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An effective model of the hexagonal (NiAs-structure) manganese telluride valence band in the
vicinity of the A-point of the Brillouin zone is derived. It is shown that while for the usual an-
tiferromagnetic order (magnetic moments in the basal plane) band splitting at A is small, their
out-of-plane rotation enhances the splitting dramatically (to about 0.5 eV). We propose extensions
of recent experiments (Moseley et al., Phys. Rev. Materials 6, 014404) where such inversion of mag-
netocrystalline anisotropy has been observed in Li-doped MnTe, to confirm this unusual sensitivity
of a semiconductor band structure to magnetic order.

I. INTRODUCTION

Electronic structure of crystalline semiconductors can
be treated by various methods which differ greatly in
their computational cost.1 Among ab initio methods,
GW is one of the most advanced approaches yet a nu-
merically rather expensive one.2 A widely-used alterna-
tive is the density functional theory (DFT) where the
speed comes at the cost of worse performance (even if
there are various approaches to mitigate deficiencies such
as too small gaps) and yet faster options are available,
of which tight-binding approaches3 and k ·p models4 will
be of interest here. Such effective models need material
parameters (such as on-site energies or hopping ampli-
tudes) as an input which can sometimes be of advantage
because they can be adjusted to fit experiments.

An archetypal example of an effective model is the
Kohn-Luttinger Hamiltonian5 which has a wide range of
applications to non-magnetic materials, including silicon
and III-V semiconductors with Γ8 manifold at the top of
the valence band (VB). Magnetism adds a new twist: for
Mn-doped GaAs, the host is described by this Hamilto-
nian and the effect of ferromagnetic ordering is captured

by a kinetic pd exchange term ∝ ~̂s · ~S where ~̂s is the spin

operator (of the VB holes) and ~S is the classical spin rep-
resenting the Mn magnetic moments (usually treated on
the mean-field level). Such description of ferromagnetic
semiconductors6,7 has been employed extensively in the
context of spintronics8 and now that antiferromagnetic
spintronics9 has become an active field, we hereby wish
to contribute to its progress by presenting an effective
model of hexagonal (NiAs-structure) MnTe which is a
well-established antiferromagnetic semiconductor, as ex-
emplified by its T = 0 band structure in Fig. 1, with
a relatively high (≈ 310 K) Néel temperature. Typical
samples, both bulk and layers exhibit p-type conductiv-
ity and we will therefore focus on its valence band (VB).

Magnetic structure of MnTe was established10 long ago
(see Fig. 2) with a strong anisotropy favouring in-plane
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FIG. 1. Sketch of the atomic and possible magnetic structures
of antiferromagnetic hexagonal MnTe. (a) In-plane/c plane (ground
state) and (b) out-of-plane/c-axis (hard axis) orientation of the
magnetic moments of Mn with the Néel vector L⃗ along ⟨11̄00⟩ and
⟨0001⟩ are shown. The hexagonal basal plane, i.e., the c plane is
indicated by a gray plane, while red, green, and blue arrows show the
directions of the unit cell axes.

InP(111) [7], and Al2O3(0001) [16,25,26] substrates as well as
on amorphous Si(111)/SiO2 [27]. Due to lattice and thermal
expansion coefficient mismatch between α-MnTe and the
substrates, films will experience strain that may affect the mag-
netic properties such as MAs. For example [28], the dilute
magnetic semiconductor (Ga,Mn)As is known to have an
in-plane MA under compressive strain and an out-of-plane MA
for tensile strain under suitable conditions. Here, we study the
MAs in MnTe on different substrates, which cause different
strain states. The knowledge of the easy axis directions
is crucial for transport phenomena modeling, which has
so far relied only on assumptions [7]. As far as the easy
axis directions are concerned, we confirm these assumptions
using DFT+U calculations combined with experiments. Using
magnetotransport, magnetometry, and neutron diffraction, we
determine the easy axes to be along ⟨11̄00⟩ and show in what
respect MAs are sensitive to epitaxy-induced strain.

The paper is organized as follows. After introduction of
the results of DFT+U calculations in Sec. II, we describe our
samples structure and basic magnetometry characterization
in Sec. III. Section IV presents our neutron diffraction
experiments and Sec. V complementary magneto-transport
studies. Further magnetometry experiments determining the
spin-flop field are presented in Sec. VI. Finally, we conclude
in Sec. VII.

