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We present a study of transport in multiple-band noninteracting Fermi metallic systems based on the
Keldysh formalism and the self-consistent T-matrix approximation �TMA� taking into account the effects of
Berry curvature due to spin-orbit coupling. We apply this formalism to a Rashba two-dimensional electron-gas
ferromagnet and calculate the anomalous Hall effect �AHE� and anisotropic magnetoresistance �AMR�. The
numerical calculations of the AHE reproduce analytical results in the metallic regime revealing the crossover
between the skew-scattering mechanism dominating in the clean systems and intrinsic mechanism dominating
in the moderately dirty systems. As we increase the disorder further, the AHE starts to diminish due to the
spectral broadening of the quasiparticles. Although for certain parameters this reduction of the AHE can be
approximated as �xy ��xx

� , with � varying around 1.6, this is found not to be true in general as �xy can go
through a change in sign as a function of disorder strength in some cases. Furthermore, the disordered region
consistent with the TMA is relatively narrow and a theory with a wider range of applicability in strong disorder
limit is called for. By considering the higher order skew-scattering processes, we resolve some discrepancies
between the AHE results obtained by using the Keldysh, Kubo, and Boltzmann approaches. We also show that
similar higher order processes are important for the AMR when the nonvertex and vertex parts cancel each
other. We calculate the AMR in anisotropic systems properly taking into account the anisotropy of the non-
equilibrium distribution function. These calculations confirm recent findings on the unreliability of common
approximations to the Boltzmann equation.
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I. INTRODUCTION

Recently, the interest in transport calculations in multiple-
band systems1,2 has been rekindled in part due to the realiza-
tion of diluted magnetic semiconductors �DMSs� that have
strong spin-orbit interactions, variable carrier densities, and
ferromagnetic ordering. These properties imply the existence
of the anomalous Hall effect �AHE� �Ref. 3� and the aniso-
tropic magnetoresistance �AMR�.4 Even though the mecha-
nisms of the AHE and the AMR are different, they both have
a similar description based on the multiple-band transport
theory. In this paper, we formulate a relatively simple frame-
work for doing such transport calculations.

The AHE is usually described in terms of the anomalous
Hall resistivity �xy that measures the transverse voltage with
respect to the transport direction and depends on the sponta-
neous magnetization M along the z direction. Theoretical
studies of the AHE have a long history beginning with the
work of Karplus and Luttinger.5 A number of papers on the
AHE also appeared not so long ago6–12 after the interpreta-
tion of the AHE based on the Berry phase13 was proposed.
Nevertheless, theoretical description of the AHE is far from
being complete and it often involves cumbersome calcula-
tions without transparent interpretations.14 The difficulties
appear due to the necessity to consider the off-diagonal ele-
ments in Bloch band indices �the interband coherences in-
duced by charge currents�. There is a general trend to focus
on particular simple models in order to overcome the com-
mon mistakes that are made in treating the AHE. A number
of recent publications concentrate on the simpler but non-

trivial Rashba two-dimensional �2D� electron system,1,15–23

yet arriving at contradictory predictions. Most of the dis-
agreements have been finally resolved22–24 with some being
addressed in this paper.

In calculating the AHE for a given material, the usual
approximations performed to leading order in � /��F can fail,
where � is the scattering time and �F is the Fermi energy. The
semiclassical description of the Hall conductivity within the
usual Boltzmann equation leads to an AHE contribution due
to the scattering asymmetry in the collision term usually la-
beled as skew scattering.25 Other terms, arising from subtle
issues dealing with interband coherence during the collision
and acceleration by the electric field between collisions, are
usually introduced by hand through the so-called anomalous
velocity26 and side jump.27 This approach however, is non-
systematic and prone to errors from missing terms and wrong
interpretations, e.g., giving physical meaning to gauge de-
pendent quantities. A more systematic way to derive the cor-
rect semiclassical equations is through the Keldysh formal-
ism in which these interband coherence effects are taken into
account automatically.1,24

The system under consideration also allows us to study
the diagonal resistance as a function of the direction of the
magnetization. The change in the resistance as a function of
the magnetization direction relative to the current or crystal-
lographic direction is called the AMR effect. The micro-
scopic origin of the AMR in transition-metal ferromagnets is
still elusive28–31 and detailed calculations require consider-
ation of complicated band structures.32,33 A relatively simple
host band structure in the DMS ferromagnets provides a pos-
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sibility for performing detailed microscopic calculations
based on simple physical models.34 However, the relaxation-
time approximation used in such calculations is not always
reliable since it does not fully take into account the anisotro-
pies of the system.35 The Kubo formula approach has been
applied to the AMR calculations in Rashba systems and it
has revealed the cancellation of the nonvertex and vertex
parts,36 similar to the spin Hall effect �SHE� and the AHE.

In this paper, we apply the Keldysh formalism for trans-
port calculations in multiple-band noninteracting Fermi sys-
tems. This treatment simultaneously takes into account the
Berry curvature effects �interband coherences� and scatter-
ing, allowing us to immediately account for such physical
effects as side-jump scattering and skew scattering within the
same footing. We calculate the AHE analytically and numeri-
cally for the Rashba model and find, in agreement with
Onoda et al.,1,20 three distinct regimes: the skew-scattering
regime, the disorder independent regime, and the dirty re-
gime in which, although the basis of theory is not as well
established, a distinct rapid reduction of the AHE is observed
as the conductivity �xx diminishes. Even though almost all
ferromagnetic systems are three dimensional �3D�, the find-
ings of this simple 2D model has been linked to higher di-
mensional systems arguing that most likely the major contri-
butions to the AHE come from the band anticrossing regions1

similar to one observed in the Rashba model. We further
analyze the scaling found in the dirty regime1,20 in which the
AHE seems to diminish in a manner that can be approxi-
mated as �xy ��xx

� , with � being close to 1.6. Some experi-
mental results claim to confirm such scaling;37–41 however,
treatment of some of these experimental results has to be
done with extra care as the region of interest is often re-
stricted to less than a single decade, the materials have strong
mangetoresistances and in-plane anisotropies associated with
them, and most of the data associated with the zero-field
calculation are in fact at very high magnetic fields.

Although at first sight our numerical results may seem to
confirm this scaling, the closer analysis reveals that the self-
consistent T-matrix approximation �TMA�, which is the cor-
nerstone of the formalism, fails when ��F�1 leaving us with
insufficiently wide range of applicability of our theory �and
others based on the TMA� for scaling claims. In addition, for
the repulsive impurity potentials, the crossover from the dis-
order independent �intrinsic� regime to the skew-scattering
regime is always accompanied by the sign change of the
AHE which can shrink the AHE reduction region even fur-
ther. Although this simple model seems to capture qualitative
aspects of the three regions, to make a quantitative link to 3D
materials with much more complex behavior seems prema-
ture at this stage. In our calculations, we also identify the
hybrid skew-scattering regime of the AHE �Ref. 24� resulting
from the higher order scattering processes. We take such pro-
cesses into account in our AMR calculations and conclude
their importance for the Rashba model in which nonvertex
and vertex diagrammatic parts can cancel each other.36 Our
results suggest that the relaxation-time approximation is not
always reliable for the AMR calculations as it has been
shown recently within the Boltzmann equation treatment.35

The paper is organized as follows. In Sec. II, we develop
a general formulation of transport in multiple-band noninter-

acting Fermi systems with further generalizations in Appen-
dix A. In Sec. III, we calculate the AHE in two-dimensional
electron-gas �2DEG� ferromagnet with spin-orbit interaction.
The analytical and numerical results are followed by discus-
sions and comparison to other works. In Sec. IV, we calcu-
late the AMR in 2DEG ferromagnet with spin-orbit interac-
tion. Finally in Sec. V, we present our conclusions.

II. TRANSPORT IN MULTIPLE-BAND SYSTEMS

The method presented in this section can be applied to a

multiple-band system described by a Hamiltonian Ĥ0+ V̂�r�
that is a matrix in the band �chiral� index. In this section, we
first derive general nonlinear equations using nonequilibrium
diagrammatic technique, further restricting our consideration
to a linear-response theory.

A. Quantum kinetic equation

We start by defining the following Green’s functions:42

Ĝ11 � − i�Tc��1+��†�1+��� = − i�T���1+��†�1+��� ,

Ĝ21 � − i�Tc��1−��†�1+��� = − i���1−��†�1+��� ,

Ĝ12 � − i�Tc��1+��†�1−��� = i��†�1−����1+�� ,

Ĝ22 � − i�Tc��1−��†�1−��� = − i�T���1−��†�1−��� , �1�

where Tc is the generalized time-ordering operator acting on
the Keldysh contour which can be split in two time axes t+
�forward� and t− �backward�, � is the vector in the band
�chiral� space corresponding to the Fermi field, and 1�

= �r , t�� is the variable that describes the spatial variable r
and the time variable t. The generalized time-ordering opera-

tor performs an ordinary time ordering T� for the time t+, an

antitime ordering T� for the time t−, and in the mixed case t−
occurs always after t+ within the Keldysh time contour. We
can now define the Green’s function in the Keldysh space

G̃ = �Ĝ11 Ĝ12

Ĝ21 Ĝ22

� . �2�

The scattering potential due to impurities in the Keldysh
space has the form

Ṽ�1,1�� = �V̂�r� 0

0 − V̂�r�
�	�1 − 1�� , �3�

where V̂�r� describes the potential in the band �chiral� space
formed by many scatterers which for current consideration
can have any general matrix form. The negative sign arises
here simply because the lower branch integration is taken
from +
 to −
 while in the Keldysh loop the time goes from
−
 to +
. The Green’s function in Eq. �2� allows for a per-
turbation expansion relying on the Feynman rules. However,
the four matrix elements of a so defined Green’s function are
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linearly dependent, i.e., Ĝ12+ Ĝ21= Ĝ11+ Ĝ22. Hence it is ad-
vantageous to perform a linear transformation in the Keldysh
space to eliminate one matrix element in Eq. �2�

