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Spin-orbit driven ferromagnetic resonance
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I. DERIVATION OF FMR LINESHAPE AND ITS ANGLE DEPENDENCE

The total voltage across the device is given by Ohm’s law:

V (t) = I(t) ·R(t) (S1)

Here I(t) = I cos(ωt) is an ac current within the sample. Next we look at the time-dependent resistance R(t). In
general, the anisotropic magnetoresistance (AMR) describes the change in the sample’s longitudinal resistance when
its magnetisation M forms an angle θ with respect to the current I [1]:

R(t) = R⊥ −∆R cos2 θ(t) (S2)

where R⊥ is the longitudinal resistance when M ⊥ I and ∆R = R⊥−R∥ is the AMR coefficient (R∥ is the longitudinal
resistance for M ∥ I). In our samples, we measure ∆R > 0 (and ∆R/R⊥ of the order of few per cent) as it is commonly
the case in (Ga,Mn)As epilayers; we note that Eq. (S2) neglects the crystalline contributions to the AMR [1] that we
confirmed to be small in magnitude.

In our experiment, the magnetic moments in the micro-bar are precessing driven by an ac current-induced torque,
resulting in a time-varying angle:

θ(t) = θ + θc cos(ωt− ψ) (S3)

where θc describes the deviation of M from its axis of rotation (referred to as the ‘cone angle’ of the precession), and
ψ is the phase difference between the resistance and the ac current. An expression for the time-varying resistance
R(t) can thus be obtained by combing Eq. (S2) and (S3). In the case of small cone angle precession, the expression
can be simplified by expanding cos2 θ(t) up to first order:

R(t) ≈ R⊥ −∆R
[
cos2 θ − 2θc cos θ sin θ cos(ωt− ψ)

]
(S4)

Combining Eq. (S1) and (S4), we see that the total voltage V (t) comprises terms at frequencies ω and 2ω, and a
time-independent (dc) term Vdc, which is the focus of this derivation.
To find out the expression for θc, we need to determine the magnetisation components in the plane of rotation. We

define the geometry for our experiment in Figure S1. Since the applied dc magnetic field µ0H0 is much larger than
the anisotropy of the ferromagnet (measured to be a few tens of mT), the magnetisation vector M stays parallel to
H0. A second coordinate system x′ − y′ is defined with respect to M. In the new coordinates, H0 = (H0, 0, 0), and
M = (Ms,my′eiωt,mze

iωt) in the case of small angle precession.
The dynamics of the damped magnetic motion is described phenomenologically by the Landau-Lifshitz-Gilbert

(LLG) equation:

∂M

∂t
= −γM× (Htot + heff) +

α

Ms

(
M× ∂M

∂t

)
(S5)
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FIG. S1: The coordinate systems used in the derivation.
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here the first term is the field torque and the second term is the Gilbert damping. This process is illustrated in
Figure 1a in the text. γ is the gyromagnetic ratio and α is the phenomenological Gilbert damping constant. Htot

is the total magnetic field in the vicinity of the magnetisation. It is a vector sum of the dc magnetic field H0,
the demagnetisation field Hdemag and the anisotropy of the material Hani. heff is the microwave frequency effective
magnetic field which drives the magnetic moments (resulting from SO-coupling and exchange interaction); in the
x′ − y′ system, it has the form:

heff =



hx cos θ − hy sin θ
hx sin θ + hy cos θ

hz


 eiωt (S6)

Solving Eq. (S5) and discarding high-order terms, we obtain the following set of linearised equations [2]:

iω

γ
my′ +

(
iαω

γ
+H0 +H1

)
mz = Mshz (S7)

(
iαω

γ
+H0 +H2

)
my′ − iω

γ
mz = Ms(hx sin θ + hy cos θ) (S8)

where

H1 = Ms −H2⊥ +H2∥ cos
2
(
φ+

π

4

)
+

1

4
H4∥(3 + cos 4φ) (S9)

H2 = H4∥ cos 4φ−H2∥ sin 2φ (S10)

are terms containing the demagnetisation and anisotropy fields of the (Ga,Mn)As epilayers. Here H2⊥, H2∥ and H4∥
represent the out-of-plane uniaxial, in-plane uniaxial and in-plane biaxial anisotropy, respectively. They are related
to the energy terms Ki according to Hi = 2Ki/µ0Ms. φ is the angle between the magnetisation vector M and the
[100] crystallographic axis.
In (Ga,Mn)As epilayers, due to the strong in-plane anisotropy, the precessional motion of the magnetisation is

