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Anomalous Hall conductivity and quantum friction1
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The anomalous Hall effect in high conductivity region is studied using a two-dimensional network model. We5

find that the off-diagonal conductivity comprises two parts: one which reflects the bulk properties as obtained6

by the Kubo formula and another which is sensitive to boundary conditions imposed on the network. In the fully7

coherent limit, the latter scales with the width of the conducting channel, while for real-world samples, it is8

controlled by the coherence length. It provides an alternative interpretation of the observed behavior in the clean9

limit which is otherwise attributed to the skew scattering. We highlight analogies to friction in viscous fluids10

responsible for Couette flow. In the present case, this quantum effect is governed by wave interference.11
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I. INTRODUCTION13

Scattering is an essential ingredient to many transport14

phenomena. The anomalous Hall conductivity σAH of ferro-15

magnetic systems provides a notable exception to this rule but16

only in certain region: most materials with moderate longitu-17

dinal conductivity σ0 show almost constant σAH as scattering18

strength and hence σ0 is varied. This property seems to be19

well understood in terms of the Berry curvature of occupied20

electronic bands representing properties of ideal Bloch sys-21

tems, also called the intrinsic region of the anomalous Hall22

effect (AHE). This interval of roughly 104 to 106 inverse23

� cm is surrounded by regions in which σAH(σ0) becomes24

scattering dependent as reviewed by Nagaosa et al. [1]. While25

suppression of σAH for stronger disorder is natural, its linear26

increase with σ0 in high conductivity regions [2] is, at least,27

surprising. It is generally accepted that it is caused by skew28

scattering [3–7], asymmetric scattering of electrons on impu-29

rities induced by their nonzero spin. Its effect increases with30

decreasing impurity concentration. A seemingly inevitable31

consequence of this argumentation is that anomalous Hall32

conductivity in clean systems is driven by negligible impurity33

concentration while in this limit intrinsic values obtained for34

ideal Bloch systems could be expected. With few notable35

exceptions, the effect of Berry phases [see Eq. (4) below] is36

ignored in the context of skew scattering and even if it is not37

[8], the lack of generality [see Eq. (A7) in Appendix] leads38

to the contradiction mentioned above. The main aim of the39

present treatment is to suggest another possible origin of the40

observed increase of the Hall conductivity with sample purity41

which does not rely on skew scattering.42

Basic condition for the observation of AHE in magnetic43

systems is the existence of nonzero orbital momentum [9],44

which can be induced by spin-orbit interaction or noncoplanar45

magnetic order [10]. It is responsible for the violation of46

time reversal symmetry, a necessary condition for nonzero47

Hall effect. Transport properties are measured on stripes, Hall48

bar samples, and orbital momentum of atomic-type wave49

functions causes the space current density oscillating across 50

the stripe. It can be represented by current paths with al- 51

ternating current directions [11]. Physically acceptable paths 52

at edges should be of the chiral type leading current along 53

opposite directions and the total net current thus vanishes in 54

the equilibrium. Voltage drop applied between stripe edges 55

induces changes of the electron concentrations within cur- 56

rent paths. It leads to the polarization of the system which 57

is a typical property accompanying the anomalous Hall ef- 58

fect [12–14]. Coupling between current paths is generally 59

represented by their mutual friction. It defines momentum 60

transfer between edges as well as Hall current through the 61

stripe cross section. In quantum coherent systems such fric- 62

tion is controlled by the wave interference. The main aim of 63

our approach to AHE is to show that quantum friction [15] 64

between chiral current paths can be responsible for a linear 65

increase of the anomalous Hall conductivity with σ0 in the 66

high conductivity region. It is an extrinsic contribution due to 67

the finite sample dimensions. 68

To verify this idea, a two-dimensional network model [16] 69

will be used. It allows to apply theory of quantum graphs [17] 70

ideally suited for studies of interference effects. It contains all 71

basic ingredients necessary for the existence of AHE. Cou- 72

pling between atomic orbitals is defined by S matrix, which 73

is convenient for application of the scattering matrix approach 74

invented by Landauer [18]. Detailed model description and 75

its basic properties are presented in Sec. II. The subsequent 76

section is devoted to the properties of edge states. It will be 77

shown that chiral edge states crossing energy gaps which are 78

responsible for the quantum Hall effect [19] can be created 79

or removed by tuning the boundary conditions. Contrary to 80

the case of external rational magnetic fields [20], chirality is 81

not determined by wave function properties at the Brillouin 82

zone boundaries. The key part of our treatment is described in 83

Sec. IV where scattering matrix approach is applied to obtain 84

intrinsic Hall conductivity and enhanced Hall current given by 85

friction between chiral current paths. In Sec. V, a brief sum- 86

mary of experimental works on anomalous Hall conductivity 87
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FIG. 1. Two-dimensional network model of coupled orbitals
with positive orbital momenta controlled by parameter δ. Arrows are
indicating direction of the electron motion and φ range of amplitudes
a, b, c, d is defined in Table I.

in all three regions is given and a two band model is used to88

obtain its qualitative features for a large range of the system89

disorder strength. It is shown that the experimentally observed90

behavior of σAH(σ0) can be reproduced without invoking the91

skew scattering mechanism. The paper will be completed by92

summary of main results and concluding remarks.93

II. TWO-DIMENSIONAL NETWORK MODEL94

In strictly two-dimensional systems, spin-orbit interaction95

having form Lzsz, Lz being orbital momentum, separates96

electrons into two independent groups having spin sz = 1/297

and −1/2, respectively. Atomic state of the orbital number98

m and spin sz has the same energy as that with −m and99

−sz. Degeneracy of corresponding bands is removed by ex-100

change interaction which will be approximated by an effective101

Zeeman splitting. To estimate general features of the anoma-102

lous conductivity, the simple two-dimensional network model103

sketched in Fig. 1 has been used [16]. It allows to employ104

theory of graphs [17] for single-mode quantum structure with105

δ-type coupling between orbitals [21]. Such type of model106

graphs (e.g., Chalker-Coddington model [22]) has already107

TABLE I. Definition of a, b, c, d for piecewise constant A(φ)
pertaining to the ring at �Ri, j .

