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We present details of our experimental and theoretical study of the components of the anisotropic

magnetoresistance (AMR) in (Ga,Mn)As. We develop experimental methods to yield directly the non-

crystalline and crystalline AMR components which are then independently analysed. These methods are

used to explore the unusual phenomenology of the AMR in ultra thin (5 nm) (Ga,Mn)As layers and to

demonstrate how the components of the AMR can be engineered through lithography induced local

lattice relaxations. We expand on our previous [A.W. Rushforth, et al., Phys. Rev. Lett. 99 (2007) 147207]

theoretical analysis and numerical calculations to present a simplified analytical model for the origin of

the non-crystalline AMR. We find that the sign of the non-crystalline AMR is determined by the form of

the spin–orbit coupling in the host band and by the relative strengths of the non-magnetic and

magnetic contributions to the impurity potential.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

The anisotropic magnetoresistance (AMR) in ferromagnetic
metals has been the subject of many studies since it was
discovered more than a century ago [1]. The effect describes the
change of the electrical resistance in response to a change in the
orientation of the magnetization. Phenomenologically, AMR has a
non-crystalline component, arising from the lower symmetry for a
specific current direction, and crystalline components arising
from the crystal symmetries [2,3]. In ferromagnetic metals the
AMR components have been extracted indirectly from experi-
mental data by fitting the total angular dependences [3]. The
coefficients can be obtained by numerical ab initio transport
calculations [4], but these have no clear connection to the
standard physical model of transport arising from spin dependent
scattering of current carrying low mass s-states into heavy-mass
d-states [5].

In the dilute magnetic semi-conductor (Ga,Mn)As, it has been
observed that the AMR consists of a non-crystalline component of
the opposite sign (compared to most ferromagnetic metals) and
typically much weaker crystalline terms reflecting the underlying
ll rights reserved.
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magnetocrystalline anisotropies [6–12]. In our recent work [13]
we developed experimental methods to yield directly the non-
crystalline and crystalline components of the AMR in (Ga,Mn)As.
Numerical microscopic calculations were employed to calculate
the AMR components, achieving good agreement with experi-
mental results. An analytical model was introduced to explain the
physical origin of the AMR terms, in particular to show that the
sign of the non-crystalline term is determined by the ratio of
the magnetic and non-magnetic components of the scattering
potential. Here we expand our previous work to include details of
that analytical model and a detailed explanation of how the
components of the AMR can be separately extracted from the
experimental data.
2. Experiment

25 nm and 5 nm Ga0.95Mn0.05As films were grown by low
temperature molecular beam epitaxy onto a 330 nm HT-GaAs
buffer layer grown on a semi-insulating GaAs(0 0 1) substrate.
Standard photolithography techniques were used to fabricate two
sets of Hall bars of width 45mm with voltage probes separated by
285mm, with the current along the [10 0], [0 10], [110] and ½1 1̄ 0�
directions. The longitudinal resistance Rxx and the Hall resistance
Rxy were measured using four probe techniques with a DC current
er. (2008), doi:10.1016/j.jmmm.2008.04.070
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Fig. 1. (a) Measured (at 4.2 K) longitudinal and (b) transverse AMR for as-grown 25 nm thick Ga0.95Mn0.05As film as a function of the angle between magnetization in the

plane of the film and the current. The legend shows the direction of the current. The y-axis shows Dr=rav shifted so that the minimum is at zero, to show the symmetries

present in the data more clearly. (c) Definition of the angles referred to in the text. (d) Corbino geometry.

A.W. Rushforth et al. / Journal of Magnetism and Magnetic Materials ] (]]]]) ]]]–]]]2
of 1mA. We also measured devices with a Corbino geometry
(Fig. 1(d)) in which the current flows radially in the plane of the
material. All measurements were made on as-grown material
(i.e. without annealing). Magnetoresistances were measured with
a saturating magnetic field of 1 T applied in the plane of the
device, i.e. in the pure AMR geometry with zero (antisymmetric)
Hall signal. Magnetometry measurements were carried out using
a commercial Quantum Design SQUID magnetometer.

Figs. 1(a) and (b) show the fractional change in the resistivity,
Drxx=rav and Drxy=rav (Drxx ¼ rxx � rav) for the Hall bars fabri-
cated from the 25 nm film for each current direction. Here rav is
the average value of the longitudinal resistance as the magnetic
field is rotated through 360�. In the following analysis we will
show that these data can be decomposed into the form given by
Eqs. (1) and (2). In the subsequent sections we aim to identify the
origin of the particular contributions.

