metals 
• microscopic theory available 
• can be (potentially) used to write information 
    in memory devices 
• works both in ferromagnets and antiferromagnets


