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Transport theory for disordered multiple-band systems: Anomalous Hall e�e
t andanisotropi
 magnetoresistan
eAlexey A. Kovalev,1, 2 Yaroslav Tserkovnyak,1 Karel Výborný,3 and Jairo Sinova2, 31Department of Physi
s and Astronomy, University of California, Los Angeles, California 90095, USA2Department of Physi
s, Texas A&M University, College Station, TX 77843-4242, USA3Institute of Physi
s ASCR, Cukrovarni
ká 10, 162 53 Praha 6, Cze
h Republi
(Dated: February 15, 2009)We present a study of transport in multiple-band non-intera
ting Fermi metalli
 systems based onthe Keldysh formalism, taking into a

ount the e�e
ts of Berry 
urvature due to spin-orbit 
oupling.We apply this formalism to a Rashba 2DEG ferromagnet and 
al
ulate the anomalous Hall e�e
t(AHE) and anisotropi
 magnetoresistan
e (AMR). The numeri
al 
al
ulations reprodu
e analyti
alresults in the metalli
 regime revealing the 
rossover between the skew s
attering me
hanism dom-inating in the 
lean systems and intrinsi
 me
hanism dominating in the moderately dirty systems.As we in
rease the disorder further, the AHE starts to diminish due to the spe
tral broadening ofthe quasiparti
les. Although for 
ertain parameters this redu
tion of the AHE 
an be approximatedas σxy ∼ σϕ
xx with ϕ varying around 1.6, this is found not to be true in general as σxy 
an gothrough a 
hange in sign as a fun
tion of disorder strength in some 
ases. The redu
tion region inwhi
h the quasiparti
le approximation is meaningful is relatively narrow; therefore, a theory with awider range of appli
ability is 
alled for. By 
onsidering the higher order skew s
attering pro
esses,we resolve some dis
repan
ies between the AHE results obtained by using the Keldysh, Kubo andBoltzmann approa
hes. We also show that similar higher order pro
esses are important for theAMR when the nonvertex and vertex parts 
an
el ea
h other. We 
al
ulate the AMR in anisotropi
systems properly taking into a

ount the anisotropy of the non-equilibrium distribution fun
tion.These 
al
ulations 
on�rm re
ent �ndings on the unreliability of 
ommon approximations to theBoltzmann equation.PACS numbers: 72.15.Eb, 72.20.Dp, 72.20.My, 72.25.-bI. INTRODUCTIONRe
ently, the interest in transport 
al
ulations inmultiple-band systems1,2 has been rekindled in part dueto the realization of diluted magneti
 semi
ondu
tors(DMS) that have strong spin-orbit intera
tions, vari-able 
arrier densities, and ferromagneti
 ordering. Theseproperties imply the existen
e of the anomalous Halle�e
t (AHE)3 and the anisotropi
 magnetoresistan
e(AMR).4 Even though the me
hanisms of the AHE andthe AMR are di�erent, they both have a similar des
rip-tion based on the multiple-band transport theory. In thispaper, we formulate a relatively simple framework for do-ing su
h transport 
al
ulations.The AHE is usually des
ribed in terms of the anoma-lous Hall resistivity ρxy that measures the transversevoltage with respe
t to the transport dire
tion and de-pends on the spontaneous magnetization M along the zdire
tion. Theoreti
al studies of the AHE have a long his-tory beginning with the work of Karplus and Luttinger.5A number of papers on the AHE also appeared not solong ago,6,7,8,9,10,11,12 after the interpretation of the AHEbased on the Berry phase13 was proposed. Neverthe-less, theoreti
al des
ription of the AHE is far from be-ing 
omplete and it often involves 
umbersome 
al
u-lations without transparent interpretations.14 The di�-
ulties appear due to the ne
essity to 
onsider the o�-diagonal elements in Blo
h band indi
es (the interband
oheren
es indu
ed by 
harge 
urrents). There is a gen-

eral trend to fo
us on parti
ular simple models in order toover
ome the 
ommon mistakes that are made in treat-ing the AHE. A number of re
ent publi
ations 
on
en-trate on the simpler but non-trivial Rashba 2D ele
tronsystem,1,15,16,17,18,19,20,21,22,23 yet arriving at 
ontradi
-tory predi
tions. Most of the disagreements have been�nally resolved22,23,24 with some being addressed in thispaper.In 
al
ulating the AHE for a given material, the usualapproximations performed to leading order in ~/τεF 
anfail, where τ is the s
attering time and εF is the Fermienergy. The semi
lassi
al des
ription of the Hall 
ondu
-tivity within the usual Boltzmann equation leads to anAHE 
ontribution due to the s
attering asymmetry in the
ollision term usually labeled as skew s
attering.25 Otherterms, arising from subtle issues dealing with interband
oheren
e during the 
ollision and a

eleration by theele
tri
 �eld between 
ollisions, are usually introdu
edby hand through the so 
alled anomalous velo
ity26 andside-jump.27 This approa
h however, is non-systemati
and prone to errors from missing terms and wrong in-terpretations, e.g. su
h as giving physi
al meaning togauge dependent quantities. A more systemati
 way toderive the 
orre
t semi
lassi
al equations is through theKeldysh formalism in whi
h these interband 
oheren
ese�e
ts are taken into a

