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Magnetic anisotropies in quantum dots (QDs) doped with magnetic ions are discussed in terms of two
frameworks: anisotropic g factors and magnetocrystalline anisotropy energy. It is shown that even a simple
model of zinc-blende p-doped QDs displays a rich diagram of magnetic anisotropies in the QD parameter space.
Tuning the confinement allows us to control magnetic easy axes in QDs in ways not available for the better-studied
bulk dilute magnetic semiconductors.
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I. INTRODUCTION

Once the origin of magnetic ordering in a specific material
is understood, it is often important to determine its magnetic
anisotropy (MA) and hard and easy magnetic axes in particular.
A shift of focus toward MA has already occurred for the
studies of bulk dilute magnetic semiconductors (DMS),1,2 but
not yet fully for magnetic quantum dots (QDs) where it could
play a certain role, for example, in the context of transport
phenomena,3 the formation of robust magnetic polarons,4–7

control of magnetic ordering,8–12 nonvolatile memory,13 and
quantum bits.14

In epilayers of (Ga,Mn)As, a prototypical DMS, the magne-
tocrystalline anisotropy energy (MAE) has been found to be a
significant and often dominant source of MA (Refs. 15–17)
caused by a strong spin-orbit (SO) coupling. It turns out
that the easy-axis direction depends on hole concentration,
magnetic doping level, as well as on other parameters. For
example, when (Ga,Mn)As was used as a spin injector, the
effects of strain (by altering the choice of a substrate) were
responsible for changing the in-plane to out-plane easy axis.18

While the strong SO coupling19 is also present in p-type
QD of zinc-blende materials doped with Mn, its effect on
magnetic anisotropies will be significantly modified by the
confinement. The energy levels in such “nanomagnets,”20–23

where the Mn-Mn interaction is mediated by carriers, depend
on the magnetization direction eM = (nx,ny,nz). It is often
assumed that the interaction of magnetic moments with holes
in quantum wells (QWs) or, equivalently, in flat QDs is
effectively Ising-type.14,24 Here, we quantify this assumption
and explore MA using two frameworks: (i) an effective
two-level Hamiltonian with a carrier g tensor,25 which is
widely employed also in theory of electron spin resonance,
and (ii) MAE, which is commonly used to study bulk magnets.

While previous studies focused on specific nonmagnetic
QDs (Ref. 26) and properties sensitive to system details (such
as precise position of magnetic ions22,27), we explore more
generic magnetic QD models, which can also serve as a starting
point for more elaborate work. We consider a Hamiltonian
comprising nonmagnetic and magnetic parts

Ĥ = ĤQD + Ĥex. (1)

The former encodes both QD confinement and SO interaction,
which is a prerequisite for magnetic anisotropies, and the latter

expresses the kinetic-exchange coupling between holes and
localized magnetic moments. For transparency, we disregard
the magnetostatic shape anisotropy28 and assume that the QD
contains a fixed number of carriers. We mostly focus on the
case of a single hole; realistically, such a system can be a
II-VI colloidal5 or epitaxial6 QD with a photoinduced carrier.
Magnetic moments of the Mn atoms are taken to be perfectly
ordered (collinear) and are treated at a mean-field level. The
magnetic easy axis is then the direction eM for which the
zero-temperature free energy F (eM ) is minimized.

In this article, we take two different points of view on
F (eM ). On one hand, we discuss the lowest terms of F (eM )
expanded in powers of the direction cosines of magnetization
(n2

x + n2
y + n2

z = 1), inspired by the standard “bulk MAE phe-
nomenology” and pay special attention to the case of perfectly
cubic QDs, F (eM ) = F0(eM ). The anisotropies in F0 stem
purely from the crystalline zinc-blende lattice. On the other
hand, F (eM ) acquires additional terms in systems with less
symmetric confinement. We therefore discuss the anisotropic
g factors as a useful framework to handle such systems, e.g.,
cuboid QDs (orthogonal parallelepiped; extremal cases are a
cube and an infinitely thin slab, i.e., a QW) and show how the
expansion

F (eM ) = F0(eM ) + AF1(eM ) + A2F2(eM ) + . . . (2)

can be constructed using powers of A which reflect the
anisotropy in g factors. We begin by discussing this latter topic
in Sec. II [quantity A is defined by Eq. (8) at the end of Sec.
II A], then proceed to the phenomenologic (symmetry-based)
expansions of F0 in Sec. III and conclude that section with
calculations of F1 in situations that are beyond the applicability
of the g-factor framework.