II. MAGNETIC ANISOTROPY CALCULATIONS

The magnetic anisotropy energy (MAE) in antiferromag-
nets comprises two main contributions: the dipole term and the
magnetocrystalline anisotropy (MCA). In order to calculate
the latter, we use the relativistic version of the rotationally
invariant DFT+U method [29], which takes into account
spin-orbit coupling, and nondiagonal in spin contributions
into the occupation matrix. The full-potential linearized
augmented plane-wave (FLAPW) [30] basis is used in the
self-consistent total energy calculations. We use U = 4 eV
and J = 0.97 eV parameters taken from a similar compound of
manganese [31].

The dipole term is a classical contribution from dipole-
dipole interaction of localized magnetic moments [32]. For

coherent rotations of the two AFM sublattices which strictly
maintain their antiparallel alignment, e.g., one that interpolates
between the two magnetic configurations shown in Fig. 1, the
dipole term depends in general on the rotation angle. This
dependence is absent for cubic crystals but present in MnTe
since the crystal symmetry of the NiAs structure is lower.
This causes the energy of the dipole-dipole interaction of the
structure in Fig. 1(b), with magnetic moments aligned along
the c-axis, to be higher than that of any structure with magnetic
moments oriented in the hexagonal basal plane (c plane), e.g.,
Fig. 1(a).

For lattice constants a = 0.4134 nm and c = 0.6652 nm
[experimentally determined at 5 K / see Sec. III, Figs. 3(a) and
3(b)], we obtain that Mn atoms carry the magnetic moments
of 4.27µB (spin MS = 4.25µB plus orbital ML = 0.02µB

magnetic moments). The energy difference of the two different
configurations shown in Fig. 1 from the dipole term Edipole

is calculated to be 0.135 meV per unit cell, favoring the
alignment in the c plane. This contribution to MAE is only
weakly dependent on strain or relevant lattice distortions and
gives no anisotropy within the c plane.

The DFT+U calculations of the MCA are much more
involved but, rather generally, a clear picture emerges of mod-
erately large out-of-plane anisotropy and small anisotropies
within the c plane. For the lattice constants quoted above,
an energy difference between configurations in Figs. 1(a) and
1(b) of 0.11 meV per unit cell is calculated again favoring
the alignment in the c plane. The anisotropy within the c
plane, defined as the energy difference between the magnetic
structure in Fig. 1(a) and one with magnetic moments rotated
by 90◦ in the c plane, is small and at the edge of the accuracy
(10 µeV) of the calculation in this particular case.

To model actual conditions in our experiments, we perform
zero-temperature calculations of EMCA for various choices
of lattice constants (see Table I). Adding the MCA to the
dipole term, we can conclude that (a) the out-of-plane MAE is
typically between 0.2 and 0.3 meV per unit cell (two formula
units), favoring the moments within the c plane, and (b) the
anisotropy within the c plane is typically an order of magnitude
smaller. For calculations under changing c/a ratio shown in
Table I, the MAE within the c plane is always smaller than
the out-of-plane MAE (even for the extreme choice of lattice
constants with c = 0.689 nm, see Table I, the latter is greater
than 0.1 meV per unit cell), the MAE within the c plane exhibits
no clear trend upon unit cell deformation and it even changes
sign. In order to unambiguously determine anisotropies
within the c planes, it is therefore advisable to resort to
experiments.

TABLE I. The total MAE, Edipole + EMCA in meV per unit cell for
different lattice parameters. The Néel vector directions with respect
to the crystal are given as subscript of the energies, showing the
preferential magnetic moment orientation in the c plane.

a (nm) 0.408 0.411 0.414 0.417 0.408 0.408
c (nm) 0.670 0.670 0.670 0.670 0.650 0.689
E[0001] − E[112̄0] 0.20 0.24 0.23 0.22 0.28 0.12
E[11̄00] − E[112̄0] − 0.01 0.03 0.01 0.04 0.05 − 0.01
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FIG. 1. Band structure of MnTe calculated by QSGW. Note
the competing maxima of the valence band at Γ and A points.

orientation of the magnetic moments and a weak resid-
ual anisotropy within the plane.11 Recently, Moseley et
al.13 have found by neutron diffraction that, upon doping
by lithium, the magnetic moments rotate out of plane.
They also noticed that, on the level of density of states
(DOS), significant changes occur and we use the effective
model to explain how the VB responds to this change of
magnetic order (once spin-orbit interaction is taken into
account). Even if the Mn d-states lie12 deep below the
Fermi level EF seem too remote from the VB top, which
is built dominantly from p-Te orbitals, we demonstrate
that the combination of MnTe layered structure and the
spin-orbit interaction (SOI) lead to an unusual sensitivity
of the electronic structure to the orientation of magnetic
moments. In the next Section we discuss the competing
VB maxima and we focus on the one near A-point of the
Brillouin zone (BZ) in Sec. III. We conclude in Sec. IV.
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II. COMPETING VB MAXIMA