amplitude for φ ∈

ai, j (0, π/2)
bi, j (π/2, π )
ci, j (π, 3π/2)
di, j (3π/2, 2π )

been applied to describe localization effect in quantum Hall 108

systems [23] and properties of quantum spin-Hall systems 109

[24]. 110

Let us briefly recapitulate main ideas and basic properties 111

of the used model [16] on which our treatment is based. Scat- 112

tering matrix for individual contacts defines the transmission 113

probability |t |2 representing the overlap integral entering the 114

standard tight-binding approach. The spin quantum number 115

allows to distinguish energy bands and define anomalous Hall 116

conductivity for each of the spin subsystems. For the sake of 117

simplicity, the spin parts of wave functions will not be shown 118

explicitly in the following treatment. We keep in mind that a 119

typical AHE setting will entail two copies of the network with 120

opposite spins and counter-propagating wave functions, i.e., 121

ones composed of orbitals with opposite angular momentum. 122

Atomic orbitals on individual lattice sites �Ri, j are modeled 123

by rings of the radius R formed by one-dimensional con- 124

ductors. Each electron subsystem (spin up and spin down) is 125

represented by a one-way conductor. Their eigenenergies and 126

eigenfunctions 127

Em = h̄2m2

2m0R2
, ψm(φ) = 1√

2πR
eimφ, (1)

where φ ∈ (0, 2π ) is the polar angle are labeled by the 128

quantum number m = 0,±1, . . ., which defines angular mo- 129

mentum. The assumption that electrons can orbit within rings 130

in one direction only leads to a nonzero orbital momentum, 131

and consequently removes the time reversal symmetry which 132

is a necessary condition for the Hall effects to emerge. 133

In the square lattice shown in Fig. 1, each of the rings 134

has four contact points with its neighbors which separate the 135

domain of the wave function amplitude A(φ) exp(iδφ) into 136

four sections listed in Table I. These allows to define four 137

complex amplitudes a, b, c, d per lattice site fully determining 138

the wave function for given δ. 139

Considering the positive orbital momenta of the atomic- 140

type orbitals, δ > 0, the amplitudes are controlled by the 141

following relations: 142

e−iδπ ai, j = r eiδπ di, j + t bi+1, j,

bi, j = r ai, j + t eiδπ ci, j+1,

ci, j = r bi, j + t eiδπ di−1, j,

di, j = r ci, j + t e−iδπ ai, j−1,

(2)

where t denotes transition coefficient of the wave entering 143

adjacent orbital while r represents part of the wave continuing 144

the orbital motion. For the considered δ-type coupling, they 145

are of the following general form [21] 146

t = iα

1 − iα
, r = 1

1 − iα
, |r|2 + |t |2 = 1, (3)

where α is a real parameter, which is supposed to be an energy 147

independent constant for the sake of the simplicity. 148

For infinite periodic network, the wave functions are of the 149

Bloch form 150

|m, �k〉 ≡ 	m,�k (�r) = eiθm (�k)

√
N

N∑
i, j=1

ei�k �Ri, j

√
1

2πR

×Am,�k (φ) eiδ�kφδ(|�r − �Ri, j | − R) ≡ ei�k�r um,�k (�r), (4)
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FIG. 2. Energy branches for a stripe subjected to different bound-
ary conditions, N = 20, |t |2 = 0.3, and α > 0. Thick full and
dashed lines represent edge states at lower and upper stripe edges,
respectively.

where m and �k are the band number and the wave vector,151

respectively, θm(�k) denotes the Berry phase [25] and um,�k (�r)152

stands for the periodic part of Bloch functions. Wave function153

amplitudes Am,�k (φ) are subject to the following Bloch condi-154

tions:155

ci, j+1 = eiky ci, j , ai, j−1 = e−iky ai, j,

bi+1, j = eikx bi, j , di−1, j = e−ikx di, j,
(5)

where the wave vector components kx,y range from −π to156

π pursuant to the choice of units, lattice constant a0 = 1.157

Zero determinant of the resulting equations for wave function158

amplitudes yields the spectral condition for dimensionless159

parameter δ�k160

cos kx + cos ky = −2 cos δ�kπ − 1 − α2

α
sin δ�kπ, (6)

which can be transformed into dispersion relation for eigenen-161

ergies using162

E�k =
2h̄2δ2

�k
m0

(7)