II. EFFECTIVE TWO-LEVEL HAMILTONIAN

Since ĤQD is invariant upon time reversal, its spectrum
consists of Kramers doublets.29 To study the ground-state
energy in the presence of magnetic moments, we examine
how these doublets are split by Ĥex(eM ), where eM is treated
as an external parameter (related to classical magnetization;
single-Mn doped QDs where the Mn magnetic moment
behaves quantum mechanically30 require different treatment),
and represent them by an effective two-level Hamiltonian of
Eq. (6). We consider two example systems: a simple four-level

155312-11098-0121/2012/85(15)/155312(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.155312
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FIG. 1. (Color online) Splitting of levels E(h) in a flat QD
described by Eq. (3). (a) For the particular Kramers doublet, E(h)
depends on eM and the g factors (by convention non-negative)
are ∂E/∂ �h = (gx,gy,gz). (b) Beyond the linear regime in h/a,
∂E/∂(hnx) will be different for the upper and lower levels of the split
doublet, it will depend on h and may even change sign, indicating
that the Ĥeff of Eq. (6) based on parameters gx,y,z fails.

one where completely analytical treatment is possible, and a
more realistic envelope-function-based model of a cuboid QD.

A. Four-level model

Related to the Kohn-Luttinger Hamiltonian of a QW,23,31

the arguably simplest nontrivial model describing anisotropy
of a flat QD is

Ĥ1 = aĴ 2
z + 1

3heM · Ĵ (3)

representing hole levels in a zinc-blende structure, the con-
finement anisotropy and exchange splitting of which are
parametrized by a and h, respectively (the term aĴ 2

z implies
that the strongest confinement is along the z direction and this
term also encodes information about the SO coupling). Ĵx,y,z

are 4 × 4 spin- 3
2 matrices. In terms of Eq. (1), we now choose

Ĥ = Ĥ1 and the first (second) term in Eq. (3) plays the role
of ĤQD (Ĥex). Anisotropic behavior of eigenvalues of Ĥ1, to
linear order in h/a, is illustrated in Fig. 1(a). It can be extracted
from the exact eigenvalues

E±
HH(h) = 5

4
a ± 1

6
h +

√
a2 + 1

9
h2 ∓ 1

3
ah, (4)

E±
LH(h) = 5

4
a ± 1

6
h −

√
a2 + 1

9
h2 ∓ 1

3
ah (5)

in the case nx = 1 (or ny = 1), shown in Fig. 1(b), which
clearly differ from the case nz = 1 where the eigenvalues are
strictly linear functions of h (E±

HH = 9a/4 ± h/2 and E±
LH =

a/4 ± h/6); subscripts refer to the E±
HH(0) = 9a/4 [heavy

hole (HH)] and E±
LH(0) = a/4 [light hole (LH)] doublets,

respectively. In the limit of weak exchange h/a � 1, splitting
of each of the Kramers doublets is symmetric and it can be
characterized by three parameters |∂E/∂(hnp)|, p = x,y,z,
for h → 0 as depicted in Fig. 1(a). These parameters can
be plausibly called, by analogy with the Zeeman effect, the
anisotropic g factors gp. From Eqs. (4) and (5), we straightfor-
wardly obtain (gx,gy,gz) = (0,0,1/2) and (1/3,1/3,1/6) for
the HH and LH doublets of the Hamiltonian Ĥ1, respectively.
This result is known from the context of QWs.31,32 We
emphasize that these g factors of the model specified by
Eq. (3) are independent of the parameters a,h (except for
the requirement h � a, which represents the h → 0 limit).

If we focus on one particular Kramers doublet, it is
straightforward to show that Ĥ1 projects to

Ĥeff = h[nxgxτ̂x + nygyτ̂y + nzgzτ̂z] (6)

for a suitably chosen basis |K1〉, |K2〉 of the doublet. Here,
τ̂i are Pauli matrices and we have mapped two eigenstates
of the original Hamiltonian ĤQD on a pseudospin |�τ | = 1/2
doublet |+〉, |−〉, where τ̂z|±〉 = ±|±〉. For Ĥ = Ĥ1, the
eigenstates are only four dimensional (spanned by the |Jz =
3/2〉, |Jz = −1/2〉,|Jz = 1/2〉,|Jz = −3/2〉 basis). We present
another example of Ĥ in Sec. II B where advantage of the
projection becomes more apparent. The choice of basis |+〉,
|−〉 is crucial to obtain Ĥeff in the simple form (6); consid-
ering the HH doublet, |+〉 = |Jz = 3/2〉, |−〉 = |Jz = −3/2〉
leads to Eq. (6), while for other basis choices the mapping
Ĥex = (h/3)eM · Ĵ �→ Ĥeff = heM · g · τ̂ may lead31 to the
nonsymmetric tensor g = gij , i,j ∈ {x,y,z}. In general, if the
mapping is to produce gij = diag (gx,gy,gz), the “suitable
choice of the basis |K1〉, |K2〉” where |K1〉 �→ |+〉 is such
that 〈K1|Ĵx,y |K1〉 = 0, 〈K1|Ĵz|K1〉 � 0 (and |K2〉 is the time-
reversed image of |K1〉, which is mapped to |−〉).