ount automati
ally.1,24The system under 
onsideration also allows us to studythe diagonal resistan
e as a fun
tion of the dire
tion ofthe magnetization. The 
hange in the resistan
e as a
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2fun
tion of the magnetization dire
tion relative to the
urrent or 
rystallographi
 dire
tion is 
alled the AMRe�e
t. The mi
ros
opi
 origin of the AMR in transitionmetal ferromagnets is still elusive28,29,30,31 and detailed
al
ulations require 
onsideration of 
ompli
ated bandstru
tures.32,33 A relatively simple host band stru
ture inthe DMS ferromagnets provides a possibility for perform-ing detailed mi
ros
opi
 
al
ulations based on simplephysi
al models.34 However, the relaxation time approx-imation used in su
h 
al
ulations is not always reliablesin
e it does not fully take into a

ount the anisotropiesof the system.35 The Kubo formula approa
h has beenapplied to the AMR 
al
ulations in Rashba systems andit has revealed the 
an
ellation of the nonvertex and ver-tex parts,36 similar to the spin Hall e�e
t (SHE) and theAHE.In this paper, we apply the Keldysh formalism fortransport 
al
ulations in multiple-band non-intera
tingFermi systems. This treatment simultaneously takes intoa

ount the Berry 
urvature e�e
ts (interband 
oher-en
es) and s
attering, allowing us to immediately a

ountfor su
h physi
al e�e
ts as side-jump s
attering and skews
attering within the same footing. We 
al
ulate theAHE analyti
ally and numeri
ally for the Rashba modeland �nd in agreement with Onoda et al.1,20 three distin
tregimes: the skew s
attering regime, the disorder inde-pendent regime, and the dirty regime in whi
h, althoughthe basis of theory is not as well established, a distin
trapid redu
tion of the AHE is observed as the 
ondu
tiv-ity σxx diminishes. Even though almost all ferromagneti
systems are three dimensional, the �ndings of this simple2D model has been linked to higher dimensional systemsarguing that most likely the major 
ontributions to theAHE 
ome from the band anti-
rossing regions1 similarto one observed in the Rashba model.We further analyze the s
aling found in the dirtyregime1,20 in whi
h the AHE seems to diminish in a man-ner that 
an be approximated as: σxy ∼ σϕ
xx with ϕ being
lose to 1.6. Some experimental results 
laim to 
on�rmsu
h s
aling;37,38,39,40,41 however, treatment of some ofthese experimental results has to be done with extra 
areas the region of interest is often restri
ted to less than asingle de
ade, the materials have strong mangetoresis-tan
es and in-plane anisotropies asso
iated with them,and most of the data asso
iated with the zero �eld 
al-
ulation is in fa
t at very high magneti
 �elds. Althoughour numeri
al results 
on�rm this s
aling, it is found tobe in a very narrow region as the quasiparti
le approx-imation fails when τεF ∼ 1. In addition, 
hanging thesign of the s
atterer 
hanges the sign of the skew e�e
tand no s
aling is observed. Although this simple modelseems to 
apture qualitative aspe
ts of the three regions,to make a quantitative link to 3D materials with mu
hmore 
omplex behavior seems premature at this stage. Inour 
al
ulations, we also identify the hybrid skew s
at-tering regime of the AHE resulting from the higher orders
attering pro
esses. Su
h pro
esses appear to be impor-tant for the AMR as the nonvertex and vertex diagram-

mati
 parts 
an
el ea
h other for the Rashba model.36Our results suggest that the relaxation time approxima-tion is not always reliable for the AMR 
al
ulations as ithas been shown re
ently within the Boltzmann equationtreatment.35The paper is organized as follows. In Se
. II, we de-velop a general formulation of transport in multiple-bandnon-intera
ting Fermi systems with further generaliza-tions in Appendix A. In Se
. III, we 
al
ulate the AHEin 2DEG ferromagnet with spin-orbit intera
tion. Theanalyti
al and numeri
al results are followed by dis
us-sions and 
omparison to other works. In Se
. IV, we
al
ulate the AMR in 2DEG ferromagnet with spin-orbitintera
tion. Finally in Se
. V, we present our 
on
lu-sions.II. TRANSPORT IN MULTIPLE-BANDSYSTEMSThe method presented in this se
tion 
an be appliedto a multiple-band system des
ribed by a Hamiltonian
Ĥ0 + V̂ (r) that is a matrix in the band (
hiral) index.In this se
tion, we �rst derive general non-linear equa-tions using nonequilibrium diagrammati
 te
hnique, fur-ther restri
ting our 
onsideration to a linear response the-ory. A. Quantum kineti
 equationWe start by de�ning the following Green's fun
tions:42
Ĝ11 ≡ −i

〈

TcΨ(1+)Ψ†(1
′

+)
〉

= −i
〈−→

T Ψ(1+)Ψ†(1
′

+)
〉

,

Ĝ21 ≡ −i
〈

TcΨ(1−)Ψ†(1
′

+)
〉

= −i
〈

Ψ(1−)Ψ†(1
′

+)
〉

,

Ĝ12 ≡ −i
〈

TcΨ(1+)Ψ†(1
′

−)
〉

= i
〈

Ψ
†(1′−)Ψ(1+)

〉

,

Ĝ22 ≡ −i
〈

TcΨ(1−)Ψ†(1
′

−)
〉

= −i
〈←−

T Ψ(1−)Ψ†(1
′

−)
〉

,(1)where Tc is the generalized time ordering operator a
tingon the Keldysh 
ontour whi
h 
an be split in two timeaxis t+ (forward) and t− (ba
kward), Ψ is the ve
tor inthe band (
hiral) spa
e 
orresponding to the Fermi �eld,and 1± = (r, t±) is the variable that des
ribes the spatialvariable r and the time variable t. The generalized timeordering operator performs an ordinary time ordering −→Tfor the time t+, an anti-time ordering ←−T for the time t−and in the mixed 
ase t− o

urs always after t+ withinthe Keldysh time 
ontour. We 
an now de�ne the Green'sfun
tion in the Keldysh spa
e:
G̃ =

