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Intraband and interband spin-orbit torques in noncentrosymmetric ferromagnets
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Intraband and interband contributions to the current-driven spin-orbit torque in magnetic materials lacking
inversion symmetry are theoretically studied using the Kubo formula. In addition to the current-driven fieldlike
torque TFL = τFLm × uso (uso being a unit vector determined by the symmetry of the spin-orbit coupling),
we explore the intrinsic contribution arising from impurity-independent interband transitions and producing an
anti-damping-like torque of the form TDL = τDLm × (uso × m). Analytical expressions are obtained in the model
case of a magnetic Rashba two-dimensional electron gas, while numerical calculations have been performed on
a dilute magnetic semiconductor (Ga,Mn)As modeled by the Kohn-Luttinger Hamiltonian exchange coupled to
the Mn moments. Parametric dependencies of the different torque components and similarities to the analytical
results of the Rashba two-dimensional electron gas in the weak disorder limit are described.
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I. INTRODUCTION

Magnetization dynamics driven electrically by spin-
polarized currents through the spin transfer torque [1–3] has
attracted considerable attention due to its applications in
memory and logic spintronic devices [4,5]. An alternative
mechanism, the spin-orbit torque (SOT), has been recently
proposed as a means to control the magnetization of a
single ferromagnetic [6–8] or even antiferromagnetic [9] layer
without the need of an external spin polarizer. The SOT arises
from the interaction between the nonequilibrium spin density
of carriers and the local magnetization. The nonequilibrium
spin density results from the transfer of angular momentum
between the spin and orbital degrees of freedom of the carriers
[6–8,10–15]. The SOT requires magnetic structures with
strong spin-orbit coupling and inversion symmetry breaking.
Initially observed in epilayers of (Ga,Mn)As dilute magnetic
semiconductors (DMSs) with bulk inversion asymmetry in
their strained zinc-blende crystal [16–18], this effect was soon
widely confirmed in metallic bilayers with structural inversion
symmetry breaking [19–27]. In general, the SOT observed
experimentally possesses two components: a fieldlike torque
TFL = τFLm × uso odd in the magnetization direction m and
an anti-damping-like torque [28] TDL = τDLm × (uso × m)
even in m. Here, uso is a unit vector determined by the
symmetry of the structure and the current direction [29],
and τFL and τDL are the magnitudes of the fieldlike and
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anti-damping-like torque, respectively. These torques are also
commonly referred to as the out-of-plane and in-plane torques,
respectively, with respect to the (m,uso) plane. The direction
of the fieldlike (out-of-plane) and anti-damping-like (in-plane)
torques and their detailed angular dependence [29] depend on
the crystal structure, while their magnitude has been shown to
strongly depend on the materials considered [22–27].

Two main mechanisms have been invoked to explain the
origin of the current-driven torques in noncentrosymmetric
ferromagnets. In the first scenario, the lack of inversion
symmetry enables the inverse spin galvanic effect [30] (ISGE),
i.e., flowing current directly produces a nonequilibrium spin
density δS locally, whose direction is determined by the
symmetry of the spin-orbit coupling. Recently, it has been
proposed that in noncentrosymmetric magnetic materials
this nonequilibrium spin density may exert a torque on the
magnetization [6–8,10] T = (2Jex/�γNm)m × δS. Here, γ is
the gyromagnetic ratio, Nm the density of magnetic moments,
and Jex the exchange coupling (having the dimension of
energy) between the itinerant electron spins and the local
magnetization M = Msm which, in this paper, is assumed
to arise solely from localized magnetic moments μ so that the
saturated magnetization Ms = μNm. This is the essence of the
ISGE-induced SOT. Alternatively, in ferromagnets adjacent to
a heavy metal, it has also been proposed that the spin Hall effect
(SHE) present in the heavy metal may inject a spin-polarized
current into the adjacent ferromagnet, exerting a spin-transfer
torque (STT) on the magnetization [20,21,31].

A current debate aims at identifying the interplay between
these different mechanisms and their impact in terms of
current-driven spin torque. In the simplest physical picture,
SHE induces an anti-damping-like STT, while the SOT reduces
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to a fieldlike torque generated by ISGE [31]. However, it
has been recently proposed that the incomplete absorption
of the SHE-induced spin current by the ferromagnet (or,
equivalently, the nonvanishing imaginary part of the interfacial
spin mixing conductance) may result in a fieldlike STT
component [31]. Similarly, in the context of ISGE-induced
SOT, recent theories have suggested that spin relaxation
and dephasing may also lead to a correction in the SOT
in the form of a anti-damping-like component [11–14].
In Refs. [12] and [13], the anti-damping-like SOT term
arises from the electron-scattering-induced spin relaxation.
In Ref. [31], the semiclassical diffusion formalism was used,
whereas in Refs. [11] and [14], the anti-damping-like SOT is
obtained within a quantum kinetic formalism. It is ascribed
to spin-dependent carrier lifetimes [11] or to a term arising
from the weak-diffusion limit, which in the leading order is
proportional to a constant carrier lifetime [14].