highly elliptical, with the maximum deviation from its equilibrium position for M in-plane with the sample. For small
angle precession, the cone angle is θc = my′/Ms. Note that the out-of-plane component of the precession leads to a
sinusoidal change in resistance at 2ω [3]. Therefore this term doesn’t contribute a DC voltage when mixed with the
oscillatory current at ω, so only the in-plane component (θc) of the elliptical precession is used in our derivation. Its
value can be obtained by solving Eq. (S7) and (S8):

θc = − ihzγ
ω

− [i(H0 +H1)−∆H] [γhz(H0 +H2 + i∆H)− iω(hx sin θ + hy cos θ)]

ω [−(H0 +H1 + i∆H)(H0 +H2 + i∆H) + ω2/γ2]
(S11)

Here ∆H = αω/γ defines the resonance linewidth (half width at half maximum). The complex expression of Eq. (S11)
arises from the complex susceptibility.
Combining Eq. (S1), (S4) and (S11), a general expression for the dc voltage is obtained:

Vdc = −1

2
I∆R sin(2θ)

{
iγhz
ω

+
1

ω [−(H0 +H1 + i∆H)(H0 +H2 + i∆H) + ω2/γ2]
[
i(H0 +H1)−∆H

][
γhz(H0 +H2 + i∆H)

−iω(hx sin θ + hy cos θ)
]}

(S12)

In conventional FMR experiments, the frequency of the driving field ω is kept constant, and the external field H0 is
swept. To determine the lineshape of the dc voltage near resonance, we consider the profile of Vdc at a small deviation
δH from Hres, i.e.

δH = |H0 −Hres| (S13)

For uniform precession of M in a material with small damping (α ≪ 1), ∆H ≪ Hres. Also since we only consider
small perturbations near the resonance, δH ≪ Hres. Substituting Eq. (S13) into (S12) and only keeping terms linear
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FIG. S2: The magnetic resonance is reflected in the dc voltage measured across a device. Inset: the two Lorentzian components
of the resonance peak.

in δH and ∆H, the following simplified expression is obtained:

Vdc = −1

2
I∆R sin(2θ)

{
iγhz
ω

− 1

ω(2Hres +H1 +H2)(δH + i∆H)
[
ω(hx sin θ + hy cos θ)(δH +Hres +H1 + i∆H) +

γhz

(
iδH(2Hres +H1 +H2) + i(Hres +H1)(Hres +H2)−

∆H(2Hres +H1 +H2)
)]}

(S14)

The in-phase (real) component of Vdc has the form (keeping only terms linear in α):

Re{Vdc} = Vsym
∆H2

(H0 −Hres)2 +∆H2
+ Vasy

∆H(H0 −∆H)

(H0 −Hres)2 +∆H2
(S15)

with angle-dependent amplitudes

Vsym(θ) =
I∆R

2
Asym sin(2θ)hz (S16)

Vasy(θ) =
I∆R

2
Aasy sin(2θ)(hx sin θ + hy cos θ) (S17)

Eq. (S15) shows that the FMR peak is a combination of symmetric and anti-symmetric Lorentzian functions, as
illustrated in Figure S2. The symmetric Lorentzian function is caused by an out-of-plane driving field hz; whereas
the anti-symmetric Lorentzian results from in-plane driving fields hx & hy, and its amplitude depends on the relative
orientation of the driving field with respect to the current. The terms Asym and Aasy are the scalar amplitudes of the
magnetic susceptibility (Ai = χi/Ms):

Asym =
γ(Hres +H1)(Hres +H2)

ω∆H(2Hres +H1 +H2)
(S18)

Aasy =
(Hres +H1)

∆H(2Hres +H1 +H2)
(S19)

We notice that the saturation magnetisation Ms does not enter the expression of Vdc explicitly. This is a major
convenience as Ms cannot be deduced from FMR experiments, and other measurements such as SQUID and VSM
are required to determined its value. The terms Asym and Aasy are also angle-dependent, since they depend on the
magnetic anisotropy of the device.
On the other hand, the 90o out-of-phase (imaginary) component of Vdc consists of two Lorentzians with the following
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FIG. S3: Amplitudes of the symmetric and anti-symmetric Lorentzian parts Vsym(θ) and Vasy(θ) measured on a group of
500 nm-wide (Ga,Mn)As bars (solid and hollow circles, respectively), patterned along different crystalline directions. The solid
lines are fitted results to Eq. (S17).

