Nodal correlations and the disorder-driven collapse of the Fractional Quantum Hall regime

How to dissociate an electron-vortex complex?

- focus on filling factor 1/3, hard-core interaction
- use disorder (inhomogeneous system)
- watch for electron vortex correlations

... in detail:

ground state in a homogeneous system: Laughlin wavefunction

$$\Psi(z_1, \dots, z_N) = \prod_{i=1}^N e^{-|z_i|/4} \prod_{j \neq i} (z_i - z_j)^3$$

- vortices flux quanta zeros
- fix all but one particle there will be triple zeros at z_2, z_3, \dots, z_N : one zero is mandatory (Pauli exclusion principle), the other two can be interpreted as attached flux quanta, dubbed composite fermions
- we are interested in the destruction of those correlations

Possible sources:

inhomogeneities or deviation from hard-core interaction

Types of vortices:

Pauli / center-of-mass / correlation vortices

Procedure:

- diagonalize the many-body Hamiltonian ground state $(z_1, z_2, ...)$
- create a random distribution of N-1 electrons (z_2, z_3, \dots, z_N) using a weighted
- Monte Carlo method, take the reduced wave function $(z) = (z_1, z_2, ..., z_N)$ • find the zeroes Z_i of |(z)| (i=1,...,3N)
- check: calculate vorticity of (z) in each Z_i (d ln (z)/d z on a small loop around Z_i), verify that it is (a multiple of) 2
- remove the Pauli vortices (those exactly at $z_2,...,z_n$)
- count the remaining vortices using:

0.025 5000

0.02 4000

0.015 3000

0.005 1000

a

0

2000

- 0.01

repeat to get a statistical sample in the sum above

Statistical vortex position

with respect to an electron

The procedure in figures

Electrons and vortices

... strong impurity

The Hamiltonian

 $H = \frac{e^2}{4\pi\epsilon\ell_0} \sum_{i < j} \frac{1}{|\vec{r_i} - \vec{r_j}|/\ell_0} + \sum_i V(\vec{r_i}) + T$

- Coulomb replaced by hard-core repulsion
- constraint to the lowest Landau level (no mixing to higher LLs)
- torus = square, periodic boundary conditions
- zero 2DEG width

trivia:

Finite geometry effects

bound vortex

counting bin

CM vortices

other electrons

ortices belonging t

500 = a/2 707

• magnetic length $\ell_0 = \sqrt{\hbar/eB}$

1000

• filling factor: # of electrons # of mag. flux quanta

 $\nu = \frac{n}{eB/h} = \frac{1}{AB/(h/e)}$

• energy scales: Coulomb units: $e^2/(4\pi \epsilon \ell_0) \approx 51 \text{ K}\sqrt{B \text{ [T]}}$

 $d_{vv} = 2d_{ev}$ 0^{0.1}0.20.40.6 r [l₀]

nA"enu'

cyclotron energy: $\hbar \omega \approx 20 \text{ K} \cdot B \text{ [T]}$

Bound vortex positions:

detachment of electron-vortex complex under increasing V_0

within a range of V_0 , good quality fits by

this implies that for any V0:

in particular:

Christian Müller, Karel Výborný, Daniela Pfannkuche

1. Institut für theoretische Physik, Universität Hamburg, Hamburg, Germany Fyzikální ústav Akademie věd České republiky, Praha, Czech Republic

 electron-vortex and vortexvortex distance proportional to

 I_0 (- impurity) : bound quasielectron, other complexes electron-vortex undisturbed I₀: decaying dependence

 $g_{ev}(r) = c_0 + a \cdot x^8 e^{-b\sqrt{x}}$

slightly less accurate fits possible by

 $g_{ev}(r) = c_0 + a \cdot x^4 e^{-bx}$

 d_{ev} FWHM $1/g_{ev}(d_{ev})$

d_{ev}=4/b, FWHM=1.19d_{ev}, w=0.781/d_{ev}

$$V(z) = \sum_{i=1}^{N_{imp}} V_i \exp\left[-\frac{(z-z_i)}{\sigma^2}\right]$$

Electron-vortex distance depends only on V_0

References: [1] K. Graham et al., Phys. Rev. B 67, 235302 (2003) [2] Gun Sang Jeon et al., Phys. Rev. B 72, 035304 (2005) [3] B. Huckestein, Rev. Mod. Phys. 67, 357 (1995) [4] K. Vyborny et al., Acta Phys. Pol. A 112, 249 (2007) [5] K. Vyborny et al., cond-mat/0703109 (unpublished, 2007) [6] K. Vyborny, Annalen der Physik (Leipzig) 16, 87 [2] (2007).

Conclusions:

- the disorder effects)
- proposed

... as long as $<< I_0$

• an electron is surrounded by two vortices situated opposite to each other, in the =1/3 FQHE state electron-vortex distance scales linearly with the amplitude of impurity potential (=sensitive probe of

• under disorder which hardly changes the gap the vortex-electron distance responds sensitively • even if vortices are effectively detached, the FQH gap may remain in place • a promising method to study the weakening of Laughlin type correlations in a finite system is