Once the SOI is taken into account, there arises a tight
competition between valence band maxima close to A
and Γ points of the BZ, see Fig. 2b. A long-standing
consensus14,15 that the former prevails has recently been
challenged by Yin et al. [18] who claim that the VB top
occurs in the vicinity of Γ point. To improve on the
potentially less accurate DFT approach,18 we employ
the Quasiparticle Self-Consistent GW approximation16

(QSGW). The GW approximation, which is an explicit
theory of excited states is widely used to predict quasi-
particle levels with better reliability than density func-
tionals. QSGW is an optimized form of the GW ap-
proximation, where the starting hamiltonian is gener-
ated within the GW approximation itself, constructed
so that it minimizes the difference between the one-body
and many-body hamiltonians. As a by-product the poles
of the one-body Green’s function coincide with the poles
of the interacting one: thus energy band structures have
physical interpretation as quasiparticle levels, in marked
contrast to DFT approaches where the auxillary hamil-
tonian has no formal physical meaning (in practice La-
grange multipliers of this hamiltonian are interpreted as
quasiparticle levels). In practice QSGW yields high fi-
delity quasiparticle levels in most materials where dy-
namical spin fluctuations are not strong.17

Bulk lattice constants of MnTe at room temperature
are a = 0.414 nm and c = 0.671 nm; we show in Fig. 2d
that for such c/a = 1.621, the VB maximum close to the
A point safely prevails (∆E is the difference between en-
ergy of local VB maxima close to Γ and that close to A).
Most experiments nowadays are performed with thin
films of MnTe, however, and then lattice constants de-
pend on the choice of substrate. Temperature-dependent
data in Fig. 3 of Ref. 11 suggest that while samples grown
on SrF2 surface still fall into the same class, low temper-
atures may effectively push the VB maxima close to the
Γ point up and in particular, samples grown on the InP
substrate may exhibit the inverted alignment of the VB
maxima.

Comparing the present QSGW results to DFT calcu-
lations of Ref. 18, several remarks are in order. Lat-
tice constants used in that reference (which correspond
to c/a = 1.57) have been obtained by structure opti-
misation in DFT rather than from experimental data.
Next, the hybrid functional HSE06 may avoid the known
problem of underestimated gaps in DFT but this in it-
self does not guarantee a reliable description of finer de-
tails of the band structure (such as VB maxima align-
ment). Predicted valence and conduction bands are
more uniformly reliable in GW than in density-functional
methods. Moreover QSGW surmounts the problematic
starting-point dependence that plagues the usual im-
plementations of the GW approximation and therefore
QSGW is a better choice for our study than DFT. Re-
garding the subsequent derivation of an effective model,18

we note as follows. The kz = 0 approximation is used;
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FIG. 1. Sketch of the atomic and possible magnetic structures
of antiferromagnetic hexagonal MnTe. (a) In-plane/c plane (ground
state) and (b) out-of-plane/c-axis (hard axis) orientation of the
magnetic moments of Mn with the Néel vector L⃗ along ⟨11̄00⟩ and
⟨0001⟩ are shown. The hexagonal basal plane, i.e., the c plane is
indicated by a gray plane, while red, green, and blue arrows show the
directions of the unit cell axes.

InP(111) [7], and Al2O3(0001) [16,25,26] substrates as well as
on amorphous Si(111)/SiO2 [27]. Due to lattice and thermal
expansion coefficient mismatch between α-MnTe and the
substrates, films will experience strain that may affect the mag-
netic properties such as MAs. For example [28], the dilute
magnetic semiconductor (Ga,Mn)As is known to have an
in-plane MA under compressive strain and an out-of-plane MA
for tensile strain under suitable conditions. Here, we study the
MAs in MnTe on different substrates, which cause different
strain states. The knowledge of the easy axis directions
is crucial for transport phenomena modeling, which has
so far relied only on assumptions [7]. As far as the easy
axis directions are concerned, we confirm these assumptions
using DFT+U calculations combined with experiments. Using
magnetotransport, magnetometry, and neutron diffraction, we
determine the easy axes to be along ⟨11̄00⟩ and show in what
respect MAs are sensitive to epitaxy-induced strain.