The terms allowed by symmetry are obtained by extending the
standard phenomenology [2], to systems with cubic [10 0] plus
uniaxial [110] anisotropy:

Drxx

rav

¼ CI cos 2fþ CU cos 2cþ CC cos 4c

þ CI;C cosð4c� 2fÞ, (1)

Drxy

rav

¼ CI sin 2f� CI;C sinð4c� 2fÞ. (2)

f is the angle between the magnetization unit vector M̂ and the
current I, and c the angle between M̂ and the [110] crystal
direction. The four contributions are the non-crystalline term, the
lowest order uniaxial and cubic crystalline terms, and a crossed
non-crystalline/crystalline term. We have omitted the higher
order terms in these expressions as these are found to be
negligibly small in our devices. The purely crystalline terms are
excluded by symmetry for the transverse AMR and it is clear that
Please cite this article as: A.W. Rushforth, et al., J. Magn. Magn. Ma
Drxy=rav and Drxx=rav are not independent. The well known
formulae for isotropic materials (see e.g. Ref. [8]) correspond to
CIa0 and all other coefficients set to zero in Eqs. (1) and (2). Such
formulae result also from Eqs. (1) and (2) averaged over c with f
held constant, which corresponds to a polycrystal with randomly
oriented grains.

It is not possible to obtain each term separately by fitting Eqs.
(1) and (2) to the full (c) angular data from one Hall bar. In a ½1 1̄ 0�
oriented Hall bar, for instance, f ¼ cþ p=2, the equations reduce
to Drxx=rav ¼ ð�CI þ CU � CI;CÞ cos 2cþ CC cos 4c and rxy=rav ¼

�CI þ CI;C sin 2c. CI and CI;C could be determined only if CU ¼ 0.
However, using different Hall bar orientations, the anisotropy
constants appear in other combinations so that they can all be
extracted individually. In the present case, two Hall bar orienta-
tions (e.g. ½1 1 0� and ½1 1̄ 0�) suffice. Measurements with other
orientations are used as consistency checks.

Fig. 2(a) shows some examples of how the individual AMR
components can be extracted: the longitudinal resistivities in the
½0 1 0� and ½1 0 0� directions are subtracted to give a simple sin 2c
signal (cf. Eq. (1)) with amplitude 2ðCI � CI;CÞ and this is the same
as the difference of transverse resistivities in the ½1 1 0� and ½1 1̄ 0�
samples. A cos 2c signal with amplitude 2ðCI þ CI;CÞ can be
obtained through other combinations of the data. The close
agreement obtained by using different combinations to extract
the same coefficients highlights the consistency between the data
and our phenomenological analysis, and also attests to the
homogeneity and quality of the MBE grown GaMnAs wafer.

The purely crystalline terms can be extracted from the
combination of the measurements from two orthogonal bars.
This is shown in Fig. 2(b) for our data. In principle, the same
signals could be extracted directly from a single experimental
measurement by appropriate wiring of an L-shaped Hall bar.
Alternatively, the same coefficients can be extracted directly from
the data obtained from the Corbino geometry, Fig. 2(b). As the
ter. (2008), doi:10.1016/j.jmmm.2008.04.070
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Fig. 2. Combinations of the data from Fig. 1 used to extract the AMR components. The notation xx[10 0] is used to denote Drxx=rav for current along the [10 0] direction, etc.

Fig. 3. (a) Temperature dependence of the crystalline terms extracted from the Hall bars and Corbino devices. (b) Remnant moment of 25 nm Ga0.95Mn0.05As film measured

by SQUID magnetometer along different crystalline directions after cooling in a field of 0.1 T.

Fig. 4. Longitudinal AMR of the 5 nm Ga0.95Mn0.05As Hall bars. T ¼ 20 K. (b) AMR of a 5 nm Ga0.95Mn0.05As film in the Corbino geometry. T ¼ 11 K.
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current flows in all radial directions, the non-crystalline terms are
averaged to zero [14]. It would be problematic to perform such
measurements with ferromagnetic metals because, in order to
define the Corbino geometry it is required that the source–drain
resistance be large compared to the contact resistances. This
condition is met with (Ga,Mn)As. Again, we obtain excellent
agreement for the same coefficients extracted from different
combinations of devices.