Ǧ = �1 0

1 − 1��Ĝ11 Ĝ12

Ĝ21 Ĝ22

�� 1 0

− 1 1� = �ĜR Ĝ�

0 ĜA
� ,

which leads to the following scattering potential:

V̌ = �1 0

1 1
�Ṽ�1 0

1 − 1
� = �1 0

0 1
�V̂�r�	�1 − 1�� ,

where ĜR= Ĝ11− Ĝ12 is the retarded Green’s function, ĜA

= Ĝ12− Ĝ22 is the advanced Green’s function, and Ĝ�= Ĝ12.
There are other choices for the linear transformation and our

choice is dictated by the fact that the Green’s function Ĝ�

can be immediately related to the distribution function in the
Boltzmann equation.43

As of now, it is assumed that V̂�r� describes some disor-
dered potentials and all Green’s functions are averaged over
this disorder. In the transformed Keldysh space, the Dyson
equation42 becomes

�Ĝ0
−1 − �̂R − �̂�

0 Ĝ0
−1 − �̂A

� � �ĜR Ĝ�

0 ĜA
� = 1̌, �4�

where R, A, and �, respectively, stand for the retarded, ad-
vanced, and lesser components of the disorder averaged
Green’s functions and self-energies. The symbol � denotes a
convolution �in position, time, and band/spin�. The diagonal
components of Eq. �4� yield the two equations for the re-
tarded and advanced Green’s functions

�Ĝ0
−1 − �̂R,A� � ĜR,A = 1̂. �5�

The off-diagonal component of Eq. �4� yields the kinetic
equation �sometimes called quantum Boltzmann equation�
which contains the nonequilibrium information necessary to
study transport

	ĜR
−1
� Ĝ� − �̂�

� ĜA = 0. �6�

In order to solve Eq. �6�, one has to calculate the self-

energy �̂� of the particular problem. Here we focus on scat-
tering by randomly distributed identical impurities at zero
temperature with

V̂�r� = �
i

̂U�r − ri� , �7�

where ri describes the positions of random impurities of den-
sity ni and ̂ is some matrix in the band index �e.g., in Sec.
III, it is a unit matrix corresponding to scalar impurities and
in Sec. IV, it is a combination of unit and Hermite matrices
corresponding to charged and magnetic impurities�. A com-
mon approximation to this problem is the self-consistent
TMA which takes into account all the noncrossing scattering
events from single impurities �see Fig. 1�. We assume here

that the system is uniform and Ǧ depends on the difference
of spatial variables �r−r�� �however, this requirement can be

lifted for the short-range disorder as it is shown in Appendix
A�. In this case, we can sum up the infinite series of diagrams
in Fig. 1 arriving at the following expression for the self-
energy in the momentum representation �for the sake of com-
pact form we use the momentum representation here�:

�k��̌�k�� = ni�k�Ť�k�	�k − k�� , �8�

with the following expression for the T-matrix operator of
impurity placed in the origin:

Ť � �V̌ + V̌ � Ǧ � V̌ + ¯� , �9�

where V̌= � ̂ 0
0 ̂ �U�r�	�1−1��. Combining the T-matrix struc-

ture Ť= V̌ � 	1̌+ Ǧ � Ť
 and solving for the off-diagonal com-
ponent we obtain the equation for the lesser component of
self-energy

�k��̂��k�� = ni�k�T̂R
� Ĝ�

� T̂A�k�	�k − k�� . �10�

The retarded and advanced T matrices are given by the
usual form

T̂R,A = V̂ � �1 + ĜR,A
� T̂R,A� = �1 + T̂R,A

� ĜR,A� � V̂ .

�11�

Equations �6� and �10� form a general closed set of equations

for Ĝ�. In order to solve these equations, we can further
simplify them by looking for a solution of the form

Ĝ� = Ĝ2
� + Ĝ1

�, �12�

where

Ĝ2
� = nF � ĜA − ĜR

� nF �13�

and the operator nF is the Fermi distribution function. In the
case of zero temperature, nF is the step function in the fre-
quency representation nF���=��−�� and nF�t , t��= i / 	2��t
− t�+ i0�
 in the time representation. Equations �12� and �13�
will allow us to separate the Fermi sea and Fermi-surface
components of the lesser Green’s function. By substituting

Eq. �12� into Eq. �6�, we obtain the kinetic equation for Ĝ1
�,

	ĜR
−1
� Ĝ1

� − �̂1
�

� ĜA = 	Ĥ0 ,�nF
 � ĜA, �14�

with �k��̂1
��k��=ni�k�T̂R � Ĝ1

�
� T̂A�k�	�k−k��, where

	. . . ,�. . .
 stands for a commutator. In order to derive Eq. �14�,
Eqs. �5� and �11� are used along with the fact that T̂R � Ĝ2

�

� T̂A=nF � T̂A− T̂R � nF and

�̂2
� = nF � �̂A − �̂R

� nF, �15�

which is a consequence of Eqs. �10�, �11�, and �13�.

Σ = + + …..
V

ni

+ +

ni ni ni

U
∨

U
∨

U
∨

G
∨

FIG. 1. �Color online� The nonequilibrium self-energy calcu-
lated using the self-consistent T-matrix approximation in Keldysh
space.
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The lesser Green’s function contains all the information
about the transport properties of our system and the charge
current density can be calculated as

jx�y,z� =
e

2
Tr��†�1���̂x�y,z��1���1��1=1� + c.c.

= −
ie

2
Tr	�̂x�y,z��1� + �̂x�y,z�

† �1��
Ĝ��1,1���1=1�,

�16�

where �̂�1�= �−i��1−eÂ�1� /c� /m, �̂†�1��= �i��1�
−eÂ†�1�� /c� /m, and Â�1� is the generalized vector potential
matrix in the band index that also describes spin-orbit inter-
actions; e=−�e� stands for an electron charge.

B. Linearized Fermi-surface contribution

The kinetic Eq. �14� has not assumed linearity in electric
field strength nor any particular temporal dependence.
Higher order terms in the impurity density ni corresponding
to noncrossed diagrams have been taken into account as the
retarded and advanced Green’s functions in Eq. �14� are cal-
culated self-consistently. In the following, we solve the prob-
lem for linear-response theory of a uniform and stationary
system in the presence of a uniform electric field.

In the presence of slowly varying perturbations, it is use-
ful to perform the Wigner transformation, viz., the center-of-
mass coordinates 	X= �R ,T�
 and the Fourier transform with
respect to the relative coordinates 	k= �k ,��
. However, the
Wigner coordinate k associated with the momentum operator
−i� is not gauge invariant and consequently it is not the
correct choice for describing our system. On the other hand,
the kinetic momentum k�T�=−i�−eAE�T� / ��c� is gauge in-
variant and, as it will be shown below, for the stationary case
all time dependence can be conceived in k�T�; here the vec-
tor potential AE�T� describes the external electric field. The
time derivative within the canonical coordinates �marked by
wave� becomes a combination of time and momentum de-
rivatives within the kinetic coordinates �T̃=�T+�Tk�T��k,
�R̃=�R, �k̃=�k, and ��̃=��.

In the Wigner representation with the kinetic momentum,
the convolution of two operators is approximated as

Â � B̂ = expi��X
A�k

B−�k
A�X

B�/2Â�X,k�B̂�X,k�

� ÂB̂ +
i

2
��XÂ�kB̂ − �kÂ�XB̂� ,

where we use the four vector notations �X�k=�R�k−�T̃�� and
�T̃=�T+ eE

� �k. Here, we assume that a vector potential
AE�T�=−cET which corresponds to a uniform electric field
E. The first-order gradient expansion is sufficient for the
linear-response theory, while the second-order gradient ex-
pansion may be necessary for time dependent problems and

when the Hamiltonian Ĥ0 is spatially dependent in order to
account for the corresponding Berry curvature effects.2 Since
we are seeking homogeneous solutions both in space and
time with respect to the center-of-mass coordinates, the only
surviving terms in the expansion are

Â � B̂ � ÂB̂ −
i

2�
eE��kÂ��B̂ − ��Â�kB̂� . �17�

Applying the above Wigner transformation to Ĝ2
� in Eq.

�13�, we obtain directly

Ĝ2
� = nF�ĜA − ĜR� +

i

2�
��nFeE��kĜeq

A + �kĜeq
R � , �18�

where Ĝeq
R/A are the Green’s functions evaluated at equilib-

rium, i.e., E=0. Ĝ2
� solves the Kinetic Eq. �6� up to zeroth

order in the electric field E and therefore the expansion in E
of Ĝ1

� and �̂1
� starts from the linear in E terms. With this

knowledge, we apply the Wigner transformation to Eq. �14�
and find the self-consistent simple form of the kinetic equa-

tion for Ĝ1
�,

Ĝ1
� = Ĝeq

R �̂1
�Ĝeq

A − ieE���nF�Ĝeq
R �̂Ĝeq

A , �19�

�̂1
� = ni� d2k�

�2��2 T̂eq
R �k,k��Ĝ1

��k��T̂eq
A �k�,k� , �20�

where �̂=�Ĥ0 /��k and T̂eq
R/A are self-consistent T matrices

evaluated at equilibrium. In the following section, we show
how to solve the kinetic Eqs. �19� and �20� for a simple
system described by the Rashba Hamiltonian. Whereas solv-
ing Eqs. �19� and �20� require only the equilibrium retarded
and advance Green’s functions and T matrices, note that for

Ĝ2
� we need to solve these Green’s functions up to linear

order in E �see below�.
From the equations above, it is natural to decompose the

contributions to Ĝ� into the Fermi sea and Fermi-surface

contributions1 such that Ĝ�= Ĝ1
�+ Ĝ2

�= ĜI
�+ ĜII

� where

ĜI
� = Ĝ1

� +
i

2�
���nF�eE��kĜeq

A + �kĜeq
R � , �21�

ĜII
� = nF�ĜA − ĜR� . �22�

Next, we linearize Eq. �16� in E, carry out the Wigner trans-

formation, and insert the two components of Ĝ�, arriving at
the two corresponding components of the current density

jx�y,z�
I = − ie� d2k

�2��2

d�

2�
Tr�ĜI

��̂x�y,z�� , �23�

jx�y,z�
II = − ie� d2k

�2��2

d�

2�
Tr�ĜII

��̂x�y,z�� , �24�

where the Fermi surface �jx�y,z�
I � and Fermi sea �jx�y,z�

II � con-
tributions are identical to ones defined within Kubo-Streda
formalism.44 Eqs. �19�–�21� are the main results of this sub-
section.