amplitudes:

V ′
sym(θ) = −I∆R

2
Aasy sin(2θ)(hx sin θ + hy cos θ) (S20)

V ′
asy(θ) =

I∆R

2
Asym sin(2θ)hz (S21)

This implies that if there is any phase difference between the current and the oscillating resistance, the angular
dependence of Vasy is partially mapped onto Vsym and vice versa.
The anti-symmetric Lorentzian contribution is dominant but a symmetric Lorentzian contribution is present in our

measurement (Figure S3), of which the θ-dependence can also be described with a combination of sin 2θ cos θ and
sin 2θ sin θ functions, instead of a sin 2θ curve. This indicates that the Vsym in our measurement is not caused by
an out-of-plane driving field but rather by a phase-shift between the driving field and the current. The magnitude
of Vsym varies among devices patterned in different crystal directions, and this systematic trend has been observed
among many different devices of different sizes. To evaluate the magnitude of the driving fields we consistently fit to
the larger anti-symmetric Lorentzian line.

II. DEDUCING THE CURRENT-INDUCED EFFECTIVE FIELD

Rearranging Eq. (S17) gives the following expression:

2Vasy(θ)

I∆RAasy(θ)
= hx sin 2θ sin θ + hy sin 2θ cos θ (S22)

This implies that for a micro-bar patterned along either [100] or [010] direction, the excitation field due to Dressel-
haus and Rashba spin-orbit interaction can be separately determined (as shown in Figure 3c and 3d in the main text).
In the case of [110]/[11̄0] bars, the two fields are collinear and cannot be directly deduced from Eq. (S22). Notice also
that both Vasy and Aasy are angle-dependent terms.
To calculate the magnetic fields, we measure the amplitude of the FMR peak at θ = 55o and 305o. The anti-

symmetric Lorentzian then becomes:

2Vasy(55
o)

I∆RAasy(55o)
= 0.77hx + 0.54hy (S23)

2Vasy(305
o)

I∆RAasy(305o)
= 0.77hx − 0.54hy (S24)
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FIG. S4: Determination of the microwave current using Joule heating. a, The temperature dependence of a device’s longitudinal
resistance R(T ), in the temperature range where the experiments are carried out (6 K). Inset: The sample resistance measured
over the entire temperature range 2.5 – 270 K. b, The change in sample resistance caused by Joule heating from both a direct
current R(Idc) and the microwave power R(Pmw) (P is the value shown on the signal generator). c, The calibrated Imw-Vmw

curve (triangles), where Vmw is the rms voltage output into the 50 Ω transmission line. The calibration errors are smaller
than the size of the triangles in the graph (∼ 0.3 µA), and they are caused by uncertainties in finding the exact value of the
microwave current with respect to the direct current.

Here Vasy is determined from fittings to the FMR peak; the longitudinal AMR coefficient ∆R can be determined
from transport measurements; and Aasy are calculated using Eq. (S19) and the magnetic anisotropy of the device.
The amplitude of the microwave current I cosωt can be calibrated by comparing the Joule heating from a known
direct current and the microwave current (see Figure S4). Then by adding and subtracting Eq. (S23) and (S24), we
are able to separately calculate the magnitude of the in-plane driving field along the bar (hx) and perpendicular to
the bar (hy), which arise from the Dresselhaus and Rashba spin-orbit interaction, respectively.
In order to find out the current density dependence of the driving fields (as shown in Figure 3e and 3f in the main

text), the above measurement is repeated for different microwave power P .