in analogy to (1). This implicit expression for energy E�k163

corresponds to the kinetic energy of wave function (4).164

For any energy-independent value of the parameter α, the165

spectrum comprises a series of nonoverlapping bands linked166

to states having orbital number m. Dispersions of the dimen-167

sionless parameter δ ∼ √
E are periodic with the period 2.168

Change of δ by one gives the same dispersion but shifted in �k169

space by ��k = (π, π ). All these features can be seen in spec-170

trum obtained for a stripe samples shown in Fig. 2. Energy171

gaps become closed for |t |2 approaching the value |t |2 = 0.5172

(α = ±1) at which the bandwidth equals to that defined by173

�δ = 1. Fixed-energy contours (see Fig. 2 in Ref. [16]) are174

identical to the case of cosine band dispersion produced by175

the well-known square-lattice tight-binding model but energy 176

scaling (7) is different. 177

In most real-world systems, the coupling between adja- 178

cent atomic orbitals is weaker than that to the atomic core 179

and crystal formation lowers energy of electron states. For 180

these reasons |t |2 < 0.5 and α > 0 satisfying the above re- 181

quirements will be preferred in the following treatment. For 182

|t |2 > 0.5, electrons “orbit the stars” rather than the circular 183

orbitals around �Ri, j , i.e., they are pushed into the interstitial 184

positions. In these cases, the coupling gives rise to energy 185

of electron states. For |t |2 = 1 − |r|2 = 0 and 1, the limit of 186

isolated orbitals is achieved whereupon the dispersions reduce 187

to flat bands. 188

III. EDGE STATES 189

Quantization of the anomalous Hall conductivity has also 190

been observed on systems endowed with nonzero orbital mo- 191

mentum [26–28]. Generally it is attributed to the existence 192

of chiral edge states within gap regions, i.e., states having 193

opposite velocity at opposite sample edges. The existence 194

of such states has been first predicted for two-dimensional 195

systems subjected to a strong external magnetic field. In this 196

case, there are two scaling areas, the area per unit magnetic 197

flux Aφ and the unit cell area A0. For rational values of A0/Aφ , 198

the eigenfunctions are of the Bloch form but the correspond- 199

ing translation symmetry differs from that at zero magnetic 200

field. As it has been shown by Thouless et al. [20] number 201

of chiral edge states, Chern number, is fully determined by 202

eigenfunction properties at the Brillouin zone boundary. The 203

external magnetic field induces orbital momentum of atomic 204

type states leading to an increase of the system energy. Chiral 205

edge states are induced to minimize it. For this reason, they 206

are insensitive to the boundary conditions at the sample edges 207

[29]. These general arguments are not applicable in the zero 208

field limit. Using a two-dimensional network model, the de- 209

cisive role of boundary conditions for the existence of chiral 210

edge states will be shown. 211

A stripe open along the x̂ direction parallel to main crys- 212

tallographic axis will be considered. Bloch conditions in the x̂ 213

direction, bi+1, j = eikx bi, j and di−1, j = e−ikx di, j , inserted into 214

the basic equation set (2) give 215

−e−iδπ ai, j + t eikx bi, j + r eiδπ di, j = 0,

r e−iδπ ai, j − e−iδπ bi, j + t ci, j+1 = 0,

r e−iδπ bi, j − e−iδπ ci, j + t e−ikx di, j = 0,

t ai, j−1 + r eiδπ ci, j − eiδπ di, j = 0.

(8)

For a given kx, the eigenvalue problem reduces to the problem 216

for a single column of orbitals. It is independent of its position 217

defined by the index i. Two types of boundary conditions 218

in the ŷ direction will be considered: (i) hard walls leaving 219

circular orbitals untouched and (ii) those which cut orbitals 220

in half as shown in Fig. 1 by dashed lines. Electrons are thus 221

skimming or skipping along stripe walls. 222

Branch dispersions representing the case (i) for the col- 223

umn composed of N = 20 circular orbitals controlled by the 224

boundary conditions bi,N = ai,N and di,1 = ci,1 are shown in 225

Fig. 2(a). At any band energy, the electron path at the up- 226

per edge (· · · → ai,N → bi,N → ai−1,N → · · · ) and that at the 227

004400-3
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lower edge (· · · → ci,1 → di,1 → ci+1,1 → · · · ) carry skim-228

ming electrons in opposite directions, see Fig. 1.229

As for case (ii), chiral edge states crossing the energy230

gaps appear. For stripe of the width Na0, the boundary231

conditions eiδπ di,N+1 = ci+1,N+1 = eikx ci,N+1 and eiδπ bi,1 =232

ai−1,1 = e−ikx ai,1 correspond to hard walls cutting the orbitals233

in half on both sides of the sample. Resulting branch dis-234

persions are shown in Fig. 2(c) for N = 20. In real space,235

electrons at edge current paths are skipping along stripe walls236

flowing in opposite directions compared to the previous case237

of skimming electrons.238

There exists a peculiar possibility of imposing mixed239

boundary conditions, type (i)/(ii) at the lower/upper edge,240

giving rise to energy dispersions shown in Fig. 2(b). In this241

case, the symmetry leading to the presence of chiral edge242

states is lost and for chemical potential within the gap region243

the current flow is allowed only along one edge. It represents244

an ideal diode. Comparison of all three cases suggests that245

edge states are exclusively determined by boundary condi-246

tions. This conclusion is supported by a close connection of247

the anomalous Hall effect to the polarization which is known248

to be affected by boundary conditions. Opposite to the case of249

external magnetic fields (corresponding to rational values of250

A0/Aφ), the appearance of chiral edge states is not determined251

by the Chern number which in our case has zero value. Nec-252

essary conditions for their appearance are the chiral symmetry253

of the current distribution across the stripe, i.e., oscillating254

currents are surrounded by current paths at the stripe edges255

leading currents in opposite direction, and relevant boundary256

conditions.257

Note that for transition probability |t |2 > 0.5 edge states258

crossing energy gaps appear only at edges for which hard259

wall leaves circular orbitals untouched. Nevertheless general260

conclusions remain unchanged.261

IV. ELECTRONIC TRANSPORT: SCATTERING MATRIX262

APPROACH263

Corbino disk samples can be used to measure conductivity264

components directly, at least in principle. In the limit of the265

infinite disk radius, it is equivalent to a stripe open in one di-266

rection (in our case x̂) coinciding with a main crystallographic267

axis. A voltage drop applied to the opposite stripe edges in-268

duces current which has two components, perpendicular and269

parallel with the edges representing longitudinal (i.e., along270

ŷ) and Hall currents, respectively. Scattering matrix approach271

[18,30] will be used to evaluate corresponding conductivi-272

ties, σyy and σxy, for the already described two-dimensional273

network model. It represents response to the electron concen-274

tration gradient of the fully coherent system, i.e. no dissipation275

is allowed within stripe interior. Dissipation is supposed to276

take place at the source and drain only where electrons are277

subjected to the equilibration processes. Stripe width can278

thus be identified with the equilibration length λe. Electron279

wave functions are thereby also losing information about their280

phases and the coherence length λc thus coincides with the281

stripe width as well.282

Stripe interior is composed of electron paths leading cur-283

rents along positive or negative x̂ direction. To analyze284

conductivity contributions within the stripe, it is natural to285
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FIG. 3. Scheme of four possible boundary conditions applied
to a single column. Source and drain are marked in red and blue,
respectively.