C. Linearized Fermi sea contribution

In order to calculate the Fermi sea contribution using Eqs.
�22� and �24�, we expand the retarded �advanced� Green’s
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function and self-energy up to the first order in E following
the procedure of Onoda et al.:1

ĜR,A = Ĝeq
R,A + eEĜE

R,A + O�E2� ,

�̂R,A = �̂eq
R,A + eE�̂E

R,A + O�E2� , �25�

where ĜE
R,A= 1

e �EĜR,A �E=0, �̂E
R,A= 1

e �E�̂R,A �E=0, and

Ĝeq
R,A ��̂eq

R,A� are the Green’s functions �self-energies� evalu-
ated at equilibrium, i.e., E=0. The Fermi sea lesser Green’s

function ĜII
� calculated up to the first order in the electric

field E becomes

ĜII
� = nF�Ĝeq

A − Ĝeq
R � + nFeE�ĜE

A − ĜE
R� . �26�

We now substitute Eq. �25� into Eqs. �5� and �11� only re-
taining linear terms in E in order to arrive at the following
self-consistent equations:

ĜE
R,A = Ĝeq

R,A�̂EĜeq
R,A −

i

2
	Ĝeq

R,A��̂ + ��k�̂eq
R,A���Ĝeq

R,A

− ��Ĝeq
R,A��̂ + ��k�̂eq

R,A�Ĝeq
R,A
 , �27�

�̂E
R,A = ni� d2k�

�2��2 T̂eq
R,A�k,k��ĜE

R,A�k��T̂eq
R,A�k�,k� , �28�

where in Eq. �5� we also performed the gradient expansion
and linearized form of Eq. �11� was substituted in

�k��̂R,A�k��=ni�k�T̂R,A�k�	�k−k��. Equations �26�–�28� are
the main results of this subsection.

III. AHE IN RASHBA SYSTEMS

In this section, we apply the above formalism to 2DEG
with exchange field and spin-orbit interaction. A general nu-
merical procedure is followed by analytical results valid in
the metallic regime in the limit of small impurity scattering
broadening � /� with respect to the Fermi energy �F. We end
the section with a discussion of the numerical and analytical
results comparing them to other approaches. For conve-
nience and in order to keep the expressions more concise, we
introduce here the dimensionless units that can easily be
transformed into dimensional units by following equations at
the beginning of this section. Note that our formalism cannot
be used close to the energies �= �h in Fig. 2, as kFl �l is the
mean-free path� can become very small and the noncrossing
approximation in Fig. 1 may fail. Nevertheless, we do not
expect large corrections to our results around these singulari-
ties as the nondiagonal conductivity seems not to be strongly
affected by including the crossed diagrams.45

A. Calculational procedure

We restrict ourselves here to 2DEG Rashba Hamiltonian

with an exchange field h̆ �breve accent here means that h is
in dimensional units� in order to obtain simple analytical
results that connect directly with other microscopic linear-
response calculations19,22,46

ĤR = 1̂��k̆�2/2m + �̆k̆ · �̂ � z − h̆�̂z + 1̂V�r̆� , �29�

where �̆ is the strength of spin-orbit interaction, �̂ are Pauli

matrices, �k̆=−i��−eA /c, A�t�=−cEt describes the exter-
nal electric field, and V�r� describes the impurities. From
symmetry considerations, the most general form of the
Hamiltonian in Eq. �29� should treat the coordinate r as an
operator r+ r̂so�k�, with r̂so�k�=��̂�k originating from the
projection procedure onto the band under consideration.47

The spin-orbit interaction can also include higher, e.g., cubic
terms relevant for the bulk InSb and the HgTe quantum wells
with an inverted band structure.48,49 Here, only linear terms
with Rashba symmetry are considered with r̂so�k� being dis-
regarded as we expect effect of Hso= r̂so�k��V�r� on the
AHE to be small for wide band semiconductors in which � is
relatively small.50 The disorder in the system is modeled by
impurity delta scatterers

V�r� = V̆0�
i

	�r̆ − r̆i� , �30�

where r̆i describes the positions of randomly distributed im-
purities of density n̆i.

We rewrite the Hamiltonian in dimensionless quantities

ĤR

�F
= 1̂

1

2
k2 + �k · �̂ � z − h�̂z + 1̂V0�

i

	�r − ri� , �31�

where �F is the Fermi energy measured from the minimum

of energy and k= k̆l0 is the dimensionless momentum. The
dimensionality can be restored by substituting expressions
for the dimensionless units into the final formulas

l0 =� �2

m�F
, � = �̆� m

�2�F
, V0 =

mV̆0

�2 ,

h =
h̆

�F
, ni = n̆il0

2, k = k̆l0.

Also note that whereas �F is measured from the bottom of
the lower band, in the notation below, we introduce �F
which is the Fermi energy measured from the middle of the
gap 	region �ii� in Fig. 2
. In the following, we solve Eqs.
�19� and �20� in order to find the nonequilibrium Green’s

Ω(k)

k

(i)

(iii)

(ii) Ω = h

Ω = -h

FIG. 2. Electronic band dispersions of the Rashba model;
throughout the paper, �F is the Fermi energy measured from the
bottom of the lower band while �F is the Fermi energy measured
from the middle of the gap 	region �ii�
.
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function Ĝ1
� describing processes at the Fermi surface and

Eqs. �27� and �28� for the nonequilibrium Green’s function

Ĝ2
�-primarily Fermi sea contribution.

We calculate �̂eq
R,A and the Green’s functions Ĝeq

R,A using
the self-consistent TMA, i.e., diagonal components of Eq. �8�
�Refs. 1 and 20�

T̂eq
R,A = V0�1̂ − V0�̂R,A�−1, �32�

�̂eq
R,A��� = niT̂eq

R,A��� = �eq0
R,A�̂0 + �eqz

R,A�̂z, �33�

Ĝeq
R = ��1̂ − Ĥ0 − �̂eq

R �−1

=
�W −

k2

2
��̂0 + �ky�̂x − �kx�̂y − H�̂z

�W −
k2

2
�2

− H2 − �2k2

,

Ĝeq
A = �Ĝeq

R �†, �34�

where W=�−�eq0
R , H=h−�eqz

R , and �̂R,A=�d2k /
�2��2Ĝeq

R,A�k ,����R,A�̂0+�z
R,A�̂z. We calculate self-

consistent value of the self-energy �̂eq
R,A��� for each � by

performing sufficient number of iterations in Eq. �33� in or-
der to achieve the prescribed accuracy �see Appendix B for
details�.

With the knowledge of the equilibrium Green’s function

Ĝeq
R �k ,��, we can calculate the local densities of states

D��� � −
1

�
� d2k

�2��2 ImTr	Ĝeq
R �k,��
�

and the total number of electrons

N = �
−


�F

d�D��� . �35�

The number of electrons changes as we increase the disorder
and following Eq. �35�, �F is always adjusted so that the
total number of electrons is constant.

The same TMA is also used to calculate �̂� and �̂E
R,A from

Eqs. �20� and �28�, respectively,

�̂1
� = ni� d2k

�2��2 T̂eq
R ���Ĝ1

��k,��T̂eq
A ��� , �36�

�̂E
R,A = ni� d2k

�2��2 T̂eq
R,A���ĜE

R,A�k,��T̂eq
R,A��� . �37�

The TMA with self-consistent calculation of the equilibrium

Green’s functions Ĝeq
R,A described in Appendix B allows us to

take into account higher order noncrossed diagrams in the
concentration of impurities ni, with weak localization dia-
grams being disregarded. The procedure of calculating the
retarded �advanced� and nonequilibrium self-energies in Eqs.
�33� and �36� is represented graphically in Fig. 3. In this
graphical representation, the bold arrow corresponds to the

self-consistently calculated retarded �advanced� Green’s
function.

For the delta scatterers, T matrix does not depend on mo-
mentum k which allows us to perform momentum integra-
tions in Eqs. �36� and �37�. It is then useful to introduce the
following 2�2 matrices:

�̂��� � � d2k

�2��2Ĝ1
��k,�� , �38�

�̂E
R,A��� � � d2k

�2��2ĜE
R,A�k,�� . �39�

The elements of matrices �̂ and �̂E satisfy a system of linear
equations obtained by integrating in momentum space the
left- and right-hand sides of Eqs. �19� and �27�, respectively,

�̂ =� d2k

�2��2Ĝeq
R T̂eq

R ����̂���T̂eq
A ���Ĝeq

A

− i��nFeE� d2k

�2��2Ĝeq
R �̂Ĝeq

A , �40�

�̂E
R,A =� d2k

�2��2Ĝeq
R,AT̂eq

R,A����̂E
R,A���T̂eq

R,A���Ĝeq
R,A

−
i

2
� d2k

�2��2 �Ĝeq
R,A�̂��Ĝeq

R,A − ��Ĝeq
R,A�̂Ĝeq

R,A� . �41�

The momentum integrations in the right-hand side of Eqs.
�40� and �41� are done analytically using the general form of

the Green’s functions Ĝeq
R,A�k ,�� in Eq. �34�. Without loss of

generality, we take the electric field E along the y axis E
= �0,Ey� and solve the system of linear Eqs. �40� and �41� for
the elements of matrices �̂ and �̂E in Appendixes C and D,
respectively.