(

Ĝ11 Ĝ12

Ĝ21 Ĝ22

)

. (2)



3The s
attering potential due to impurities in the Keldyshspa
e has the form:
Ṽ (1, 1′) =

(

V̂ (r) 0

0 −V̂ (r)

)

δ(1− 1′), (3)where V̂ (r) des
ribes the potential in the band (
hiral)spa
e formed by many s
atterers whi
h for 
urrent 
on-sideration 
an have any general matrix form. The nega-tive sign arises here simply be
ause the lower bran
h in-tegration is taken from +∞ to −∞ while in the Keldyshloop the time goes from −∞ to +∞. The Green's fun
-tion in Eq. (2) allows for a perturbation expansion re-lying on the Feynman rules. However, the four matrixelements of a so de�ned Green's fun
tion are linearly de-pendent, i.e. Ĝ12+Ĝ21 = Ĝ11+Ĝ22. Hen
e it is advanta-geous to perform a linear transformation in the Keldyshspa
e to eliminate one matrix element in Eq. (2):
Ǧ =

(

1 0
1 −1

) (

Ĝ11 Ĝ12

Ĝ21 Ĝ22

) (

1 0
−1 1

)

=

(

ĜR Ĝ<

0 ĜA

)

,whi
h leads to the following s
attering potential:
V̌ =

(

1 0
1 1

)

Ṽ

(

1 0
1 −1

)

=

(

1 0
0 1

)

V̂ (r)δ(1 − 1′),where ĜR = Ĝ11 − Ĝ12 is the retarded Green's fun
tion,
ĜA = Ĝ12 − Ĝ22 is the advan
ed Green's fun
tion and
Ĝ< = Ĝ12. There are other 
hoi
es for the linear trans-formation, and our 
hoi
e is di
tated by the fa
t that theGreen's fun
tion Ĝ< 
an be immediately related to thedistribution fun
tion in the Boltzmann equation.43As of now, it is assumed that V̂ (r) des
ribes some dis-ordered potential and all Green's fun
tions are averagedover this disorder. In the transformed Keldysh spa
e, theDyson equation42 be
omes:

(

Ĝ−1
0 − Σ̂R −Σ̂<

0 Ĝ−1
0 − Σ̂A

)

⊗
(

ĜR Ĝ<

0 ĜA

)

= 1̌, (4)where R, A, and < respe
tively stand for the retarded,advan
ed and lesser 
omponents of the disorder averagedGreen's fun
tions and self-energies. The symbol ⊗ de-notes a 
onvolution (in position, time and band/spin).The diagonal 
omponents of Eq. (4), yield the two equa-tions for the retarded and advan
ed Green's fun
tions:
(Ĝ−1

0 − Σ̂R/A)⊗ ĜR/A = 1̂. (5)The o�-diagonal 
omponent of Eq. (4) yields the ki-neti
 equation (sometimes 
alled quantum Boltzmannequation) whi
h 
ontains the non-equilibrium informa-tion ne
essary to study transport:
[ĜR]−1 ⊗ Ĝ< − Σ̂< ⊗ ĜA = 0. (6)In order to solve Eq. (6), one has to 
al
ulate the selfenergy Σ̂< of the parti
ular problem. Here we fo
us on

Σ = + +  …..
V

ni

+ +

ni ni ni

U
∨

U
∨

U
∨

G
∨Figure 1: The non-equilibrium self-energy 
al
ulated usingthe self-
onsistent T matrix approximation in Keldysh spa
e.s
attering by randomly distributed identi
al impuritiesat zero temperature with

V̂ (r) =
∑

i

η̂U(r− ri), (7)where ri des
ribes the positions of random impurities ofdensity ni and η̂ is some matrix in the band index (e.g.in se
tion III, it is a unit matrix 
orresponding to s
alarimpurities, and in se
tion IV, it is a 
ombination of unitand unitary matri
es 
orresponding to 
harged and mag-neti
 impurities). A 
ommon approximation to this prob-lem is the self-
onsistent T-matrix approximation (TMA)whi
h takes into a

ount all the non-
rossing s
atteringevents from single impurities (see Fig. 1). We assumehere that the system is uniform and Ǧ depends on thedi�eren
e of spatial variables (r − ri) (however, this re-quirement 
an be lifted for the short-range disorder as itis shown in Appendix A). In this 
ase, we 
an sum upthe in�nite series of diagrams in Fig. 1 arriving at thefollowing expression for the self energy in the momentumrepresentation (for the sake of 
ompa
t form we use themomentum representation here):
〈

k|Σ̌|k′
〉

= ni

〈

k|Ť |k
〉

δ(k− k
′), (8)with the following expression for the T matrix operatorof impurity pla
ed in the origin:

Ť ≡
(

V̌ + V̌ ⊗ Ǧ⊗ V̌ + . . .
)

, (9)where V̌ =

(

η̂ 0
0 η̂

)