Fig. 3(a) shows the coefficients CI;C , CU and CC extracted from
the Hall bar and Corbino disk data over the whole range up to the
Curie temperature (80 K). Note that the uniaxial crystalline term,
CU , becomes the dominant term for TX30 K. This correlates with
the uniaxial component of the magnetic anisotropy which
Please cite this article as: A.W. Rushforth, et al., J. Magn. Magn. Mat
dominates for TX30 K as observed by SQUID magnetometry
measurements (Fig. 3(b)). Our work shows that in (Ga,Mn)As
ferromagnets, the symmetry breaking mechanism behind this
previously reported [15] uniaxial magneto-crystalline anisotropy
in the magnetization also contributes to the AMR.

In our previous work [13] we used the techniques explained
above to extract the individual AMR components for ultra thin
(5 nm) Ga0.95Mn0.05As films for which the AMR (Fig. 4(a)) is very
different from that observed in the 25 nm film. For the 5 nm
film, the uniaxial crystalline term dominates the AMR as shown in
Fig. 4(b) for the device in the Corbino geometry. This is consistent
with the observation that the magnetic anisotropy is dominated
by a uniaxial term for ultra thin 5 nm (Ga, Mn)As films [16].
er. (2008), doi:10.1016/j.jmmm.2008.04.070
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Fig. 5. (a) AMR for macroscopic Hall bars and (b) narrow (1mm wide) Hall bars fabricated from 25 nm Ga0.95Mn0.05As films. T ¼ 4:2 K.

Fig. 6. Calculated angular dependence of the AMR (see the text for system parameters).
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These techniques were also used to demonstrate how the
crystalline terms can be tuned by the use of lithographic
patterning to induce an additional uniaxial anisotropy in very
narrow Hall bars. It has been shown [18,19] that the fabrication of
narrow bars allows the in-plane compressive strain in the
(Ga,Mn)As film to relax in the direction along the width of the
Hall bar and this can lead to an additional uniaxial component in
the magnetocrystalline anisotropy for bars with widths on the
order of 1mm or smaller. Figs. 5(a) and (b) show the AMR of 45mm
wide bars and 1mm wide bars fabricated from nominally identical
25 nm Ga0.95Mn0.05As wafers. For the 45mm bars, the cubic
crystalline symmetry leads to the AMR along [10 0] and [0 10]
being larger than along [110] and ½1 1̄ 0�. For the narrow bars we
observe the opposite relationship, consistent with the addition of
an extra uniaxial component which adds 0.8% to the AMR when
current is along [110] and ½1 1̄ 0� and subtracts 0.4% when the
current is along [10 0] and [0 10].

It is anticipated that the experimental techniques developed
here will be useful in studying the magnetotransport coefficients
in other magnetic materials and nanostructures.
3. From the full Boltzmann theory simulations to a simple
analytical model of the AMR

A six-band ~k �~p description of the GaAs host valence band
combined with the kinetic-exchange model of the coupling to the
local MnGa d5-moments [20] can provide input for the Boltzmann
equation producing the conductivity tensor s. In our previous
work [13], we expanded the studies of Jungwirth et al. [7,23] by
performing numerical calculations of the sxx for arbitrary in-plane
Please cite this article as: A.W. Rushforth, et al., J. Magn. Magn. Ma
directions of M̂ (not just M̂kI and M̂ ? I). The results of the
calculations (see Fig. 6) are in semi-quantitative agreement with
the experimental AMRs for the 25 nm Ga0.95Mn0.05As films shown
in Figs. 1(a) and (b). The zero-temperature model of a 15%
compensated material [24] shows that both the Drxx=rav and
Drxy=rav are dominated by the non-crystalline cos 2f and sin 2f
part, being of the order of several percent and negative
(CI ¼ �2:2%). The crystalline terms are an order of magnitude
smaller (CU ¼ �0:2%, jCC jo0:1%, CI;C ¼ 0:4%). These calculations
assumed a growth strain e0 ¼ �0:3% and a uniaxial strain [21]
exy ¼ �0:01%.

Previously, we noted that the crystalline terms arise from the
warping of the valence band [13]. In the rest of this paper we
concentrate only on the non-crystalline component of the AMR
(CI) which in our model originates from anisotropic scattering of
spin–orbit coupled holes on MnGa impurities containing polarized
local moments.