With this, we calculate the current from Eqs. �23� and
�24�, respectively, with a use of Eqs. �19�, �21�, �26�, and
�27�,

jx�y�
I = − ie� d2k

�2��2

d�

2�
Tr�Ĝeq

R T̂eq
R �̂T̂eq

A Ĝeq
A �̂x�y�

− ieE��nF�Ĝeq
R �̂Ĝeq

A −
1

2
�Ĝeq

A �̂Ĝeq
A + Ĝeq

R �̂Ĝeq
R ���̂x�y�� ,

�42�

Σ =< + + + + + + …..^

Σ =R
+ + + …..^ +

a)

b)b)

FIG. 3. �Color online� An infinite set of diagrams representing
the self-consistent TMA in calculating �a� the retarded �advanced�
self-energy �̂eq

R,A and �b� the lesser component of self-energy �̂� in
Eqs. �33� and �36�, respectively.
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jx�y�
II = ie� d2k

�2��2

d�

2�
eEnF Tr�Ĝeq

R T̂eq
R �̂E

RT̂eq
R Ĝeq

R �̂x�y�

−
i

2
�Ĝeq

R �̂��Ĝeq
R − ��Ĝeq

R �̂Ĝeq
R ��̂x�y�� + c.c., �43�

where we use �kĜeq
R,A= Ĝeq

R,A�̂Ĝeq
R,A, which holds for the model

of delta impurities. In Eq. �42�, we perform analytical inte-
grations over momentum k and energy � while in Eq. �43�,
we only perform analytical integration over momentum. The
results of these integrations are given in Appendixes E and F
for Eqs. �42� and �43�, respectively.

B. Analytical results in the metallic regime

In the metallic regime, we are able to obtain analytical
results as it is sufficient to consider only finite number of
terms in the expansion with respect to the strength of impu-
rity in Fig. 3. For the same reason, we are also able to gen-
eralize the disorder in Eq. �30� �generalization of the theory
is given in Appendix A� as follows:

V�r� = �
i

V0
i 	�r − ri� , �44�

where ri is random, the strength of each impurity has the
same arbitrary distribution, and all strength distributions are
independent leading to the first four cumulants �V0

i �dis=0,
ni��V0

i �2�dis=V2, ni��V0
i �3�dis=V3, and ni��V0

i �4�dis=V4, where
ni is the concentration of impurities. For the disorder de-
scribed in Eq. �30�, we have �V2 /ni=�3V3 /ni=�4V4 /ni=V0
and for the telegraph white-noise disorder we have V3=0 as
it is mentioned in Appendix A.

In this section, we first expand the retarded �advanced�
self-energy in Eq. �33� up to the third order in V0 	or up to
the terms V3 in Eq. �A4�
. The lesser component of the self-
energy in Eq. �36� has to be expanded up to the fourth order
in V0 	or up to the terms V4 in Eq. �A5�
, which corresponds
to the four legged diagrams in Fig. 3�b�. This ensures that the
expansion of the conductivity �xy

I following from Eqs. �E3�
and �E5� captures all possible terms proportional to 1 /V0
and 1.

The expansion of �xy
II following from Eq. �F3� is some-

what simpler as it only contains the terms proportional to 1
and its calculation requires consideration of only one bare
bubble diagram �e.g., summation of vertices leads to higher
order corrections�. In our discussion, we thus concentrate on
the diagrams for calculating �xy

I and also present the result
for the bare bubble diagram of �xy

II . Note that in the expan-
sion of �I�II�, it is important to properly consider the branch
cut of the “ln” function taken as �−
 ,0
. The diagrams in
Fig. 3 have direct correspondence to the Kubo formalism
diagrams in Fig. 4 used in Ref. 22. This allows us to separate
the conductivity into terms that directly relate to each dia-
gram in Fig. 4.

We distinguish three regimes for the position of the Fermi
energy with respect to the gap of the size 2h: �i� �F�h, �ii�
−h��F�h, and �iii� �F�−h �see Fig. 2�. To simplify for-
mulas, we introduce the following notation:

k�
2 = 2��F + �2 � �h2 + 2�F�2 + �4� ,

�� = ���k��2 + h2, �F = �2�F�2 + h2,

�� = ���k��2 + 4h2,

�� = k�d��k�
dk

�−1

=�
��

�� � �2 , �F � h

�−

�− − �2 , − h � �F � h

��

��� − �2�
, �F � − h ,

�
where �� is the density of states at the Fermi level and k�

are the two Fermi wave numbers for regimes �i� and �iii�. In
regime �ii�, k+ becomes pure imaginary and only k− has the
meaning of the Fermi wave number. Further, we introduce
the following parameter:

� =
V3

V2
2�z

i +
V4

V2
2 �3�r�z

i + �i�z
r� ,

where �̂=�d2k / �2��2Ĝeq
R ���̂0+�z�̂z, with �=�r+ i�i and

�z=�z
r+ i�z

i . Note that the two-dimensional integral over mo-
mentum diverges and �̂ is calculated by introducing the mo-
mentum cutoff �see Appendix B�. By expanding the result of
Appendix B up to the zeroth order in the strength of impu-
rities, we obtain

�r =

�k−
2 − 2�F�ln� k−

2

k0
2 − k−

2� − �k+
2 − 2�F�ln� k+

2

k0
2 − k+

2�
2��k−

2 − k+
2�

,

�z
r =

h

��k+
2 − k−

2�
ln� k+

2�k0
2 − k−

2�
k−

2�k0
2 − k+

2�
� ,

�x�y = +

�x�y �x�y+

�x�y +
All combinations of

two skew scatterings

�x�y with �R = + +

�x�y �x�y

Third order correction

a)

�x
�y

b)

c)

d)

e)

FIG. 4. �Color online� Different diagrammatic contributions to
�xy

I within the Kubo formula formalism: �a� the ladder diagram
�vertex� contribution �1, �b� the skew-scattering contribution
�1 / �niV0��V3 /V2

2, �c� the double skew-scattering contribution
�1 /ni�V3

2 /V2
3, �d� the skew-scattering contribution in which the

retarded �advanced� self-energy is calculated up to the third order
�1 /ni�V3

2 /V2
3, and �e� the fourth-order skew-scattering contribu-

tion �1 /ni�V4 /V2
2.
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�i =�
−

�− + �+

4
, �F � h

−
�−

4
, − h � �F � h

−
k−

2 + k+
2 − 4�F

2�k−
2 − k+

2�
, �F � − h ,

�
�z

i =�
h

4
� �+

�+
−

�−

�−
�, �F � h

−
h

4

�−

�−
, − h � �F � h

−
2h

k−
2 − k+

2 , �F � − h ,
�

where k0 is the cutoff in the momentum integration.
As it follows from the Appendixes E and F, the nondiago-

nal conductivities �xy
I�II� can be calculated by properly choos-

ing the “ln” branch that corresponds to the regimes �i�, �ii�,
or �iii�, respectively. The result of expanding Eqs. �E3� and
�E5�, and Eq. �F3� for conductivities �xy

I and �xy
II , respec-

tively, in the region �i� ��F�h� becomes

�xy
I�i� =

2e2�2

��
� = −

V4

V2
2

e2h�2 ln� k+
2�k0

2 − k−
2�

k−
2�k0

2 − k+
2�
�

��2�k+
2 − k−

2�
,

�xy
II�i� = 0, �45�

which reproduces result of Ref. 24 in the limit of large cutoff
k0. In reference to the Kubo formula formalism, we can
claim the following: the diagrams in Fig. 4�a� vanish after
summation �the intrinsic and side-jump contributions defined
in Ref. 46 cancel each other�,24 the diagrams in Figs.
4�b�–4�d� are all proportional to

�+

�+
−

�−

�−
�0 and also vanish,

and the diagrams in Fig. 4�e� lead to the result in Eq. �45�.
�xy

II�i� is zero as the corresponding bare bubble contribution in
Eq. �F3� vanishes. Repeating the same procedure for the re-
gion �ii� �−h��F�h�, we obtain

�xy
I�ii� =

e2

4��
�h�2�−

�−
2 −

4hk−
2�2

�−�−
2 +

3hk−
4�2

�−
4�−

+
8k−

4�2�−
2

�−
4�−

2 �

+ �8h�2h2 + 2�F�2 + k−
2�2�

�−
2 �z

i + �k−
2 − k+

2��i�
�

2hk−
4�2

�−
4

V3
2

V2
3� ,

�xy
II�ii� =

e2

4��
�1 −

h

��4 + �F
2 � , �46�

where the diagrams in Fig. 4�a� lead to the first three disorder
independent terms in Eq. �46� �the intrinsic, the side-jump,
and the disorder independent skew-scattering terms,
respectively�,24 the skew-scattering diagrams in Figs. 4�b�
and 4�e� lead to the term in Eq. �46� proportional to � and

the diagrams in Figs. 4�c� and 4�d� lead to the terms in Eq.
�46� proportional to V3

2 /V2
3. �xy

II�ii� is calculated from a bare
bubble contribution given by Eq. �F3� and also corresponds
to the intrinsic contribution. Finally for the region �iii� ��F
�−h�, we obtain

�xy
I�iii� =

e2

4��
� 32h�F

2�4

�h2 + �4�2�k−
2 − k+

2�
+

�2�k−
2 − k+

2�4

32�h2 + �4�2��
+ �h�h2�F + 2�2h2 − 3�F�4�

�h2 − �F�2��h2 + �4�
�z

i + �i�
�

h�2�k−
2 − k+

2�3

4�h2 + �4�2

V3
2

V2
3 ,

�xy
II�iii� =

e2

4��

h��− − �+�
��2 − �−���2 − �+�

, �47�

where the diagrams in Fig. 4�a� lead to the disorder indepen-
dent term in Eq. �47� �it includes the intrinsic, the side-jump,
and the disorder independent skew-scattering contributions�,
the skew-scattering diagrams in Figs. 4�b� and 4�e� lead to
the term in Eq. �47� proportional to �, and the diagrams in
Figs. 4�c� and 4�d� lead to the terms in Eq. �47� proportional
to V3

2 /V2
3. �xy

II�ii� is again calculated from a bare bubble con-
tribution given by Eq. �F3�.

The diagonal conductivities can also be calculated by ex-
panding Eqs. �E4� and �E6�,

�yy =�
e2

�

�F + �2

�V2
, �F � h

e2

�

k−
2�−

2

�V2�−
2�−

2 , − h � �F � h

e2

�

��F + �2���4 + �F
2�

�V2��4 + h2�
, �F � − h ,

�
where we only present the dominant nonvanishing terms V2

−1

as the higher order terms are quite cumbersome.