U(r)δ(1 − 1′). Combining the T-matrix stru
ture Ť = V̌ ⊗ [1̌+ Ǧ⊗ Ť ] and solving for theo�-diagonal 
omponent we obtain the equation for thelesser 
omponent of self energy:
〈

k|Σ̂<|k′
〉

= ni

〈

k|T̂ R ⊗ Ĝ< ⊗ T̂ A|k
〉

δ(k− k
′). (10)The retarded and advan
ed T-matri
es are given bythe usual form

T̂ R(A) = V̂ ⊗ (1 + ĜR(A) ⊗ T̂ R(A))

= (1 + T̂ R(A) ⊗ ĜR(A))⊗ V̂ . (11)Equations (6) and (10) form a general 
losed set of equa-tions for Ĝ<. In order to solve these equations, we 
anfurther simplify them by looking for a solution of theform
Ĝ< = Ĝ<

2 + Ĝ<
1 , (12)



4where
Ĝ<

2 = nF ⊗ ĜA − ĜR ⊗ nF , (13)and the operator nF is the Fermi distribution fun
tion.In the 
ase of zero temperature, nF is the step fun
-tion in the frequen
y representation nF (ω) = θ(−ω) and
nF (t, t′) = i/ [2π(t− t′ + i0)] in the time representation.Equations (12) and (13) will allow us to separate theFermi sea and Fermi surfa
e 
omponents of the lesserGreen's fun
tion. By substituting Eq. (12) into Eq. (6),we obtain the kineti
 equation for Ĝ<

1 :
[ĜR]−1 ⊗ Ĝ<

1 − Σ̂<
1 ⊗ ĜA =

[

Ĥ0
⊗, nF

]

⊗ ĜA, (14)with 〈

k|Σ̂<
1 |k′

〉

= ni

〈

k|T̂ R ⊗ Ĝ<
1 ⊗ T̂ A|k

〉

δ(k − k
′),where [

...⊗, ...
] stands for a 
ommutator. In order to de-rive Eq. (14), Eqs. (5) and (11) are used along with thefa
t that T̂ R ⊗ Ĝ<

2 ⊗ T̂ A = nF ⊗ T̂ A − T̂ R ⊗ nF , and
Σ̂<

2 = nF ⊗ Σ̂A − Σ̂R ⊗ nF , (15)whi
h is a 
onsequen
e of Eqs. (10,11,13).The lesser Green's fun
tion 
ontains all the informa-tion about the transport properties of our system andthe 
harge 
urrent density 
an be 
al
ulated as:
jx(y,z) =

e

2
Tr

〈

Ψ
†(1

′

)υ̂x(y,z)(1)Ψ(1)
〉

1=1′
+ c.c.

= − ie

2
Tr

[(

υ̂x(y,z)(1) + υ̂†

x(y,z)(1
′

)
)

Ĝ<(1, 1
′

)
]

1=1′

,(16)where υ̂(1) =
(

−i~∇1 − eÂ(1)/c
)

/m, υ̂
†(1

′

) =
(

i~∇1′ − eÂ
†
(1

′

)/c
)

/m and Â(1) is the generalizedve
tor potential matrix in the band index that also de-s
ribes spin-orbit intera
tions; e = −|e| stands for anele
tron 
harge.B. Linearized Fermi surfa
e 
ontributionThe kineti
 Eq. (14) has not assumed linearity in ele
-tri
 �eld strength nor any parti
ular temporal depen-den
e. Higher order terms in the impurity density ni
orresponding to non-
rossed diagrams have been takeninto a

ount as the retarded and advan
ed Green's fun
-tions in Eq. (14) are 
al
ulated self-
onsistently. In thefollowing, we solve the problem for linear response theoryof a uniform and stationary system in the presen
e of auniform ele
tri
 �eld.In the presen
e of slowly varying perturbations, it isuseful to perform the Wigner transformation, viz. the
enter-of-mass 
oordinates (X = (R, T )) and the Fouriertransform with respe
t to the relative 
oordinates (k =
(k, ω)). However, the Wigner 
oordinate k asso
iatedwith the momentum operator −i∇ is not gauge invari-ant and 
onsequently it is not the 
orre
t 
hoi
e for de-s
ribing our system. On the other hand, the kineti
 mo-mentum k(T ) = −i∇ − eAE(T )/(~c) is gauge invari-ant, and as it will be shown below, for the stationary


ase all time dependen
e 
an be 
on
eived in k(T ); herethe ve
tor potential AE(T ) des
ribes the external ele
-tri
 �eld. The time derivative within the 
anoni
al 
o-ordinates (marked by wave) be
omes a 
ombination oftime and momentum derivatives within the kineti
 
oor-dinates: ∂T̃ = ∂T + ∂Tk(T )∂k, ∂
R̃

= ∂R, ∂
k̃

= ∂k and
∂ω̃ = ∂ω.In the Wigner representation with the kineti
 momen-tum, the 
onvolution of two operators is approximatedas:

Â⊗ B̂ = expi(∂A
X∂B

k −∂A
k ∂B

X )/2 Â(X, k)B̂(X, k)

≈ ÂB̂ + i
2

(

∂X Â∂kB̂ − ∂kÂ∂XB̂
)

,where we use the four ve
tor notations ∂X∂k = ∂R∂k −
∂T̃ ∂ω and ∂T̃ = ∂T + eE

~
∂k. Here, we assume that ave
tor potential AE(T ) = −cET whi
h 
orresponds toa uniform ele
tri
 �eld E. The �rst order gradient ex-pansion is su�
ient for the linear response theory, whilethe se
ond order gradient expansion may be ne
essaryfor time dependent problems and when the Hamiltonian