Intriguing material dependence of the SOTs has been
unraveled in various experiments keeping the debate on the
origin of these components open [22–27]. The difficulty in
determining the physical origin of the torques partly lies in the
complexity of the ultrathin bilayer considered, involving both
bulk and interfacial transport in the current-in-plane config-
uration. First-principles calculations have indeed pointed out
the significant sensitivity of the torques to the nature of the
interfaces [32].

In a recent publication, Kurebayashi et al. [33] investigated
the SOT in a bulk DMS. They observed a large anti-damping-
like torque that is not ascribed to the SHE since no adjacent
spin-orbit-coupled paramagnet is present. It was then proposed
that such a torque has a scattering-independent origin in the
Berry curvature of the band structure, in a similar spirit as the
intrinsic SHE was introduced about ten years ago [34,35].

In this paper, we present a systematic theoretical study of
SOTs arising from the ISGE and Berry curvature mechanisms
in a spin-independent relaxation time approximation. We focus
our attention on the current-driven spin-orbit field (called the
SOT field), hso, producing the spin-orbit torque T = M × hso.
This SOT field has an in-plane component of the ISGE
origin [29] hso

‖ = τFLuso [i.e., lying in the (m,uso) plane
and producing an out-of-plane torque] and also an intrinsic
contribution arising from interband transitions. The latter [33]
produces an out-of-plane field of the form hso

⊥ = τDLuso × m
[i.e., lying perpendicular to the (m,uso) plane]. Analytical
expressions are obtained in the model case of a magnetic
Rashba two-dimensional electron gas (2DEG), while numer-
ical calculations are performed on DMSs described by the
kinetic-exchange Kohn-Luttinger Hamiltonian [36]. Paramet-
ric dependencies of the different torque components and simi-
larities to the analytical results of the Rashba two-dimensional
electron gas in the weak disorder limit are described.

II. NONEQUILIBRIUM SPIN DENSITY: INTRABAND AND
INTERBAND CONTRIBUTIONS IN KUBO FORMULA

In the present study, we start from a general single-particle
Hamiltonian

Ĥsys = Ĥ0 + ĤSOC + Ĥex + Vimp(r) − eE · r̂, (1)

where the first term includes the spin-independent kinetic and
potential energies of the particle, the second term denotes
the coupling between the carrier spin and its orbital angular
momentum, and the third one represents the interaction
between the spin of the carrier and the magnetization of the
ferromagnetic system. Below, we refer to these first three
terms as the unperturbed part of the Hamiltonian. The fourth
term is the impurity potential and the fifth term is the electric
field applied through the system. Impurities are treated within
the constant relaxation time approximation while the electric
field is treated within the framework of the linear response
theory. As discussed below, this electric field has two distinct
effects on the electronic system: (i) it modifies the carrier
distribution function from its equilibrium Fermi-Dirac form
and (ii) it distorts the carrier wave functions. The former leads
to intraband ISGE contributions, while the latter is responsible
for the interband (Berry curvature) contribution. To calculate
the SOT field, we evaluate first the nonequilibrium spin density
δS using the Kubo formula

δS = e�

2πV
Re

∑
k,a,b

〈ψka|ŝ|ψkb〉〈ψkb|E · v̂|ψka〉

× [
GR

kaG
A
kb − GR

kaG
R
kb

]
, (2)

where GR
ka = (GA

ka)∗ = 1/(EF − Eka + i�), EF is the Fermi
energy, Eka is the energy dispersion of band a, V is the system
volume, and � is the spectral broadening due to the finite
lifetime of the particle in the presence of impurities. The
Bloch state |ψka〉 in band a can be found by diagonalizing
the unperturbed part of the Hamiltonian in Eq. (1). This
expression contains both intraband (a = b) and interband
(a �= b) contributions to the nonequilibrium spin density.
Numerical results in Sec. IV B are calculated with the above
equation.