Let us now consider a general system described by Eq. (1).
Assuming that the downfolding of Ĥ into Ĥeff is possible for
given |K1〉, |K2〉 (this assumption is discussed in Appendix A),
the anisotropic g factors can readily be determined as ∂E/∂h

for the particular Kramers doublet level E. This is equivalent
to perturbatively evaluating the effect of Ĥex on two degenerate
levels to the first order of h as follows: (i) specify the Kramers
doublet of interest, and find any basis |K1〉, |K2〉 of this
doublet, (ii) extract the operators t̂x,y,z from Ĥex by taking
t̂p = ∂Ĥex/∂(nph) (for example, t̂x = Ĵx/3 for Ĥex appearing
in Ĥ1), (iii) evaluate their matrices

t̃x,y,z =
( 〈K1|t̂x,y,z|K1〉 〈K1|t̂x,y,z|K2〉

〈K2|t̂x,y,z|K1〉 〈K2|t̂x,y,z|K2〉

)
(7)

in the two-dimensional space spanned by |K1〉, |K2〉, and (iv)
the non-negative eigenvalue of t̃p equals gp (p = x,y,z). We
emphasize that while gp depends on system parameters in ĤQD

and Ĥex, it also depends on which Kramers doublet we choose.
Higher doublets become relevant for QDs containing higher
(odd) number of holes, for example.
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The effective Hamiltonian in Eq. (6) can be used for various
purposes, e.g., for studies of fluctuations of magnetization in
magnetic QDs,33 spin-selective tunneling through nonmag-
netic QDs,34 or excitons in single-Mn-doped QDs.35 If the
magnetic easy axis is of interest, the g factors immediately
provide the answer: F (eM ) based on Eq. (6) is minimized for
eM in the direction of the largest gp [e.g., for the HH doublet in
Fig. 1(a), it is nz = 1 because gz > gx,gy]. If the full form of
F (eM ) is needed (e.g, for ferromagnetic resonance2), it can be
straightforwardly obtained by diagonalizing the 2 × 2 matrix
of Ĥeff . Assuming gx = gy , the (modulus of the) eigenvalue
can be expanded in terms of parameters A and k as derived in
Appendix B. It is meaningful to call

A = (
g2

z − g2
x

)/(
g2

z + g2
x

)
(8)

the asymmetry parameter since it vanishes in a perfectly cubic
QD (gx = gy = gz) and it is with respect to this parameter that
we can identify

AF1(eM ) = −Akn2
z, (9)

A2F2(eM ) = + 1
8A2k

(
2n2

z − 1
)2

(10)

in Eq. (2) to linear order of k ∝ h.

B. A cuboid quantum-dot model

With this general scheme at hand, we take one step in the
hierarchy of models toward a more realistic description of
magnetic QDs. We consider a zinc-blende structure p-doped
semiconductor shaped into a cuboid of size Lx × Ly × Lz

such as can be described by the four-band Kohn-Luttinger
(KL) Hamiltonian.23 Also in this system, Ĥ = Ĥ2 is a sum
of Ĥex and ĤQD, but this time ĤQD comprises of blocks
〈mxmymz|ĤKL|m′

xm
′
ym

′
z〉 with

ĤKL = h̄2

2m0

{(
γ1 + 5

2
γ2

)
p2 − 2γ2

[
Ĵ 2

x p̂2
x + Ĵ 2

y p̂2
y + Ĵ 2

z p̂2
z

]
− 2γ3[(Ĵx Ĵy + Ĵy Ĵx)p̂xp̂y + c.p.]

}
. (11)

Here, |mxmymz〉 denotes the basis of envelope functions,
γ1,2,3 the Luttinger parameters, m0 the electron vacuum mass,
p̂x,y,z the momentum operators, and c.p. denotes the cyclic
permutation (see Appendix C for details). The envelope
function is conveniently developed into harmonic functions
with mp − 1 nodes in the p = x,y,z direction:

〈�r|mxmymz〉 = N sin
mxπx

λxL
sin

myπy

λyL
sin

mzπz

L
. (12)

We have introduced the dimensionless aspect ratios λx,y =
Lx,y/L and the normalization factor N . Our system can be
viewed as an infinitely deep potential well with V (x,y,z) = 0
for 0 < x < Lx , 0 < y < Ly , 0 < z < Lz ≡ L, and infinite
otherwise.