III. CALIBRATION OF MICROWAVE CURRENT

In order to determine the microwave current we use the Joule heating of the sample as a calibration. This is
possible because of the strong temperature dependence of the sample resistance (Figure S4a). The resulting change in
sample resistance is measured both from the Joule heating of a direct current and also the incident microwave signal
(Figure S4b). By comparing these two quantities we infer the microwave current through the sample. We perform
this calibration for a wide range of microwave powers. An example is shown in figure S4c where, as expected, a linear
relationship is observed between the inferred microwave current and the voltage at the microwave source.
Does the microwave power from the heating estimate make sense given the expected microwave power at the

sample? The semi-rigid coaxial cables are UT85-B-SS, and neither the CuBe core nor the stainless steel jacket
dramatically change resistance (and therefore microwave attenuation) between RT at 4 K (the attenuation for similar
cables decreases by about 20% on cooling). Therefore, a room temperature measurement with a diode detector allows
us to estimate the power reaching the sample.
At a source power 100 mW (f = 17 GHz), the microwave power reaching the sample is 2.8 mW, which corresponds

to a microwave voltage of 0.74 V. Here, it is assumed that there is a standing wave voltage of twice the incident
voltage due to the nearly open circuit presented by the nano-bar. This voltage, when divided by the 500 nm sample
resistance (17 kΩ), gives us an expected microwave current at 44 µA, close to the value obtained using Joule heating
(33 µA). Note this measurement doesn’t account for the additional loss on the PCB and in the bond-wire to the
actual sample.
Due to the high-impedance of the sample, it is relevant to ask if the microwave current dissipates power only in the

contact region or also in the bar itself. We first perform a measurement of the dc contact resistance of the sample.
A set of bars of different lengths were measured and the resistance determined as a function of length. This yields a
contact resistance (2Rc) where Rc=0.8 kΩ.
In the contact region the current prefers to flow in the lower resistivity metal rather than in the doped semiconductor.
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Let’s conservatively estimate that the contact is effectively made to the semiconductor at 25 µm from the 500 nm
× 10 µm device. Thus all device lengths are small with respect to the wavelength of signal (l∼500 µm, assuming
wavelength (at 17 GHz) reduced by the dielectric constant of GaAs). Therefore, Kirchoff’s laws can be applied, and
we see that the total instantaneous current is the same in contact region and the device. As a result the power
dissipation is I2Rc in the source contact region and I2R in the device. Since R ≫ Rc we can see that the majority
of the power gets dissipated in the device itself and not the contact region.

IV. DEMAGNETISING FIELD CONTRIBUTION TO MAGNETIC ANISOTROPY

We first notice that due to the relatively low saturation magnetisation of the diluted magnetic semi-
conductor the shape anisotropy is small compared to the crystalline anisotropies. Below we have cal-
culated the demagnetisation factors and the corresponding shape anisotropies for the different bars
investigated. The demagnetisation field along the bar (x-direction) is negligible due to the long
sample extension compared to the layer thickness and bar width, respectively. The calculated de-
magnetising factors and the corresponding shape anisotropies are listed in the following table [4].

Bar width DZ DY shape anisotropy energy [kJ/m3]

(perp. to plane) (inplane, perp. to bar) 0.5 µ0 DZ/Y M2
S

(MS/µ0 = 60 mT)

80 nm 0.83 0.17 1.19 / 0.24

500 nm 0.96 0.04 1.37 / 0.06

4 µ m 0.99 0.01 1.42 / 0.01

2D plate 1 0 1.43 / 0.00

The in plane demagnetising field perpendicular to the bar-orientation is insignificant when considering the relatively
small magnetic layer thickness and the relatively larger magnitude of the crystalline anisotropy fields. Any contribution
from this demagnetising field has the same symmetry as the anisotropy field due to strain relaxation. We note that
there is a small contribution to the observed HU only in the 80nm bar due to the demagnetising field. For the other
samples it is sufficient to incorporate the shape anisotropy of an infinitely extended thin film when modelling the
FMR conditions of our samples.

V. DRIVING FIELD HOMOGENEITY

We discuss the uniformity of the excitation field. The effect of non-uniform excitation on FMR spectra has previously
been examined [5]. A gradient of the excitation field was created across a NiFe sample and the effect on FMR lineshape
investigated. It was found that long wavelength spin-wave excitations, with k-vectors along the excitation gradient,
modified the FMR lineshape. In our case, any non-uniformity in current density will lead to a non-uniform driving
field.
We expect that the largest current density asymmetry lies in the z-direction. This potentially leads to excitation

of spin-waves with k-vectors in the z-direction (surface spin-wave mode). Discrete resonances due to the spin-waves
have previously been observed in (Ga,Mn)As [6], however we have not to date observed the resulting spectra in our
experiments. The current density may also vary along the y-direction due to the carrier depletion and/or modified
scattering rates at the sample edges. Based on the measurements cited above, the spin-wave pattern should be
resolvable in the 500 nm and 80 nm bars, but we observe no such resonance. So we conclude that any driving field
inhomogeneity that is present doesn’t significantly affect our FMR spectroscopy.