The six-band Kohn–Luttinger Hamiltonian HKL is parameter-
ized by the Luttinger parameters g1; g2; g3 and SO splitting DSO

while the exchange splitting strength is characterized by the
constant Jpd [20]. The total Hamiltonian then reads

H ¼ HKL þ Jpd

X
i;I

~SI �~sidð~ri �
~RIÞ, (3)

where ~SI and~si denote the Mn and hole spins placed at ~ri and ~RI .
The mean-field treatment of the exchange splitting (second term
in Eq. (3)) leads to a term formally equivalent to an effective
Zeeman splitting of strength h ¼ JpdNMnSMn, where NMn is
the Mn concentration and SMn ¼

5
2 for the five Mn d-electrons. In

the following we consider the spherical approximation to
HKL (g2 ¼ g3) and the four-band model (DSO !1). The total
ter. (2008), doi:10.1016/j.jmmm.2008.04.070
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Fig. 8. Heavy-hole bands. Spin texture without and with exchange splitting.
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Fig. 7. Contribution of particular bands to the calculated total bulk conductivity in uncompensated GaAs. (a) Absolute values, (b) relative to the total conductivity.
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Hamiltonian can be then rewritten as

H ¼ ðg1 þ
5
2g2Þ_

2k2=2m� 2g2ð
~k �~JÞ2_2=2mþ hM̂ �~s. (4)

Explicit expressions of the matrices for the total angular
momentum~J and hole spin ~s can be found in Refs. [22,26]. With
this simplified band structure we will now estimate the AMR
assuming that the scattering takes place only on Mn ions
substituting Ga which is the dominant mechanism.

Numerically, the light hole bands are found to give only small
contribution to the total conductivity as shown in Fig. 7, hence we
consider only the heavy-hole bands. This is a substantial
simplification since the Hamiltonian (4) restricted to the heavy-
hole subspace jk ¼ �

3
2 can be diagonalized analytically (see

Appendix A). By denoting the angle between ~k and M̂ as f~k the
eigenenergies read

E1;2 ¼ ðg1 � 2g2Þ_
2k2=2m� h cosf~k. (5)

In the presence of the exchange field h the two originally identical
heavy-hole Fermi spheres transform into (typically weakly)
distorted ‘þ’ and ‘�’ spheres displaced by Dk ¼ �ð2m�=_Þ

1=2h=

4
ffiffiffiffiffi
EF

p
along M̂. The eigenstates jhhþ~ki, jhh�~ki are independent

of h and correspond to perfectly isotropic radial spin textures:
expectation value of ~s in the state jhhþ~ki (jhh�~ki) is a vector
of length 1

2 parallel to ~k and pointing outwards (inwards), Fig. 8.
We remark that Eq. (5) and jhh�~ki remain unchanged even
when the Hamiltonian (5) is extended to include a finite DSO

(see Appendix A).
In the lowest order Born approximation, the transport relaxa-

tion time is given by

1

tð~kÞ
¼

Z
d3~k0

ð2pÞ3
2p
_

NMndðEð~kÞ � Eð~k0ÞÞjM~k~k0
j2ð1� k̂ � k̂0Þ. (6)

The last factor corresponds to vertex corrections in the Kubo
formalism and k̂ � k̂0 is the cosine of the angle between ~k and ~k0.
The scattering matrix element between initial jz~k0 i and final jz~ki
states is

MC
~k~k0
¼ hz~kjVð

~k�~k0Þjz~k0 i ¼ Vðj~k�~k0jÞhz~kjz~k0 i (7)

for the isotropic (e.g. screened Coulomb) scattering off a charged
ion, and

MB
~k~k0
¼ hz~kjðh=NMnÞM̂ �~sjz~k0 i

¼ JpdSMnhz~kjM̂ �~sjz~k0 i (8)

for the scattering off a magnetic moment. These two add up
coherently for substitutional Mn so that M~k~k0

¼ MB
~k~k0
þMC

~k~k0
.

