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Magnetic linear dichroism and birefringence in (Ga,Mn)As epitaxial layers is investigated by measuring the
polarization plane rotation of reflected linearly polarized light when magnetization lies in the plane of the sample.
We report on the spectral dependence of the rotation and ellipticity angles in a broad energy range of 0.12–2.7 eV
for a series of optimized samples covering a wide range on Mn dopings and Curie temperatures and find a clear
blueshift of the dominant peak at energy exceeding the host material band gap. These results are discussed within
the framework of the k · p and mean-field kinetic-exchange model of the (Ga,Mn)As band structure. We infer
that disorder-induced nondirect transitions significantly influence magneto-optical properties of (Ga,Mn)As.
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I. INTRODUCTION

Among optical spectroscopies, differential methods based
on the birefringence or the dichroism, i.e., sensitive to
differences in refractive indices between two optical modes,
can give more information on material electronic structure than
absorption measurements [1]. For instance, the absorption co-
efficient α(ω) in the dilute magnetic semiconductor (DMS) [2]
(Ga,Mn)As is essentially featureless [3] at frequencies ω close
to Eg/� (the band-gap energy, Eg ≈ 1.52 eV for GaAs) while
the same material in the same frequency range exhibits a strong
peak in polarization plane rotation caused by the magnetic
linear dichroism and birefringence [4]. At the same time,
any type of magnetism-induced dichroism or birefringence
depends on the ferromagnetic splitting of the bands (related to
saturated magnetization �M) and manganese-doped DMSs like
(Ga,Mn)As offer the unique possibility of tuning the strength
of magnetism by varying the Mn content xnom over a broad
range. Studying the trends in magneto-optical spectra across a
series of samples with increasing Mn doping and comparing
them to model calculations allows one to microscopically
relate the individual spectral features to the electronic structure
of the (Ga,Mn)As material.

Polarization-resolved magneto-optical effects appear in a
multitude of geometries and setups which we review in more
detail in Sec. II below. In terms of the leading order of the
effect, they can be divided into effects linear and quadratic
in �M . In both cases, an incident light beam linearly polarized
along x̂ ′ turns into an elliptically polarized one whose major
axis is rotated with respect to x̂ ′ by an angle θ . The degree
of ellipticity is characterized by another (typically also small)
angle ψ . Both angles are defined in Fig. 1(a). Effects linear
(or more generally odd) in �M give θ (− �M) = −θ ( �M) and are
related [5,6], for ω → 0, to the dc anomalous Hall effect [7].
These effects are more commonly investigated as they are often
simpler to experimentally access. They are typically larger and

it is simpler to separate them from magnetization-independent
optical signals. On the other hand, even effects (quadratic
in the leading order of �M) with θ (− �M) = θ ( �M) appear in
literature less frequently. For example, the Voigt effect in
reflection (see Sec. II and Fig. 2) has first been reported as
late as in 1990 [8]. Yet, they offer an alternative probe into the
electronic structure of the material distinct from what is probed
in odd-in- �M measurements. The effects even in �M are related
to the anisotropic magnetoresistance (AMR) [9,10] for ω → 0
and they do not vanish in certain situations where the effects
odd in �M do. For example, in compensated antiferromagnets,
the magneto-optical effects even in �M can still be detected [11]
because contributions from the two spin sublattices with
opposite spin orientations do not cancel. As a probe into the
antiferromagnetic order [12], magneto-optical effects in the
visible and infrared range, such as the one described in this
paper, do not require large-scale facilities as the measurements
of neutron diffraction [13] or x-ray Voigt effect [14] do.

The magneto-optical effects odd in �M have been extensively
explored in (Ga,Mn)As [2,6,15,16]. While the visible [15,16]
range provides information on transitions between valence
and conduction bands which are relatively less sensitive to
the spin-orbit interaction effects, infrared [6] spectra enable
us to explore transitions within valence bands. Quadratic
(even in �M) magneto-optical response of (Ga,Mn)As is an
alternative probe into its electronic structure. In analogy with
the dc anisotropic magnetoresistance, it crucially depends
on the spin-orbit interaction in the whole spectral range.
Previous experiments have focused on measurements of the
even in �M magneto-optical effects in selected (Ga,Mn)As
samples without studying their spectral dependence [17] or
limiting themselves to the visible spectral range [4,18], Here,
we report measurements in a spectral range of 0.12–2.7 eV
and study systematically the magneto-optical spectra even
in �M across a series of optimized (Ga,Mn)As materials
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FIG. 1. (Color online) (a) Measured magneto-optical quantities.
Originally linearly polarized beam becomes elliptically polarized
after interaction with the sample. Its ellipticity is characterized by
angle ψ and the rotation of the major axis is θ . (b) GaAs host band
structure with Fermi level Ef typical for our Mn-doped samples.
Arrows indicate direct (A) and nondirect (B) transitions from the
Fermi surface to the conduction band.

spanning a broad Mn-doping range summarized in Table I
below.

Section II is dedicated to a brief overview of magneto-
optical effects and clarification of the terminology that is not
coherent across the literature [1,4]. Our experimental data
are presented in Sec. III and we compare them in Sec. IV
to a kinetic-exchange model [19] based calculation of ac
permittivity that allows us to determine θ (ω) and ψ(ω). In
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FIG. 2. (Color online) Selected magneto-optical effects. Polar-
ization planes of incoming and outgoing beams are rotated by θ

with respect to each other (possible ellipticity ψ of the outgoing is
not considered in these sketches). (a) Faraday effect, (b) Voigt effect,
(c) polar Kerr effect (or simply Kerr effect in the limit of normal
incidence), (d) longitudinal Kerr effect, (e) transversal Kerr effect,
(f) Voigt effect in reflection.

TABLE I. Basic sample parameters according to Table I of [16]
(Supplemental Information). Asterisk indicates estimated value.
Effective doping x [which enters Eq. (3) through the ferromagnetic
splitting] is calculated from the measured saturated magnetization as
explained in Appendix B.

Wafer xnom (%) x (%) 10−21 · p (cm−3) Tc (K)

A F010 1.5 1.0 0.15 29
B F002 3 1.8 0.66 77
C F020 5.2 3.6 1.08 132
D E115 7 5.5 1.41 159
E E122 9 6.9 1.55 179
F E079 12.5 8.6 1.8∗ 186
G F056 14 8.5 1.8∗ 182

Sec. IV, we also discuss the complex individual spectral
features of θ (ω) and clarify the role of linear birefringence
and dichroism (see also Appendix C). Section V concludes
the paper. In Appendix A, we review theoretical description of
magneto-optical effects on the level of Maxwell’s equations to
which the permittivity tensor is the input. Appendixes B and C,
respectively, contain more details on the transport calculation
using the kinetic-exchange model, and details on the optical
part modeling, e.g., multiple reflections on the (Ga,Mn)As
epilayer.

II. OVERVIEW OF MAGNETO-OPTICAL EFFECTS

The purpose of this section is to recapitulate selected
magneto-optical effects, clarify the terminology, and specify
which of these effects is considered in this paper. The
first magneto-optical phenomenon was observed by Michael
Faraday in 1846, followed by another one found by John Kerr
in 1877. They found that linearly polarized light transmitted
through (Faraday’s discovery) or reflected from (Kerr’s discov-
ery) a nonmagnetic material subject to magnetic field �B has
its polarization plane rotated. In their experiments, the wave
vector of the propagating light �k was parallel to �B. In 1899,
Woldemar Voigt observed optical anisotropy of a nonmagnetic
crystal for �k ⊥ �B which can also cause similar rotation of the
polarization plane. Historical overview of these and related
discoveries can be found in the introductory parts of [1,20].
As a matter of definition, we will not include polarization-
unrelated (or unresolved) effects such as cyclotron resonance
into our further discussion [21].