C. Numerical results and discussions

Here, we present results of our numerical calculations
based on the formalism developed in Sec. III A. Figures 5–8
show the numerical results for the anomalous Hall conduc-
tivity as a function of the Fermi energy �F and the first Born
scattering amplitude �Born=niV0

2. The strength of the spin-
orbit interaction is chosen to be the same as in Ref. 1,
2�2 /h=35.9 �2�2 /Eres=3.59, Eres=10h� and the strengths of
impurity are V0=0.1, 0.3, −0.1, and −0.3. For the retarded
�advanced� self-energy, the cutoff in the momentum integra-
tion is k0=12 which corresponds to the energy cutoff of
Ref. 1, �c=3Eres. The Born scattering amplitude is varied by
changing the impurity concentration ni.

In the clean limit, when �Born→0, we observe skew-
scattering behavior 	�xy �1 / �niV0�
 in which ��xy� rapidly
increases. For repulsive scatterers �V0�0, see Figs. 5 and 6�,
the negative conductivity diminishes as we increase the
Fermi energy until the point �F=−h is reached. At this point,
the conductivity suddenly increases without a change of sign,
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in contrast to Ref. 1 where the sign change has been ob-
served but in agreement with Refs. 22 and 24 	note that Fig.
5 is calculated for exactly the same parameters as Fig. 5�c� in
Ref. 1
. As we increase the Fermi energy further, the conduc-
tivity increases again around �F=h acquiring a very small
negative value. In this regime, both subbands are partially
occupied and only the higher order skew scattering22,24 �hy-
brid skew scattering� contributes to the anomalous Hall ef-
fect. Relatively large hybrid skew scattering is present in Fig.
6 compared to Fig. 5 as the hybrid skew-scattering contribu-
tion is proportional to 1 /ni�V0

2 /�Born and should be larger
for greater impurity strength.24 The same is true for the con-
ventional skew scattering proportional to 1 / �V0ni�
�V0 /�Born, which can be immediately seen from Figs. 5–8.
For attractive scatterers �V0�0, see Figs. 7 and 8� the sign of
the ordinary skew scattering dominating in the clean limit is
opposite to the sign of the ordinary skew scattering for the
repulsive scatterers. The conductivity now increases until we
reach the point �F=−h in which we observe a sudden drop.
One more drop happens around the point �F=h where the
anomalous Hall conductivity changes sign �see Figs. 7 and
8�. This change of sign is consistent with the fact that the
higher order �hybrid� skew scattering �prevailing when both

subbands are partially occupied� does not change its sign as
we change the sign of disorder.24 Comparing Figs. 7 and 8,
we again see that the hybrid skew scattering is more pro-
nounced for larger impurity strength.

As we increase the disorder by increasing �Born, the skew
scattering becomes less important while the other mecha-
nisms, such as intrinsic and side jump, become more impor-
tant. The intrinsic conductivity only gradually decreases with
the disorder because the only effect of disorder on the intrin-
sic component comes from broadening of Green’s functions
used in the calculation of the intrinsic component. For repul-
sive scatterers �V0�0�, the skew scattering has sign opposite
to the sign of intrinsic and side-jump contributions in the
region −h��F�h �see, e.g., Refs. 22 and 24�. This explains
the sign change we observed in Figs. 5, 6, and 10 in the
region −h��F�h as we increase �Born �more detailed plots
are presented in Appendix G�.

The positions of points in which the AHE vanishes can be
estimated by comparing the Fermi sea intrinsic term �xy

II with
the skew-scattering term in Eq. �46� as those two are the
major contributions. Physically, the AHE vanishes because
the intrinsic deflection of electrons between the scattering
events can be balanced by the skew-scattering events �in the
cross-over region between intrinsic and extrinsic mecha-
nisms�. As the former does not rely on impurities and the
latter does �and changes sign with impurities changing sign�,

�5

0

5

ΩF

h

0.05

0.1

0.15

0.2

ΓBorn

h

�18

�9

0Σxy

� e2

2 Π� �

FIG. 5. �Color online� The anomalous Hall conductivity �xy as a
function of the Fermi energy �F and the Born scattering amplitude
�Born. The parameters are chosen as 2�2 /h=35.9, k0=12, and V0

=0.1. The Fermi energy �F corresponds here to the clean system
and it is renormalized according to Eq. �35� in the presence of
disorder.
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FIG. 6. �Color online� Identical to Fig. 5 plot but for larger
strength of impurity V0=0.3.
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FIG. 7. �Color online� Identical to Fig. 5 plot but for negative
strength of impurity V0=−0.1.
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FIG. 8. �Color online� Identical to Fig. 5 plot but for negative
strength of impurity V0=−0.3.
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we can have full cancellation of the two by choosing the
proper sign and strength of impurities.

As it can be seen from Figs. 5–8, the anomalous Hall
effect is resonantly increased around the band anticrossing
which suggests that for more general band structures, the
major contribution to the AHE also comes from the band
anticrossings that happened to be in the vicinity of the Fermi
level.1 This view is well justified for the intrinsic AHE in the
metallic regime ���F�1� as it follows from the Thouless-
Kohmoto-Nightingale-Nijs formula51 applied to the AHE.1

This leads to the intrinsic AHE conductivity of the order of
e2 / �4��� within the region �ii� in Fig. 2. The full conductiv-
ity that includes the intrinsic, side-jump, and skew-scattering
contributions seems to also have the resonant behavior
around the anticrossing for the Rashba model as it follows
from our analysis. Whereas our analysis justifies focusing the
calculations on simplified phenomenological models near the
anticrossing locations, we emphasize that it is unlikely that
these would be characterized universally by the Rashba ge-
ometry rather than by a combination of Rashba and Dressel-
hauss symmetry.

In the regime of strong disorder, where this resonant be-
havior is not pronounced, the disorder broadening of the
Green’s functions becomes more dominant and the �xy has
dependence that can no longer be expanded correctly in pow-
ers of �. This expectation can be easily seen from the expres-
sions for �xy in our formulation or the Kubo formulation, in
which

�xy � �
�,�

���v̂x������v̂y���
�E� − E��2 , �48�

where ��� are the exact eigenstates in the presence of disor-
der and the major contribution for �xy in the dirty limit
comes from interband matrix elements. When expanding
things in the momentum basis, the denominator is often ap-
proximated as 	En�k��−En��k��
2+ �� /��2 while the matrix ele-
ments are evaluated within the disorder-free eigenstates.
Hence, in the limit of large disorder broadening, the denomi-
nator is simply replaced by �� /��2 and �xy ��2 �this is dif-
ferent for �xx as the contribution from interband matrix ele-
ments vanishes and �xx���. This of course gives an upper
bound for the �xy �� scaling and in intermediate regimes
one would expect  to be lower than 2.

In Figs. 9 and 10, we study the AHE calculated in the
anticrossing region in order to examine in detail the universal
anomalous Hall-effect regimes that could be valid for more
general band structures. We now plot in the logarithmic scale
�xy as a function of �xx tuned via ni while all other param-
eters are kept constant. In the clean limit, we recover the
skew-scattering behavior 	�xy �1 / �niV0���xx /V0
 and our
numerical results �bold line� agree well with the analytical
results �dashed line� obtained in Sec. III B. In the moderately
dirty limit, we observe the intrinsic-side-jump regime ��xy
=const., this regime is more pronounced for smaller V0� in
which the side-jump and intrinsic mechanisms are dominant.
All analytical curves �dashed lines� asymptotically reach this
regime when �xx is very small. In the stronger disorder re-
gime, as reported in Ref. 1, the numerical curves have down-

turn for smaller �xx approaching the third regime in which
�xy ��xx

� , with ��1.6 in Fig. 9. However, a universal scal-
ing cannot be claimed since for large and positive strength of
impurities in Fig. 10 we only observe the reduction of the
AHE.

One should keep in mind that the TMA is not fully justi-
fied close to the line ��F=1 and our results are meaningful
only for ��F�1. Furthermore, since in this regime the reso-
nant behavior is strongly diminished, in realistic three-
dimensional systems, the result could be more accurately ex-
pressed via the averaged matrix elements with some
appropriate treatment of the disorder broadening.

Although some experimental works claim to confirm the
scaling �xy ��xx

� , with � around 1.6,37–41 comparison of
theory and experiments has to be done with care since deter-
mining a scaling exponent over a single decade is often dif-
ficult and has led to many errors in the past. For example, in
DMS ferromagnets �mentioned in Ref. 1 to support the scal-
ing hypothesis� the change of doping will cause change in
the impurity concentration, in the magnetization, and even in
the band structure. The theoretical calculations only take into
account the change in the impurity concentration and further
assume a Rashba symmetry at the crossing points.20,1 Note
also that within the theoretical treatment, the Hall conductiv-
ity changes its sign for repulsive impurities �V0�0� in Fig.

FIG. 9. �Color online� The absolute value of the anomalous Hall
conductivity ��xy� versus the conductivity �xx for the spin-orbit in-
teraction strength 2�2 /h=35.9. Dimensionality of quantities dis-
played in this plot is restored.

FIG. 10. �Color online� Identical to Fig. 9 plot except for the
disorder which is repulsive here �V0�0�. Note that the conductivity
�xy changes sign around the cusps.
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10 which is expected as the skew scattering dominating in
the clean limit has the sign opposite to the sign of the intrin-
sic contribution dominating in the dirty limit 	see Eq. �46�
.
These types of changes of signs have also been observed in
experimental systems, e.g., DMS,52 and of course at that
stage scaling is not justified.