The paper is organized as follows. After introduction of
the results of DFT+U calculations in Sec. II, we describe our
samples structure and basic magnetometry characterization
in Sec. III. Section IV presents our neutron diffraction
experiments and Sec. V complementary magneto-transport
studies. Further magnetometry experiments determining the
spin-flop field are presented in Sec. VI. Finally, we conclude
in Sec. VII.

II. MAGNETIC ANISOTROPY CALCULATIONS

The magnetic anisotropy energy (MAE) in antiferromag-
nets comprises two main contributions: the dipole term and the
magnetocrystalline anisotropy (MCA). In order to calculate
the latter, we use the relativistic version of the rotationally
invariant DFT+U method [29], which takes into account
spin-orbit coupling, and nondiagonal in spin contributions
into the occupation matrix. The full-potential linearized
augmented plane-wave (FLAPW) [30] basis is used in the
self-consistent total energy calculations. We use U = 4 eV
and J = 0.97 eV parameters taken from a similar compound of
manganese [31].

The dipole term is a classical contribution from dipole-
dipole interaction of localized magnetic moments [32]. For

coherent rotations of the two AFM sublattices which strictly
maintain their antiparallel alignment, e.g., one that interpolates
between the two magnetic configurations shown in Fig. 1, the
dipole term depends in general on the rotation angle. This
dependence is absent for cubic crystals but present in MnTe
since the crystal symmetry of the NiAs structure is lower.
This causes the energy of the dipole-dipole interaction of the
structure in Fig. 1(b), with magnetic moments aligned along
the c-axis, to be higher than that of any structure with magnetic
moments oriented in the hexagonal basal plane (c plane), e.g.,
Fig. 1(a).

For lattice constants a = 0.4134 nm and c = 0.6652 nm
[experimentally determined at 5 K / see Sec. III, Figs. 3(a) and
3(b)], we obtain that Mn atoms carry the magnetic moments
of 4.27µB (spin MS = 4.25µB plus orbital ML = 0.02µB

magnetic moments). The energy difference of the two different
configurations shown in Fig. 1 from the dipole term Edipole

is calculated to be 0.135 meV per unit cell, favoring the
alignment in the c plane. This contribution to MAE is only
weakly dependent on strain or relevant lattice distortions and
gives no anisotropy within the c plane.

The DFT+U calculations of the MCA are much more
involved but, rather generally, a clear picture emerges of mod-
erately large out-of-plane anisotropy and small anisotropies
within the c plane. For the lattice constants quoted above,
an energy difference between configurations in Figs. 1(a) and
1(b) of 0.11 meV per unit cell is calculated again favoring
the alignment in the c plane. The anisotropy within the c
plane, defined as the energy difference between the magnetic
structure in Fig. 1(a) and one with magnetic moments rotated
by 90◦ in the c plane, is small and at the edge of the accuracy
(10 µeV) of the calculation in this particular case.

To model actual conditions in our experiments, we perform
zero-temperature calculations of EMCA for various choices
of lattice constants (see Table I). Adding the MCA to the
dipole term, we can conclude that (a) the out-of-plane MAE is
typically between 0.2 and 0.3 meV per unit cell (two formula
units), favoring the moments within the c plane, and (b) the
anisotropy within the c plane is typically an order of magnitude
smaller. For calculations under changing c/a ratio shown in
Table I, the MAE within the c plane is always smaller than
the out-of-plane MAE (even for the extreme choice of lattice
constants with c = 0.689 nm, see Table I, the latter is greater
than 0.1 meV per unit cell), the MAE within the c plane exhibits
no clear trend upon unit cell deformation and it even changes
sign. In order to unambiguously determine anisotropies
within the c planes, it is therefore advisable to resort to
experiments.

TABLE I. The total MAE, Edipole + EMCA in meV per unit cell for
different lattice parameters. The Néel vector directions with respect
to the crystal are given as subscript of the energies, showing the
preferential magnetic moment orientation in the c plane.

a (nm) 0.408 0.411 0.414 0.417 0.408 0.408
c (nm) 0.670 0.670 0.670 0.670 0.650 0.689
E[0001] − E[112̄0] 0.20 0.24 0.23 0.22 0.28 0.12
E[11̄00] − E[112̄0] − 0.01 0.03 0.01 0.04 0.05 − 0.01