For fixed material parameters (Luttinger parameters in
ratios γ2/γ1, γ3/γ2) and QD shape (λx,λy), all matrix elements
of all blocks 〈mxmymz|ĤKL|m′

xm
′
ym

′
z〉 scale as 1/L2. The

spectrum, consisting of Kramers doublets which occasionally
combine into larger multiplets, is specified by a sequence of
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FIG. 2. (Color online) (a) Levels in a cubic dot (with γ3 = γ2)
in units of E0 defined by Eq. (13). Solid lines indicate the analytic
result obtained when mixing between remote levels is disregarded.
Note that their crossing (which we use to discern the weak and strong
HH/LH splitting materials, dashed line) is very close to the actual
crossing when level mixing is taken into account. Values representing
ZnSe (γ̄2/γ1 ≈ 0.23) and CdTe (γ̄2/γ1 ≈ 0.33) QDs are indicated.
Inset: squared wave-function modulus of the ZnSe QD ground state
in the z = L/2 section. (b) Dependence of the g factors associated
with the ground-state Kramers doublet in a CdTe QD on its shape
(λx = λy ≡ λ).

dimensionless numbers E/E0, where

E0 = h̄2π2γ1/(2m0L
2). (13)

For a cubic QD [λx = λy = 1; see Fig. 2(a)], the s-like
state shown in the inset of Fig. 2(a) forms a quadruplet,
and depending on the value of γ2/γ1 (and to a somehow
lesser extent also of γ3/γ2), this state competes with the next
doublet for having the lowest energy. The critical value (see
Appendix C)

cR = (2 + 128/9π2)−1 ≈ 0.29 (14)

can be taken to distinguish materials with small (γ2/γ1 < cR ,
ground-state quadruplet) and large (γ2/γ1 > cR , ground-state
doublet) splitting between light and heavy holes in the bulk;
these can be ZnSe and CdTe, respectively, and their values
of γ̄2/γ1 based on approximating γ2 and γ3 by their average
γ̄2 = (γ2 + γ3)/2 are indicated in Fig. 2(a). By numerical diag-
onalization, we have determined the lowest 7 Kramers doublets
in slightly deformed QDs (λx = λy ≡ λ = 1.01) in these
materials (γ1 = 4.8, γ2 = 0.67, and γ3 = 1.58 for ZnSe and
γ1 = 4.1, γ2 = 1.1, and γ3 = 1.6 for CdTe),36 and executed
the procedures (i)–(iv) above to obtain the g factors which are
listed in the Table I (gx = gy due to λx = λy). To avoid confu-
sion, we remark that in (i), |K1〉, |K2〉 are vectors of dimension
864 in the basis |mxmymz〉 ⊗ |Jz〉 (see the discussion of cutoff
in Appendix C) and in (ii), t̂x = (1/3)Ĵx ⊗ 11xyz, where 11xyz

is the identity operator in the space of the envelope functions
given by Eq. (12). Evaluation and diagonalization of the
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TABLE I. Energies and g factors in slightly deformed QDs (λ =
1.01) for the lowest 7 Kramers doublets for ZnSe and CdTe, where
E0 ≈ 28 and 24 meV, respectively, for L = 8 nm.

CdTe ZnSe

E [meV] gx = gy gz E [meV] gx = gy gz

49.9 0.166 0.164 71.7 0.012 0.464
52.8 0.027 0.418 71.9 0.305 0.171
53.0 0.269 0.176 92.1 0.167 0.160
78.5 0.162 0.169 126.1 0.274 0.237
84.1 0.010 0.129 129.6 0.076 0.069
84.4 0.064 0.004 130.0 0.082 0.045
85.6 0.203 0.279 141.0 0.205 0.212

2 × 2 matrices in Eq. (7) requested in (iii) and (iv) is
performed numerically. The possibility to map the action
of Ĥex = (h/3)eM · Ĵ ⊗ 11xyz on the Kramers doublets |K1〉,
|K2〉 implied by ĤQD of a cuboid p-doped QD is discussed in
Appendix A.

The slight deformation of the QD makes the quadruplet split
into two doublets (with energies 71.7 and 71.9 meV for ZnSe),
the g factors of which approach (0,0,1/2) and (1/3,1/3,1/6).
A similar situation occurs for the doublet pair with energies
52.8 and 53.0 meV for CdTe. The actual ground state in this
material is a doublet of different orbital character than the
quadruplet (we stress that this is due to the confinement, see
Appendix C); it evolves from the E = 6E0 level of γ2/γ1 = 0
as shown by the solid line in Fig. 2(a) and its g factors are
isotropic, (1/6,1/6,1/6) in the limit λ → 1. However, this
doublet remains the ground state only in rather symmetric
QDs (λ � 1.25 in CdTe) and for more strongly deformed QDs,
the lower doublet of the E = 3E0 (at γ2/γ1 = 0) quadruplet
becomes the ground state just as it is the case for ZnSe for
arbitrarily small deformations λ > 1. In Fig. 2(b), we show
how the g factors of the CdTe QD ground state depend on λ

beyond the mentioned value ≈1.25. These results, including
the g factors, are independent of the QD size L, except for
the energies which scale as 1/L2 as mentioned above.