To simplify the further qualitative analytical discussion we
replace the long-range Coulomb potential with an effective d-
function potential and denote the ratio of this non-magnetic
Please cite this article as: A.W. Rushforth, et al., J. Magn. Magn. Mat
potential and of JpdSMn as a. Our relaxation rates will be evaluated
from the following scattering operator:

M~k~k0
/ hz~kjaþ sxjz~k0 i. (9)

We discarded an overall prefactor, since when only one source of
scattering is present, this prefactor will cancel in the expressions
for relative changes of conductivity needed to obtain the AMR.

Eq. (6) will now be used to calculate the scattering rates for
two special values of ~k, details of that calculation are given in
Appendix B. The first one is ~kkM̂ ¼ êx. The corresponding initial
states for the scattering, jhh�~ki will be abbreviated as j0�i, see
Fig. 8. Integrands in Eq. (6) can be simplified considerably noting
that sxj0�i ¼ � 1

2 j0�i. We obtain

1

tx
�

¼

Z
FS

d2~k0 jhhhþ~k0j0�ij2 a�
1

2

� �2
(

þjhhh�~k0j0�ij2 a�
1

2

� �2
)
ð1� k̂ � k̂0Þ. (10)

The integration variable is taken as dimensionless and the result
should be multiplied by a factor R ¼ 2mkF=h2

� 2p=_ � NMn �

ðJpdSMnÞ
2 to get the real inverse scattering times based on

Eqs. (7) and (8) with Vð~k�~k0Þ � aJpdSMn. By integrating Eq. (10)
we obtain

1=tx
þ ¼ 2pða� 1

2Þ
2; 1=tx

� ¼ 2pðaþ 1
2Þ

2.

In contrast, the other pair of initial states j1�i with ~k ? M̂

(see Fig. 8) gives

1

ty
�

¼

Z
FS

d2~k0fjhhhþ~k0j1�ij2a2 þ jhhhþ~k0jsxj1�ij
2

þ jhhh�~k0j1�ij2a2 þ jhhh�~k0jsxj1�ij
2g

	ð1� k̂ � k̂0Þ. (11)

The integrals not involving sx give again 2p by the virtue of
symmetry (cf. Eq. (10) and Fig. 8) while the remaining two terms
er. (2008), doi:10.1016/j.jmmm.2008.04.070
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have to be evaluated independently to give

1=ty
þ ¼ 1=ty

� ¼ 2pða2 þ 1
12Þ. (12)

Conductivities for M̂kI and M̂ ? I can be estimated based on these
relaxation rates as sk ¼ Pðtx

þ þ tx
�Þ and s? ¼ Pðty

þ þ ty
�Þ, i.e.

sk=P ¼
1

ða� 1
2Þ

2
þ

1

ðaþ 1
2Þ

2
; s?=P ¼

2

a2 þ 1
12

, (13)

where P ¼ e2v2
F=3 � gR=2p, vF is the Fermi velocity and g is the

density of states at the Fermi wavevector kF. For heavy holes, vF ¼

ðg1 � 2g2Þ_kF=m and g ¼ 2mkF=h2
ðg1 � 2g2Þ. Eq. (13) leads to

sk
s?
¼
ða2 þ 1

12Þða
2 þ 1

4Þ

ða2 � 1
4Þ

2
(14)

presented in Ref. [13]. The AMR, using the notation of the
experimental section then reads

AMR ¼ 2
rxxðM̂kIÞ � rxxðM̂ ? IÞ

rxxðM̂kIÞ þ rxxðM̂ ? IÞ

¼ � 2
sk � s?
sk þ s?

¼ �
20a2 � 1

24a4 � 2a2 þ 1
. (15)

When the magnetic term in the impurity potential is much larger
than the non-magnetic term (a51) one expects skos? (positive
AMR, as is usually observed in metallic ferromagnets). However,
the sign of the non-crystalline AMR (Fig. 9) reverses at a relatively
weak non-magnetic potential (a ¼ 1=

ffiffiffiffiffiffi
20
p

in the model), its
magnitude is then maximized when the two terms are compar-
able (a ¼ 1

2), and, for this mechanism, it vanishes when the
magnetic term is much weaker than the non-magnetic term
(a!1). Note that the large magnitude of the AMR for a ¼ 1

2 due
to 1=sk ¼ 0 is an artefact of the special form of the simplified
scattering operator (9) where the magnetic and non-magnetic
part depend in exactly the same way on k (they are constant, i.e.
they both correspond to point-like scatterers).