In order to understand the numerical results, Eq. (2) can
be rewritten [37] as δS = δSintra + δSinter

1 + δSinter
2 when weak

impurity scattering (namely, small spectral broadening, � →
0) is assumed. The three contributions are

δSintra = 1

V

e�

2�

∑
k,a

〈ψka|ŝ|ψka〉〈ψka|E · v̂|ψka〉

× δ(Eka − EF ), (3)

δSinter
1 = −e�

V

∑
k,a �=b

2Re[〈ψak|ŝ|ψbk〉〈ψbk|E · v̂|ψak〉]

× �(Eka − Ekb)

[(Eka − Ekb)2 + �2]2
(fka − fkb), (4)

δSinter
2 = −e�

V

∑
k,a �=b

Im[〈ψka|ŝ|ψkb〉〈ψkb|E · v̂|ψka〉]

× �2 − (Eka − Ekb)2

[(Eka − Ekb)2 + �2]2
(fka − fkb). (5)

The first term, Eq. (3), is the intraband (a = b) contribution
arising from the perturbation of the carrier distribution function
by the electric field. It is proportional to the momentum
scattering time (τ = �/2�) and is therefore an extrinsic
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FIG. 1. (Color online) (a) Fermi surface of a nonmagnetic
Rashba 2DEG: under the application of an external electric field (thick
gray arrow), a nonequilibrium field δB is produced (thick blue arrow)
that distorts the spin direction out of the plane (red arrows). After
averaging, the spin density vanishes. (b) Fermi surface of a magnetic
Rashba 2DEG in the strong ferromagnetic regime: in this case, since
the spin directions (pink arrows) are initially mostly aligned along
the magnetization m (black arrow), the resulting nonequilibrium spin
density (red arrows) does not vanish and is aligned along z.

contribution to the nonequilibrium spin density (i.e., it is
impurity dependent). The second and third terms are interband
(a �= b) contributions arising from the perturbation of the
carrier wave functions by the electric field. The second term,
Eq. (4), is inversely proportional to the scattering time, i.e.,
it vanishes in the clean limit. The third term, Eq. (5), is
independent of the scattering in the weak scattering limit
(Eka − Ekb 	 �), i.e., it is an intrinsic contribution to the
nonequilibrium spin density. The formalism described above
is the established linear response theory of a translationally
invariant system and has been exploited, for instance, in the
context of the spin Hall [39] and anomalous Hall effects
[40]. Nevertheless, the distinction between these different
contributions is particularly important in the case of the SOT
since these terms give rise to different symmetries of the
torque.

The concept of intrinsic SOT is illustrated in Fig. 1 (see also
the discussion in Ref. [33]). Figure 1(a) represents the Fermi
surface of a nonmagnetic Rashba 2DEG under the application
of an external electric field E. At equilibrium (E = 0) the
spin direction (pink arrows) is tangential to the Fermi surface
(gray circle) at all k points, and the total spin density vanishes.
Applying the electric field accelerates the electrons on the
Fermi surface and they feel a modified spin-orbit field δB ∝
z × ṗ = −z × eE (thick blue arrow) around which the spin
momenta (red arrows) start to precess. For a nonmagnetic
2DEG, the resulting spin density vanishes while a nonzero
transverse spin current is generated by this mechanism. This
is the origin of the intrinsic SHE.

Now, let us consider the case of a magnetic Rashba 2DEG in
the strong ferromagnetic limit [Fig. 1(b)]. At equilibrium, the
spin momenta (pink arrows) are approximately aligned along

the magnetization direction m (thin black arrow) for all k points
of the Fermi surface (gray circle). Under the application of an
external electric field, the spin momenta (red arrows) precess
around δB (thick blue arrow) resulting in a nonvanishing spin
density. Following the convention adopted in Fig. 1(b), the
electric field and equilibrium magnetization are along y, the
displacement of the Fermi surface produces a nonequilibrium
spin-orbit field δB along x, and the spin precession around δB
produces a spin density aligned along z. The latter results in an
additional torque that has a disorder-independent origin [33].
This simple picture can be extended to a more complex spin-
orbit coupling situation and only requires inversion symmetry
breaking in the system.

III. TWO-DIMENSIONAL RASHBA FERROMAGNET

We first apply this formalism to a ferromagnetic 2DEG
in the presence of Rashba spin-orbit coupling [41]. This
system is the prototypical free-electron model for SOTs in
ultrathin ferromagnets embedded between two asymmetric
interfaces [7,8,10]. Although the actual band structure of
magnetic bilayers such as Pt/Co is complex, recent first-
principles calculations indicate that this simple Rashba model
qualitatively captures most of the relevant physics at these
interfaces [32]. This section is therefore developed mostly for
pedagogical purposes in order to make the dependence on
various parameters explicit. The unperturbed Hamiltonian in
Eq. (1) can be rewritten as

Ĥ2DEG = �
2k2

2m∗ − ασ̂ · (z × k) + Jexm · σ̂ , (6)

where k = (kx,ky,0) = k(cos ϕk, sin ϕk,0), α is the Rashba
parameter, and the magnetization direction is m =
(cos ϕ sin θ, sin ϕ sin θ, cos θ ). By diagonalizing Eq. (6), the
eigenvalues and eigenvectors of itinerant electrons are

Ek± = �
2k2

2m∗ ± �k, (7)