Analogous phenomena are found in magnetic materials
where, phenomenologically, �M plays the same role as �B in
the original observations of Faraday, Kerr, and Voigt. Typical
experiments involve a slab or thin layer of the material and,
for simplicity, let us assume for now that it is not placed
on a substrate and also that �k is perpendicular to the plane
of the sample surface (“normal incidence”). Faraday and
Kerr magneto-optical effects arise for �M ‖ �k, i.e., out-of-
plane magnetization, while Voigt effect occurs for in-plane
magnetization ( �M ⊥ �k). As has already been described above
[see Fig. 1(a)], the incident beam is linearly polarized and the
Kerr (Faraday or Voigt) effect is manifested in the rotation
θ of the reflected (transmitted) beam polarization plane.
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Any of these effects will, in general, be accompanied by a
nonzero ellipticity characterized by ψ and both angles are
sometimes combined into one complex quantity, e.g., the
complex Faraday angle θF in [5]. The Voigt effect is even
in �M while the Faraday and Kerr effects are odd in �M . There
is no broadly accepted term for the quadratic (even-in- �M)
magneto-optical effect in the reflection at normal incidence
with in-plane �M , although sometimes it is called quadratic
magneto-optical Kerr effect (QMOKE) [23], Hubert-Schäfer
effect [24], orientational magneto-optical effect [28,29], or it
is included in the “reflection analogy to the Voigt effect” [30].
We will adopt here the last terminology. A schematic summary
of the Faraday, Voigt, and Kerr effects and of the Voigt effect
in reflection is shown in Fig. 2.

For other than the normal incidence, the odd-in- �M
magneto-optical effect in reflection splits up into three types.
The conditions �M ‖ �k and �M perpendicular to the sample
are now no longer characteristic of the Kerr effect. Rather,
�M can now be decomposed into out-of-plane component M⊥

and in-plane components ML (MT ) parallel (perpendicular)
to the plane of incidence. The polar Kerr effect, sometimes
also called magneto-optical Kerr effect (MOKE), is in the
leading order linear in M⊥ and it is the only effect odd in �M
that does not vanish for ML = MT = 0. The longitudinal and
transversal Kerr effects depend on the in-plane components of
magnetization and to separate them from the Voigt effect in
reflection, the polarization signal dependence on the angle
β between �M and the polarization plane can be used.
Unlike all three Kerr effects, the Voigt effect in reflection
is proportional [30] to a combination of M2

T , M2
L, and MLMT

which, at normal incidence, combine into a sin 2β dependence.
On microscopical level, the Kerr and Voigt effects turn

out to have very different origin. While both ultimately stem
from the interplay of spin-orbit interaction and ferromagnetic
splitting of the band structure, they depend on different
components of the ac conductivity tensor. Focusing on the
effects in transmission rather than reflection for simplicity, we
explain in Appendix A that the rotation angle is

θ ≈ dω

c

Im εxy

n0
(1)

for �M perpendicular to the sample layer while it is

θ ≈ dω

c
n0Re

(
εxx − εyy − ε2

yz

εzz

)
(2)

for �M in the sample plane where it breaks the axial symmetry.
Similar to Eq. (1), the Kerr effect probes the off-diagonal
component of the conductivity and it is therefore linked to the
anomalous Hall effect. On the other hand, the Voigt effect in
reflection probes the difference in diagonal components of the
conductivity tensor which would, in the dc limit, correspond
to AMR.

Due to the broken axial symmetry in the case of in-plane �M ,
selection rules for band-to-band optical transitions based on
conservation of angular momentum are relaxed and the Voigt
effects can provide additional information about the system
compared to the polar Kerr effect. As with other magneto-
optical phenomena, this effect includes rotation and ellipticity

measured in the beam after its interaction with the sample
and from now on, we associate the terms “rotation” (θ ) and
“ellipticity” (ψ) only with the Voigt effect in reflection (unless
explicitly stated otherwise). Both rotation and ellipticity are
related to complex refractive indices n‖ and n⊥ of two modes
(see detailed explanation in Appendix A) linearly polarized
parallel and perpendicular to �M . Rotation θ is caused both
by magnetic linear birefringence �n̄ ≡ Re (n⊥ − n‖) 
= 0
(MLB) and magnetic linear dichroism �k̄ ≡ Im (n⊥ − n‖) 
=
0 (MLD); an illustrative example is given in Appendix C.
More generally (not just in context of magneto-optical effects),
birefringence �n̄ 
= 0 can manifest itself in the well-known
double-image refraction (propagation of ordinary and extraor-
dinary rays through a slab of icelandic calcite described first
by Rasmus Bartholin in 1669) while dichroism [1] �k̄ 
= 0
can effectively lead to mode filtering. Note that the term
MLD is sometimes confusingly used [4] both for �k̄ 
= 0
and the nonzero difference in reflection coefficients of the
two linearly polarized modes. We now proceed to describe
our experimental results of rotation and ellipticity of the Voigt
effect in reflection on (Ga,Mn)As samples.

III. EXPERIMENT

The samples used in our measurement are (Ga,Mn)As
layers prepared by optimized molecular-beam epitaxy growth
and postgrowth annealing procedures [31] with various nom-
inal Mn doping ranging from xnom = 1.5% to 14% and cut
into 4.5 × 5-mm chips. The basic material characteristics
of our samples are listed in Table I, additional information
can be found in the main text and supplemental information
of [16,31]. All samples were grown on a GaAs substrate,
producing a compressive strain which favors an in-plane
orientation of the easy axes (EAs). The competition of in-plane
cubic and uniaxial anisotropies results in our (Ga,Mn)As
films in two magnetic EAs tilted from the [100] and [010]
crystal axes towards the [11̄0] in-plane diagonal [32]. The tilt
angle increases [31] with increasing Mn doping. The sample
substrates were wedged (1◦) to avoid spurious signals that
might appear due to the multiple reflections from the back
side of the substrate. In order to measure the rotation and
ellipticity angles θ and ψ in a broad energy range we developed
a sensitive experimental technique which is described in detail
in [18]. We use a Xe lamp (0.33–2.7 eV) with a double
prism CaF2 monochromator and discrete spectral lines from
CO2 (115–133 meV) and CO (215–232 meV) lasers [33].
Measurements are done in the reflection geometry close to
normal incidence (≈6◦ with respect to the sample normal)
whereas we assume that the polarization plane rotation due to
the longitudinal Kerr effect is negligible [34]. The samples are
mounted on a custom-made rotating sample holder attached to
the cold finger which is cooled down to 15 K. The holder
enables a precise rotation of the sample, and thus of the
magnetization with respect to the incident polarization using
external magnetic field �B, which is applied along a fixed
in-plane direction.