Ĥ0 is spatially dependent in order to a

ount for the 
or-responding Berry 
urvature e�e
ts.2 Sin
e we are seek-ing homogeneous solutions both in spa
e and time withrespe
t to the 
enter-of-mass 
oordinates, the only sur-viving terms in the expansion are
Â⊗ B̂ ≈ ÂB̂ − i

2~
eE

(

∂kÂ∂ωB̂ − ∂ωÂ∂kB̂
) (17)Applying the above Wigner transformation to Ĝ<

2 inEq. (13), we obtain dire
tly
Ĝ<

2 = nF (ĜA−ĜR)+
i

2~
∂ωnF eE(∂kĜA

eq +∂kĜR
eq), (18)where Ĝ

R/A
eq are the Green's fun
tions evaluated at equi-librium, i.e. E = 0. Ĝ<

2 solves the Kineti
 Eq. (6) upto zeroth order in the ele
tri
 �eld E, and therefore theexpansion in E of Ĝ<
1 and Σ̂<

1 starts from the linear in Eterms. With this knowledge, we apply the Wigner trans-formation to Eq. (14), and �nd the self-
onsistent simpleform of the kineti
 equation for Ĝ<
1 :

Ĝ<
1 = ĜR

eqΣ̂
<
1 ĜA

eq − ieE(∂ωnF )ĜR
eqυ̂ĜA

eq (19)
Σ̂<

1 = ni

∫ d2k′

(2π)2
T̂ R

eq(k,k′)Ĝ<
1 (k′)T̂ A

eq(k
′,k) (20)where υ̂ = ∂Ĥ0/∂~k, and T̂

R/A
eq are self-
onsistent T-matri
es evaluated at equilibrium. In the following se
-tion, we show how to solve the kineti
 Eqs. (19) and (20)for a simple system des
ribed by the Rashba Hamilto-nian. Whereas solving Eqs. (19) and (20) require onlythe equilibrium retarded and advan
e Green's fun
tionsand T-matri
es, note that for Ĝ<

2 we need to solve theseGreen's fun
tions up to linear order in E (see below).From the equations above, it is natural to de
omposethe 
ontributions to Ĝ< into the Fermi sea and Fermi



5surfa
e 
ontributions1 su
h that Ĝ< = Ĝ<
1 + Ĝ<

2 = Ĝ<
I +

Ĝ<
II where

Ĝ<
I = Ĝ<

1 + i
2~

(∂ωnF )eE(∂kĜA
eq + ∂kĜR

eq), (21)
Ĝ<

II = nF (ĜA − ĜR). (22)Next, we linearize Eq. (16) in E, 
arry out the Wignertransformation and insert the two 
omponents of Ĝ<, ar-riving at the two 
orresponding 
omponents of the 
ur-rent density:
jI
x(y,z) = −ie

∫

d2
k

(2π)2
dω

2π
Tr

(

Ĝ<
I υ̂x(y,z)

)

, (23)
jII
x(y,z) = −ie

∫

d2
k

(2π)2
dω

2π
Tr

(

Ĝ<
II υ̂x(y,z)

)

, (24)where the Fermi surfa
e (jI
x(y,z)) and Fermi sea (jII

x(y,z))
ontributions are identi
al to ones de�ned within Kubo-Streda formalism.44 Equations (19), (20) and (21) are themain results of this subse
tion.C. Linearized Fermi sea 
ontributionIn order to 
al
ulate the Fermi sea 
ontribution usingEqs. (22) and (24), we expand the retarded (advan
ed)Green's fun
tion and self-energy up to the �rst order in
E following the pro
edure of Onoda et al.:1

ĜR(A) = Ĝ
R(A)
eq + eEĜ

R(A)
E

+ O(E2),

Σ̂R(A) = Σ̂
R(A)
eq + eEΣ̂

R(A)
E

+ O(E2),

(25)where ĜR
E

= 1
e∂EĜR|E=0, Σ̂R

E
= 1

e∂EΣ̂R|E=0 and Ĝ
R/A
eq(Σ̂R(A)

eq ) are the Green's fun
tions (self-energies) evalu-ated at equilibrium, i.e. E = 0. The Fermi sea lesserGreen's fun
tion Ĝ<
II 
al
ulated up to the �rst order inthe ele
tri
 �eld E be
omes:

Ĝ<
II = nF (ĜA

eq − ĜR
eq) + nF eE(ĜA

E − ĜR
E). (26)We now substitute Eqs. (25) into Eqs. (5) and (11)only retaining linear terms in E in order to arrive at thefollowing self-
onsistent equations:

Ĝ
R(A)
E

(ω) = ĜR
eqΣ̂EĜR

eq − i
2

[

ĜR
eq

(

υ̂+∂~kΣ̂R
eq

)

∂ωĜR
eq

− ∂ωĜR
eq

(

υ̂+∂~kΣ̂R
eq

)

ĜR
eq

]

, (27)
Σ̂

R(A)
E

(ω) = ni

∫

d2k′

(2π)2
T̂ R(A)

eq (k,k′)Ĝ
R(A)
E

(k′)T̂ R(A)
eq (k′,k),(28)where in Eq. (5) we also performed the gradient expan-sion. Equations (26), (27) and (28) are the main resultsof this subse
tion.