IV. AMR IN RASHBA SYSTEMS

In Sec. III, we showed how the formalism developed in
Sec. II can be applied to calculations of the anomalous Hall
effect in multiple-band systems on the example of a Rashba
system. In this section, we perform calculations of the AMR
in 2DEG with the in-plane exchange field, spin-orbit interac-
tion, and magnetic impurities following the same formalism.
A general numerical procedure allows us to rigorously per-
form AMR calculations in multiple-band anisotropic sys-
tems. Within the Boltzmann equation approach, such calcu-
lations are usually performed by using the relaxation-time
approximation in which the transport relaxation time � is
calculated from the scattering amplitudes without fully tak-
ing into account the asymmetries.30,34 This approach was im-
proved in Ref. 53 by introducing the perpendicular relaxation
time ��. However, in some cases this improvement is yet not
sufficient and some of the present authors formulated a pro-
cedure for finding an exact solution to the Boltzmann equa-
tion in Ref. 35. Here we propose an alternative approach for
AMR calculations in multiple-band anisotropic systems to
the one proposed in Ref. 35.

We consider here a 2DEG Rashba Hamiltonian with ad-
ditional in-plane exchange field hx directed along the x axis
without any loss of generality

ĤR = k2/2 + �k · �̂ � z − hx�̂x − h�̂z + V̂�r� , �49�

where now V̂�r� describes the disorder corresponding to di-
lute charged magnetic impurities34,54,55

V̂�r� = V0�a�̂0 + �̂x��
i

	�r − ri� , �50�

where ri describes the positions of random impurities and we
assume that the magnetic impurities are magnetized along
the exchange field. The quantity a describes the relative
strength of the electric part of impurity with respect to the
magnetic part. Note that the AMR is measured by changing
the direction of electric field E which is equivalent to chang-
ing the direction of the exchange field.

For the AMR, we only need the diagonal conductivities,
thus the Fermi sea contribution given by Eq. �43� vanishes.
The AMR can be calculated from Eq. �42� and we only need
to calculate Green’s functions at the Fermi level. We calcu-

late �̂eq
R,A and Green’s functions Ĝeq

R,A using the self-consistent
TMA

T̂eq
R,A = V0�1̂ − V0�̂R,A�−1, �51�

�̂eq
R,A = niT̂eq

R,A��F� = �eq0
R,A�̂0 + �eqx

R,A�̂x + �eqz
R,A�̂z, �52�

Ĝeq
R = ��1̂ − Ĥ0 − �̂eq

R �−1

=
�W −

k2

2
��̂0 + �ky�̂x − �kx�̂y − H�̂z

�W −
k2

2
�2

− H2 − �2k2 + 2Hx�ky

−
Hx�̂x

�W −
k2

2
�2

− H2 − �2k2 + 2Hx�ky

,

Ĝeq
A = �Ĝeq

R �†, �53�

where W=�−�eq0
R , H=h−�eqz

R , Hx=hx−�eqx
R , and �̂R,A

=�d2k / �2��2Ĝeq
R,A�k ,����R,A�̂0+�x

R,A�̂x+�z
R,A�̂z. We calcu-

late the self-consistent value of the self-energy �̂eq
R,A��F� by

iterating Eq. �52� until the prescribed accuracy is reached.
As soon as we know the T matrix, we can substitute it into

Eq. �40� and find the matrix �̂ by performing the momentum
integrations in the right-hand side. Finally, by substituting �̂
into Eq. �42� we can calculate the conductivity. Note that
throughout this section, the angular part of the momentum
integrations is calculated analytically while the radial part is
calculated numerically. The anisotropic resistance in our sys-
tem is defined as follows:

AMR = −
�xx − �yy

�xx + �yy
,

and it describes the relative difference in conductivity for
current flowing parallel or perpendicular to the magnetiza-
tion �represented by the exchange field and/or impurity mag-
netization�.

First, we calculate the anisotropic magnetoresistance in
Rashba system with in-plane exchange field and nonmag-
netic delta scatterers 	see Eq. �30�, the magnetic scatterers
are absent in this model
. Kato et al.36 found vanishing AMR
in the regime �i� �see Fig. 2� when both subbands are par-
tially occupied due to the cancellation of the nonvertex and
vertex parts in the Kubo formulation. In Fig. 11, we observe
the nonvanishing AMR in the regime �i� and this suggests the
importance of the higher order diagrams 	such as plotted in
Fig. 4�e�
 not only for the AHE but also for the AMR. The
AMR effect resulting from the higher order diagrams is more
pronounced for the larger strength of impurities, similar to
the AHE. The AMR approaches its maximum around the
point at which the exchange energy is comparable to the
spin-orbit energy, 2hx��. We note that the nonzero but com-
paratively weak magnitude of the AMR here in the Rashba
system is reminiscent of the results in three-dimensional
DMS ferromagnets.34 This agrees with physical intuition.
Under comparison of two mechanisms by which AMR can
arise—carrier polarization/anisotropy in wave functions and
impurity polarization/anisotropy in scattering operator �see
Fig. 1 of Ref. 34�—the former implies a competition be-
tween the exchange and spin-orbit terms �in the Hamil-
tonian� resulting in reduced anisotropy strength.
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Consequently, even though observation of the AMR effect
is deemable in the absence of magnetic scatterers, we expect
much more pronounced effects when the magnetic scatterers
are present. Our numerical results in Fig. 12 �plotted together
with the analytical results from Ref. 35� confirm this. For the
case when the Fermi level crosses only one band 	region �ii�
in Fig. 2
, it was found in Ref. 35 that AMR=1 / �2−a2�
when �a��1 and AMR=1 /a2 when �a��1, provided the ex-
change fields are small. For the case when the Fermi level
crosses two bands 	region �i� in Fig. 2
 it was found in Ref.
35 that AMR=a2 when �a��1 and AMR=1 /a2 when �a�
�1, in the limit of large Fermi energy �compared to the
spin-orbit and exchange splittings�. We observe a perfect
agreement between our numerical results and the analytical
results from Ref. 35. The result in Fig. 12�a� cannot be re-
produced within the common approximate approaches30,34,53

based on the relaxation-time approximation as it was pointed
out in Ref. 35. The nonphysical divergence in �yy at the point
a=1 in Fig. 12 is caused by the special choice of the scat-

tering potential.35 As soon as the spatial dependences of the
electric and magnetic parts cease to be identical 	in Eq. �50�,
they correspond both to delta scatterers
 the divergence of
the �yy is removed �causing AMR�1�.

V. CONCLUSIONS

We have developed a framework for transport calculations
in multiple-band noninteracting Fermi systems. By applying
this framework to Rashba 2DEG, we have resolved some
recent discrepancies related to the AHE in such systems. The
findings of this simple 2D model have been linked to higher
dimensional systems arguing that most likely the major con-
tributions to the AHE come from the band anticrossing re-
gions similar to one observed in the Rashba model. Our ana-
lytical and numerical results reveal the crossover between the
skew-scattering-dominated regime in clean systems ��xy
�V0 /�Born��xx� and the intrinsic deflection dominated re-
gime in moderately dirty systems ��xy �const.�. In dirty sys-
tems, we observe the third distinct regime also dominated by
the intrinsic contribution. In this regime, the AHE diminishes
in a manner similar to �xy ��xx

� , with � being close to 1.6.
This, however, cannot be called by scaling as the theory is
not meaningful in a sufficiently wide range of �xy and �xx
due to breakdown of the TMA when ��F�1. For the repul-
sive impurities, we observe that the intrinsic and skew
anomalous Hall effects have opposite signs. As a result, the
crossover between those two is also accompanied by the
change of sign of the AHE. We suggest to engineer samples
with repulsive impurities in order to see this change of sign
in the AHE and a possible effect on the scaling.

We have resolved some discrepancies between the AHE
results obtained by using the Keldysh, Kubo, and Boltzmann
approaches by considering the higher order skew-scattering
processes. We have included similar higher order processes
in our AMR calculations and shown their importance for the
Rashba model in which nonvertex and vertex diagrammatic
parts cancel each other. We have calculated the AMR in an-
isotropic systems properly taking into account the anisotropy
of the nonequilibrium distribution function. These calcula-
tions confirm recent findings on the unreliability of common
approximate approaches to the Boltzmann equation.
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APPENDIX A: GENERALIZATIONS FOR SHORT-RANGE
DISORDER

In Sec. II A, we derive the kinetic equation with the self-
energy expression that is valid for uniform systems. Here, we

FIG. 11. The AMR �100% corresponds to AMR=1� as a func-
tion of the dimensionless spin-orbit interaction strength � /��F ��F

is counted from the middle of the gap in Fig. 2�. The parameters of
the model are V0=−0.6 and −0.9, ni /�F=0.01, and hx /�F=0.3.
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FIG. 12. The AMR as a function of the relative strength a of the
electric and magnetic parts of impurity potential. By solid line we
plot analytical results and dots represent numerical results: �a�
Fermi level crosses only one band ��F=0� with the following di-
mensionless parameters: V0=0.05, �=1.4, ni=0.0015, hx=0.0015,
and h=0.015; �b� Fermi level crosses both bands V0=0.05, �
=0.03, ni=0.002, hx=0.002, and h=0.001.
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generalize this self-energy to nonuniform systems in the
presence of a short-range disorder postulated by the follow-
ing infinite set of correlators:

�VV� = �V��V� + V2	r1−r2
,

�VVV� = � �VV��V� + V3	r1−r3
,

�VVVV� = � ��VVV��V� + �VV��VV�� + V4	r1−r4
, etc.

�A1�

where we decouple the correlators into a product of two
lower order correlators and sum all such products, 	r1−rN
=�i=1..N−1	�ri−ri+1�. Note that usually the averaged impurity
potential is zero, �V�=V1=0.