Prior to the actual measurement of θ and ψ , the samples
are rotated so that one of the EAs is set parallel to �B.
Subsequent application of a moderately strong magnetic field
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(B ≡ | �B| = 0.6 T) forces the magnetization to align with
this EA. After the magnetization is oriented along the EA
parallel to �B, the magnetic field is turned off and the sample
is rotated 45◦ away from the field axis. The sample orientation
is kept fixed subsequently, and it is not changed during the
measurement of θ and ψ . The magneto-optical response of
the sample is measured using the polarization modulation
technique at base frequency f = 50 kHz, where the reflected
beam passes through the photoelastic modulator (PEM) [37].
The optical axis of the PEM is oriented 45◦ with respect to the
magnetic field axis and the detected signals at f and 2f are
proportional to ellipticity (ψ) and rotation (θ ) of the reflected
light polarization, respectively [33,37]. In the first step of
the measurement, the polarization of the incident light is set
parallel with the magnetization orientation, so any nonzero
signal detected at f or 2f is just background unrelated to
magneto-optical properties of the sample. In the second step we
apply B ≈ 0.6 T which rotates the magnetization to β = 45◦
relative to the incident beam polarization. In this situation, the
polarization components parallel and perpendicular to magne-
tization experience different (complex) indices of refraction,
maximizing the rotation and ellipticity signals magnitude. The
sin 2β dependence of θ has been checked [see Fig. 3(d) in [18]].
By taking a difference of θ (or ψ) between the first and
second step, we obtain the pure magneto-optical signal. This
procedure removes all sources of dichroism and birefringence
of the optical components in our setup which are unrelated to
magnetism of the sample and it replaces the commonly used
[θ ( �M) − θ (− �M)]/2 protocol for magneto-optical phenomena
odd in magnetization such as the Kerr effect. We note that in
order to obtain the correct sign and magnitude of θ and ψ ,
a calibration procedure [5] has to be performed. A detailed
description of our experimental methods is given in [18]. We
also point out that by comparing the magneto-optical signal
θ ( �M) to θ (− �M) as shown in Fig. 4(a) of that reference, we
verified, for our samples, the assumption of smallness of the
longitudinal Kerr effect which is odd in �M .

Measured θ and ψ for samples B, C, D, E, and G of
Table I are displayed in Fig. 3, while the remaining two
samples are studied only using a different technique described
below. Both rotation and ellipticity reach typically values of
several 0.1 mrad, show distinct spectral features in the studied
range �ω = 115 meV–2.7 eV, and often change sign as a
function of radiation frequency ω. Such values are about
an order of magnitude smaller than the Kerr effect [6] but
still large enough to use the Voigt effect in reflection as
an efficient method to detect an in-plane component of the
magnetization [38]. In agreement with Kimel et al. [4] who
studied a single xnom = 2% sample, we observe a peak in
θ (ω) exceeding 0.5 mrad whose sign and position (above
�ω = 1.5 eV) is consistent with this earlier result. In the more
general context of magnetic materials, values of θ ≈ 0.5 mrad
reported in Heusler alloys [39] are quoted as [23] “record
QMOKE values.” We remark that Voigt effect was also
measured in manganese-doped II–VI materials. Reference [4]
claims that magneto-optical response even in �M is “drastically
enhanced” in (Ga,Mn)As compared to that of (Cd,Mn)Te [40].
While we do not directly contradict this conclusion we find
the comparison less conclusive. Magneto-optical effects in a
paramagnetic system such as (Cd,Mn)Te are not spontaneous
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FIG. 3. (Color online) Measured spectral dependence of the ro-
tation θ and ellipticity ψ for the Voigt effect in reflection. Manganese
doping levels indicated correspond to xnom.

but must be induced by external magnetic field, hence the
spontaneous �n̄, �k̄ of (Ga,Mn)As must be compared to
the proportionality constant between �n̄, �k̄ and B2 in
(Cd,Mn)Te, the so-called Verdet constant. More importantly
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FIG. 4. (Color online) Overview of the measured rotation angle θ for samples A–G using (a) the subtraction of data above Tc and (b) the
in situ rotation of �M . Inset in panel (a) shows the position in eV of the peak α as a function of Mn doping. All Mn concentrations indicated are
xnom (see Table I).

though, the transmission measurements [40] are limited to
subgap frequencies where the signal is weaker and it is
possible that the actual maximal magneto-optical response of
(Cd,Mn)Te would be comparable to that of (Ga,Mn)As if we
were comparing the parts of spectra that correspond to each
other.

Another technique of removing the background unrelated
to magnetism of the sample from the Voigt effect in reflection
is to repeat the same measurement at low temperature and
at T > TC and subtract the two. This technique is discussed
in [18] and since the measured rotation at T > TC is typically
larger than the pure signal from the sample [compare Fig. 3(b)
in that reference], relatively large errors can be expected.
This is confirmed by a comparison of the results of the two
techniques in Fig. 4. Rotation angle spectra in panel (a) indeed
exhibit vertical offsets of the order of 0.1 mrad between
consecutive measurements as compared to data obtained by the
method of magnetic-field-induced rotation of �M summarized
in panel (b). Even between two measurements of the same
sample, θ (ω) inferred by the former technique may be offset
because of temperature dependence in optical properties of
measurement setup elements. The peak at energies above
1.5 eV is nevertheless clearly seen using both methods and,
even in the data of panel (a), its positions summarized in
the inset systematically shift towards higher energies with
increasing nominal doping of the samples. These positions
agree very well with the data in panel (b) (see also Fig. 6).
Note that panel (a) contains also data for samples A and F
which were not measured using the more accurate technique.

The possibility to follow spectral trends as xnom is varied
is the main advance of our work as compared to previously
published results [4]. We begin by noting that the prominent
peaks in θ (ω) above 1.5 eV shown in Fig. 4 appear close to the
peaks of the Kerr effect [16], they shift to higher energies with
increasing xnom in both magneto-optical effects, and also the
nonmonotonic dependence of their height on xnom is similar.
Going to smaller energies, there is a broad maximum followed
by a relatively shallow minimum which also blueshifts from
300 meV (sample B) to 500 meV (sample G). At the lowest
energies measured, θ (ω) increases again and only in the sample
with the highest doping is there a downturn around �ω ≈
200 meV.

IV. INTERPRETATION OF THE MEASURED
MAGNETO-OPTICAL SIGNALS

To understand observed spectral features in θ (ω) and
ψ(ω) of the Voigt effect in reflection and their trends across
the set of samples, a model of the electronic bands close
(∼�ω) to the Fermi energy Ef is needed. Any model having
ambitions to yield quantitative information on θ (ω), ψ(ω)
has to start from a description of the (Ga,Mn)As electronic
structure reflecting the GaAs host bands, exchange splitting
of the bands in the ferromagnetic state of (Ga,Mn)As, and
the spin-orbit coupling. Without the last two components,
only positions of spectral features in θ (ω), ψ(ω) can be
anticipated but not their shape and amplitude. The GaAs
host band structure in Fig. 1(b), calculated by standard
spds∗ tight-binding model [41], suggests that the prominent
peak around 1.7 eV seen in θ (ω) of Fig. 3 corresponds to
transitions between valence and conduction band. To analyze
its amplitude, we have to account for the combined effect of
the exchange splitting and the spin-orbit interaction. Unlike
other approaches such as the quantum defect method [42]
used in [43] to analyze absorption spectra of (Ga,Mn)As, the
kinetic-exchange model of disordered carrier bands [19,44],
which we briefly describe below, naturally includes these two
components. Apart from successfully explaining the spectral
trends in absorption [45] and of the Kerr effect in the visible
range [16], this model therefore allows us to calculate θ (ω),
ψ(ω) of the Voigt effect in reflection which is microscopically
more constrained than the absorption or the visible range Kerr
effect. We show below that results of this model reproduce the
structure of the measured data as in the previously explored
infrared Kerr effect [6] which also depends sensitively on
the spin-orbit coupled exchange-split nature of the valence
band.