Physically, carriers moving along M̂, i.e. with ~s parallel or
antiparallel to M̂, experience the strongest scattering potential
among all Fermi surface states when a ¼ 0, giving skos?. When
the non-magnetic potential is present, however, it can more
efficiently cancel the magnetic term for carriers moving along M̂,
and for relatively small a the sign of AMR flips. Since ao1=

ffiffiffiffiffiffi
20
p

is
unrealistic for the magnetic acceptor Mn in GaAs [17,23] we
obtain sk4s?, consistent with experiment.
Please cite this article as: A.W. Rushforth, et al., J. Magn. Magn. Ma
4. Summary

A phenomenological framework for the AMR in the zinc-
blende crystalline environment of GaMnAs was used to analyse
experimental data from (i) bulk material, (ii) thin layers, and (iii)
samples with lithographically manipulated strain. While leaving
the crystalline components aside for a further theoretical study, a
qualitative analytical model was presented for the non-crystalline
AMR. The model is based on the anisotropic relaxation times in
the heavy-hole bands due to a combined magnetic/non-magnetic
scattering on Mn impurities. It offers an explanation of the sign of
the non-crystalline AMR in GaMnAs which is opposite to most of
the conventional metal ferromagnets.
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Appendix A. Some basic algebra with
Kohn–Luttinger Hamiltonian

Eq. (5) and explicit form of the heavy-hole eigenvectors jhh�
~ki will be derived in this appendix. As we will refer to the
spherical approximation with M̂kêx, the main body of calculations
will be carried out in the kx; ky plane keeping in mind the
rotational symmetry of the problem around êx. For the sake of
completeness, results for general kza0 will be given at the end of
each part without derivation.

The starting point is HKL as in Eq. (A8) of Abolfath et al. [22]

HKL ¼

Hhh �c �b 0 b=
ffiffiffi
2
p

c
ffiffiffi
2
p

�c� Hlh 0 b �b�
ffiffiffi
3
p

=
ffiffiffi
2
p

�d

�b� 0 Hlh �c d �b
ffiffiffi
3
p

=
ffiffiffi
2
p

0 b� �c� Hhh �c�
ffiffiffi
2
p

b�=
ffiffiffi
2
p

b�=
ffiffiffi
2
p

�b
ffiffiffi
3
p

=
ffiffiffi
2
p

d� �c
ffiffiffi
2
p

Hso 0

c�
ffiffiffi
2
p

�d� �b�
ffiffiffi
3
p

=
ffiffiffi
2
p

b=
ffiffiffi
2
p

0 Hso

0
BBBBBBBBB@

1
CCCCCCCCCA

.

(A.1)

Going into the kx; ky plane by putting ~k ¼ kðcosf; sinf;0Þ, the off-
diagonal elements become

b ¼ 0; c ¼

ffiffiffi
3
p

_2k2

2m
½g2 cos 2f� ig3 sin 2f�,

d ¼

ffiffiffi
2
p

_2k2

2m
g2,

and the diagonal elements are independent of f

Hhh ¼
_2k2

2m
ðg1 þ g2Þ,

Hlh ¼
_2k2

2m
ðg1 � g2Þ,

Hso ¼
_2k2

2m
g1 þ DSO.

It is convenient to factor out _2k2=ð2mÞ and to introduce
d ¼ DSO=ðg2_

2=2mÞ � k�2.
The spherical approximation relies in setting g2 ¼ g3 and

allows for the simplification

c=ð_2k2=ð2mÞÞ ¼
ffiffiffi
3
p

g2 expð�2ifÞ.
ter. (2008), doi:10.1016/j.jmmm.2008.04.070
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In this approximation and even with general kza0, i.e.

~k ¼ kðsin y cosf; sin y sinf; cos yÞ (A.2)

the spectrum of the Hamiltonian (A.1) does not depend
on y;f. Below, this statement is demonstrated explicitly for
y ¼ p=2.

A.1. Spectrum

When kz ¼ 0, rows/columns 3;4;5 of HKL are totally decoupled
from rows/columns 1;2;6. The 6	 6 problem is reduced to
two independent and equivalent 3	 3 problems. The latter
(lines 1;2;6) is

Aþ ¼ H=ð_2k2=2mÞ

¼

g1 þ g2 �c c
ffiffiffi
2
p

�c� g1 � g2 �
ffiffiffi
2
p

g2ffiffiffi
2
p

c� �
ffiffiffi
2
p

g2 g1 þ g2d

0
BB@

1
CCA. (A.3)

Matrix Aþ depends on f only via c. In the spherical approximation,
cc� ¼ jcj2 ¼ 3g2

2 is f-independent. The eigenvalues of Aþ are
calculated from detðAþ � lÞ ¼ 0. This determinant will depend
on c only via the combination cc� and hence it is f-independent
for g2 ¼ g3.