After performing the averaging procedure for the Green’s
function, we again arrive at the kinetic Eq. �6� with the self-
energy given by the following formal expression:

�̌ = �V̌0 + V̌0 � Ǧ � V̌0 + . . .��V0
n→Vn

, �A2�

where V̌0=V0� ̂ 0
0 ̂ �	�1−1�� and in the term of nth order pro-

portional to V0
n we replace V0

n by Vn which ensures that the
correlators in Eq. �A1� are properly considered. It is conve-
nient to introduce the notation

Ě = �V̌0 + V̌0 � Ǧ � V̌0 + ¯� , �A3�

which, in analogy with the self-energy, also has retarded �ad-
vanced� ER,A and lesser E� components. Equation �A3� can

be rewritten in the form of T-matrix equation, Ě= V̌ � 	1̌
+ Ǧ � Ě
, which leads to the expressions for the self-energies

�̂R,A = ÊR,A�V0
n→Vn

,

�̂� = �ÊR
� Ĝ�

� ÊA��V0
n→Vn

, �A4�

where the notation �V0
n→Vn

is formal and it means that ÊR,A

has to be fist expanded with respect to V0 and then after
grouping V0’s together the substitution has to be applied.
Equations �14� and �15� can now be rederived for nonuni-

form systems with the disorder given by Eq. �A1� and �̂1
�

= �ÊR � Ĝ1
�

� ÊA� �V0
n→Vn

.
Nevertheless, for the purposes of this paper, it is sufficient

to consider the uniform and stationary case. This leads to
substantial simplifications outlined in Secs. II B and II C.
Results of Secs. II B and II C also hold for the disorder given
by Eq. �A1� with the exception of Eqs. �20� and �28� that
should be replaced by the following equations:

�̂1
� = �Êeq

R �� d2k�

�2��2Ĝ1
��k���Êeq

A �
V0

n→Vn

,

�̂E
R,A = �Êeq

R,A�� d2k�

�2��2ĜE
R,A�k���Êeq

R,A�
V0

n→Vn

. �A5�

Finally, we would like to present several examples in
which the disorder given by Eq. �A1� is realized. The sim-
plest example is given by Eq. �30� and in this case Vn
=niV0

n. For the disorder given by Eq. �44�, we have Vn
=ni��V0

i �n�dis. For the Gaussian white-noise disorder, only V2
is nonzero and Vn �n�2=0. For the telegraph white-noise dis-
order all odd correlators vanish, V2n+1=0.

APPENDIX B: CALCULATION OF SELF-CONSISTENT

SELF-ENERGY �̂eq
R,A

The following relations can be calculated by a direct ana-
lytical integration of Eq. �34�:

�̂R,A =� d2k/�2��2Ĝeq
R,A�k,�� � �R,A�̂0 + �z

R,A�̂z,

�R =
�K+ − 2W�	ln�K0 − K+� − ln�− K+�


2��K− − K+�

−
�K− − 2W�	ln�K0 − K−� − ln�− K−�


2��K− − K+�
,

�z
R =

ln�K0 − K+� − ln�− K+�
��K− − K+�/H

−
ln�K0 − K−� − ln�− K−�

��K− − K+�/H
,

�A = ��R��; �x�y,z�
A = ��x�y,z�

R ��; �y�z�
R = 0,

where W=�−�eq0
R , H=h−�eqz

R , K�=2�W
+�2��H2+2W�2+�4�, and K0=k0

2 describes the cutoff k0
in momentum integration.

For each energy, �eq0
R ��� and �eqz

R ��� are calculated by
performing a number of iterations with the consequent itera-
tion according to

�eq0
R,A =

1

2
Tr	niV0�1̂ − V0�̂R,A�−1�̂0
 ,

�eqz
R,A =

1

2
Tr	niV0�1̂ − V0�̂R,A�−1�̂z
 .

The iterations are performed until the prescribed accuracy is
reached.

APPENDIX C: CALCULATION OF THE MATRIX �̂(�)

For the electric field E along the y axis E= �0,Ey�, we
solve here the linear Eq. �40� for the elements of the matrix
�̂��� by performing analytically the momentum integrations

of the Green’s functions Ĝeq
R,A�k ,�� 	given by Eq. �34�
 in the

right-hand side. For each energy �, we obtain the following
expressions that also depend on the self-consistent values of
�00

R ��� and �0z
R ���:

�−−��� = �++��� = 0,
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�+−��� = i��nFeEy�� 	K−
2 + 4�H + W��H� − W��
ln�− K−�
�K− − K−

���K− − K+��K− − K+
���

−
	K−

�2 + 4�H + W��H� − W��
ln�− K−
��

�K− − K−
���K−

� − K+��K−
� − K+

���

+
	K+

2 + 4�H + W��H� − W��
ln�− K+�
�K− − K+��K−

� − K+��K+ − K+
���

−
	K+

�2 + 4�H + W��H� − W��
ln�− K+
��

�K− − K+
���K−

� − K+
���K+ − K+

��� �
��− 1 + � �2H − K− + 2W��2H� + K− − 2W��ln�− K−�

�K− − K−
���K− − K+��K− − K+

���
−

�2H − K−
� + 2W��2H� + K−

� − 2W��ln�− K−
��

�K− − K−
���K−

� − K+��K−
� − K+

���

+
�2H − K+ + 2W��2H� + K+ − 2W��ln�− K+�

�K− − K+��K−
� − K+��K+ − K+

���
−

�2H − K+
� + 2W��2H� + K+

� − 2W��ln�− K+
��

�K− − K+
���K−

� − K+
���K+ − K+

��� �niT++T−−
� �−1

,

�−+��� = i��nFeEy�� 	K−
2 + 4�H − W��H� + W��
ln�− K−�
�K− − K−

���K− − K+��K− − K+
���

−
	K−

�2 + 4�H − W��H� + W��
ln�− K−
��

�K− − K−
���K−

� − K+��K−
� − K+

���

+
	K+

2 + 4�H − W��H� + W��
ln�− K+�
�K− − K+��K−

� − K+��K+ − K+
���

−
	K+

�2 + 4�H − W��H� + W��
ln�− K+
��

�K− − K+
���K−

� − K+
���K+ − K+

��� �
��− 1 + � �2H + K− − 2W��2H� − K− + 2W��ln�− K−�

�K− − K−
���K− − K+��K− − K+

���
−

�2H + K−
� − 2W��2H� − K−

� + 2W��ln�− K−
��

�K− − K−
���K−

� − K+��K−
� − K+

���

+
�2H + K+ − 2W��2H� − K+ + 2W��ln�− K+�

�K− − K+��K−
� − K+��K+ − K+

���
−

�2H + K+
� − 2W��2H� − K+

� + 2W��ln�− K+
��

�K− − K+
���K−

� − K+
���K+ − K+

��� �niT−−T++
� �−1

,

where T�� corresponds to the elements of the matrix T̂eq
R ���.

APPENDIX D: CALCULATION OF THE MATRIX �̂E
R(�)

For the electric field E along the y axis E= �0,Ey�, we solve here the linear Eq. �41� for the elements of the matrix �̂E
R,A���

by performing analytically the momentum integrations of the Green’s functions Ĝeq
R,A�k ,�� 	given by Eq. �34�
 in the right-

hand side. For each energy �, we obtain the following expressions that also depend on the self-consistent values of �00
R ��� and

�0z
R ���:

�Ey−−
R ��� = �Ey++

R ��� = 0,

�Ey+−
R ��� = 4i�	H�− 1 + ���00

R � − W���0z
R 
K−

2 − K+
2 + 2K−K+	− ln�− K−� + ln�− K+�
�

��K− − K+�	K−
3K+� + K+

3K−� + K−
2K+niT−−T++ − 4K+niT−−T++�H2 − W2� + K+

2K−niT−−T++ − 4K−niT−−T++�H2 − W2�

− 2�K+
2K−

2 − 8K+K−niT−−T++W
 + 2K−K+niT−−T++	4H2 + �K− − 2W��− K+ + 2W�
	ln�− K−� − ln�− K+�
�−1,

�Ey−+
R ��� = − �Ey+−

R ��� ,

where T�� corresponds to the elements of the matrix T̂eq
R ���.

APPENDIX E: CALCULATION OF THE FERMI-SURFACE CONDUCTIVITY

For the electric field E along the y axis E= �0,Ey�, we perform momentum k and frequency � integrations in Eq. �42�. It
is convenient to divide the resultant conductivity into two parts: the bare bubble part �xy�yy�

Ib that corresponds to calculating only
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the second line in Eq. �42� effectively assuming that �̂��F�=0 and self-consistent part �xy�yy�
Isc that corresponds to calculating the

first line in Eq. �42� that takes into account correction due to self-consistent calculation of �̂��F�,

�xy
I = �xy

Ib + �xy
Isc, �E1�

�yy
I = �yy

Ib + �yy
Isc. �E2�

We arrive at analytical expressions for the bare bubble contributions to the conductivities �xy
Ib and �yy