The path to theoretically evaluated θ (ω), ψ(ω) involves
three steps, the first of which is to obtain the band structure
E�k,a . Two of the aforementioned band-structure description
components are included in ĤKL (host band structure and
spin-orbit interaction), the last component (ferromagnetic
exchange splitting) enters the total Hamiltonian through
kinetic-exchange parametrized by Jpd (Jsd ) couplings between
the dominantly p-like valence band (s-like conduction band)
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and Mn d levels:

Ĥ = ĤKL + Jpd

μB

�M · ŝh + Jsd

μB

�M · ŝe + V̂xc. (3)

Here, ŝe/h is the electron/hole spin operator, μB is the
Bohr magneton, and V̂xc is the correction due to many-body
and electrostatic effects. This correction, described in detail
in Appendix B, accounts for the exchange energy between
delocalized holes as well as their interaction with ionized
dopant Mn atoms. The choice of bands included in the
Kohn-Luttinger Hamiltonian ĤKL is dictated by the energy
range (�ω up to 2.7 eV) in our experiments and Ef of at
most few 100 meV from the valence-band top. As seen in
Fig. 1(b), only conduction band, heavy holes (HHs), light
holes (LHs), and split-off band can be involved in optical
excitations from occupied to unoccupied states making up the
total number of eight bands in ĤKL. Parameters entering this
8 × 8 matrix, including the relation between �M and x, are
given in Appendix B.

The second step is to calculate the conductivity tensor
σ using the Kubo formula (see Appendix B) which can be
recalculated into the permittivity tensor using

εeff ≡ ε0

(
εb + iσ

ωε0

)
. (4)

The value of εb is adjusted so that for intrinsic GaAs
(p = 0), εeff calculated using Eq. (4) recovers the exper-
imental ac permittivity at optical frequencies [46] and it
approaches [47] ε∞ = 10.9 for low �ω. For Voigt effect (in
transmission), we would now use Eq. (2) to calculate the
rotation angle θ and in our case, which is more complicated, we
insert components of εeff of Eq. (4) into Eqs. (C1), (C2), (A6),
and (A7) as described in Appendixes C and A. This last step
involves classical optics describing the layered structure of our
samples, including multiple reflections.

To address experimental findings in Fig. 3, we calculate
θ (ω) over a range of parameter values. Since ellipticity is
experimentally somewhat more difficult to access [18], less
data than for θ (ω) are available and therefore we only briefly
comment on ψ(ω) in the next paragraph. Given the span of
p and x in Table I, we first show in Fig. 5 the calculated
θ (ω) for fixed x = 5% and varying p [panel (a)] and for fixed
p = 0.8 × 1021 cm−3 and varying x [panel (b)]. The order
of magnitude of θ (ω) and its structure (minimum-maximum-
minimum for α-β-γ ) agrees with experimental data in Fig. 3.
Analyzing the contribution of individual terms in Eq. (B6), we
confirm that peak α arises from optical transitions from the
LH and HH bands to the conduction bands. Peaks β and γ

are due to transitions within the valence bands. The intraband
contribution to σ given by Eq. (B5) plays only a minor role
and is noticeable only at the lowest energies considered here
(�ω ≈ 100 meV). A more detailed discussion of our model
can be found in [48].

Our model of disordered valence band with kinetic-
exchange splitting is known to give a qualitative and often
semiquantitative description of various phenomena that orig-
inate in the spin-orbit coupled and ferromagnetically split
electronic structure of (Ga,Mn)As [16]. Despite the utility of
the model, its accuracy should not be overestimated. Rotation
θ (ω) and ellipticity ψ(ω) for parameters of sample E shown
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FIG. 5. (Color online) Calculated spectral dependence of the
rotation angle θ for a series of systems with (a) x = 5% and varying p

(in 1021 cm−3) and (b) varying x and constant p = 0.8 × 1021 cm−3.
Spectral features discussed in text are labeled by Greek letters. The
inset shows rotation (solid) and ellipticity (dashed) for the parameters
x and p corresponding to sample E.

in the inset of Fig. 5(a) do exhibit, in most cases, the same
structure and order of magnitude as the experimental data in
the top panel of Fig. 3 but there are some notable differences
too. We first observe that peak α in θ (ω) accompanied by the
anti-Lorentzian structure in ψ(ω) in the inset appears at higher
energies (2.09 eV) than in experiment (1.79 eV) and also
that its magnitude is larger by a factor of 2 experimentally.
We discuss the former observation later and focus on the
peak magnitude first. The ac conductivity depends on the
carrier scattering rate in a complicated way. In our approach,
scattering enters our model via spectral broadening � in
Eqs. (B5) and (B6) which is an approximation to the scattering
rates that neglects their band dependence and anisotropy.
We choose constant � = 100 meV, a value acceptable both
from theoretical and experimental point of view. By tuning
� or refining the scattering model (replacing it by �i

kk′
which allowed us to successfully model the dc anisotropic
magnetoresistance [49]), the agreement between model cal-
culations and experiment could possibly be improved. Our
model and experiments agree on the sign change of ψ(ω)
at energies around 800 meV and also the position of the
broad maximum β in θ (ω) around 850 meV. The amplitude
of calculated θ (ω) is larger by a factor of 4 as compared to
the experiment. Similarly, the minimum γ in θ (ω) is much
deeper in model calculations than in the experiment but their
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positions (≈550 meV) agree well. As a consequence of this
exaggerated feature, ψ(ω) exhibits a sign change and reaches
a minimum around �ω = 470 meV because it is tied to θ (ω)
by the Kramers-Kronig relations. This minimum in ψ(ω) and
also the downturn of θ (ω) at the lowest observed energies
(�ω < 200 meV) is not seen in experiments. We conclude that
more theoretical work is needed to understand the Voigt effect
at these low energies and return to higher energies where our
model performs better.

We begin by analyzing the positions of peaks β and γ .
Experimentally, the corresponding maximum and minimum
in Fig. 3 are both found to blueshift with nominal doping
of the samples. The broad maximum corresponding to peak
β shifts from approximately 700 meV in sample B to about
1.0 eV in sample E and a similar, somewhat smaller, shift
is found in model calculations. The calculated height of the
maximum decreases as we go to samples with lower doping
and approaches the experimental results within a factor of 2 for
samples B and C. The blueshift of the minimum corresponding
to peak γ when going from sample B to sample E also
agrees well between model calculation (360 to 550 meV)
and experiment (400 to 570 meV). As already mentioned,
the model calculations strongly overestimate the depth of
this minimum although at least the negative sign of θ (ω) is
observed in most samples. Next we focus on the position of
peak α and discuss the main deficiency of our model, which
we believe to be a very simplified account of disorder.

We extracted the position of peak α from the experimental
data in Fig. 4 by fitting it to a Lorentzian. Data from panel (a)
and (b) are shown as boxes and crosses in Fig. 6, respectively.
The same procedure was repeated with our model calculations,
where we took parameters x and p from Table I and used
the calculated spectra θ (ω). The corresponding peak positions
are shown by the upper solid line in Fig. 6. Although the
trend of shift towards higher energies is the same in the
experiment and in the model, there is a clear difference of up to
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FIG. 6. (Color online) Positions of the α peak for the series of
samples described by Table I. Experimental data (a) and (b) refer to
Fig. 4. Model data (solid blue line) were extracted from calculations
for x and p as given by Table I following the same procedure as
those in Fig. 5. They take into account direct transitions only and
the extreme limit of nondirect transitions (solid black) corresponds
to Eg + Ef where Vxc is also included. Dotted lines show these two
limiting cases when electrostatic interaction with ionized acceptors
is neglected.