�k =
√

J 2
ex + α2k2 + 2αkJex sin(ϕ − ϕk) sin θ, (8)

|k,+〉 =
(

eiγk cos χk

2
sin χk

2

)
; |k,−〉 =

(−eiγk sin χk

2
cos χk

2

)
, (9)

where we have cos χk = Jex cos θ/�k and tan γk =
αk cos ϕk+Jex sin ϕ sin θ

αk sin ϕk−Jex cos ϕ sin θ
. The velocity operator is given by v̂ =

�

m∗ k + α
�

z × σ̂ . Exploiting Eqs. (3)–(5) in the weak exchange
limit (αkF 	 Jex 	 �), the nonequilibrium spin density reads

δSintra = 1

4π

αm∗

�2�
(z × eE), (10)

δSinter
1 = − 1

8π

�

αEF

(z × eE), (11)

δSinter
2 = 1

4π

Jex

αEF

(m · z)eE, (12)

and in the strong exchange limit (Jex 	 αkF 	 �),

δSintra = 1

2π

αm∗

�2�
m × [(z × eE) × m], (13)

134402-3



HANG LI et al. PHYSICAL REVIEW B 91, 134402 (2015)

δSinter
1 = − 1

2π

αm∗�
�2J 2

ex

m × [(z × eE) × m], (14)

δSinter
2 = − 1

2π

αm∗

�2Jex
m × (z × eE). (15)

In summary, the SOT field defined as h = 2JexδS/γ �Nm takes
on the following form in the two limits:

Jex � αkF : h = Jexαm∗

2πγNm�3�

(
1 − �2

α2k2
F

)
(z × eE)

+ J 2
ex

2πγNm�αEF

(m · z)eE, (16)

Jex 	 αkF : h = Jexαm∗

πγNm�3�

(
1 − �2

J 2
ex

)
m×[(z×eE) × m]

+ αm∗

πγNm�3
m × (z × eE). (17)

Three important facts ought to be pointed out. First, the
extrinsic contributions (either intra- or interband) both give
rise to an in-plane SOT field [even in magnetization direction,
lying in the (m,z × E) plane]. The resulting extrinsic torque is
then out of plane and odd in magnetization direction. Second,
the intrinsic contribution [second term in Eqs. (16) and (17)]
only produces a SOT field odd in magnetization direction.
It lies perpendicular to the (m,z × E) plane in the strong
exchange limit [see Eq. (17)]. This term is independent of the
exchange Jex, in sharp contrast with the ISGE-induced SOT
field, while in the weak exchange limit, Eq. (16), it is second
order in exchange and proportional to mzeE. The resulting
intrinsic torque is in plane in the strong exchange limit and
even in magnetization direction. As will be seen in the next
section, the parameters dependence displayed in Eqs. (16) and
(17) is not restricted to the simple case of the Rashba model.
Third, notice that in the strong exchange limit the ratio of
the anti-damping-like to the fieldlike torque is ≈�/Jex. This
dependence is the inverse of what was found in Refs. [11] and
[14] in the diffusive limit and ignoring the interband scattering,
where the ratio between the two torques is governed by Jex/�.
A corrective anti-damping-like torque proportional to �sf/Jex

is also obtained when considering a finite spin-flip relaxation
time τsf = �/�sf [11,14].

In the case of the anomalous Hall effect, which is a
related and better explored phenomenon, the intrinsic con-
tribution dominates over the extrinsic contributions in the
strong scattering limit [40,42]. As a consequence, one is
tempted to anticipate that the intrinsic contribution to the
SOT discussed presently becomes important when strong
momentum scattering is present (such as in disordered Pt/Co
interfaces, for example) and dominates over the corrections
found in Refs. [11,14] in this limit. Nevertheless, these
different contributions have been derived in different limits—
i.e., strong [11,14] versus weak scattering (this work)—and
should be treated on an equal footing for a rigorous comparison
(e.g., see Ref. [42]). Such a comprehensive model is beyond
the scope of the present work.

IV. DILUTE MAGNETIC SEMICONDUCTORS

A. Method

We now extend the previous results beyond the simple fer-
romagnetic 2DEG model with Rashba spin-orbit coupling. We
consider a bulk three-dimensional DMS, such as (Ga,Mn)As,
with a homogeneous magnetization. In order to model the
SOT field of (Ga,Mn)As, we adopt a Hamiltonian including
a mean-field exchange coupling between the hole spin (Ĵ)
and the localized (d-electron) magnetic moment μSam of
ionized Mn2+ acceptors [43,44] and a four-band strained
Kohn-Luttinger Hamiltonian. The total Hamiltonian of the
DMS reads

ĤDMS = ĤL + Ĥstrain + JpdNMnSam · Ĵ, (18)

where Jpd = 55 meV nm3 is the antiferromagnetic coupling
constant between hole and local moment spins for (Ga,Mn)As
and Sa = 5/2 is the localized Mn spin. The hole spin operator
is a 4 × 4 matrix [44]. The concentration of the ordered local
Mn2+ moments NMn = 4x/a3 is the product of x that defines
the doping by Mn2+ ions and inverse volume per Ga atom (a is
the GaAs lattice constant). The Kohn-Luttinger Hamiltonian
in Eq. (18) is expressed as [45]

ĤL = �
2

2m

{
γ1k

2Î − 4γ3[kxky{Ĵx,Ĵy} + c.p.]