III. AHE IN RASHBA SYSTEMSIn this se
tion, we apply the above formalism to 2DEGwith ex
hange �eld and spin-orbit intera
tion. A gen-eral numeri
al pro
edure is followed by analyti
al resultsvalid in the metalli
 regime in the limit of small impu-rity s
attering broadening ~/τ with respe
t to the Fermienergy εF . We end the se
tion with a dis
ussion of thenumeri
al and analyti
al results 
omparing them to otherapproa
hes. For 
onvenien
e, and in order to keep the ex-pressions more 
on
ise, we introdu
e here the dimension-less units that 
an easily be transformed into dimensionalunits by following equations at the beginning of this se
-tion. Note that our formalism 
annot be used 
lose tothe energies ω = ±h in Fig. 2, as kF l (l is the mean-freepath) 
an be
ome very small and the non-
rossing ap-proximation in Fig. 1 may fail. Nevertheless, we do notexpe
t large 
orre
tions to our results around these sin-gularities as the non-diagonal 
ondu
tivity seems not tobe strongly a�e
ted by in
luding the 
rossed diagrams.45A. Cal
ulational pro
edureWe restri
t ourselves here to 2DEG Rashba Hamilto-nian with an ex
hange �eld h̆ (breve a

ent here meansthat h is in dimensional units) in order to obtain simpleanalyti
al results that 
onne
t dire
tly with other mi
ro-s
opi
 linear response 
al
ulations:19,22,46
ĤR = 1̂(~k̆)2/2m + ᾰk̆ · σ̂ × z− h̆σ̂z + 1̂V (r̆), (29)where ᾰ is the strength of spin-orbit intera
tion, σ̂ arePauli matri
es, ~k̆ = −i~∇ − eA/c, A(t) = −cEt de-s
ribes the external ele
tri
 �eld and V (r) des
ribes theimpurities. From symmetry 
onsiderations, the mostgeneral form of the Hamiltonian in Eq. (29) shouldtreat the 
oordinate r as an operator r + r̂so(k) with

r̂so(k) = λσ̂ × k originating from the proje
tion pro
e-dure onto the band under 
onsideration.47 The spin-orbitintera
tion 
an also in
lude higher e.g. 
ubi
 terms rele-vant for the bulk InSb and the HgTe quantum wells withan inverted band stru
ture.48,49 Here, only linear termswith Rashba symmetry are 
onsidered with r̂so(k) beingdisregarded as we expe
t e�e
t of HSO = r̂so(k)∇V (r)on the AHE to be small for wide band semi
ondu
tors inwhi
h λ is relatively small.50 The disorder in the systemis modeled by impurity delta-s
atterers:
V (r) = V̆0

∑

i

δ(r̆− r̆i), (30)where r̆i des
ribes the positions of randomly distributedimpurities of density n̆i.We rewrite the Hamiltonian in dimensionless quanti-ties:
ĤR

εF
= 1̂

1

2
k

2 + αk · σ̂× z− hσ̂z + 1̂V0

∑

i

δ(r− ri), (31)
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Ω(k)

k

(i)

(iii)

(ii) Ω = h

Ω = -h

Figure 2: Ele
troni
 band dispersions of the Rashba model;throughout the paper, εF is the Fermi energy measured fromthe bottom of the lower band while ωF is the Fermi energymeasured from the middle of the gap (region (ii)).where εF is the Fermi energy measured from the mini-mum of energy, k = k̆l0 is the dimensionless momentum.The dimensionality 
an be restored by substituting ex-pressions for the dimensionless units into the �nal formu-las:
l0 =

√

~2

mεF
, α = ᾰ

√

m

~2εF
, V0 =

mV̆0

~2
,

h =
h̆

εF
, ni = n̆il

2
0, k = k̆l0.Also note that whereas εF is measured from the bottomof the lower band, in the notation below, we introdu
e

ωF whi
h is the Fermi energy measured from the middleof the gap (region (ii) in Fig.2).In the following, we solve Eqs. (19) and (20) in order to�nd the non-equilibrium Green's fun
tion Ĝ<
1 des
ribingpro
esses at the Fermi surfa
e, and Eqs. (27) and (28)for the non-equilibrium Green's fun
tion Ĝ<

2 - primarilyFermi sea 
ontribution.We 
al
ulate Σ̂
R(A)
eq and the Green's fun
tions Ĝ

R(A)
equsing the self-
onsistent TMA, i.e. diagonal 
omponentsof Eq. (8):1,20

T̂ R(A)
eq = V0(1̂− V0γ̂

R(A))−1, (32)
Σ̂R(A)

eq = niT̂
R(A)
eq (ω) = Σ

R(A)
eq0 σ̂0 + Σ

R(A)
eqz σ̂z, (33)

Ĝ
R(A)
eq = (ω1̂− Ĥ0 − Σ̂

R(A)
eq )−1

=
(ω − k2

2 − Σ
R(A)
eq0 )σ̂0 + αky σ̂x − αkxσ̂y − (h− Σ

R(A)
eqz )σ̂z

(ω − k2

2 − Σ
R(A)
eq0 )2 − (h− Σ

R(A)
eqz )2 − α2k2

,(34)where γ̂R(A) =
∫

d2k/(2π)2Ĝ
R(A)
eq (k, ω) ≡ γR(A)σ̂0 +

γ
R(A)
z σ̂z . We 
al
ulate self-
onsistent value of the self en-ergy Σ̂

R(A)
eq (ω) for ea
h ω by performing su�
ient numberof iterations in Eq. (33) in order to a
hieve the pres
ribeda

ura
y (see Appendix B for details).With the knowledge of the equilibrium Green's fun
-tion ĜR
eq(k, ω), we 
an 
al
ulate the lo
al densities of