300 meV, in other words, the blueshift is significantly slower
in the experimental data. This is pointing to a shortcoming of
our electronic-structure model represented by Eq. (3) where
the presence of Mn is effectively treated in a mean-field
virtual-crystal approximation. At the level of the Kubo formula
in Eq. (B6), our model only allows for direct transitions and
below we proceed to discuss how the experimental values
of the peak α positions could possibly be explained by
considering nondirect transitions.

Treating a realistic band structure and disorder on equal
footing is a complicated task. Disorder broadening � which
appears in the Kubo formula (B6) is only a poor approximation
to the nonconservation of wave vector �k in the strong-disorder
case. Due to disorder in the crystal caused primarily by
random positions of Mn atoms substituting for the cations
of the host lattice, the Bloch theorem does not apply and
�k is not a good quantum number. Even in the extreme
case of an amorphous continuous covalent network [50], the
main features of electronic structure including the spin-orbit
interaction remain preserved. One possible way of estimating
the effect of disorder on optical transitions is therefore to lift
the restriction of wave vector conservation while keeping the
band structure otherwise unchanged [51] (i.e., neglecting the
band gap reduction [52]). In terms of Fig. 1(b), this means
considering transitions labeled “B” rather than only the direct
transitions labeled “A.” In terms of the Kubo formula (B6),
this could approximately be implemented by replacing matrix
elements vab�k�k′

j ∝ δ�k�k′ by another function of �k,�k′ (or even
a constant). In the spirit of Moss-Burstein shift [53,54], the
lowest-energy optical transition would then appear close to
energy Ef + Eg [see again panel (b) of Fig. 1] and we show
this energy in Fig. 6 by the lower solid line. The experimental
data lie approximately halfway between the two solid lines
which suggests that disorder should be treated more carefully
in our model than just by the simple spectral broadening in
Eq. (B6). We also remark that the electrostatic interaction of
holes with ionized Mn acceptors, included in V̂xc of Eq. (3),
significantly contributes to the position of peak α. The dotted
lines in Fig. 6 show the model results when this factor is
disregarded.

V. CONCLUSIONS

Rotation θ (ω) and ellipticity ψ(ω) measured for the Voigt
effect in reflection, a direct consequence of the magnetic
linear dichroism and birefringence, represent a much more
sensitive spectroscopic probe into the electronic structure of
(Ga,Mn)As than, for instance, unpolarized optical-absorption
experiments. Our measured data are compatible with the
previously published θ (ω) on selected samples and limited
spectral range and we investigate variations of the spectra
with manganese doping which influences both the exchange-
splitting and Fermi level. We confirm that θ at energies
exceeding the gap of the GaAs host can reach values larger
than so far reported in other ferromagnetic materials. The
corresponding peak is found to blueshift with increasing
manganese doping and we analyze this trend using the k · p

mean-field kinetic-exchange model. We find that even with
exchange-correlation band renormalization effects taken into
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account, this model yields appreciably larger energies at which
this feature is seen, compared to experiment, and we attribute
this fact to the neglected nondirect transitions caused by
the disorder. Apart from this deficiency, the model correctly
reproduces the structure of experimentally determined θ (ω)
ranging 112 meV–2.7 eV and ψ(ω) for energies above
500 meV. A more quantitative description of the measured
magneto-optical spectra would require one to combine the
modeling of the complex, spin-orbit coupled band structure
with a more detailed treatment of the strong disorder effects
in (Ga,Mn)As, as previously done, e.g., in the studies of
unpolarized absorption spectra [55].
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APPENDIX A: CLASSICAL THEORY
OF MAGNETO-OPTICAL EFFECTS

Maxwell’s equations allow us to show how the magneto-
optical effects described in Sec. II follow from properties of
the bulk magnetic material. Inspired by the argumentation
of [56], we review in this appendix how MLD/MLB (or their
circular counterparts), i.e., difference in imaginary/real parts
of the refractive indices for two linearly (circularly) polarized
modes, is calculated from bulk ac conductivity tensor of the
material. The relation between these refractive indices and the
particular magneto-optical effects is also explained here using
simple examples and we refer the reader to Appendix C for a
discussion of the more realistic relationship pertaining to our
measurements.

Consider an electromagnetic wave �E(�r,t) = �E0e
i(kz−ωt)

propagating along �k ‖ ẑ. The nonzero ac conductivity σ (ω)

and Maxwell equations imply that

∇(∇ · �E) − ∇2 �E = −μσ �̇E − με �̈E, (A1)

which yields an equation for �E0 whose solutions correspond
to the modes of the system. The character of these modes
is determined by material parameters: permeability μ, per-
mittivity ε, and conductivity σ tensors. The right-hand side
of Eq. (A1) can be rewritten in the form ω2μεeff �E(�r,t) with
effective permittivity written as εeff = ε0 + iσ/ω where ε0 is
vacuum permittivity and σ is calculated from the response of
the whole system (all electrons and crystal lattice) to perturbing
electric field. When the response of only a part of the whole
system is explicitly considered, as in Eq. (4), ε0 is replaced by
εbε0 as discussed in the text introducing that equation. We now
consider two examples related to the magnetization in-plane
and out-of-plane magneto-optical experiments discussed in
Sec. II. The permeability μ will from now on be considered
a scalar equal to the vacuum permeability and a material of
cubic symmetry will be assumed whose index of refraction in
the absence of magnetization equals n0 = √

εeff/ε0.
In the first example, �M ‖ ẑ which implies [57] an effective

permittivity tensor of the form

εeff = ε0

⎛
⎜⎝

εxx εxy 0

−εxy εxx 0

0 0 εzz

⎞
⎟⎠ (A2)

with dimensionless components εij . The eigenmodes obtained
by solving Eq. (A1) are two circularly polarized waves
with refractive indices n2

+ = εxx + iεxy and n2
− = εxx − iεxy .

Consider now a slab of a magnetic material of thickness
d described by εeff in Eq. (A2), assume normal incidence
and, for simplicity, the absence of reflections on the sample
surfaces. An incoming linearly polarized wave decomposes
into two circularly polarized modes which propagate at
different phase velocities. Under the additional (typically
satisfied) assumption |n± − n0| � n0, we can conclude using

n+ − n− ≈ n2
+ − n2

−
2n0

= iεxy

n0
(A3)

that the polarization plane of the outgoing wave will be rotated
by θ ≈ −(dω/c)Im εxy/n0. In the outlined geometry, the
Faraday rotation is directly related to magnetic circular bire-
fringence (MCB) while magnetic circular dichroism (MCD)
will make the outgoing wave elliptically polarized (ψ 
= 0).