VI. OERSTED FIELD

For a symmetric current distribution within the wire there should be no rectification effect since the time-varying
magnetic field averages to zero. However, it was shown for a metallic wire [7, 8] that the current distribution in a real
wire need not be symmetric due to different reflection coefficients from the top and bottom interfaces or due to the
asymmetry between the dielectrics on top and beneath the wire. Similar considerations apply to our semiconducting
case. The resulting field from an asymmetric current distribution is in-plane with the wire and perpendicular to the
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FIG. S5: FMR on individual submicron devices using on-chip generated driving field. a, Schematic of the experimental
setup, which utilises a current-carrying waveguide to generate a local excitation field to drive magnetisation precession. Signal
detection is achieved using the frequency mixing effect, and the lock-in technique is also employed to increase the measurement
sensitivity. b, SEM images of the device, which consists of a shorted coplanar stripline waveguide (yellow false colour) and a
500 nm-wide (Ga,Mn)As micro-bar (green false colour). The waveguide is patterned on an area where the (Ga,Mn)As epilayer
has been chemically removed, leaving only the semi-insulating GaAs substrate.

current direction. As such it would directly contribute to our measurement of hR, but not to hD, in the [100] and
[010] bars. From the data we cannot precisely determine the Oersted contribution to hR. However, we make the
following observations which indicate that hR is largely dependent on the material properties.
The measured value of hR changes sign between the (Ga,Mn)As and (Ga,Mn)(As,P) material, indicating that it

depends on the material properties and not just a current distribution. A shift in the sign of the crystalline uniaxial
anisotropy, parameterised by an effective strain exy, occurs between these materials showing agreement with the
theoretical model.
An Ampere’s law estimate gives a field of 60 µT at the surface of the 500 nm bars at a current density of 2 ×

105 Acm−2. This provides an upper limit to the size of the Oersted field that could be measured, with its contribution
to hR depending on the current profile and likely to be several orders of magnitude less. For comparison, in the
metallic case, where much higher current densities of 6× 106 Acm−2 were used, the field at the surface was estimated
to be 1.5 mT, leading to a calculated hR (hy in their notation) field of 5 µT [7, 8]. In our case the current density is
at least an order of magnitude smaller, so for the same current asymmetry as in the metallic case, the contribution
to hR would be smaller that 1 µT i.e. significantly smaller than the measured signal.

VII. COMPARISON BETWEEN SO-FMR AND CONVENTIONAL WAVEGUIDE-DRIVEN FMR

In this Section, FMR results from 500 nm-wide (Ga,Mn)As bars using two different techniques are compared: One
device is measured using SO-FMR; while the other one is measured using a more conventional on-chip FMR technique,
which has been employed previously on metal systems [7, 9, 10].
Using the latter technique, illustrated in Figure S5, the magnetisation is driven by a local microwave magnetic field,

generated by a coplanar stripline waveguide (CPS) lithographically defined next to the device. The microwave field
is out-of-plane. This field also induces a microwave current I cosωt inside sample, allowing us to detect the magnetic
motion via the AMR frequency mixing effect.
The experimental results using the two very different techniques are compared in Figure S6. The resonance peaks

from both experiments can be seen in Figures S6a and S6d. According to Eq. (S15), we expect that the FMR signal,
reflected in the dc voltage spectrum, should possess a predominant symmetric Lorentzian lineshape if the magnetic
motion is driven by an out-of-plane field; whereas it should be an anti-symmetric Lorentzian curve when driven by
an in-plane excitation field (such as the current-induced field). This is indeed observed in our measurements.
The frequency-dependence of the resonance field Hres can be well-described with the equation of ferromagnetic

resonance ω2 = γ2µ2
0(Hres +H

′

ani)(Hres +H
′′

ani) in both cases, as demonstrated in Figures S6b and S6e.
The frequency-dependence of the FMR linewidth ∆H can also be determined, and the Gilbert damping constants

are found to be α = 0.04 for the device with 3% Mn and α = 0.009 for the device with 6% Mn. This is understandable
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FIG. S6: Comparison between the two types of FMR experiments. a – c, Ferromagnetic resonance observed on a 500 nm-wide
bar (3% Mn) driven by a real microwave magnetic field generated with a current-carrying waveguide. The plots show FMR
peaks observed at different driving frequencies, frequency-dependence of Hres and ∆H, and the θ-dependence of the FMR
amplitude Vsym. The solid lines in each graph are fittings. d – f, Ferromagnetic resonance observed on a 500 nm-wide bar (6%
Mn) driven by the current-induced effective field.