− 2γ2

[(
Ĵ 2

x − 1

3
Ĵ2

)
k2
x + c.p.

]}
. (19)

This Hamiltonian applies close to the � point to centrosym-
metric crystals with a diamond structure and strong spin-orbit
coupling in the valence bands. The Luttinger parameters for
GaAs are (γ1,γ2,γ3) = (6.98,2.06,2.93), Î is the 4 × 4 unity
matrix, Ĵx , Ĵy , and Ĵz are the angular momentum matrices for
spin 3

2 . They follow the relation {Ĵx,Ĵy} = (Ĵx Ĵy + Ĵy Ĵx)/2,
and c.p. denotes cyclic permutation of the preceding term. The
first term denotes the kinetic energy of the holes. The second
and third terms are associated with the spin-orbit coupling of
the diamond crystal. In zinc-blende crystals, such as GaAs,
bulk inversion asymmetry gives rise to the so-called cubic
Dresselhaus spin-orbit coupling [46]. We neglect this term in
the present study since there is no experimental indication that
it contributes significantly to the SOT in (Ga,Mn)As.

Hamiltonian ĤDMS should be understood as an effec-
tive model attempting to describe the current-driven SOT
in (Ga,Mn)As rather than the complete description of the
electronic structure in this material. In a cubic diamond
crystal, γ2 �= γ3. When γ2 = γ3, dispersions following from
Eq. (19) become spherically symmetric and when the spin-
orbit coupling is removed completely (γ1 = 2.0, γ2 = γ3 =
0), Eq. (19) reduces to a parabolic model. The impact of these
three degrees of approximation (parabolic model, spherical
approximation, and diamond crystal) on the SOT will be
addressed in Sec. IV B 4.

At this level of approximation the effective Hamiltonian,
Eq. (19), does not break bulk inversion symmetry even though
the actual crystal of the host GaAs does. Indeed, although the
full model of GaAs contains additional terms that are odd in k
(see Table 6.2 in Ref. [47]), it is experimentally established
that the SOT in (Ga,Mn)As is sensitive to the strain. We
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therefore assume, in line with experiments [18], that the key
inversion-breaking term is proportional to the strain. The strain
Hamiltonian is given by

Ĥstrain = C4[Ĵxkx(εyy − εzz) + c.p.]

+C5[(Ĵxky − Ĵykx)εxy + c.p.], (20)

where εii and εij (i �= j ) are the diagonal and nondiagonal
elements of the strain tensor, respectively. We assume εxx ≡
εyy and εxy ≡ εyx .

In Eq. (20), the first term (∝C4) originates from the lattice
mismatch between the crystal structure of the substrate and
that of (Ga,Mn)As, and produces a spin-orbit coupling with
Dresselhaus symmetry [48] (∝εzz). The second term (∝C5)
is the shear strain and possesses the symmetry of Rashba
spin-orbit coupling [41] (∝εxy). Among the different terms
linear in k and resulting from the inversion symmetry breaking
(see Table C.5 in Ref. [47]), Ĥstrain is the only one that acts
in the manifold of heavy- and light-hole states. It is worth
pointing out that we consider here a large-enough system that
allows us to disregard any effects arising from boundaries
and confinement. In the following, we assume C4 = C5 =
0.5 eV nm [16,18] and consider the lattice mismatch strain
(with εzz �= εyy = εxx = 0 and εxy = 0). Physical presence of
the shear strain (εxy �= 0) in unpatterned (Ga,Mn)As samples
is below the detection limit [49], yet it has been introduced
in previous theory studies to effectively model the in-plane
uniaxial anisotropy observed in experiments [50]. Calculations
with nonzero εxy are explicitly pointed out in the following.

The SOT field h = 2JpdδS/γ � is evaluated once the ener-
gies Eka and eigenfunctions |ψka〉 implied by the Hamiltonian
in Eq. (18) are numerically calculated and the current-driven
spin density δS is determined using Eq. (2). The gyromagnetic
ratio γ = 176 GHz/T used throughout our calculations corre-
sponds to the g-factor of manganese ions in the 3d5 electronic
configuration. In general, the SOT field can be decomposed as

h = hmm + h‖ê‖ + h⊥ê⊥, (21)

where vectors ê‖,ê⊥ have unit length, ê⊥||m × u, ê‖ = ê⊥ ×
m, the subscript “so” has been removed for simplicity, and the
direction of u (whose length is also set equal to one) should
be chosen depending on the system. For example, we find
u||z × E for the Rashba 2DEG. On the other hand, u = x in
(Ga,Mn)As with growth strain (∝εzz) as described by Eq. (18)
and current flowing along the [100] crystallographic direction.
Our results presented below always assume ê⊥ pointing in the
positive z direction.