214418-2

FIG. 2. Top of the valence band studied by QSGW and (c)
crystal structure of MnTe. Panels (a,b) show the difference
between SOI ignored and included and (d) gives for the latter
case the energy difference between VB maximum in Γ and
A depending on the crystal lattice parameters. Negative ∆E
means that the VB maxima around A prevail. Note: 0.414 nm
correspons to 7.81 a.u.

while this would be appropriate for very thin layers (say
5 nm), present experiments11 are more likely behaving
like 3D bulk. Also, the effective model (1) in Ref. 18 as-
sumes a fixed direction of the magnetic moments; to plot
the experimentally relevant ’angular sweeps’, the current
direction rather than Néel vector is rotated which is, how-
ever, not the actual experimental protocol. For systems
where only the non-crystalline anisotropic magnetoresis-
tance (AMR) occurs,20 the two protocols are equivalent
but measurements in the Corbino geometry11 prove this
assumption false. Being aware of these issues, we strive
to derive an effective model in the following which cap-
tures the dependence on magnetic moments direction.

A proper symmetry analysis of the crystal structure
of MnTe provides the non-symmorphic space group D4

6h.
Once AF ordering is included the Mn atoms must be
treated as inequivalent since each Mn layer would have
spins pointing in the opposite direction as shown in
Fig. 2c for in-plane spins. Hence, the symmetry group
is reduced from D6h to D3d without SOI (see for instance
Sandratskii et al.21). Furthermore, the symmetry group
would also depend on the interplay of SOI and choice of
the AF direction since spins pointing in different direc-
tions behave differently under symmetry operations. For
example, in the out-of-plane AF configuration, the sym-
metry remains D3d while for in-plane AF, either along
[101̄0] or [112̄0] directions, the symmetry group is re-
duced C2h. Besides the conceptual analysis of the sym-
metries, independent calculations using the WIEN2k and
Quantum Espresso ab initio packages also provide the
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same symmetry groups discussed above. Thus, for the
particular choice of in-plane AF the D2h point group dis-
cussed by Yin et al. should be replaced by C2h.

III. EFFECTIVE MODELS

Several attempts to describe the electronic structure
of α-MnTe in a simplified way have been made so far.
Here, the k · p approach4,22 is a common choice for
semiconductors23 especially if only high-symmetry points
in the BZ are of interest. Such a model for the VB top in
A point was derived more than 40 years ago21 and later
extended to a tight-binding scheme.24 The latter allows
for the description of the energy bands over the whole
BZ but neither of these models allows to analyse the de-
pendence of electronic structure on the directions on Mn
magnetic moments. In the perfectly ordered AFM phase
(as in Fig. 2d) and without SOI, the Bloch functions at
the top of the valence band in the A point transform
as the two-dimensional irreducible representation Eg or
(Γ+

3 ) of the the D3d. Including corrections up k2 and no
SOI (essentially given by Eq. 2 in Sandratskii et al.21)
one would obtain the following Hamiltonian:

Hkp,2×2 =

(
ak2x + bk2y + ck2z (a− b)kxky

(a− b)kxky bk2x + ak2y + ck2z

)
. (1)

The parameters25 a, b, c (in units of h̄2/2m0) correspond
to (anisotropic) effective masses and can be fitted to the
ab initio calculations in Fig. 2(a). Note that while MnTe
is a hexagonal crystal, this model has a continuous ro-
tation symmetry around the z-axis. From the point of
view of magnetism, this is a consequence of neglecting the
spin-orbit interaction. Once SOI is included, the band
dispersion will depend on the direction of magnetic mo-

ments. On the other hand, if higher order terms in ~k were
included, the symmetry would be lowered to a hexagonal
one (even w/o SOI). When kz = 0, one of the eigenstates

of this matrix will be parallel to ~k while the other will be

orthogonal to ~k.
The derivation of Eq. (1) is based solely on symmetry

arguments and entails neither any explicit information
about orbital composition of the corresponding Bloch
states nor any parametric dependence on magnetic or-
der. In the following, we therefore first describe a toy
model capturing the essence of interplay between mag-
netism and orbital degrees of freedom and next, we make
use of these insights to derive a realistic model of MnTe.

A. Toy model

Consider a 1D chain of alternating nonmagnetic (A)
and magnetic (B) atoms depicted in Fig. 3 where only
the nearest neighbours couple (the amplitude being t).
The single-orbital-per-site tight-binding Hamiltonian as-
suming that the B-atom orbitals have on-site energies

T

TT

B B

B

m

Figure 6: Symmetry unit cell of MnTe with AF alignement along 10-10 direction.