From Fig. 2, one may conclude that the Ising-type Hamil-
tonian is often an excellent approximation (gx = gy = 0, as
others assume14,24,33–35) for the lowest Kramers doublet. To be
more specific, we now discuss materials with small and large
HH/LH splitting separately. For γ2/γ1 < cR , the out-of-plane g

factor (gz) overwhelmingly exceeds the in-plane one (gx = gy)
even for minute deformation of the QD; this can be seen
from the numeric ZnSe data in Fig. 2. We find gz = 0.464
and gx = gy = 0.012 for λ − 1 as small as 0.01. For CdTe,
which represents the other class (γ2/γ1 > cR), we find similar
values (gz = 0.418) for the second Kramers doublet, while the
lowest doublet remains rather isotropic (gx = gy = 0.166 and
gz = 0.164). As we make the QD deformation larger, these two
doublets cross, so that the ground-state doublet is Ising type,
while the second lowest doublet remains more isotropic. As
mentioned above, this crossing occurs for λ ≈ 1.25 in CdTe,
and data in Fig. 2(b) are only shown for λ > 1.25.

We now elaborate on the properties of the low-energy
sector of Ĥ2 (at h = 0). Coupling between blocks of different
|mxmymz〉 vanishes when γ3/γ1,γ2/γ1 → 0, and Eq. (3)

becomes in this limit the exact effective Hamiltonian of the
lowest four levels (mp = 1 for all p = x,y,z). They form a
quadruplet for λ = 1, which splits into two doublets upon
deformation of the QD; we can see it by writing

〈111|ĤKL|111〉 = 3E0

[
114f (λ) − Ĵ 2

z (1 − λ−2)
2

3

γ2

γ1

]
, (15)

where 114 is a unit 4 × 4 matrix and f (λ) is a certain
function with limλ→1 f (λ) = 1. The lower doublet of this
4 × 4 effective Hamiltonian has gz = 1/2 (when λ > 1 and
γ2 > 0) and therefore the values of gz deviating from 0.5
(appearing in Fig. 2) occur only due to admixtures from
higher-orbital (mp > 1) states of LH character. Indeed, going
from ZnSe to CdTe, the mixing becomes stronger and gz

of the HH-like level drops from 0.464 to 0.418 (λ = 1.01,
numerical data in Table I). While Eq. (3) may remain the
effective Hamiltonian of the two doublets originating from
|mxmymz〉 = |111〉 even for γ2/γ1 > cR (CdTe levels of 52.8
and 53.0 meV in Fig. 2), for λ close to 1, there is the
more isotropic doublet on the stage (49.9 meV in Fig. 2).
Nevertheless, if λ is sufficiently large, the Ĵ 2

z term in Eq. (11)
will eventually dominate, it will suppress all mixing between
HH and LH states, and the lowest doublet will again approach
(gx,gy,gz) = (0,0,0.5) as it is shown in Fig. 2(b).

III. MAGNETOCRYSTALLINE ANISOTROPY ENERGY

In analogy to the bulk systems, even cubic QDs retain
anisotropies. However, these cannot be described within the
previous framework: for instance, gx,gy,gz are all equal to 1/6
in the cubic CdTe QD ground state, hence A = 0 in Eq. (8).
One could replace gij by a higher-rank tensor to capture
these effects, but MAE formalism of bulk magnets seems
more customary and informative. Unlike the g factors, MAE
analysis does not invoke the concept of Kramers doublets. The
zero-temperature free energy F (eM ) of a magnetic QD with
a single hole is now simply the lowest eigenvalue of Eq. (1)
and it can be expanded in powers of nj . The lowest terms
compatible with cubic symmetry are39

F0 = Kc

(
n4

x + n4
y + n4

z

) + 27Kc2n
2
xn

2
yn

2
z. (16)

For data calculated by numerically diagonalizing Ĥ = Ĥ2

(model described in Sec. II B), it turns out that Eq. (16)
suffices to obtain good fits; for instance, the lower solid
line in Fig. 3(a) corresponds to Kc = 0.83 meV and Kc2 =
0.075 meV with easy axis along [111]. There, we have chosen
Cd1−xMnxTe as the material, L = 16 nm, and h = 50 meV,

which corresponds to h = JpdNMnSMn with x ≈ 2.3% (we
take36 |Jpd | = 60 meV nm3, SMn = 5/2 and NMn = 4x/a2

l

with CdTe lattice constant al = 0.648 nm). Results in Fig. 3
are again subject to scaling, similar to the nonmagnetic spectra
in Fig. 2(a). When the material parameters (specifically, γ2/γ1

and γ3/γ2) are fixed, the spectrum of Ĥ2, expressed in the units
of E0, depends on a single dimensionless parameter