In the following, we disregard the component of the SOT
field which is parallel to the magnetization (hm) since it does
not exert any torque on it. The two remaining components in
Eq. (21) turn out to produce, in (Ga,Mn)As, the anti-damping-
like SOT in the case of h⊥ which is due to intrinsic interband
mixing (of impurity-independent origin) and a combination
of anti-damping-like and fieldlike extrinsic SOT in the case
of h‖ which depends through � on the disorder strength. The
angular dependence of the two components, h‖,⊥, reflects the
details of the band structure as discussed in Sec. IV B 4.

B. Numerical results

For all the calculations presented in this section, the electric
field E = 0.02 V/nm is assumed to be applied along the x axis
and we varied the hole concentration between 0.3 and 1 nm−3.
This corresponds, respectively, to a Fermi energy between 200
and 450 meV. Except for Sec. IV B 4, magnetization always
lies along the y axis (ϕ = 90◦).

1. Intrinsic versus extrinsic spin-orbit torques

We first investigate the impact of impurity scattering on
the intraband and interband contributions to the SOT fields.
Figure 2 displays the SOT field as a function of the energy
broadening � for different values of hole concentrations.
Although � is of the order of hundreds of meV in realistic
(Ga,Mn)As, we choose � < 10 meV so as to be able to
compare these results with the analytical ones obtained in
Sec. III for the ferromagnetic Rashba 2DEG which are valid
in the small � limit.

The intraband contribution to the SOT field, hintra
‖ , is

inversely proportional to � for all hole densities as is seen
in Fig. 2(a). This agrees with Eq. (3) and also Eqs. (10) and
(13) for the ferromagnetic Rashba 2DEG. No hintra

⊥ component
exists. On the other hand, the interband part (a �= b) of Eq. (2)
contributes both to h‖ and h⊥ which is shown in Figs. 2(b)
and 2(c). The former is a correction to the intraband SOT field
and it scales hinter

‖ ∝ � in the weak scattering limit. It tends to
counteract the intraband contribution, as it is the case in the

FIG. 2. (Color online) (a) Intraband and (b),(c) interband contri-
butions to the SOT field as a function of spectral broadening � for an
otherwise typical (Ga,Mn)As sample (doping concentration x = 5%,
lattice-mismatch strain εzz = −0.3%). The inset of panel (a) shows
that hintra

‖ ∝ 1/� holds over a broad range of �. Only lattice-mismatch
strain is considered, so that εxy = 0 in Eq. (20).
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ferromagnetic Rashba 2DEG described by Eqs. (16) and (17).
The out-of-plane component hinter

⊥ converges to a finite value
when � vanishes, indicating the intrinsic character of this part
of the SOT field. These results are consistent with the analytical
solutions obtained in Eqs. (13)–(15) in the ferromagnetic
Rashba 2DEG and weak scattering limit. It is worth noticing
that this dependence on spectral broadening holds over a wide
range of � in the case of intraband contribution [see inset in
Fig. 2(a)], while it breaks down already for � equal to few
meV for the interband contributions.

2. Ferromagnetic splitting

The band structure of (Ga,Mn)As changes with the Mn
doping that would, in the absence of the SOI, lead to a
rigid mutual shift of the majority- and minority-spin bands.
Such ferromagnetic splitting would be proportional to Jex =
JpdNMnSa and we can distinguish two limiting situations in a
system where the SOI is present: Eso � Jex and Eso 	 Jex.
In view of the analytical results presented in Sec. III, it is
meaningful to take Eso = αkF in the Rashba 2D system. For
each component of the nonequilibrium spin-density δSintra,
δSinter

1 , δSinter
2 , there is a transition between different types

of behavior in the two limits. For example, the out-of-plane
component of the SOT field h changes from the ∝J 2

ex
behavior in the αkF 	 Jex limit implied by Eq. (12) into
a Jex-independent behavior in the opposite αkF � Jex limit
implied by Eq. (15). We checked that this transition occurs
also in the numerical calculations across a range of Jex values.

FIG. 3. (Color online) (a) Intraband and (b),(c) interband SOT
field as a function of exchange interaction Jex = JpdNMn. Varied
values of Jex can be understood as a proxy to different Mn doping
concentrations, e.g., x = 5% corresponds to Jex = 0.06 eV, the
spectral broadening is set to 50 meV, and other parameters are the
same as in Fig. 2.