Analyzing the effect of the symmetry operations of D6h to the spins, already excluding the operations that are
combined with translations:

• E: allowed as it is

• 2C3: forbidden, the final spin is tilted

• 3C 0
2: only one rotation, with axis parallel to the AF aligment

• i: allowed as it is

• 2S3: forbidden, the final spin is tilted

• 3�d: only one reflection, with mirror perpendicular to the AF aligment

The resulting symmetry group is C2h!
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atoms per unit cell.
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Here, the single orbital (times two for spin) on B-atoms represents the Mn d-states and the
two Te atoms are explicitly distinguished by a subscript. Magnetic moment of Mn is modelled by
a �~S · ~� term and to start with, assume the unit vector ~S k ẑ. Hamiltonian, in the spin-up basis,
reads
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and taking any other direction of ~S results only in the corresponding rotation of the spin part;
we denote these states by |~S, 1i and |~S, 2i. Note that any linear combination ↵|~S, 1i+�|~S, 2i will

always have expectation value of spin k ~S.
Since this property is not sensitive to the exchange splitting � (as long as it is finite), it

suggests the following approach to the e↵ective description of real MnTe (valence band top in A):

• start with the 2 ⇥ 2 Hamiltonian (~k · ~p) derived by Paulo

• add the pz orbital at ’far-away’ level ✏z, call this H3

1

𝐻↑=
𝑒𝑑−∆𝑡

𝑡0
0𝑡𝑒−𝑖𝑘𝑎
𝑡0

0𝑡
𝑡𝑒𝑖𝑘𝑎0

𝑒𝑑+∆𝑡
𝑡0

Model results∆=0

∆>0

�<latexit sha1_base64="84pbNB6i6iM4iGdq3NTsYxV1jp4=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FPXisYGuhDWWznbRrN5uwuxFK6H/w4kERr/4fb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMr2f+wxMqzWN5byYJ+hEdSh5yRo2V2r0bFIb2yxW36s5BVomXkwrkaPbLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5tdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzVh3c+4TFKDki0WhakgJiaz18mAK2RGTCyhTHF7K2EjqigzNqCSDcFbfnmVtGtV76Jau7usNOp5HEU4gVM4Bw+uoAG30IQWMHiEZ3iFNyd2Xpx352PRWnDymWP4A+fzB17YjvY=</latexit>

✏d<latexit sha1_base64="Hlod/R+InUNAXrIKNuJe238f/Jg=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2A9sQ9lsJu3SzSbsboRS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBVcG9f9dgobm1vbO8Xd0t7+weFR+fikrZNMMWyxRCSqG1CNgktsGW4EdlOFNA4EdoLx7dzvPKHSPJEPZpKiH9Oh5BFn1FjpsY+p5iKRg3BQrrhVdwGyTrycVCBHc1D+6ocJy2KUhgmqdc9zU+NPqTKcCZyV+pnGlLIxHWLPUklj1P50cfGMXFglJFGibElDFurviSmNtZ7Ege2MqRnpVW8u/uf1MhPV/SmXaWZQsuWiKBPEJGT+Pgm5QmbExBLKFLe3EjaiijJjQyrZELzVl9dJu1b1rqq1++tKo57HUYQzOIdL8OAGGnAHTWgBAwnP8ApvjnZenHfnY9lacPKZU/gD5/MHw6mQ8Q==</latexit>

ka = ⇡
<latexit sha1_base64="WmGQwb9dD10o+CjSsJ7mGmz0Bow=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexWwV6EghePFWwttEvJptk2NpssSVYoS/+DFw+KePX/ePPfmLZ70NYHA4/3ZpiZFyaCG+t536iwtr6xuVXcLu3s7u0flA+P2kalmrIWVULpTkgME1yyluVWsE6iGYlDwR7C8c3Mf3hi2nAl7+0kYUFMhpJHnBLrpPaYXPcS3i9XvKo3B14lfk4qkKPZL3/1BoqmMZOWCmJM1/cSG2REW04Fm5Z6qWEJoWMyZF1HJYmZCbL5tVN85pQBjpR2JS2eq78nMhIbM4lD1xkTOzLL3kz8z+umNqoHGZdJapmki0VRKrBVePY6HnDNqBUTRwjV3N2K6YhoQq0LqORC8JdfXiXtWtW/qNbuLiuNeh5HEU7gFM7BhytowC00oQUUHuEZXuENKfSC3tHHorWA8plj+AP0+QNS247u</latexit>