Ž = h/E0 ≡ 2m0hL2/(γ1π
2h̄2). (17)

This scaling relates the spectra of, e.g., cubic dots of different
sizes and Mn contents (if their respective values of Ž are
equal). Data in Fig. 3 therefore apply both to x = 2.3% at L =
16 nm (if left as they are) and x = 9.2% at L = 8 nm (if scaled
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FIG. 3. (Color online) Magnetocrystalline energy as a function of magnetization direction (E1); the data labeled E2 are explained in the
text. CdTe QD with 2.3% Mn (a) 16 × 16 × 16 nm3, (b) 16 × 16 × 8 nm3. (c) Fictitious material with parameters described in the text; note
that the sign of Kc implied by Eq. (16) has changed compared to (a) and (b). (d) Color-coded easy-axis positions for CdTe QDs as a function of
aspect ratio (λ) and effective exchange splitting Ž. Black squares (1) indicate easy plane perpendicular to the z direction, hollow squares denote
an isotropic magnet; white region (2) corresponds to easy axis [001]; red squares (3) denote systems with [111] easy axis, which gradually
shifts toward [001] with increasing λ. This plot is universal as far as L is concerned.

by a factor of 4). It turns out that the g-factor analysis presented
in the previous section is meaningful for Ž � 0.1, while now
we have stepped out of this limit. When the exchange field
h becomes stronger, levels cross and cease to depend linearly
on h as required by Eq. (6); for Ĥ = Ĥ1, this is illustrated in
Fig. 1(b). This limit was determined for CdTe cubic QDs, but
it will typically not be too different for other materials and/or
aspect ratios λ unless accidental (quasi)degeneracies occur at
Ž = 0.

MAE shown in Fig. 3 describe systems well beyond this
limit of small Ž (linear regime). We first focus on a perfectly
cubic CdTe QD where there are no anisotropies in the linear
regime. As already mentioned, the lowest energy hole state
in Fig. 3(a) exhibits a [111] easy axis with Kc = 0.83 meV at
L = 16 nm and h = 50 meV, i.e., Ž ≈ 2.8 (this corresponds to
a realistic x ≈ 2.3% Mn doping). In bulk DMSs, [111] would
be an unusual magnetic easy-axis direction15 and we surmise
that the reason for this is that, for instance in (Ga,Mn)As grown
on a GaAs substrate, there is a sizable compressive strain which
prefers either parallel or perpendicular orientation of eM with
respect to the growth axis.

We note that in a QD containing two holes (closed-shell
system11), the anisotropies will also be present and they will

be different from the single-hole case. Free energy, taken as
a sum F0(eM ) = E1 + E2 of the lowest two single-hole states
[shown e.g. in Fig. 3(a)], is not a constant independent of eM as
one could naively expect. This intuition reflects Ĥeff in Eq. (6)
where the two hole states have opposite spin (hence their
energies add up to zero). Once we leave the linear regime (Ž �
0.1), Ĥeff ceases to be a good approximation. Qualitatively,
the same behavior is found for ZnSe (not shown), a smaller
value of Kc = 0.41 meV is accounted for by the smaller
HH/LH splitting. The value of this constant is a complicated
function of system parameters and it can even change sign
as shown in Fig. 3(c) where Kc = −0.63 meV. Parameters
used in this figure (γ1 = 4.0, γ2 = 1.5, and γ3 = 1.6 and
h = 20 meV) do not strictly correspond to published values of
any semiconductor, but they can be viewed as reasonable given
the uncertainty in experimental determination of the Luttinger
parameters. Dependence of the anisotropy constants for ZnSe
and CdTe QDs on h is summarized in Table II.

Let us now return to noncubic QDs. As already explained,
the sizable g-factor anisotropies shown in Fig. 2(b), relevant
to the case of weak magnetism (Ž � 1), translate into an ad-
ditional term AF1 = Kun

2
z in the free energy of Eq. (2) where

Ku = −kA up to linear order in Ž ∝ k. Typically, Ku exceeds

TABLE II. Magnetic anisotropy constants (in meV) for a 16 × 16 × 16 nm3 (cubic) and 16 × 16 × 8 nm3 (deformed) ZnSe and CdTe
magnetic QD as a function of exchange splitting (or dimensionless parameter Ž as for CdTe).