Σ =< + + + + + +  …..^

Σ =R
+ + +  …..^ +

a)

b)b)Figure 3: (
olor online). An in�nite set of diagrams represent-ing the self-
onsistent TMA in 
al
ulating; a) the retarded(advan
ed) self energy - Σ̂
R(A)
eq and b) the lesser 
omponentof self energy - Σ̂< in Eqs. (33) and (36), respe
tively.states:

D(ω) ≡ − 1

π

∫

d2k

(2π)2
Im{Tr [

ĜR
eq(k, ω)

]}

,and the total number of ele
trons:
N =

∫ ωF

−∞

dωD(ω). (35)The number of ele
trons 
hanges as we in
rease the dis-order, and following Eq. (35), ωF is always adjusted sothat the total number of ele
trons is 
onstant.The same TMA is also used to 
al
ulate Σ̂< and Σ̂
R(A)
Efrom Eqs. (20) and (28), respe
tively:

Σ̂<
1 = ni

∫

d2k

(2π)2
T̂ R

eq(ω)Ĝ<
1 (k, ω)T̂ A

eq(ω) (36)
Σ̂

R(A)
E

= ni

∫

d2k

(2π)2
T̂ R(A)

eq (ω)Ĝ
R(A)
E

(k, ω)T̂ R(A)
eq (ω)(37)The TMA with self-
onsistent 
al
ulation of the equilib-rium Green's fun
tions Ĝ

R(A)
eq des
ribed in Appendix Ballows us to take into a

ount higher order non-
rosseddiagrams in the 
on
entration of impurities ni, withweak lo
alization diagrams being disregarded. The pro-
edure of 
al
ulating the retarded (advan
ed) and non-equilibrium self energies in Eqs. (33) and (36) is repre-sented graphi
ally in Fig. 3. In this graphi
al representa-tion, the bold arrow 
orresponds to the self-
onsistently
al
ulated retarded (advan
ed) Green's fun
tion.For the delta s
atterers, T -matrix does not depend onmomentum k whi
h allows us to perform momentum in-tegrations in Eqs. (36) and (37). It is then useful tointrodu
e the following 2× 2 matri
es:

ρ̂(ω) ≡
∫

d2k

(2π)2
Ĝ<

1 (k, ω) (38)
ρ̂

R(A)
E

(ω) ≡
∫

d2k

(2π)2
Ĝ

R(A)
E

(k, ω) (39)The elements of matri
es ρ̂ and ρ̂E satisfy a system oflinear equations obtained by integrating in momentum



7spa
e the left and right hand sides of Eqs. (19) and (27),respe
tively:
ρ̂ =

∫ d2k

(2π)2
ĜR

eq T̂
R
eq(ω)ρ̂(ω)T̂ A

eq(ω)ĜA
eq

−i∂ωnF eE
∫ d2k

(2π)2
ĜR

eqυ̂ĜA
eq

, (40)
ρ̂

R(A)
E

=
∫ d2k

(2π)2
Ĝ

R(A)
eq T̂

R(A)
eq (ω)ρ̂

R(A)
E

(ω)T̂
R(A)
eq (ω)Ĝ

R(A)
eq

− i

2

∫ d2k

(2π)2

(

Ĝ
R(A)
eq υ̂∂ωĜ

R(A)
eq − ∂ωĜ

R(A)
eq υ̂Ĝ

R(A)
eq

)

.(41)The momentum integrations in the right hand side ofEqs. (40) and (41) are done analyti
ally using the generalform of the Green's fun
tions Ĝ
R(A)
eq (k, ω) in Eq. (34).Without loss of generality, we take the ele
tri
 �eld Ealong the y axis E = (0, Ey) and solve the system oflinear Eqs. (40) and (41) for the elements of matri
es ρ̂and ρ̂E in Appendi
es C and D, respe
tively.With this, we 
al
ulate the 
urrent from Eqs. (23) and(24), respe
tively, with a use of Eqs. (19), (21), (26) and(27):

jI
x(y) = −ie

∫ d2k

(2π)2
dω

2π
Tr

{

ĜR
eq T̂

R
eqρ̂T̂ A

eqĜ
A
eqυ̂x(y)

−ieE∂ωnF

(

ĜR
eqυ̂ĜA

eq −
1

2
(ĜA

eqυ̂ĜA
eq − ĜR

eqυ̂ĜR
eq)

)

υ̂x(y)

}

,(42)
jII
x(y) = ie

∫ d2k

(2π)2
dω

2π
eEnF Tr

[

ĜR
eq T̂

R
eqρ̂

R
E
T̂ R

eqĜ
R
eq υ̂x(y)

− i

2

(

ĜR
eqυ̂∂ωĜR

eq − ∂ωĜR
eqυ̂ĜR

eq

)

υ̂x(y)

]

+ c.c.