choose one of the electron paths as the source and another as 286

the drain, shown in figures by red and blue lines, respectively. 287

Among the four possibilities sketched in Fig. 3, there are two 288

qualitatively distinct cases. Source and drain paths can be 289

chosen to carry current along the same direction (we choose to 290

call it the Born-von Kármán case) or their currents have oppo- 291

site direction (the chiral case). These two cases will be treated 292

separately in following sections and the Hall conductivity of 293

very clean but not fully coherent systems will be discussed in 294

the last section. 295

Bloch conditions along x̂ direction reduce problem to scat- 296

tering within the single column of orbitals for each of the wave 297

numbers kx. Wave function amplitudes are defined by Eq. (8) 298

accompanied by appropriate current currying conditions. Av- 299

eraging over kx gives relevant results. To get smooth enough 300

dependence on the parameter δ defining the energy a large 301

number of kx values has to be used. Usually 104–105 kx values 302

uniformly spread through the interval kx ε (−π, π ) are consid- 303

ered. Results of the scattering matrix approach do not depend 304

on the column position (i.e., index i) and unless necessary, this 305

index will be skipped for brevity. For the presented numeri- 306

cal examples, unless explicitly stated, the model parameters 307

α > 0 and |t |2 = 0.3 will be considered. 308

A. Born-von Kármán cases 309

Let us first consider source and drain paths at which elec- 310

tron velocity along x̂ direction is positive, as sketched in 311

Fig. 3(a). Electrons are supposed to be injected into strip 312

region via the lower path, d1 = 1, while they are absorbed by 313

upper path and the condition cN = 0 ensures zero injection 314

from this side. Equation set (8) together with these conditions 315

define uniquely all amplitudes within the column. Transition 316

coefficient for given kx is given by the amplitude dN (kx, δ). 317

Total transition probability T (δ) defining current flow through 318
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FIG. 4. Conductance g0(δ) and anomalous Hall conductivity
σxy(δ) obtained by using scattering matrix approach in the Born-von
Kármán case. Magenta and green curves correspond to the column
lengths N = 15, 25 and |t |2 = 0.3. Smooth thick lines are Kubo
formula results for unbounded systems.

a single column along ŷ direction reads319

T (δ) ≡ h

e2
g0(δ) = 〈|dN (kx, δ)|2〉kx , (9)

where g0(δ) stands for conductance per single column. In320

this case, transitions between orbitals are independent on their321

position. Except for fluctuations due to the size quantization it322

is independent of the considered column length (N − 1/2)a0323

as the green and magenta curves in Fig. 4 show. Consider-324

ing an energy independent relaxation time represented by the325

parameter γ , the Kubo formula for longitudinal conductivity326

σ0(δ) given by Eq. (A9) can formally be fit to approximate327

g0(δ), as shown in Fig 4.328

Current flow along x̂ direction representing Hall current329

is not uniformly spread through the sample cross-section in-330

dicating the decisive role of wave function phases. Hall331

conductivity can be defined as follows:332

σAH ≡ σxy(δ) = e2

h

N∑
j=1

〈|d j (kx, δ)|2− |a j (kx, δ)|2〉kx

≈ σ (int)
xy (δ), (10)

where the sum over j defines current into the right hand333

side column through coupling points enhanced by the cur-334

rent within drain path defined by setting aN (kx, δ) = 0. Drain335

contribution decreases with rising column length and currents336

through coupling points becomes dominant. Again, except for337

the size quantization effect, the obtained results are indepen-338

dent on the column length and they are close to the intrinsic339

Hall conductivity σ (int)
xy (δ) given by Eq. (A8), as shown in340

Fig. 4. This comparison entails no fitting procedure. Note that341

conductance g0(δ) defines the current through the unit cell342

cross-section and corresponding density is thus much larger343

than the Hall current density.344

Another possibility is to choose source and drain paths345

leading electrons along negative direction as shown in346

Fig. 3(b). In this case (a1 = 1 and bN = 0), the conductance347

g0(δ) defined by probabilities |aN (kx, δ)|2 coincides with that 348

determined in the previous case. To obtain Hall conductivity 349

instead of the drain path contribution the current of the source 350

path has to be added by setting d1(kx, δ) = 0. In this case, 351

Eq. (10) gives for energy gap regions quantum value −e2/h. 352

This edge state effect has to be subtracted to obtain Hall 353

conductivity within the bulk. Resulting δ dependence then 354

coincides with that of the previous case. 355

B. Chiral cases 356

Transport between source and drain electron paths which 357

carry current in opposite directions leads to qualitatively 358

different results. Considering columns of length Na0, the rele- 359

vant conditions are d1 = 1 and bN = 0 or a1 = 1 and cN = 0, 360

as sketched in Figs. 3(c) and 3(d), respectively. 361

Except for fluctuations caused by size quantization, the 362

transition probability in both cases is once more independent 363

of the column length. Compared to the Born-von Kármán 364

case, conductance g0 per single column is β-times smaller. 365

This ratio is only weakly |t |-dependent, for example, for 366

|t |2 = 0.3 and |t |2 = 0.2 the ratio β equals to 0.83 and 0.87, 367

respectively. 368

Essential difference from the Born-von Kármán case is the 369

dependence of the Hall conductivity on the distance between 370

source and drain Nsa0, which reads 371

σ (±Ch)
xy (δ) = 〈

σ (Ch)
xy (δ)