Cubic Deformed

ZnSe CdTe ZnSe CdTe

h (meV) Ž Kc Kc Kc Ku Kc Ku

10 0.55 0.11 0.24 0.23 −3.79 0.35 −3.90
20 1.1 0.20 0.43 0.36 −5.52 0.62 −6.21
30 1.7 0.28 0.59 0.44 −6.29 0.83 −7.59
40 2.2 0.35 0.71 0.50 −6.72 1.01 −8.56
50 2.8 0.41 0.83 0.56 −7.01 1.16 −9.30
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Kc already for small QD deformation (λ slightly over one), and
the data in Fig. 3(b) imply Ku almost an order of magnitude
larger than Kc for λ = 2 (see also data in Fig. 2 where gz �
gx). Regardless of the contributions to Ku of higher order in Ž,
data in Table II imply an out-of-plane easy axis (in the [001]
direction) as it is the case in QWs. However, upon deforming of
a QD, the easy axis does not abruptly jump from [111] to [001]
but smoothly interpolates between these two directions. A
similar effect, easy-axis shifting as a function of some system
parameter, is also known in bulk DMS [(Ga,Mn)As epilayers
in particular; see Fig. 8 in Ref. 15]. Easy axes as a function of
QD shape (oblate dots, λ > 1) and effective exchange splitting
Ž are summarized in Fig. 3(d), and the mentioned gradual shift
of easy axis is indicated by shading between regions (3) and (2)
(easy axes [111] and [001], respectively). On the other hand,
the easy-axis position changes abruptly between (1) and (3) or
(1) and (2); region (1) corresponds to easy axis in the plane
perpendicular to [001] (with anisotropies within this plane
being very small). The abrupt changes reflect ground-state
crossings, such as the one with λ described below Eq. (14),
while the gradual ones stem from level mixing caused by Ĥex.

Finally, we comment on MA in QDs occupied by more than
one hole. As already mentioned above, one possible approach
is to discuss open- and closed-shell systems separately. This
notion is based on the concept of the QD being an artificial
atom, the levels of which are organized into shells comprising
of spin-up and spin-down orbitals. Whenever a shell is
completely filled (closed), the numbers of spin-up and spin-
down carriers are equal, hence their total spin is zero. If the QD
is magnetically doped, no magnetic ordering is expected and
also no MA. However, strong SO coupling puts this concept
into question since it mixes different shells and also invalidates
the spin-up and -down labels of individual orbitals. The MA as
a function of particle number Np strongly varies, both quan-
titatively and qualitatively. By comparing the Np = 1 and 2
cases of a cubic CdTe QD, that is, F0(eM ) = E1 and F0(eM ) =
E1 + E2 of Fig. 3(a), we find that while the easy axis [111] in
the former case is relatively “soft” (energy difference between
eM ||[111] and [110] is “only” ≈0.1 meV), the QD with two
holes has a “robust” easy axis [110] and the corresponding
minimum in F0(eM ) is as deep as 0.3 meV. MA as a function
of Np displays rich behavior and one can therefore envision
control of nanomagnetism by electrostatic gating, illumination
(used to photoinduce carriers), and possibly also tempera-
ture, known to alter the magnetic ordering in the bulklike
structures.18,40

IV. CONCLUSIONS

We have discussed two approaches to magnetic anisotropies
in quantum dots (QDs) described by a generic model in Eq. (1).
An effective Hamiltonian for individual Kramers doublets
allows us to express the energetics of a magnetically doped
QD in terms of only three parameters (anisotropic g factor)
if the exchange splitting due to the magnetic ions is relatively
small. On the other hand, if the exchange splitting is large or
the QD’s symmetry is too high, the symmetry-based expansion
of the magnetocrystalline energy in powers of the direction
cosines of magnetization may in principle contain infinitely
many terms (each of them quantified by one parameter).

Focusing on manganese-doped semiconductor QDs, we
find that only first few magnetocrystalline terms are appre-
ciable, present their values, and show in Fig. 3(d) a diagram
of magnetic anisotropies in the QD parameter space. While
we consider only a relatively small parameter range in that
diagram, and the barriers between individual free-energy
minima are relatively low, it demonstrates that the QDs may
have rich magnetic anisotropies. In spintronics,18,19,41 these
systems could thus enable confinement-controlled multilevel
logic and provide electrical spin injection in lasers with
desirable perpendicular anisotropy that could enhance their
performance.42 Our results provide a starting point for further
studies of nanoscale magnetism in QDs. Such studies could
relax the mean-field approximation, include multiple-carrier
states,22,43 or the effect of strain.
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APPENDIX A

The downfolding of ĤQD + Ĥex to Ĥeff is indeed possible
for the two example systems discussed in Secs. II A and II B. To
prove this, we first transform the basis |K1〉,|K2〉 to |K ′

1〉,|K ′
2〉

where t̃z of Eq. (7) is diagonal and then verify that the diagonal
elements of t̃x and t̃y vanish. This procedure has to be applied to
each Kramers doublet of interest. In the case of Ĥ1 in Eq. (3),
this is done simply by construction [e.g., |K ′

1〉,|K ′
2〉 for the

upper doublet in Fig. 1(a) is just |Jz = 3/2〉,|Jz = −3/2〉]. In
the model described by Ĥ2, one can split the Hilbert space
into two disjunct subspaces H1, H2 and the above assertion
can be shown to hold if |K ′

1〉 ∈ H1 and |K ′
2〉 ∈ H2. (The

decomposition H1 ⊕ H1 relies on Ĥex being independent
of space coordinates; relaxing the mean-field treatment of
Mn magnetic moments thus introduces corrections to Ĥeff .)
Finally, one adjusts the relative phase between |K ′

1〉 and |K ′
2〉,

so that the matrix t̃x is real and t̃y purely imaginary.