Explicitly, Fig. A1, the eigenvalues of Aþ, multiplied back by
_2k2=2m, are

E1 ¼
_2k2

2m
½g1 � 2g2�,

E2 ¼
_2k2

2m
g1 þ g2 �

1

2
dþ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
� 4dþ 36

q� �� �
,

E3 ¼
_2k2

2m
g1 þ g2 �

1

2
dþ 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
� 4dþ 36

q� �� �
. (A.4)

They correspond to heavy holes, light holes and the split-off band,
the last two depend on k via d, but none of them depends on f
and hence give circular FS sections. The light-hole energy is ½g1 þ

2g2�_
2k2=ð2mÞ in the limit DSO !1.
0

500

1000

1500

2000

2500

-2 -1 0 1 2

E
 [m

eV
]

k [nm-1]

hh

lh

split-off

Fig. A1. Dispersions of the heavy holes, light holes and the split-off band in the

spherical approximation. Horizontal dashed line indicates the Fermi energy of

EF ¼ 100 meV.
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Analysis of the complete Hamiltonian HKL is completed by
constructing matrix A� from lines 3,4,5. It is not identical to Aþ,
but it has an identical spectrum to Aþ. Thus, the Fermi surfaces of
HKL in the kz ¼ 0 sections comprise of, largest to smallest, two
coincident circles for heavy holes with EF ¼ ðg1 � 2g2Þ_

2k2
F=2m,

which is independent of DSO, two coincident circles for light holes
and two coincident circles for split-off bands.
A.2. Eigenvectors

Even though the spectrum of the Hamiltonians (A.1) or (A.3)
does not depend on f, y, the eigenvectors do.

The lowest-energy (E1 ¼ g1 � 2g2) eigenvector of Aþ is
independent of d. Together with its counterpart from A�
they represent the degenerate heavy-hole states of HKL regardless
of DSO:

~v1þ ¼
1
2ðe
�2if;

ffiffiffi
3
p

;0;0;0;0ÞT,

~v1� ¼
1
2ð0;0;

ffiffiffi
3
p

; e2if;0;0ÞT.

The component notation refers to the basis (A5) of Ref. [22], the
superscript denotes the transposition. For a general ~k given by
Eq. (A.2) the heavy-hole states are

~v1þ ¼
1
2ðe
�2if sin y;

ffiffiffi
3
p

sin y;0;�eif cos y;0;0ÞT,

~v1� ¼
1
2ðe
�if cos y;0;

ffiffiffi
3
p

sin y; e2if sin y;0;0ÞT.

A.3. Perturbation theory with kinetic exchange

The p–d kinetic exchange has the form of an effective
Zeeman field in the magnetization direction which we choose
to be x, Fig. 8. The corresponding operator (with respect to the
first four basis vectors of (A5) in Ref. [22]), that is the last term in
Eq. (4), is

Hpd ¼ hsx ¼ h
1

6

0 0
ffiffiffi
3
p

0

0 0 2
ffiffiffi
3
pffiffiffi

3
p

2 0 0

0
ffiffiffi
3
p

0 0

0
BBBB@

1
CCCCA. (A.5)

The matrix of Hpd=h in the basis of~v1þ,~v1� and its diagonalization
results are the following:

Hpd=h ¼
1

4

0 1þ e2if

1þ e�2if 0

 !
,

Eþ ¼ 1
2 cosf; ~vþ ¼ 2�1=2

ð1; e�ifÞ
T,

E� ¼ �1
2 cosf; ~v� ¼ 2�1=2

ð1;�e�ifÞ
T.