as the damping scales inversely with the hole concentration.
Finally, the θ-dependence of the dc voltage amplitude are compared. For the sample with a waveguide, Figure S6c

shows that the amplitude of the symmetric Lorentzian Vsym can be described by a sin 2θ function, which according to
Eq. (S16), is the characteristic of an out-of-plane driving field hmw(t) = (0, 0, hz)e

iωt. This agrees with the expected
driving field direction and serves to confirm our vector magnetometry. For the sample ([110] bar) measured with
SO-FMR, its anti-symmetric Lorentzian amplitude Vasy exhibits sin 2θ cos θ behaviour, consistent with a driving field
heff(t) = (0, hy, 0)e

iωt.
We also evaluate the two methods in terms of their ability to detect the magnetic anisotropy. Figure S7 compares

the anisotropy measured in two (Ga,Mn)As bars of identical size (500 nm-wide, 10 µm-long) using the two different
techniques. In the conventionally driven sample (Figure S7a), away from the end of the waveguide, the field drops
more slowly (∼ a/r+b/r2) leading to some FMR signals in the contacts. As a result, the contribution from the contact
regions makes the local changes in the anisotropy of the device difficult to determine. By contrast, in SO-FMR since
the driving field is proportional to the current density, which drops rapidly in the contact region, FMR is almost
localised to the bar, and the change in anisotropy due to strain relaxation is clearly observed (Figure S7b).

VIII. THEORETICAL MODEL

Microscopically, hD and hR can be linked to the term HC4 in the effective Hamiltonian describing (Ga,Mn)As
[11–15]:

H = HKL +Hexch +HC4 (S25)

Here HKL is the inversion symmetric part of the host GaAs semiconductor Hamiltonian, Hexch describes the exchange
interaction between carrier (hole) spins and local moments (of Mn), and the HC4 term is due to broken inversion
symmetry and the presence of strain (eij).
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FIG. S7: Comparison of the magnetic anisotropy measured using the two types of FMR techniques. a, Magnetic anisotropy
measured on a 500 nm-wide bar (6% Mn, unannealed) using the conventional waveguide FMR technique. The sample geometry
is schematically illustrated in the top graph. b, Anisotropy measured on a 500 nm-wide bar (6% Mn, unannealed) using the
SO-FMR setup.

FIG. S8: Schematic of our SO-FMR setup. The main figure illustrates the lock-in measurement technique. SEM images: The
sample consists of two micro-bars 90o-apart and along distinct crystalline axes. The Au/Cr ohmic contacts are highlighted
with yellow false colours. The inset shows an enlarged SEM image on one of the micro-bars (4 µm-wide).

Using the four-band Kohn-Luttinger Hamiltonian model, the inversion symmetric part HKL is

HKL =
~2

2m

[(
γ1 +

5

2
γ2

)
k2 − 2γ3(k⃗ · J⃗ )2 + 2(γ3 − γ2)

∑
i

k2i J
2
i

]
(S26)

where [16] γ1 = 6.98, γ2 = 2.06, γ3 = 2.93, J⃗ is the carrier total angular momentum and k⃗ is the wavevector. The
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FIG. S9: Magnitude of the effective fields calculated from Eq. S29, using ~/τ = 100 meV and E = 103 V/cm typical for our
experiments. a, Dresselhaus symmetry contribution for |e0| = 0.1%. b, Rashba symmetry contribution for |exy| = 0.1%.

hole–Mn exchange term reads:

Hexch =
1

3
heM · J⃗ (S27)

where [13] h = JpdNMnSMn, NMn is the density of Mn local moments, SMn = 5/2, and eM is the magnetisation unit
vector. Finally, the strain-induced term that breaks the inversion symmetry of H in Eq. (S25) is written as

HC4 = C4[Jxkx(eyy − ezz) + Jyky(ezz − exx) + Jzkz(exx − eyy)]