ka = �⇡
<latexit sha1_base64="l3+Foij2CoCIVeorLgyVOuq13E4=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBi2W3FexFKHjxWMF+QLuUbJptw2azIckKZemP8OJBEa/+Hm/+G9N2D9r6YODx3gwz8wLJmTau++0UNja3tneKu6W9/YPDo/LxSUcnqSK0TRKeqF6ANeVM0LZhhtOeVBTHAafdILqb+90nqjRLxKOZSurHeCxYyAg2VupG+PZqINmwXHGr7gJonXg5qUCO1rD8NRglJI2pMIRjrfueK42fYWUY4XRWGqSaSkwiPKZ9SwWOqfazxbkzdGGVEQoTZUsYtFB/T2Q41noaB7YzxmaiV725+J/XT03Y8DMmZGqoIMtFYcqRSdD8dzRiihLDp5Zgopi9FZEJVpgYm1DJhuCtvrxOOrWqV6/WHq4rzUYeRxHO4BwuwYMbaMI9tKANBCJ4hld4c6Tz4rw7H8vWgpPPnMIfOJ8/vY2PJQ==</latexit>

FIG. 3. The toy model: NiAs structure (left) reduced to a
one-dimensional chain of magnetic (B) and non-magnetic (A)
atoms. Its band structure is shown for t = ∆ = 1.

εd ±∆ (where 2∆ is the exchange splitting) reads

H1(∆) =




0 t 0 te−ika

t εd + ∆ t 0
0 t 0 t

teika 0 t εd −∆


 (2)

in the basis of Bloch states with momentum k so that ka
ranging from −π to π parametrises the BZ.

The toy model described by H1 can be treated analyti-
cally (see Appendix) and there are two main observations
to make at this point. First, even if ∆� εd there opens
a gap in the ’VB states’ at the BZ edge. Size of the gap is
parametrised by ∆. This allows for the insight that, inas-
much the atom Ab is sandwiched between spin-up (left)
and spin-down neighbours (right), where the exchange
coupling is ∆ and −∆, their effect on the A-band (blue
in Fig. 3 at the bottom right panel) does not average out
to zero. An even more important insight concerns the
eigenstates of H1 at ka = ±π.

At this point, we should point out that H1 of (2) in
fact only describes one of the two spin species; let us
denote it as up-spin and correspondingly, H1,↑ = H1(∆).
The two states at ka = ±π split by nonzero ∆ turn out
to be (|a〉 ± |b〉)⊗ | ↑〉 where |a〉 and |b〉 refer to orbitals
of Aa and Ab atoms, respectively. For the spin-down
sector, H1,↓ = H1(−∆) which leads to identical band
structure as in Fig. 3 whose eigenstates are nevertheless
not the same as for H1,↑. The state degenerate with
(|a〉 ± |b〉) ⊗ | ↑〉 is (|a〉 ∓ |b〉) ⊗ | ↓〉 and thus, we arrive
at the conclusion that, at the BZ edge, the VB states in
our toy model come in two pairs (split by the gap) and
without loss of generality, we now focus on the subspace
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spanned by the pair

(|a〉+ |b〉)⊗ |↑〉, (|a〉 − |b〉)⊗ |↓〉. (3)

Unlike the pair |↑〉, |↓〉 (without any orbital part), any
linear combination of the two states in (3) has a zero
expectation value of transversal spin operators σ̂x, σ̂y.

This can also be restated as 〈~̂σ〉||z, or, easily generalised
to the statement that the states (3) have the (expectation
value of) spin parallel to the magnetic moments of atoms
B. In this way, the direction of magnetic moments of the
atoms remote in energy from the VB top influences the
current-carrying states close to the Fermi energy. In the
following, we denote the direction of spin in the basis

state (|a〉 + |b〉) ⊗ |↑〉 by ~L and it can be understood as
the Néel vector.

B. Extension to MnTe crystal

The previous argument can be extended to Te px, py
states which form the VB top near A. For reasons to be
explained later, we also include the remote pz levels (in
A, they are ≈ 3 eV below the VB top, see Fig. 2a) whose
dispersion is dropped at this level of approximation. We
will measure energy from the VB top and with EF being
the Fermi energy. We recall Eq. (1) and take the param-
eters a, b, c from the fit to ab initio calculations without
SOI.