〉 ± Nsσ
(qf)
xy (δ)

≡ 〈
σ (Ch)

xy (δ)
〉 ± �σ (Ch)

xy (δ), (11)

where 372〈
σ (Ch)

xy (δ)
〉 ≈ β σ (int)

xy (δ) (12)

denotes the average value of both chiral cases, (c) and (d). 373

Plus and minus sign correspond to scattering problems with 374

opposite chirality of current paths as sketched in the inset of 375

Fig. 5. It is determined by velocity sign of electrons within 376

the path attached to the source path. Contribution per unit 377

cell σ
(qf)
xy (δ) represents average friction between the nearest 378

current paths. For large enough Ns it reaches a constant value 379

as illustrated in Fig. 5. 380

The ratio β for the intrinsic part 〈σ (Ch)
xy (δ)〉 turns out to be 381

the same as for the longitudinal conductance. Its deviation of 382

from one is the result of wave interference modified by the 383

change of the boundary conditions. 384

Hall current enhancement �σ (Ch)
xy (δ) entering Eq. (11) can 385

be understood using the analogy with the viscous flow in clas- 386

sical fluids. The largest current is flowing via the path attached 387

to source. It is stirring currents within adjacent stripe paths 388

forcing them to move along the same direction. It explains 389

the origin of the enhanced Hall current and in particular, its 390

direction. In the fully coherent systems, the friction between 391

current paths is determined not only by average coupling |t |2 392

but it is modified by the wave interference which determines 393

coupling between distant current paths. 394

C. Anomalous Hall effect in high conductivity region 395

Let us first discuss Hall conductivity within a coherent area 396

of infinite systems. It has been found that the conductance 397

g0(δ) between paths leading current in opposite directions 398
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FIG. 5. Anomalous Hall conductivity contributions 〈σ (Ch)
xy (δ)〉/β

and σ (qf)
xy (δ)/β obtained by using scattering matrix approach with

chiral type boundary conditions. The two chiral scenarios are
sketched in the inset whereas the letters refer to situations shown in
Fig. 3. Magenta and green curves correspond to N = 15, 25, scaling
factor β = 0.83 is discussed in the text and |t |2 = 0.3. Smooth thick
line is the Kubo formula result.

[chiral cases (c) and (d) in Fig. 3] is smaller than that for399

which they are flowing along the same direction [Born-von400

Kármán cases (a) and (b) in the same figure]. The occupation401

of neighboring paths leading current in opposite directions,402

has to be appropriately modified to unify both current den-403

sities. This polarization accompanying anomalous Hall effect404

allows electron transfer without enforced dissipation due to405

the current differences. It also ensures that intrinsic parts of406

the Hall conductivity is the same in both cases. Resulting407

Hall conductivity is given by average value of all four con-408

tributions discussed in previous two sections. They are of the409

same probability to appear and consequently sum of friction410

contributions depending on the column length is averaged out.411

Resulting anomalous Hall conductivity approaches intrinsic412

values given by the Kubo formula.413

Different results are obtained for stripe samples shown in414

Fig. 1 with two types of boundary conditions discussed in415

the previous Sec. III as (i) and (ii) cases. They are composed416

of columns containing integer number of unit cells. In these417

cases, the edge electron paths carry current in opposite direc-418

tions. Let us assume that attached source and drain prepared419

from the same material are coherently coupled to the stripe420

electron system which corresponds to scattering problems421

shown in Figs. 3(c) and 3(d). In the fully coherent case the422

Hall current enhancement defined by Eq. (11) is proportional423

to the stripe width Nsa0 which for large enough Ns dominates.424

Because of equilibration processes within source and drain,425

electrons are losing all information about their past. The stripe426

width Nsa0 can be thus identified with the equilibration length427

λe. Longitudinal conductivity σ0 ≡ σyy can be approximated428

by the conductance per square area N2
s a2

0, σ0 = Nsg0, and the429

Hall conductivity enhancement defined by Eq. (11) increases430

with σ0 as observed in the high conductivity region.431

Classical analogy of this effect is Couette flow observed in 432

fluids placed between two plates. Motion of one plate induces 433

fluid flow along the same direction which in the stationary 434

case decreases linearly towards fixed one. In our case, the role 435

of the moving plate is played by the current path attached to 436

the electron source. 437

Dissipation processes are minimizing deviation from the 438

equilibrium. They are thus trying to suppress enhanced Hall 439

current by electron transitions into paths leading current in 440

opposite direction. For strong enough dissipation, it can be 441

thus expected that quantum friction contributions will be aver- 442

aged out giving rise to intrinsic values of the Hall conductivity. 443

Since current enhancement originates in wave interference 444

even low angle inelastic scattering can be quite effective. It 445

can be expected that corresponding relaxation time τq f could 446

be much smaller than τe ∝ λe which controls the longitudinal 447

conductivity. Contrary to the case of unbounded systems the 448

effect of transitions between chiral paths giving rise to op- 449

posite directions of the Hall current enhancements cannot be 450

averaged out since for considered stripes their numbers differ 451

by one. For corresponding current contribution, Eq. (11) can 452

be used with a0Ns replaced by the coherence length λc ∝ τq f . 453

Anomalous Hall conductivity measured on a stripe of width 454

w is thus given by averaged current density and we get 455

σ (±Ch)
xy (δ) ≈ σ (int)

xy (δ) ± σ (qf)
xy (δ)