APPENDIX B

This appendix explains the relation between the anisotropic
g factors and Eq. (2). The eigenvalues of Ĥeff are two
numbers of equal magnitude and opposite sign, the lower of
which is (for h > 0)

−h

√
n2

xg
2
x + n2

yg
2
y + n2

zg
2
z . (B1)

Let us consider, for example, a single hole in a cuboid QD of
dimensions λL × λL × L (such as it corresponds to data in
Table I) so that gx = gy . Expression (B1), which now equals
F (eM ), can be rewritten as

−h
√

g2
x + g2

z√
2

√
1 + g2

z − g2
x

g2
z + g2

x

(
n2

z − n2
x − n2

y

)
(B2)

and developped in terms of a small parameter A = (g2
z −

g2
x)/(g2

z + g2
x), which quantifies the QD asymmetry as

−k
(
1 − 1

2A
) − Akn2

z + 1
8A2k

(
2n2

z − 1
)2 + . . ., (B3)

155312-6



MAGNETIC ANISOTROPIES OF QUANTUM DOTS DOPED . . . PHYSICAL REVIEW B 85, 155312 (2012)

where k = h
√

(g2
x + g2

z )/2. The first term does not depend on
the magnetization direction, hence it can be disregarded for
the purposes of magnetic anisotropy analysis.

APPENDIX C

We derive Eq. (14) in this appendix and discuss the
details of the model considered in Sec. II B. Energies E/E0

in Fig. 2(a) are calculated by numerical diagonalization
of Ĥ2 with h = 0, a matrix constructed of 4 × 4 blocks
〈mxmymz|ĤKL|m′

xm
′
ym

′
z〉/E0 introduced at the beginning of

Sec. II B. The basis of ĤQD consists thus of direct product
states |mxmymz〉 ⊗ |Jz〉 where |Jz〉 are the four-spinors of total
angular momentum J = 3/2, which are eigenstates to Ĵz. For
practical purposes, we cut off the basis by mx,my,mz � 6,
resulting in ĤQD of dimension 864. Eigenvalues are typically
converged to better than 0.1 meV for this cutoff.

The matrix ĤQD/E0 is block diagonal for γ2 = γ3 = 0 and
the block mx,my,mz has a fourfold-degenerate eigenvalue

(mx/λx)2 + (my/λy)2 + m2
z. (C1)

Dimensionless energies on the left of Fig. 2(a) correspond to
λx = λy = 1 and are hence integers. The lowest level E/E0 =
3 belongs to (mx,my,mz) = (1,1,1), while the first excited
state E/E0 = 6 entails an additional threefold geometric
degeneracy corresponding to orbital states (1,1,2), (1,2,1), and

(2,1,1); the E/E0 = 6 level for γ2 = γ3 = 0 is thus twelvefold
degenerate.

Next, we can treat the HH-LH splitting as a perturbation
when γ2 and γ3 are turned on. In the lowest order, mixing
between different (mx,my,mz) blocks can be neglected except
for the case when their energies were equal at γ2 = γ3 = 0 as
in the case of the three blocks of the E/E0 = 6 level. With
coupling to the remote levels disregarded, we are left with
a 12 × 12 matrix in this case, which can be diagonalized
analytically. It turns out to have two fourfold-degenerate
eigenvalues

E±
4 /E0 = 6 + 64

3π2

γ2

γ1

(
s ±

√
s2 + 81π4

1024

)
(C2)

and two twofold-degenerate ones

E±
2 /E0 = 6 − 128

3π2

γ2

γ1

(
s ∓ 9π2

64

)
. (C3)

The lowest of these four energies is E−
2 and it is shown in

Fig. 2(a) for s ≡ γ3/γ2 = 1 as a solid line which crosses the
horizontal line E/E0 = 3 corresponding to the (mx,my,mz) =
(1,1,1) quadruplet, which does not shift in energy to the first
order of this perturbation analysis. Equation (14) is the solution
of E−

2 = 3E0 for γ2/γ1 under the assumption s = 1. Such
level crossing (as a function of γ2/γ1) is genuinely due to
the confinement and no level crossings occur in in bulk as long
as 0 < γ2/γ1 < 1/2.
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