In the limit of small h (‘degenerate-level perturbation calculus’)
the degenerate heavy-hole bands of HKL become split in energy by
h cosf. Recast into the ~k-plane, the two coincident Fermi circles
become displaced. Their wavefunctions are

jhhþ;~ki ¼
1

2
ffiffiffi
2
p ðe�2if;

ffiffiffi
3
p

;
ffiffiffi
3
p

e�if; eif;0;0ÞT,

jhh�;~ki ¼
1

2
ffiffiffi
2
p ðe�2if;

ffiffiffi
3
p

;�
ffiffiffi
3
p

e�if;�eif;0;0ÞT. (A.6)

For general kza0 (A.2) the energies are

E� ¼ �1
2 cosf sin y,

as stated in Eq. (5), and the eigenvectors

jhhþ;~ki ¼ ðe�2ifC3;
ffiffiffi
3
p

CS2;
ffiffiffi
3
p

e�ifC2S; eifS3;0;0ÞT,
er. (2008), doi:10.1016/j.jmmm.2008.04.070
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jhh�;~ki ¼ ðe�2ifS3;
ffiffiffi
3
p

SC2;�
ffiffiffi
3
p

e�ifS2C,

� eifC3;0;0ÞT (A.7)

with C ¼ cos y=2 and S ¼ sin y=2.
Appendix B. Integrals of overlaps, Eqs. (10) and (11)

The overlaps of eigenvectors in Eq. (A.6) are

hhhþ~kjhhþ~k0i

¼ 1
8½ðe

2iðf�f0 Þ þ 3Þ þ eiðf�f0 Þðe�2iðf�f0 Þ þ 3Þ�,

hhh�~kjhhþ~k0i

¼ 1
8½ðe

2iðf�f0 Þ þ 3Þ � eiðf�f0 Þðe�2iðf�f0 Þ þ 3Þ�.

Note that these overlaps for J ¼ 3
2 spinors are not the same as for

J ¼ 1
2 spinors ja�~ki ¼ ð1;�eifÞ

T even though the spin textures of
jhh�~ki and ja�~ki are the same, Fig. 8.

The two summands of integral in Eq. (10),Z
FS

d2~k0jhhhþ~k0j0�ij2ð1� k̂ � k̂0Þ (B.1)

will be integrated with spherical coordinates f0;F0 with ‘north
pole’ f0 ¼ 0 in ~k0kêx. The polar angle (F0) integration gives a factor
of 2p and we obtain

2p
64

Z p

0
df0 sinf0 � 2½10� 15 cosf0 þ 6 cos 2f0 � cos 3f0�

	ð1� cosf0Þ.

For the þ sign we get 4pð6þ 2
5Þ=64 and for � it is 4pð26� 2

5Þ=64
giving the total of 2p. The integrals with hhh�~k0j in Eq. (B.1) are
analogous.

Concerning the integral in Eq. (11), we first have to show that it
is indeed equal to the scattering rate

1

ty
�

¼

Z
FS

d2~k0fjhhhþ~k0jaþ sxj1�ij
2

þ jhhhþ~k0jaþ sxj1�ij
2gð1� k̂ � k̂0Þ.

In order to show this, it suffices to demonstrate that

Z 2p

0
dF0hhhþ~k0jaj1þih1þ jsxjhhþ~k0i ¼ 0

which holds by the virtue of hhhþ~k0jsxj1þi / eiF0 and hhhþ
~k0j1þi / e2iF0 [27].

Proceeding with Eq. (11), we will use

hhhþ~kjsxjhhþ~k0i ¼ 1
8ðe

if þ e�if0 Þ½1þ cosðf� f0Þ�,

hhh�~kjsxjhh�~k0i ¼ �hhhþ~kjsxjhhþ~k0i,

hhh�~kjsxjhhþ~k0i ¼ �1
8ðe

if � e�if0 Þ½1� cosðf� f0Þ�,

hhhþ~kjsxjhh�~k0i ¼ �hhh�~kjsxjhhþ~k0i.
Please cite this article as: A.W. Rushforth, et al., J. Magn. Magn. Ma
Here, the proper choice of~k (kêy) amounts to putting f ¼ p
2 and the

integral for scattering from j1þi to the þ band is

2p
64

Z p=2

�p=2
df0 cosf0½1þ sinf0�22ð1� sinf0Þ

	ð1� sinf0Þ ¼
2p
32
�

13

120
,

while the other integral (!�)

2p
64

Z p=2

�p=2
df0 cosf0½1� sinf0�22ð1þ sinf0Þ

	ð1� sinf0Þ ¼
2p
32
�

8

3
�

13

120

� �
.

Their sum is 2p 1
12 which completes the proof of Eq. (12).
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