The (polar) Kerr effect is obtained by considering reflection
off an interface between a semi-infinite magnetic material
and vacuum. Applying the Fresnel formula for the reflection
coefficient r = (1 − n)/(1 + n) at normal incidence with n±
defined below Eq. (A2), we obtain r± for the two circularly
polarized modes. Polarization properties of the reflected wave
can be expressed using the complex-valued ratio r+/r− =
aeiξ : the originally linearly polarized wave is reflected as
elliptically polarized (unless a = 1) with the major axis rotated
by θ = ξ (see Fig. 1). In a general case, it is not possible to link
MCB alone directly to the rotation and unlike with the Faraday
effect, both MCB and MCD will influence θ because the
relation between r and n is nonlinear. An illustrative example
of this is given in Appendix C.
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In the second example �M ‖ x̂, which implies the same form
of εeff as in Eq. (A2) up to a permutation of indices. Solving
Eq. (A1) for �E0 gives⎛

⎜⎝
E0

x

E0
y

E0
z

⎞
⎟⎠ ∝

⎛
⎜⎝

1

0

0

⎞
⎟⎠ and

⎛
⎜⎝

0

1

εyz/εzz

⎞
⎟⎠ (A4)

with refractive indices n2
‖ = εxx and n2

⊥ = εzz[1 + (εyz/εzz)2].
Voigt rotation [after transmission through a slab of the
magnetic material as sketched in Fig. 2(b)] is related to

n‖ − n⊥ ≈ 1

2
n0

(
εxx − εzz − ε2

yz

εzz

)
(A5)

in analogy to Eq. (A3). The ellipsometric parameters for the
Voigt effect in reflection are evaluated as follows. First the
dimensionless parameter is calculated:

χ = r(n‖) − r(n⊥)

r(n‖) + r(n⊥)
. (A6)

Then the rotation and ellipticity angles are

θ = 1

2
atan

(
2Re χ

1 − |χ |2
)

ψ = 1

2
asin

(
2Im χ

1 + |χ |2
)

. (A7)

Assuming β = π/4 and b = r‖/r⊥ real for simplicity, we get

tan θ = 1 − b

1 + b
≈ n0

2
(
n2

0 − 1
)

(
εxx − εzz − ε2

yz

εzz

)
. (A8)

For other mutual positions of �M and polarization plane, θ

will follow the sin 2β dependence as mentioned in Sec. II.
In particular, when incident beam polarization is parallel or
perpendicular to �M , light in the magnetic material travels
simply as the first or second mode in (A4) and the polarization
remains unchanged.

With these two examples at hand, we can make several
observations. Recall that we have always considered the
normal incidence here. The in-plane magnetization leads
to magneto-optical effects even in magnetization, θ ( �M) =
θ (− �M), as stated in Sec. II. In Eq. (A5), εxx − εzz is even in �M
owing to the Onsager relations, and ε2

yz is even because εyz( �M)
is odd [58]. Next, we can see that a nonzero difference between
n‖ and n⊥ in nondissipative systems (Im n‖ = Im n⊥ = 0), a
circumstance that could be called “pure MLB,” causes rotation
in the Voigt effect in reflection. However, as soon as n‖
and n⊥ are complex, both MLB and MLD will influence θ

because of the nonlinear dependence of r on n. We again
refer to the illustrative example given in Appendix C. A
similar statement holds about ellipticity of the Voigt effect
in reflection. Some confusion can arise because of different
terminology used in the literature: Reference [1] relates MLB
to the real part of refractive indices while [4] relates to the
real part of the reflection coefficients. We find the former
terminology more appropriate because it is generic for both
reflection and transmission coefficients. Independent of the
terminology, it is safe to state that different complex refractive
indices n‖ and n⊥ cause θ 
= 0, ψ 
= 0 in both transmission
and reflection experiments. Nonzero n‖ − n⊥ arises due to a
difference in diagonal components of εeff or nonzero εyz, as

seen in Eq. (A5). Since ε2
yz/εzz is in our case negligible [59],

one can conclude that the Voigt effect in reflection or in
transmission is (via MLB and MLD) primarily driven by
the difference of diagonal components of σ (ω) corresponding
to directions parallel and perpendicular to �M , i.e., by the ac
anisotropic magnetoresistance.

We conclude this appendix by explaining the relationship
between terminology used in this paper (components of
the effective permittivity tensor εeff) and the notation of
“quadratic magneto-optic tensor components” [60,61] used
elsewhere [62–64]. The basic conceptual difference between
the two approaches is whether �M is kept fixed and different
polarizations of light are considered (the former approach)
or vice versa (the latter approach). An advantage of the latter
approach is its aptitude to describe the ac analogy of crystalline
anisotropic magnetoresistance components [65] which we
completely ignore in this paper, motivated by their smallness
in the dc limit [10]. We expand the effective permittivity tensor
into a Taylor series in powers of the magnetization Cartesian
components Mk:

εij = ε
(0)
ij + KijkMk + GijklMkMl + · · · , (A9)

where ε
(0)
ij is the part independent on magnetization, Kijk and

Gijkl are rank 3 and 4 tensors, and the last two are sometimes
also called linear and quadratic magneto-optical tensors. They
represent the parts of the permittivity tensor which are linear
and quadratic in magnetization, respectively.

The form of Kijk and Gijkl depends on the symmetry of the
crystal [61] as well as on the orientation of principal crystal
axis with respect to the xyz axis in which the permittivity
tensor is expressed [64]. In the case of cubic crystals with
point symmetry (crystal classes 23 = T , m3 = Th, 432 = O,
43m = Td , and m3m = Oh), where 〈100〉, 〈010〉, and 〈001〉
are parallel with x, y, and z axis, respectively, the following
three statements hold. The nonmagnetic part of the permittivity
tensor is constant, ε

(0)
ij = δij ε

(0), where δij is the Kronecker δ.
The third-rank tensor Kijk = γijkK where γijk is Levi-Civita
symbol. The rank-4 tensor Gijkl can be written in matrix form
as [61]⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε(2)
xx

ε(2)
yy

ε(2)
zz

ε(2)
yz

ε(2)
zx

ε(2)
xy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

G11 G12 G12 0 0 0

G12 G11 G12 0 0 0

G12 G12 G11 0 0 0

0 0 0 2G44 0 0

0 0 0 0 2G44 0

0 0 0 0 0 2G44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

M2
x

M2
y

M2
z

MyMz

MzMx

MxMy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A10)

where ε
(2)
ij = GijklMkMl . In the case of an isotropic material,

the number of free parameters is further reduced because
2G44 = G11 − G12.
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In our analysis in Sec. IV, magnetization was always
oriented along the x axis and combining Eqs. (A10) and (A9),
we arrive at

ε =

⎛
⎜⎝

ε(0) + G11M
2
x 0 0

0 ε(0) + G12M
2
x KMx

0 −KMx ε(0) + G12M
2
x

⎞
⎟⎠ .

(A11)

Repeating the analysis leading to Eq. (A5), we now find
n‖ − n⊥ = (G11 − G12 − K2/ε(0))M2

x .

APPENDIX B: MICROSCOPIC MODEL

This appendix contains detailed information about the
model of (Ga,Mn)As electronic structure embodied in Eq. (3),
its parameters, and the Kubo formula used to calculate
conductivity tensor components entering Eq. (B4).