Ib that depend on the
self-consistent values of �00

R ��F� and �0z
R ��F� at the Fermi surface

�xy
Ib

e2/�
= −

2i�2	− H��K− + 2W� + H�K− + 2W��
ln�− K−�
�K− − K−

���K− − K+��K− − K+
���2 −

2i�2	H��K−
� + 2W� − H�K−

� + 2W��
ln�− K−
��

�K− − K−
���K−

� − K+��K−
� − K+

���2

−
2i�2	− H��K+ + 2W� + H�K+ + 2W��
ln�− K+�

�K− − K+��K−
� − K+��K+ − K+

���2 −
2i�2	H��K+

� + 2W� − H�K+
� + 2W��
ln�− K+

��
�K− − K+

���K−
� − K+

���K+ − K+
���2 , �E3�

�yy
Ib

e2/�
= −

K−
2�K− − 3K+�K+

� ln�− K−�
4�K− − K+�3�K− − K+

���2 −
K−

3	K−�K− + K−
�� − �K− + 3K−

��K+ + 2K+
2
ln�− K−�

4�K− − K−
���K− − K+�3�K− − K+

���2 +
K−K−

�2�K−
� − 3K+

��ln�− K−
��

4�K− − K−
���K−

� − K+
��3�2

+
K−

�3	K−
��K−

� + K+� − �K−
� + 3K+�K+

� + 2K+
�2
ln�− K−

��
4�K− − K−

���K−
� − K+��K−

� − K+
��3�2 −

K+
2�3K− − K+�K+

�ln�− K+�
4�K− − K+�3�K+ − K+

���2

−
K+

3	2K−
2 + K+�K−

� + K+� − K−�3K−
� + K+�
ln�− K+�

4�K−
� − K+��K− − K+�3�K+ − K+

���2 +
K−K+

�2�3K−
� − K+

��ln�− K+
��

4�K− − K+
���K−

� − K+
��3�2

+
K+

�3	2K−
�2 + K+

��K+ + K+
�� − K−

��3K+ + K+
��
ln�− K+

��
4�K− − K+

���K−
� − K+

��3�K+ − K+
���2

−
K−K+�K−

�2 + K+
�2� − K−

2�K−
�2 − K−

�K+
� + K+

�2� − K+
2�K−

�2 − K−
�K+

� + K+
�2�

2�K− − K+�2�K−
� − K+

��2�2

−
4WW��2 + 2HH��K− − 2�2� − K−

2�W + W� + �2� + 2K−	WW� + �W + W���2
�ln�− K−�
�K− − K−

���K− − K+��K− − K+
���2

+
4WW��2 + 2HH��K−

� − 2�2� − K−
�2�W + W� + �2� + 2K−

�	WW� + �W + W���2
�ln�− K−
��

�K− − K−
���K−

� − K+��K−
� − K+

���2

−
4WW��2 + 2HH��K+ − 2�2� − K+

2�W + W� + �2� + 2K+	WW� + �W + W���2
�ln�− K+�
�K− − K+��K−

� − K+��K+ − K+
���2

+
4WW��2 + 2HH��K+

� − 2�2� − K+
�2�W + W� + �2� + 2K+

�	WW� + �W + W���2
�ln�− K+
��

�K− − K+
���− K−

� + K+
���− K+ + K+

���2

−
− 2H2 + �K− + K+ − 2W�W

�K− − K+�2�2 −
	�K− + K+��4H2 + K−K+� − 8K−K+W − 4�K− + K+�W2
�2

2K−�K− − K+�2K+�2

− 	ln�− K−� − ln�− K+�

W	− 2K−K+ + �K− + K+�W
 + 	− K−K+ + 2�K− + K+�W + 4W2
�2 + H2�K− + K+ − 4�2�

�K− − K+�3�2

−
− 2H�2 + �K−

� + K+
� − 2W��W�

�K−
� − K+

��2�2 −
	�K−

� + K+
���4H�2 + K−

�K+
�� − 8K−

�K+
�W� − 4�K−

� + K+
��W�2
�2

2K−
��K−

� − K+
��2K+

��2

− 	ln�− K−
�� − ln�− K+

��


�
W�	− 2K−

�K+
� + �K−

� + K+
��W�
 + 	− K−

�K+
� + 2�K−

� + K+
��W� + 4W�2
�2 + H�2�K−

� + K+
� − 4�2�

�K−
� − K+

��3�2 , �E4�

where in this appendix all parameters are taken at the Fermi surface W=�F−�00
R ��F�, H=h−�0z

R ��F�, and K�=2�W
+�2��H2+2W�2+�4�.
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The analytical expressions for the self-consistent contributions to the conductivities �xy
Isc and �yy

Isc become

�xy
Isc

e2/�
=

�ni�+−T++T−−
� 	K−

�2 + 4�H + W��H� − W��
 − �−+T−−T++
� 	K−

�2 + 4�H − W��H� + W��
�ln�− K−
��

2�K− − K−
���K−

� − K+��K−
� − K+

���2eEy

−
�ni�+−T++T−−

� 	K−
2 + 4�H + W��H� − W��
 − �−+T−−T++

� 	K−
2 + 4�H − W��H� + W��
�ln�− K−�

2�K− − K−
���K− − K+��K− − K+

���2eEy

+
�ni�+−T++T−−

� 	K+
�2 + 4�H + W��H� − W��
 − �−+T−−T++

� 	K+
�2 + 4�H − W��H� + W��
�ln�− K+

��
2�K− − K+

���− K−
� + K+

���− K+ + K+
���2eEy

−
�ni�+−T++T−−

� 	K+
2 + 4�H + W��H� − W��
 − �−+T−−T++

� 	K+
2 + 4�H − W��H� + W��
�ln�− K+�

2�K− − K+��K−
� − K+��K+ − K+

���2eEy

, �E5�

(b)(a)

(c) (d)

(f)(e)

FIG. 13. �Color online� The anomalous Hall conductivity �xy
Tot=�xy

Ib +�xy
Isc+�xy

II and its components ��xy
Ib, �xy

Isc, �xy
II � vs the averaged

relaxation rate 1 /�=2 Im�00
A �defined in Appendix B�. The spin-orbit interaction strength is 2m�2 /Eres=3.59 �Eres=10h�; the strength of

impurities V0=0.01, 0.1, 0.2, 0.3; the Fermi energy �F /Eres=0.9 for �F=0, �F /Eres=0.5 for �F=−4h, and �F /Eres=1.5 for �F=6h. The
Fermi energy �F corresponds here to the clean system and it is renormalized according to Eq. �35� in the presence of disorder. Dimension-
ality of quantities displayed in this plot is restored.
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�yy
Isc

e2/�
=

i�ni�+−T++T−−
� 	K−

2 + 4�H + W��H� − W��
 + �−+T−−T++
� 	K−

2 + 4�H − W��H� + W��
�ln�− K−�
2�K− − K−

���K− − K+��K− − K+
���2eEy

−
i�ni�+−T++T−−

� 	K−
�2 + 4�H + W��H� − W��
 + �−+T−−T++

� 	K−
�2 + 4�H − W��H� + W��
�ln�− K−

��
2�K− − K−

���K−
� − K+��K−

� − K+
���2eEy

+
i�ni�+−T++T−−

� 	K+
2 + 4�H + W��H� − W��
 + �−+T−−T++

� 	K+
2 + 4�H − W��H� + W��
�ln�− K+�

2�K− − K+��K−
� − K+��K+ − K+

���2eEy

−
i�ni�+−T++T−−

� 	K+
�2 + 4�H + W��H� − W��
 + �−+T−−T++

� 	K+
�2 + 4�H − W��H� + W��
�ln�− K+

��
2�K− − K+

���− K−
� + K+

���− K+ + K+
���2eEy

, �E6�

where again all parameters are calculated at the Fermi surface and T�� and ��� correspond to the elements of the matrices

T̂eq
R ��F� and �̂��F�, respectively.

APPENDIX F: CALCULATION OF THE FERMI SEA CONDUCTIVITY

For the electric field E along the y axis E= �0,Ey�, we perform momentum integrations in Eq. �43� arriving at the following
expressions for conductivities �xy

II and �yy
II :

(b)(a)

(c) (d)

(f)(e)

FIG. 14. �Color online� Identical to Fig. 13 plot with attractive disorder �V0=−0.01, −0.1, −0.2, and −0.3�.
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�xy
II = �xy

IIb + �xy
IIsc, �F1�

�yy
II = 0, �F2�

�xy
IIb

e2/�
= −� d�nF�4i�2	H�1 − ���00

R ��K− + K+� + ���0z
R 	K+W + K−�K+ + W�



K−K+�K− − K+�2�2

−
2i�2	4�1 − ���00

R �H + ���0z
R �K− + K+ + 4W�
	ln�− K−� − ln�− K+�

�K− − K+�3�2 � + c.c., �F3�

�xy
IIsc

e2/�
=� d�nF

���Ey−+
R − �Ey+−

R ��4H2 + K−K+ − 4W2��K−
2 − K+

2 + 2K−K+	− ln�− K−� + ln�− K+�
�

2K−K+�K+ − K−�3�2/�T−−T++�
+ c.c. = 0, �F4�

where T�� corresponds to the elements of the matrix T̂eq
R ���.

The fact that �xy
IIsc=0 follows from the identity 4H2+K−K+

−4W2�0.
As one can see, �yy

II and �xy
IIsc contributions to the Fermi

sea Hall conductivity vanish and the nonvanishing contribu-
tion �xy

IIb depends on the self-consistently calculated �00
R ���

and �0z
R ��� that are functions of energy. Calculation of �xy

IIb

from Eq. �F3� requires numerical integration over �.

APPENDIX G: DETAILED RESULTS FOR THE HALL
CONDUCTIVITY

In order to gain more insight into the behavior of the
anomalous Hall effect, in Figs. 13 and 14 we plot different
components of the AHE conductivity, particularly the Fermi
sea contribution �xy

II , the bare bubble contribution �xy
Ib �this

corresponds to �xy
Iint in Ref. 1�, and the self-consistent contri-

bution �xy
Isc �this corresponds to �xy

ext in Ref. 1�. In Fig. 13, we
take the same parameters as in Figs. 7 and 8 of Ref. 1 and we
find disagreement with Ref. 1 in the results for the contribu-
tion �xy

ext ��xy
Isc�. The contributions �xy

Ib and �xy
II perfectly agree

with Ref. 1.
In the clean limit �→
, we see that �xy

Isc and thus the total
Hall conductivity �xy

Tot diverge. This divergence 	�xy
Isc

�1 / �niV0� in regions �ii� and �iii� and �xy
Isc�1 /ni in region

�i�, see Fig. 2
 is due to the skew scattering. The conductivity
�xy

Isc also contains the side-jump contribution which can be
best seen in Fig. 13�a� in the sharp peak in the �xy

Isc conduc-
tivity for small 1 /�. The skew-scattering contribution decays
much faster compared to the side-jump and/or intrinsic
mechanisms as we go to larger 1 /�. As a result, we can
expect a crossover between the region dominated by the
skew scattering and the region dominated by the side-jump-
intrinsic mechanisms. When both subbands are partially oc-
cupied 	see Figs. 13�f� and 14�f�
, the higher order skew
scattering is still present. However, we do not expect a well-
pronounced crossover as the intrinsic contribution cancels
the side-jump contribution in the metallic regime 	see Eq.
�45�
. By comparing Figs. 13�f� and 14�f�, one can see that
the higher order skew scattering �hybrid skew scattering�
�Ref. 24� does not change sign when we change the sign of
impurities.

When the side-jump-intrinsic and the skew-scattering
components have opposite signs, as in Fig. 13, we observe
the AHE sign change instead of the crossover. In Figs.
13�a�–13�d�, the skew scattering is negative in the clean limit
while the side-jump-intrinsic part is positive. This inevitably
leads to the sign change of the conductivity �xy as we in-
crease the disorder.
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