λc

w
, (13)

where plus and minus sign correspond to boundary condi- 456

tions for which electrons are skimming or skipping along 457

strip edges, respectively. Note that for |t |2 > 0.5, the Hall 458

conductivity has opposite sign but its general features remain 459

unchanged. 460

Estimation of the measured Hall conductivity given by 461

Eq. (13) has to be viewed as a rough approximation based on 462

the assumption that the enhanced current distribution is spread 463

uniformly through width w. If it becomes concentrated within 464

a slab of the width wq f at the edge vicinity the measured σxy 465

becomes affected by the ratio wq f /w. This problem desires 466

a more advanced theoretical description based, for example, 467

on the application of nonequilibrium Green’s functions [31] 468

employed in finite size systems. 469

Note that analyzed Hall currents are spin polarized. For 470

negative values of δ, the orbital momentum and the Hall 471

conductivity change their sign. Consequently, the spin polar- 472

ization of Hall currents is changed as well. 473

V. TWO-BAND MODEL 474

As already mentioned in the introduction three regions of 475

the anomalous Hall conductivity σAH in dependence on the 476

disorder strength represented by the longitudinal conductivity 477

σ0 can be identified [1]. Scaling σAH ∝ σ ν
0 in the dirty-metal 478

region with ν ≈ 1.6 has received considerable attention for 479

σ0 down below units of inverse � cm [2,32,33]. Phonon as- 480

sisted hopping between impurity localized states [34] gives 481

the observed scaling. Empirically, there appears a transition 482

from σAH ∝ σ ν
0 to the intrinsic region, σAH ∼ const., for σ0 483

between 103 and 104 inverse � cm [7]. It is attributed to 484

suppression of the band overlaps with decreasing disorder 485

strength [35,36]. Calculations of intrinsic σAH values for inter- 486
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FIG. 6. Anomalous Hall conductivity for two band model as
function of the disorder strength represented by the parameter γ

(|t |2 = 0.3). Recall that σxx ∝ 1/γ and width of the unperturbed
band is taken as its unit. Sketch in the inset shows δ dependence
of the intrinsic σ (int)

xy of both bands.

mediate σ0 (often in terms of Berry curvature) are a popular487

topic for ab initio studies of ideal crystal structures [37–45]488

and even alloys [46,47] have been considered. While there489

is abundance of experimental data for systems falling into490

these two categories, data for high conductivity regions for491

which conductivity is well above 105 (� cm)−1 are scarce492

[2,48–51,53]. They require crystal structures with minimum493

lattice imperfections and low temperatures to suppress dy-494

namical disorder due to the electron scattering with phonons495

and magnons. Outstanding bulk samples of iron [48] with σ0496

in excess of 108 (� cm)−1 showed an increase of σAH with σ0,497

and the same was observed [49] for thin layers of somewhat498

lower quality. Newer study [2] confirms this and reports a499

decrease of σAH for cobalt rather than the increase seen in500

iron. This work shows almost constant σAH for nickel down501

to the lowest σ0 achieved but better-conductivity samples [51]502

still show some increase in σAH.503

To illustrate qualitative features of the measured anoma-504

lous Hall conductivity dependencies on disorder strength505

covering all three regions, the overlap of energy bands has506

to be taken into account. For the considered two-dimensional507

network model, two bands having opposite orbital momentum508

as well as spin orientation will only be considered for simplic-509

ity. Corresponding intrinsic Hall conductivities have opposite510

sign but their absolute values are supposed to be the same as511

shown in the inset of the Fig. 6. Their shift due to exchange512

interaction is approximated by a Zeeman splitting to obtain513

a nonzero Hall conductivity given by the sum of both band514

contributions515

σ̄xy(δμ) = 〈σ ↓
xy(δμ)〉av + 〈σ ↑

xy(δμ)〉av. (14)

The effect of the disorder will be approximated by potential516

energy fluctuations. Assuming their Gauss distribution the517

ensemble averaging reads 518

〈σ ↓,↑
xy (δμ)〉av = 1

γ
√

2π

∫
e

(δ−δμ )2

2γ 2 σ ↓,↑
xy (δ) dδ, (15)