+C4[(Jxky − Jykx)exy + (Jykz − Jzky)eyz + (Jzkx − Jxkz)ezx]
(S28)

which is identical to the expression quoted in the main text; C4 ≈ 0.5 eVnm for the GaAs host [12]. The hD and hR

components of heff originate from the first and second bracket term in the Hamiltonian (S28), respectively.
In the linear response regime of our experiments, the effective field is given by [14]:

heff = −eEJpd
µB

τ

∫
d3k

(2π)3

∑
n

⟨s⟩n,k⟨vI⟩n,kδ(εn,k − εF ) , (S29)

where ⟨s⟩n,k denotes the expectation value of the carrier spin, ⟨vI⟩n,k the velocity component along the current
direction, εn,k are the eigenenergies of the Hamiltonian H, and εF is the Fermi energy. So heff is proportional to the
applied electric field E, to the hole–Mn exchange constant Jpd (≈ 55 meVnm3 in (Ga,Mn)As [13]), to the transport
relaxation time τ (~/τ ≈ 100 meV [13]), and to the non-equilibrium spin-density due to the displaced Fermi surface
as given by the integral in Eq. S29.
For evaluating the hD component of the current-induced effective field we assume only the growth strain to be

present: exy = 0, exx = eyy = 0 and ezz = −e0 (z is the growth direction). As mentioned in the main text, HC4 then
assumes, up to the prefactor, the form of the Dresselhaus Hamiltonian known for 2D systems with bulk inversion
asymmetry. The carrier density p and the local Mn moment density NMn are the other two input parameters of the
calculation (NMn = 0.04x/a3lc, where x is the doping in percent of uncompensated MnGa local moments and alc is
the lattice constant of the material). Having surveyed the range from 0.2 to 2.0 nm−3 for p and 2% to 10% for x,
we conclude that: (i) For a fixed current direction I, the effective field calculated from Eq. S29 depends moderately
weakly on the magnetisation direction eM . (ii) The calculated hD has the Dresselhaus symmetry. (iii) The magnitude
of hD is linearly proportional to the growth strain e0 and depends only weakly on the direction of I. (iv) hD depends
only very weakly on x. (v) Finally, hD monotonically increases with increasing p, as shown in Figure S9a, but the
dependence is relatively weak for p = 0.5−1.5 nm−3 relevant for our measured samples. For carrier density p ≈ 1 nm−3

the calculated effective field at E = 103 Vcm−1 is hD ≈ 60 µT which is consistent with our experimental values.
The Rashba component of the effective field, hR, is calculated assuming e0 = 0 and exy ̸= 0. The results are

analogous in all points listed above to the results for hD. The carrier density dependence of hR is plotted in Figure S9b.
As mentioned above, hD originates from the diagonal strain term in the Hamiltonian (Eq. S28). In our samples

the diagonal strain is produced by the lattice mismatch between the GaAs substrate and (Ga,Mn)As [17]. The off-
diagonal strain component which yields the hR field is not physically present in the crystal structure of (Ga,Mn)As
epilayers. It has been introduced, however, in previous studies to model the in-plane uniaxial anisotropy present
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in (Ga,Mn)As and the fitted values of this effective off-diagonal strain are typically several times smaller than the
diagonal, growth-induced strain [18]. This is consistent with the observed smaller magnitude of hR than hD in our
measurements. We note that this arguably fictitious off-diagonal strain in the k ·p Hamiltonian has an effect similar to
a potential that breaks the symmetry between [110] and [1̄10] crystallographic directions. In Appendix A of Ref. [18]
it is for example shown how a potential V (x, y, z) = ξxy induces such corrections to the k · p Hamiltonian and how
the strength of this symmetry-breaking ξ can in principle be linked to the off-diagonal strain eintxy .
The HC4 origin of the effective field is confirmed with the measurements on 500 nm-wide bars patterned on the

(Ga0.94,Mn0.06)(As0.9,P0.1) epilayer (Figure 3d & f in the main text), which has an opposite sign of the growth-strain
than the (Ga0.94,Mn0.06)As film [19]. Consistently, the observed field hD also changes sign. Apart from this sign
change we also observe a larger magnitude of hD at a given current density in the (Ga,Mn)(As,P) epilayer. This could
be due to the larger magnitude of the growth-strain and larger resistivity (larger E at given j) of (Ga,Mn)(As,P) as
compared to the (Ga,Mn)As film [19].
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