Individual samples are primarily characterized by the Mn
doping x (fraction of Ga atoms substituted by Mn) and total
hole density p. The former is taken as x = NMna

3
l /4 where

al = 0.565 325 nm is the GaAs lattice constant and NMn is the
density of Mn atoms. Since Mn substituting for a Ga atom is
a single acceptor, it follows p = NMn and | �M| = 5μBNMn

in the ideal case [for the moment, we neglect magnetic
moment of the holes, included in Eq. (B1) below]. However,
compensating impurities (e.g., As antisites or Mn atoms in
interstitial position) will reduce both p and magnetization
| �M|. These two quantities therefore have to be determined
independently by measurement as is done in Fig. 10 and Table I
of the Supplemental Information in [16]. For our paper, the
nominal doping xnom serves only as a convenient “label” of the
samples summarized in Table I. We take p directly from [16]
and using the values of Msat from the same source, we calculate
the effective doping

x = Msata
3
l

8(SMn + Scarr)μB

, (B1)

which is also given in Table I. The Mn magnetic moment
SMn = 5/2 dominates Msat, carriers contribute by a smaller
part, and we take Scarr = −0.25 because the (incompletely
polarized [66]) hole spins are oriented antiparallel to those
of the Mn. Using this x, we calculate M = | �M| in Eq. (3) as
8xSMnμB/a3

l . Note that Eq. (B1) basically expresses the notion
that in annealed metallic samples there are approximately
4.5 Bohr magnetons per manganese atom [67]. We also
note that the hole concentration 4x/a3

l corresponding to
Eq. (B1) is sometimes lower than the one determined from
the Hall measurements (see Table I). This bears witness
to the inaccuracies of the experimental methods used to
determine the material parameters as already explained in the
Supplemental Information of [16].

Our ĤKL in Eq. (3) is the eight-band Kohn-Luttinger Hamil-
tonian identical to the corresponding block in Eq. (2) of [68].
We use GaAs Luttinger parameters γ1/2/3 = 6.98/2.06/2.93
together with �SO = 341 meV, Eg = 1.519 eV, EP =
2m0P

2/�
2 = 24.8 eV, m∗

c = 0.067m0 where m0 is the electron
vacuum mass. The middle two terms in Eq. (3) describe
the ferromagnetic splitting in our model. When �M||x̂, as we
always assume in our calculations, they combine into an 8 × 8

matrix hm̂ where

m̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
√

3
2 0

√
3√
2

0 0 0

0 0 1
√

3
2

−1√
2

0 0 0
√

3
2 −1 0 0 0 −1√

2
0 0

0
√

3
2 0 0 0 −

√
3√
2

0 0
√

3√
2

1√
2

0 0 0 1
2 0 0

0 0 1√
2

√
3√
2

− 1
2 0 0 0

0 0 0 0 0 0 0 η

0 0 0 0 0 0 η 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B2)

with η = Jsd/Jpd and the prefactor h = JpdM/μB . The
kinetic-exchange couplings are Jpd = 55 meV nm3and Jsd =
−9.2 meV nm3. By diagonalizing Ĥ of Eq. (3) in each �k point
of a suitably chosen mesh around the � point of the Brillouin
zone, we obtain band dispersions Ea�k and corresponding
spinors |a,�k〉.

We now describe the many-body corrections V̂xc in Eq. (3).
Since the exchange energy per particle of free spin-polarized
electrons,

Ex/N = − e2

4πε

3kF

4π
, (B3)

is of the order of 100 meV at carrier densities of the order of
1021 cm−3, such corrections are relevant in the analysis of the
α-peak position (keep in mind that the discrepancy between
experimental and theoretical peak positions in Fig. 6 are of
this order of magnitude).

The difficulty in evaluating the exchange-correlation effects
for the holes is in the presence of a strong spin-orbit coupling.
One possible approximative scheme is discussed in [69]. To
assess the qualitative effect of exchange energy on trends in
the rotation spectra of the Voigt effect in reflection, we use the
following scheme. We first disregard the correlation effects
which are small compared to exchange in Eq. (B3). For given
x and p, we first determine the band occupations by holes pi

(�ipi = p, i = 1, . . . ,6) as given by Eq. (3) with Vxc = 0.
For most of the considered dopings, only the LH (i = 3,4)
and HH bands (i = 5,6) are occupied by holes. We next
recalculate the corresponding densities pi into Fermi wave
vectors assuming isotropic dispersion and shift the bands by
−Ex/N as given by Eq. (B3). Since −Ex/N is different for
different bands, this procedure not only renormalizes the Fermi
level but also slightly changes pi and therefore we iterate the
procedure until we converge to a consistent set of pi and
exchange shifts. Note that we neglected in this procedure the
exchange between bands i 
= j . To justify this approximation,
at least in part, we checked the spin polarizations of individual
bands. For example, x = 3%, p = 0.6 × 1021 cm−3 leads to
p3,4,5,6/p = 0.02,0.04,0.33,0.61 and integral spin polariza-
tions 2〈s〉3,4,5,6 = 0.58,−0.14,0.57,−0.91. The majority HHs
are thus prevalent and nearly completely polarized, hence their
exchange interaction with holes in other bands will be small
and our estimate using Eq. (B3) with k3

F = 6π2p6 should
be a good approximation. On the other hand, the exchange
shifts for LH bands may contain sizable corrections due to the
neglected interband exchange and the values 52, 62, 126, and
154 meV thus serve only as a rough guide to assess many-body
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effects on the magneto-optical spectra. These values are similar
to the band-gap renormalization [70] used previously [6]. A
commonly considered correction to Eq. (B3) capturing part
of the correlation effects is logarithmic and weakly dependent
on p in our range of parameters. Appealing to the second
term in Eq. (36) of [69] and the procedure described therein,
we include it into our model through a small constant shift of
6.5 meV (1.5 meV) for HH (LH) bands towards the conduction
bands. To summarize many-body corrections included in
Eq. (3), V̂xc can be understood as a single-particle operator
that commutes with Ĥ and shifts the selected bands as just
described to account for exchange and partly also correlations.
This approximative treatment enhances the ferromagnetic
splitting between minority and majority hole bands and also
adds an additional offset between the HH and LH bands.

The charge density of the delocalized holes is not constant
as in the jellium model and this causes an additional band-gap
renormalization that can be described by the real part of self-
energy due to hole-acceptor scattering [70]. We estimate it by
Eq. (5) of this reference with g = 1 (full spin polarization of the
holes) and HH effective mass of half the free electron mass as
an additional shift of the valence bands towards the conduction
bands added to V̂xc. Positions of the peak α redshift by an
additional [16] ∼300 meV which still leaves the calculated
positions of peak α in Fig. 6 several hundreds of meV above
the experimental data.

These three ingredients can be used to calculate the
conductivity tensor components

σjl(ω) = σ intra
j l + σ inter

j l (B4)

whose intraband part is taken to be ∝δjl ,

σ intra
jj =

∑
n

σ
j,n

0 (1 + i�ω/�)

1 + (�ω/�)2
. (B5)

It contains only the diagonal matrix elements of the velocity
operator v̂j (j = x,y,z denotes its Cartesian component)
appearing in the dc Drude conductivity σ

j,n

0 along a given
direction in the nth band. Relaxation times [71] corresponding
to � = 100 meV are assumed to be n and �k independent.
Off-diagonal components σ intra

ij are not calculated, since they
contribute only little to the Voigt effect in reflection [59]. Due
to the combined effect of the ferromagnetic splitting (keep in
mind that �M||x̂) and spin-orbit interaction, there is a small dif-
ference between σ

x,n
0 and σ

z,n
0 . Additionaly, Eq. (B5) does not

take into account anisotropy induced by external magnetic field
which is used in experiments to control �M . Both effects lead
to a small anisotropy in σ intra

ii which we estimated to have only
negligible effect on the resulting spectra of θ (ω) and ψ(ω).