where the dimensionless parameter γ ∼ � = h̄/τe in units of 519

the unperturbed bandwidth, Eq. (A10), is assumed to be en- 520

ergy independent. Sum of both Hall conductivities decreases 521

with increasing band overlap caused by the band broadening 522

and for considered |t |2 = 0.3 we find σxy ∝ γ −1.75 as shown 523

in Fig. 6. Unperturbed band separation and Fermi level posi- 524

tion are sketched in the inset. Within intrinsic region the effect 525

of the band broadening vanishes. 526

The sum of quantum friction contributions of both bands, 527

Eq. (13), multiplied by γ has been taken as a fitting param- 528

eter. The linear dependence of τq f ∝ λc on a relaxation time 529

τe ∼ 1/γ representing longitudinal conductivity has been as- 530

sumed through the whole range of disorder strength. It has 531

been chosen to obtain the experimentally observed range of 532

the intrinsic region covering approximately two orders of 533

σxx ∝ 1/γ as presented in Fig. 6. This assumption is too 534

simple to illustrate effect of quantum friction precisely. Like 535

in the classical Couette flow, the friction desires some time 536

to evolve. If it is much larger than the relaxation time τq f no 537

effect can be expected. For this reason, the transition between 538

intrinsic and high conductivity regions should be sharper. 539

Under conditions for which electrons are skimming along 540

strip edges the friction contribution enhances Hall conduc- 541

tivity. They are expected to take place when electrons are 542

orbiting close to atomic nuclei and are only tight-bounded to 543

their neighbours. This is typical for d states (considering most 544

transition metals, for example, the s states do not contribute 545

to the AHE) and orbitals can only be slightly perturbed by the 546

surface. 547

In exceptional cases [2], the Hall conductivity even 548

changes its sign upon further decrease of the dissipation. Such 549

a behavior can be explained within our analysis for electrons 550

skipping along surfaces; the friction contribution has opposite 551

sign and Hall conductivity decreases as shown in Fig. 6 by the 552

dashed line. Skipping orbits appear if electron orbitals within 553

bulk are of the radius larger than the interatomic distance of 554

if they are orbiting around interstitial positions, i.e., |t2| > 0.5 555

and this can occur in gapped materials [52]. Possibility that the 556

coherence length of minority electrons within the upper band 557

is larger than that within lower band cannot also be excluded 558

as origin of this effect. 559

Despite of the model simplicity it gives qualitative features 560

of scaling relations between anomalous Hall conductivity and 561

longitudinal one. It is result of the competition between Hall 562

currents of all overlapping bands. They are spin polarized and 563

in high conductivity regions one of them dominates because 564

of the quantum friction effect. Consequently the resulting Hall 565

current becomes strongly spin polarized. 566

VI. SUMMARY AND CONCLUDING REMARKS 567

Existence of the quantum friction in fully coherent systems 568

is the main message of our treatment [15]. The basic condition 569

of its appearance is chirality of edge current paths within 570

stripe samples. This effect persists even in not fully coherent 571

systems for which the resulting Hall current enhancement is 572
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determined by the coherence length λc. This extrinsic contri-573

bution to the measured anomalous Hall conductivity due to574

the finite sample dimensions dominates in high conductivity575

regime. It represents a quantum analog of the classical Couette576

flow in fluids. It can be expected that it influences the observed577

spin Hall effect [53] in a similar way.578

Presented view to the origin of the Hall current enhance-579

ment suggests that all scattering events affect all conductivity580

components but they do so with different efficiency. Electrons581

flowing along the voltage drop are subjected to dissipative582

processes which can be characterized by a relaxation time583

τe ∝ λe determining longitudinal conductivity. On the other584

side, the enhanced Hall current decreases with disrupting585

the effective wave interference responsible for the coupling586

between current paths. Corresponding relaxation time τq f ∝587

λc can thus be substantially different from τe. Temperature-588

dependent inelastic scattering of electrons by phonons and589

magnons is destroying phase coherence but its effect to τe590

is weaker. This is consistent with existence of the intrinsic591

Hall conductivity plateau. Also an increase of the diffusion592

scattering of electrons at sample surfaces gives rise to the593

much larger suppression of τq f than τe as observed on high594

conductivity Ni samples [51]. Ratio of the electrical and ther-595

mal conductivity components has been studied for pure Fe596

samples [50] doped by Co and Si. In the limiting case of597

vanishing temperature where residual resistivity dominates,598

the validity of the Wiedemann-Franz law has been confirmed599

for ratios of diagonal as well off-diagonal components. It600

indicates that elastic scattering affects all components in a601

similar way and the much shorter τq f is proportional to τe.602

On the other side, a more complicated relation between both603

times can be expected for inelastic scattering. Unfortunately,604

there are not enough experimental data for full understanding605

of the electron transport in the high conductivity regions. Fur-606

ther detailed investigations of scattering effects in this regime607

are thus desired. A better understanding of the distribution608

of the enhanced Hall current across stripe and the possible609

dependence of the measured Hall conductivity on the sample610

width can help to map the evolution of the quantum friction611

effect in real systems.612

Our analysis of quantum friction predicts that the increase613

of σAH (anomalous Hall conductivity) in the high-conductivity614

regime should be sensitive to the Hall bar width w. It is615

supported by experimental data for iron samples. Opposite616

to thin layers [2], an increase of σAH in massive crystals of617

comparable conductivity was not observed [48]. Nevertheless,618

more detailed measurements of the relationship between σAH619

and w are desirable to confirm our prediction and experimen-620

tally exclude skew scattering as the origin of σAH increasing in621

the high conductivity region. We stress that the investigation622

of relationship (13) calls for measurements on a set of devices623

spanning a large range of w.624

Direction of the Hall current enhancement is controlled by625

the orientation of the current paths just touching strip edges626

which is determined by the boundary conditions. At least in627

cases for which suppression of the anomalous Hall effect is628

observed, the analysis of the current distribution at the sample629

edges is needed to verify origin of this effect. It would be ideal630

to be able to vary boundary conditions. If orbitals of magnetic631

impurities periodically distributed within nonmagnetic host632

lattice are of the radius larger than the distance between atoms 633

this might be possible at least in principle. In these cases stripe 634

edges can cut orbitals in half forcing electrons to skip or leave 635

them untouched. Systems like Bi2Te3 family of topological in- 636

sulators with univalent 3d magnetic ions [28] seem to be good 637

candidates. In these systems skipping electrons are giving 638

rise to chiral edge states crossing energy gap responsible for 639

the observed quantum Hall effect. Creation of such systems 640

with mixed boundary conditions might lead to new types of 641

spintronic devices, diodes, allowing current flow along one 642

direction only. In this case periodic distribution of ions is not 643

necessary condition. Although this sounds as science fiction 644

today we believe that technological progress will allow to 645

realize such systems in the future. 646
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APPENDIX: KUBO FORMULA RESULTS 654

Quantum theory of the linear response of unbounded 655

systems to electric field at zero temperature leads, for 656

diagonal conductivity components, to the well known Kubo- 657

Greenwood formula [54] 658

σii(μ) = πe2h̄〈 Tr{viδ(μ − H )viδ(μ − H )} 〉av, (A1)

and for off-diagonal components the following expression 659

derived by Bastin et al. [55]: 660

σi j (μ) = ih̄e2

×
μ∫

−∞

〈
Tr

{
δ(η − H )

[
vi

dG+

dη
v j − v j

dG−

dη
vi

]}〉
av

dη, (A2)

where H denotes a single-electron Hamiltonian, vi are com- 661

ponents of the velocity operator and delta-function operator is 662

defined as 663

δ(η − H ) = − lim
ε→0+

G+(η) − G−(η)

2π i
,

G±(η) = 1

η − H ± iε
. (A3)