Contrary to the Rashba 2D system, the situation is more
complicated in (Ga,Mn)As because of the additional SOI terms
in Eq. (19). Due to their mutual competition, it is not obvious
what should be taken for the effective spin-orbit strength Eso.
Looking at the Jex dependence of the individual SOT field
components in Fig. 3, we nevertheless recognize similarities
to the Eso 	 Jex limit behavior of the Rashba 2D system. To
some extent, this is a surprising finding since the disorder
broadening used for calculations in Fig. 3 is quite large
(� = 50 meV), better corresponding to realistic (Ga,Mn)As
samples but further away from the assumptions used to derive
the analytical results presented in Sec. III. When Jex is small,
both hintra

‖ and hinter
‖ are proportional to Jex as seen in Eqs. (10)

and (11), respectively. On the other hand, hinter
⊥ ∝ J 2

ex in the
bottom panel of Fig. 3, which is reminiscent of Eq. (12). No
similarities to the Rashba 2D system behavior of the opposite
limit (Eso � Jex) are found in our calculations for (Ga,Mn)As.

3. Hole concentration

We display in Fig. 4 the SOT field as a function of the
hole density for different magnitudes of the lattice-mismatch
strain εzz. First of all, we notice that the SOT field components
increase linearly with the strain. Second, increase of the hole
concentration results in an increase in the in-plane SOT field h‖
approximatively following a p1/3 law, as shown in Figs. 4(a)
and 4(b). This is consistent with Eq. (17) in Ref. [6] in the
case of the intraband component. Interestingly, the in-plane

FIG. 4. (Color online) (a) Intraband and (b),(c) interband SOT
field as a function of hole concentration for different lattice-mismatch
strain εzz. Inset in (c): interband SOT field in the parabolic model.
The dashed lines in panel (a) are calculated using Eq. (17) in Ref. [6]
and follow a p1/3 law. Parameters are the same as in Fig. 3 except for
JpdNMn fixed to a value corresponding to Mn doping x = 5%.
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interband SOT field hinter
‖ shows a similar tendency [Fig. 4(b)],

while the out-of-plane interband SOT field hinter
⊥ has a different

dependence on p. This anti-damping-like SOT field in Fig. 4(c)
first increases with the hole concentration in the low hole
density regime and later decreases towards a saturated value.
This could be because of the competition of the different
SOI types in (Ga,Mn)As as noticed by Kurebayashi et al.
[33]. Indeed, when the diamond-lattice spin-orbit coupling is
absent (γ2 = γ3 = 0), the out-of-plane interband SOT field
hinter

⊥ increases with the hole concentration following the same
p1/3 law as for the in-plane field [see inset of Fig. 4(c)].
For a four-band Luttinger model that includes band warping
(γ2 �= γ3), the competition between the diamond spin-orbit
coupling and the strain-induced spin-orbit coupling results in
a reduction of hinter

⊥ , as shown in Fig. 4 of Ref. [33]. The
reason why the competition between the diamond spin-orbit
coupling and the strain-induced spin-orbit coupling leads to
the deviation from the analytical formula only in the case of
the hinter

⊥ and not for h
intra,inter
‖ remains to be explored in detail.

Also note that there are hardly any similarities in terms of
the dependence on EF (or p) between the results in Fig. 4 and
Eqs. (16) and (17) pertaining to (Ga,Mn)As and Rashba 2DEG,
respectively. This indicates that the analogy between the two
systems is not without limits and it should be approached with
some healthy skepticism.

At this point, we remark that shear strain in Eq. (20) leads
to hintra

‖ comparable to values shown in Fig. 4(a) when the
value of εxy is comparable to εzz used in Fig. 4. However,
since the relevant values of εxy in unpatterned epilayers are
typically an order of magnitude lower [50] than those of εzz,
we can typically expect an order of magnitude smaller hintra

‖
originating from the C5 term in Eq. (20) as compared to the
C4 term.

4. Impact of the band structure

The total DMS Hamiltonian given in Eq. (18) has both
centrosymmetric and noncentrosymmetric components given
by Eqs. (19) and (20), respectively. As discussed in the pre-
vious section, the spin-orbit coupling of the centrosymmetric
component of the Hamiltonian [i.e., the terms in Eq. (19)
proportional to γ2 and γ3] affects also the SOT field, notably
their dependence on the magnetization direction [recall the
definition of ϕ and θ below Eq. (6)]. Apart from the findings
of Ref. [33] discussed above, it was shown in Ref. [15] that the
shape of the Fermi surface has a strong impact on the angular
dependence of the intraband SOT field hintra

‖ .
We now systematically explore the influence of the spin-

orbit coupling of the diamond crystal on the different com-
ponents of the SOT field, i.e., hintra