Denoting the position of pz orbitals of tellurium by ez (ez < 0, |ez/EF | � 1), the full description of the VB close
to A is provided by a block-diagonal 6× 6 matrix

Hkp =




ak2x + bk2y + ck2z (a− b)kxky 0
(a− b)kxky bk2x + ak2y + ck2z 0

0 0 ez
ak2x + bk2y + ck2z (a− b)kxky 0

(a− b)kxky bk2x + ak2y + ck2z 0
0 0 ez




(4)

and the first and second 3× 3 block is written in the basis (3) whereas inside the blocks, the basis vectors are simply

|px〉, |py〉, |pz〉. Since the matrix (4) does not explicitly depend on ~L (only its basis vectors are), we arrive at the
conclusion that (when SOI is ignored) the band structure does not depend on the direction of Mn magnetic moments.

In the limit |ez| → ∞, the full model (4) breaks down into two decoupled 2 × 2 blocks (1); since we now have a
microscopic understanding of the basis, one which contains the information about direction of Mn magnetic moments,
the SOI can now be evaluated. Also, the usefulness of finite ez will then become clear.

C. Spin-orbit interaction

We are now in a position to explain the following be-
haviour of band structure calculated by relativistic ab
initio methods. In panel (b) of Fig. 2, we could have
already observed the bands split by SOI and, compared
to band widths, such splittings were small. Those cal-

culations were done assuming ~L ‖ x and, at this level of

detail, depend only little on the direction of ~L as long

as ~L ⊥ z which is compatible with MnTe being an easy-

plane material.11 However, when ~L ‖ z is assumed in
calculations, see Fig. 4, band splittings become sizable.
Restricting our discussion to Te px, py orbitals combined
into the states (3), this behaviour is linked to the direc-

tionality of Hso = λ~l · ~σ evaluated in the corresponding
basis:

Hso,2×2 =

(
0 iλ cos θ

−iλ cos θ 0

)
(5)

where ~L·ẑ = cos θ and ~l is the orbital angular momentum
operator. Clearly, SOI projected to the ’small’ subspace
of orbitals from which the top of the VB is composed,

completely vanishes when Mn magnetic moments are in-

plane, i.e. ~L · ẑ = 0. The small band splittings at A
seen in Fig. 2(b) come from states lying further away in
energy, i.e. finite |ez| as discussed in the appendix. As

soon as ~L acquires an out-of-plane component, splittings
∝ λ are possible.

IV. DISCUSSION AND CONCLUSIONS

The minimal description of the valence band in MnTe
comprises two identical copies of terms (1) and (5) added;
it means that all bands remain double degenerate at this
level of approximation. Higher order terms are neces-
sary to lift this degeneracy (which is actually observed
in ab initio calculations along directions of low symme-
try). Splittings occuring at A (nearly absent for in-plane

magnetic moments and ≈ 0.5 eV for ~L ‖ z) are quali-
tatively reproduced using the 6 × 6 model (4) combined

with SOI of the form λ~l · ~σ; a quantitative description
requires, however, anisotropic SOI with λxy/λz ≈ 0.22.

Calculations in Fig. 4 show that the splitting at A is
associated with reduction of band gap in agreement with
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FIG. 4. MnTe band structure for ~L||z.

DFT calculations.13 This implies that not only angular-
resolved photoemission (ARPES) could be used to con-
firm the sensitivity of MnTe band structure to the ori-
entation of Mn magnetic moments but also optical ab-
sorption measurements should reveal signatures of this
effect.
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Appendix A: Analytical results concerning (2)

Toy model (2) can be rearranged into the block form

H =

(
A C
C+ B

)
, C =

(
t te−ika

t t

)

with B = 0 and A diagonal εd ±∆. Downfolded matrix
corresponding to basis |a〉, |b〉 then reads

Heff = − 2εdt
2

ε2d −∆2

(
1 α(k)

α∗(k) 1

)
(A1)

where α(k) = e−ika/2(cos ka+ iδ sin ka) and we assumed
δ = ∆/εd � 1.

Appendix B: More on spin-orbit

Since there’s a small splitting in A also when ~L is in-
plane, we need to consider finite ez in (4) rather than
|ez| → ∞

Next, explain

Hso = λzSzLz + λxy(SxLx + SyLy) (B1)

and give λz = 0.27 eV and λxy = 60 meV; for |ez| → ∞,
the |pz〉 subspace can be ignored and Hso reduces to Eq. 5
with λ = λz. When ez is finite and mag. moments are
in-plane, the splitting is given by λxy.

The off-diagonal blocks in (4) only become non-zero
away from the A point once basis (3) changes and its
two elements are no longer orthogonal.
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