For crystals with substitutional impurities the ensemble 664

averaging 〈· · · 〉av represents averaging over impurity config- 665

uration. Generally it is a complicated problem [56] which 666

can be simplified by neglecting vertex corrections allowing 667

to replace averaged product of resolvents G(z) by product of 668

their averaged operators 669

〈G(z)〉av ≡ 1

z − Heff (z)
, (A4)

where z is the complex energy variable. It has the full crystal 670

symmetry independently on the character of the scattering 671

events, asymmetric scattering is not an exception. Effective 672
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Hamiltonian Heff (z) is non-Hermitian and energy dependent673

but it is analytic in both complex half-planes, Heff (z∗) =674

H+
eff (z). Its standard form reads675

Heff (z) = H0 + �(z) , �(z) = �(z) − i�(z), (A5)

where H0 = 〈H〉av represents virtual crystal and �(z) is the676

energy-dependent self-energy determined by the coherent po-677

tential approach [57], as the best known theory to estimate678

effect of alloying.679

The inverse value of its imaginary part represents a fi-680

nite electron life-time τ . Note that matrix elements of �(z)681

are diagonal in representation given by eigenfunctions of682

the Hamiltonian H0. Using this representation and neglecting683

�(η) entering one of the δ operators in Eq. (A1), we get684

σii(μ) = e2h̄
∑
n,�k

|〈n, �k|vi|n, �k〉|2
�n,�k (μ)

δ(E ′
n,�k (μ) − μ), (A6)

where E ′
n,�k (η) = E (0)

n,�k + �n,�k (η), n and �k denotes band num-685

ber and wave vector, respectively. This expression coincides686

with the solution of the Boltzmann equation for longitudinal687

conductivity.688

Neglecting vertex corrections in Eq. (A2) for the Hall con-689

ductivity, using equality dG(η)/dη = −G2(η) and having in690

mind that velocity matrix elements are diagonal in �k we get691

σi j (μ) = e2h̄

π

n �=n′∑
n,n′

∑
�k

μ∫
−∞

�n,�k (η)

[η − E ′
n,�k (η)]2 + �2

n,�k (η)

×2 Im

{
〈n, �k|vi|n′, �k〉〈n′, �k|v j |n, �k〉
[η − E ′

n′,�k (η) + i�n′,�k (η)]2

}
dη. (A7)

With decreasing impurity concentration � decreases as well692

and the dominant contributions are those for which η-values693

are close to E ′
n,�k (η). If there is no band overlap the en-694

ergy difference η − E ′
n′,�k (η) ≈ E ′

n,�k (η) − E ′
n′,�k (η) dominates695

the denominator value and �n′,�k (η) can be neglected if it is696

much smaller than the energy difference. This approach thus697

excludes significant effect of the decreasing impurity concen-698

tration to the Hall conductivity. This conclusion is general699

since in the pure crystal limit vertex corrections are vanishing700

in principle. Note that in this limit Eq. (A7) gives finite values701

even in the case of the band overlap [38,42,44].702

Evaluation of the anomalous Hall conductivity for the con-703

sidered ideal network model (� → 0) is straightforward since704

the energy spectrum is for given spin subsystem composed of705

nonoverlapping bands and we have706

σxy(μ) = e2h̄
m �=m′∑
m,m′

∑
�k

f0(Em,�k − μ)

×2Im

{
〈m, �k|vx|m′, �k〉〈m′, �k|vy|m, �k〉

[Em,�k − Em′,�k]2

}
, (A8)

where f0(E − μ) denotes Fermi-Dirac distribution. Eigenen-707

ergies Em,�k are functions of the dimensionless δ�k defined by708

Eq. (7) and velocity operator does not include spin-orbit term709

because of the one-dimensional character of electron orbitals,710
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FIG. 7. Intrinsic anomalous Hall conductivity as function of the
dimensionless parameter δμ ∼ √

μ for several values of |t |2 (α > 0).

�v = −ih̄ �∇�r/m0. Contributions for m − m′ = ±2 vanish be- 711

cause periodicity of wave function amplitudes. The dominant 712

contribution originates in elements with m − m′ = ±1. 713

Assuming anticlockwise motion of electrons on circular or- 714

bitals (δ > 0) the obtained anomalous Hall conductivities are 715

shown in Fig. 7 for several values of the transition probability 716

|t |2. Note that their dependence on dimensionless parameter 717

δμ ∼ √
μ is the same for all bands. Increase of |t |2 above 0.5 718

changes sign of the orbital momentum since orbiting of elec- 719

trons around interstitial positions becomes dominant. Their 720

average radius is smaller than that for circular orbitals leading 721

to smaller value of the orbital momentum. Except of the sign 722

change the lower values of the Hall conductivity can thus be 723

expected. 724

For opposite direction of the orbital motion, δ → −δ, 725

representing subsystem of the opposite spin orientation the 726

anomalous Hall conductivity changes its sign. Resulting Hall 727

conductivity is given by the sum of both subsystem conduc- 728

tivities and its nonzero value can thus only appear if the spin 729

band degeneracy is removed. 730

To get longitudinal conductivity the simplest approach 731

reducing effect of the disorder to an energy-dependent imagi- 732

nary part �(μ) of the self-energy will be used 733

σ0(μ) = e2h̄
∑

�k
δ(E�k − μ)

�(μ) |vx(�k)|2
(E�k − μ)2 + �2(μ)

= e2

h

1

2πγ (μ)

∮
F.S.

∣∣∣∣dδ�k
dkx

∣∣∣∣
2 dS�k√∣∣∣ dδ�k

dkx

∣∣∣2
+

∣∣∣ dδ�k
dky

∣∣∣2
, (A9)

where dimensionless parameter γ (μ) relates to �(μ) as fol- 734

lows: 735

�(μ) ≡ 4h̄2δμ

m0
γ (μ). (A10)

It has good physical meaning if its value is compared with the 736

bandwidth represented by the range of available δ values. 737
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