‖ , hinter
‖ , and hinter

⊥ . The
centrosymmetric component of the total DMS Hamiltonian,
Eq. (19), accounts for the spin-orbit coupling through a set
of the Luttinger parameters, γ1,2,3. By tuning these three
parameters, one can modify the form of the centrosymmetric
spin-orbit coupling. We model three distinct cases: (i) the
parabolic approximation where no centrosymmetric spin-orbit
coupling is present (γ1 = 2.0, γ2 = γ3 = 0), (ii) the spherical
approximation where the centrosymmetric spin-orbit coupling
is turned on but spherical symmetry is retained (γ2 = γ3 =
2.5), and (iii) the diamond crystal where both cubic symmetry

FIG. 5. (Color online) Intraband and interband SOT field as a
function of the magnetization direction for different models labeled
(i), (ii), and (iii) in the text. The red (©), blue (�), and black
(�) data stand for the full four-band Luttinger model, its spherical
approximation, and the parabolic model, respectively. The parameters
are the same as in Fig. 4 except for fixed p = 1.0 nm−3 and
εzz = −0.3%.

and centrosymmetric spin-orbit coupling are accounted for
(γ2 �= γ3). This approach allows us to identify the role of the
last two terms of Eq. (19) on the SOT fields. In Fig. 5, we
show the angular dependence of the different contributions
to the SOT field for the spin-orbit coupling induced by the
lattice-mismatch strain in the context of models (i)–(iii).
The magnetization lies in the (x,y) plane (θ = π/2) and its
direction is given by the azimuthal angle ϕ.

As expected from the symmetry of the C4 term in Eq. (20),
the three components of the SOT field have a dependence of
the form sin ϕ in the parabolic model (� symbols in Fig. 5).
When diamond-lattice spin-orbit coupling is switched on but
the spherical approximation is assumed, the interband SOT
fields [� symbols in Figs. 5(b) and 5(c)] deviate from this de-
pendence, while the angular dependence of the intraband term
remains unaffected [� symbols in Fig. 5(a)]. Furthermore, the
magnitudes of interband and intraband SOT fields strongly
decrease. This is a manifestation of the competition between
the strain-induced terms in Eq. (20) with the centrosymmetric
Luttinger spin-orbit terms in Eq. (19) [33].

When the spherical approximation is lifted (γ2 �= γ3)
electronic bands become warped, especially those of the heavy
holes. This results in an increase of the interband SOT fields
and an additional angular dependence shown by © symbols
in Fig. 5. Microscopically, the latter effect is caused by the
distorted spin textures on the Fermi surface. The influence
of the centrosymmetric spin-orbit field on the spin torque in
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GaMnAs has also been identified by Haney et al. [51] in DMS
spin valves.

V. SUMMARY AND CONCLUSION

We have studied the intraband and interband SOT fields
using the Kubo formula, in the prototypical case of a ferromag-
netic 2DEG with Rashba spin-orbit coupling, as well as in a
three-dimensional DMS modeled by a kinetic-exchange Kohn-
Luttinger Hamiltonian. For the latter, parameters pertaining to
(Ga,Mn)As were used. In the limit of low doping concentration
and weak exchange coupling, we find similarities between
the two systems, demonstrating that the general trends of the
intrinsic and extrinsic SOT fields can be, in some respect (e.g.,
the dependence on ferromagnetic splitting in the small Jex

limit, discussed in Sec. IV B 2), understood analytically using
the Rashba 2DEG in the weak scattering limit. Nevertheless,
the numerical analysis of the three-dimensional DMS system
also unravels the complex interplay between the different types
of spin-orbit coupling (centrosymmetric and noncentrosym-
metric) involved in realistic systems resulting in complex
dependencies of the SOT fields on the magnetization direction
as well as significant differences from the Rashba 2DEG model
(e.g., the dependence on Fermi level position, discussed in
Sec. IV B 3).

The contribution of interband mixing to the SOT presents
an outstanding opportunity to explain the emergence of large

anti-damping-like torques that cannot be readily attributed to
spin Hall effect, offering an interesting platform to interpret
recent puzzling results. As a matter of fact, Lee et al.
[26] observed an effective Hall angle of αeff

H ≈ 0.12 in
Pd/FePd bilayers (while Pd has a spin Hall angle of about
0.6%–1.2%), Jamali et al. [25] reported αeff

H ≈ 4.4 in (Co/Pd)
multilayers, while Mellnik et al. and Fan et al. measured
αeff

H ≈ 2.2–3.5 in conductive Bi2Se3 and αeff
H ≈ 150–425 in

(Bi0.5Sb0.5)2Te3/(Cr0.08Bi0.54Sb0.38)2Te3 bilayers, respectively
(see Ref. [27]). All these Hall angles are gigantic compared
to standard heavy metals, which suggests that additional
mechanisms such as the ones discussed in the present work
might dominate over the spin Hall effect in these structures.
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