Off-diagonal matrix elements vab�k�k′
j = 〈a,�k|v̂j |b,�k′〉 enter

through the interband part of Eq. (B4) for which we use

σ inter
j l = − i�e2

V

∑
�k,�k′,a,b

[f (Ea�k) − f (Eb�k)]

× vab�k�k′
j vba�k′ �k

l

(Ea�k−Eb�k′+i�)(Ea�k − Eb�k′ − �ω + i�)
, (B6)

where f (E) is the Fermi-Dirac distribution function that
contains the Fermi level Ef determined from the total hole

concentration p and V is the system volume. The conservation
of �k vector in optical transitions, vab�k�k′

j ,vba�k′ �k
l ∝ δ�k�k′ , is a

property of perfect crystals. Derivation of Eq. (B6) follows
[73] and the Appendix of [74] and details pertaining both to
Eqs. (B6) and (B5) can be found in [48].

APPENDIX C: FROM CONDUCTIVITY TO THE
VOIGT EFFECT IN REFLECTION

Typical σ‖ ≡ σxx , σ⊥ ≡ σyy as of Eq. (B4) are shown in
Figs. 7(a) and 7(b) (real and imaginary parts). The angle θ

(and similarly ψ) is according to Eq. (A8) related to their
difference σ‖ − σ⊥ and we therefore also plot this quantity.
Some spectral features of Fig. 5(a) can be seen in Fig. 7(c)
(Re σ‖ − σ⊥) and Fig. 7(d) (Im σ‖ − σ⊥) but their relationship
is not straightforward.

Once the optical conductivities σ‖(ω) and σ⊥(ω) are known,
effective permittivity and refractive indices can be calculated
using Eq. (4),

n2
‖ = με

‖
eff = μ

(
εb + iσ||

ω

)
,

(C1)

n2
⊥ ≈ με⊥

eff = μ

(
εb + iσ⊥

ω

)
,

where μ is the relative permeability which we take μ = 1.
The ε2

yz/εzz term contributing to n⊥ according to Eq. (A5) can
be neglected [59]: diagonal components of permittivity are
dominated by the background εb and this large value causes
σyz/σ

2
b (with σb = 1500 (� cm)−1 appropriate for εb ≈ 10.9)

to be small compared to σ‖ − σ⊥ as shown in the lower panels
of Fig. 7. Since both real and imaginary parts of n‖ and
n⊥ differ, meaning that both (magnetic linear) birefringence
and dichroism are present in our system, let us consider
an illustrative example of how MLD and MLB individually
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FIG. 7. (Color online) Conductivities σxx , σyy = σzz, and σyz

(magnetization along x̂) corresponding to p = 1021 cm−3 and x =
5%. (a) Real and (b) imaginary part of the interband conductivities
according to Eq. (B6); intraband (Drude) part is also shown. Note
that the off-diagonal conductivity is magnified by a factor of
5. (c),(d) Real/imaginary part of the difference between diagonal
components. The relatively small (Re σyz)2/σb and (Im σyz)2/σb with
σb = 1500 (� cm)−1 are also shown in panels (c) and (d).
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FIG. 8. (Color online) Rotation for a sample with p = 0.4 ×
1021 cm−3, x = 5%, and d = 20 nm in three situations: transmission
(i.e., Voigt effect), reflection from a thick layer (d → ∞) and
geometry of our measurements (labeled “full”). Note that the dashed
curve is downscaled by a factor of 10 in the range �ω < 1.5 eV.

influence the resultant θ . Assume that εxx = 11.60 + 0.70i

and εzz = 11.61 + 0.71i; this is inspired by values in Fig. 7
and it would correspond to σ ≈ 100 (� cm)−1 at �ω = 1 eV
and |σxx − σzz| of the order of 1 (� cm)−1. The rotation
θ ≈ Re χ , as given by Eq. (A7), will be 0.151 mrad if
reflection on an infinitely thick (Ga,Mn)As layer is considered.
Now consider the pure MLD situation: εxx = 11.60 + 0.70i

and εzz = 11.60 + 0.71i would give θ = 0.009 mrad. On
the other hand, εxx = 11.60 + 0.70i and εzz = 11.61 + 0.70i

(pure MLB) results in θ = 0.142 mrad. It is clear that both
MLD and MLB can significantly contribute to the spectra of
rotation of the Voigt effect in reflection.

Taking into account the effect of the substrate as in Fig. 3
and Eq. (5) of [5], (Ga,Mn)As refractive index n leads to the
reflection coefficient

r(n) = (ns − 1) cos(kd) − i(n − ns/n) sin(kd)

(ns + 1) cos(kd) − i(n + ns/n) sin(kd)
. (C2)

Using Eqs. (C1) and (C2) we get r(n‖) and r(n⊥) that can
be inserted into Eq. (A6) and we finally obtain the rotation

and ellipticity θ , ψ . Multiple reflections in a (Ga,Mn)As layer
are taken into account in Eq. (C2); the complex k = nω/c,
the layer has a finite thickness d, and it is sandwiched
between vacuum and GaAs substrate with refractive indices 1
and ns = √

εb + iσGaAs/ωε0, respectively. As was explained
below Eq. (4), we use ω-dependent εb which, together with
intrinsic GaAs ac conductivity σGaAs(ω) calculated from
Eq. (B6), reproduces the experimentally known refractive
index of GaAs. This seemingly over-cautious method of
determining ns is important for maintaining the consistency of
our optical model in Eq. (C2). It guarantees that in the x → 0,
p → 0 limit applied to our (Ga,Mn)As layer, reflection from
the layer/substrate interface will be zero.

Indeed, multilayer optical properties significantly influence
the final form of the spectra (experimentally, thickness
dependence of θ at �ω = 1.58 eV was studied by Al-Qadi
et al. in [75]). Figure 8 shows that differences between the
transmission and reflection Voigt effect experiments could
be significant, yet the spectral features (and their position in
particular) remain to some extent unaffected. For example,
peak α is somewhat suppressed in pure reflection (dashed
curve in Fig. 8) that would correspond to an experiment with
a thick layer (d → ∞). Features β, γ in the subgap energy
range would, however, be order of magnitude larger in pure
reflection. A hypothetical experiment measuring transmission
(including multireflections) through a thin (d = 20 nm) layer
would give the Voigt effect as shown by the dotted curve
where, roughly speaking, the spectrum only changes the
overall sign. Multiple reflections between the substrate-sample
and air-sample interfaces substantially modify the spectra
although their effect may even be somewhat exaggerated
in our model. Based on an estimate Re σxx = Im σxx =
200 (� cm)−1 at �ω = 1 eV (compare Fig. 7), we obtain index
of refraction n ≈ 1.2 and therefore a large reflection coefficient
at the substrate/sample interface. With absorption coefficients
α(ω) ∼ 10 000 cm−1, i.e., αd ≈ 0.01 � 1, the wave will
be (in our model) able to travel many times through the
sample. Experimental comparison of the effect in samples with
different thicknesses however suggests that both αd is larger
and the sample/substrate contrast is lower (n/ns closer to 1).
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and average over the positions. This procedure is explained in
Sec. 8.1.2 of G. Mahan, Many-Particle Physics, 3rd ed. (Kluwer
Academic/Plenum, New York, 2000). Alternatively, �/� can
also be introduced as inverse relaxation time when the electron
is weakly interacting with its surroundings [72].

[72] M. Lax, Phys. Rev. 109, 1921 (1958).
[73] P. Allen, in Conceptual Foundations of Materials A Standard

Model for Ground- and Excited-State Properties, Contemporary
Concepts of Condensed Matter Science Vol. 2, edited by
S. G. Louie and M. L. Cohen (Elsevier, Amsterdam, 2006),
pp. 165–218.
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