.(43)where we use ∂kĜ
R(A)
eq = Ĝ

R(A)
eq υ̂Ĝ

R(A)
eq , whi
h holds forthe model of delta impurities. In Eq. (42), we performanalyti
al integrations over momentum k and energy ωwhile in Eq. (43), we only perform analyti
al integrationover momentum. The results of these integrations aregiven in Appendi
es E and F for Eqs. (42) and (43),respe
tively.B. Analyti
al results in the metalli
 regimeIn the metalli
 regime, we are able to obtain analyti
alresults as it is su�
ient to 
onsider only �nite numberof terms in the expansion with respe
t to the strength ofimpurity in Fig. 3. For the same reason, we are also ableto generalize the disorder in Eq. (30) (generalization ofthe theory is given in Appendix A) as follows:

V (r) =
∑

i

V i
0 δ(r− ri), (44)

where ri is random, the strength of ea
h impurity hasthe same arbitrary distribution and all strength distribu-tions are independent leading to the �rst four 
umulants:
〈

V i
0

〉

dis
= 0, ni

〈

(V i
0 )2

〉

dis
= V2, ni

〈

(V i
0 )3

〉

dis
= V3 and

ni

〈

(V i
0 )4

〉

dis
= V4 where ni is the 
on
entration of im-purities. For the disorder des
ribed in Eq. (30), we have

√

V2/ni = 3

√

V3/ni = 4

√

V4/ni = V0 and for the tele-graph white noise disorder we have V3 = 0 as it is men-tioned in Appendix A.In this se
tion, we �rst expand the retarded (advan
ed)self energy in Eq. (33) up to the third order in V0 (or upto the terms V3 in Eq. (A4)). The lesser 
omponent ofthe self-energy in Eq. (36) has to be expanded up to thefourth order in V0 (or up to the terms V4 in Eq. (A5))whi
h 
orresponds to the four legged diagrams in Fig.3b). This ensures that the expansion of the 
ondu
tivity
σI

xy following from Eqs. (E3,E5) 
aptures all possibleterms proportional to 1/V0 and 1.The expansion of σII
xy following from Eq. (F3) is some-what simpler as it only 
ontains the terms proportionalto 1 and its 
al
ulation requires 
onsideration of onlyone bare bubble diagram (e.g. summation of verti
esleads to higher order 
orre
tions). In our dis
ussion, wethus 
on
entrate on the diagrams for 
al
ulating σI

xy andalso present the result for the bare bubble diagram of
σII

xy. Note that in the expansion of σI(II), it is importantto properly 
onsider the bran
h 
ut of the � ln� fun
tiontaken as (−∞, 0]. The diagrams in Fig. 3 have dire
t
orresponden
e to the Kubo formalism diagrams in Fig.4 used in Ref. 22. This allows us to separate the 
ondu
-tivity into terms that dire
tly relate to ea
h diagram inFig. 4.We distinguish three regimes for the position of theFermi energy with respe
t to the gap of the size 2h; (i)
ωF > h, (ii) −h < ωF < h and (iii) ωF < −h (seeFig. 2). To simplify formulas, we introdu
e the followingnotation:

k2
± = 2(ωF + α2 ∓

√

h2 + 2ωF α2 + α4),

λ± =
√

(αk±)2 + h2, λF =
√

2ωF α2 + h2,

κ± =
√

(αk±)2 + 4h2,

ν± = k

∣

∣

∣

∣

dω(k)

dk

∣

∣

∣

∣

−1

=



























λ±

λ± ± α2
, ωF > h

λ−

λ− − α2
, −h < ωF < h

λ±

|λ± − α2| , ωF < −h

,where ν± is the density of states at the Fermi level and
k± are the two Fermi wave numbers for the regimes (i)and (iii). In the regime (ii), k+ be
omes pure imaginaryand only k− has the meaning of the Fermi wave number.Further, we introdu
e the following parameter:

Λ =
V3

V 2
2

γi
z +

V4

V 2
2

(3γrγi
z + γiγr

z),



8where γ̂ =
∫

d2k/(2π)2ĜR
0 ≡ γσ̂0 + γzσ̂z, with γ =

γr + iγi, γz = γr
z + iγi

z. Note that the two dimensionalintegral over momentum diverges and γ̂ is 
al
ulated byintrodu
ing the momentum 
uto�, see Appendix B. Byexpanding the result of Appendix B up to the zeroth or-der in the strength of impurities, we obtain:
γr =

(k2
− − 2ωF ) ln

∣

∣

∣

∣

k2
−

k2
0 − k2

−

∣

∣

∣

∣

− (k2
+ − 2ωF ) ln

∣

∣

∣

∣

k2
+

k2
0 − k2

+

∣

∣

∣

∣

2π(k2
− − k2

+)
,

γr
z =

h

π(k2
+ − k2

−)
ln

∣

∣

∣

∣

k2
+(k2

0 − k2
−)

k2
−(k2

0 − k2
+)

∣

∣

∣

∣

,

γi =























−ν− + ν+

4
, ωF > h

−ν−
4

, −h < ωF < h

−k2
− + k2

+ − 4ωF

2(k2
− − k2

+)
, ωF < −h

,

γi
z =



























h

4
(
ν+

λ+
− ν−

λ−

), ωF > h

−h

4

ν−
λ−

, −h < ωF < h

− 2h

k2
− − k2

+

, ωF < −h

,where k0 is the 
uto� in the momentum integration.As it follows from the Appendi
es E and F, the non di-agonal 
ondu
tivities σ
I(II)
xy 
an be 
al
ulated by properly
hoosing the � ln� bran
h that 
orresponds to the regimes(i), (ii) or (iii), respe
tively. The result of expandingEqs. (E3,E5) and Eq. (F3) for 
ondu
tivities σI

xy and
σII

xy, respe
tively, in the region (i) (ωF > h) be
omes:
σ

I(i)
xy =

2e2α2

~π
Λ = − V4

V 2
2

e2hα2 ln

∣

∣

∣

∣

k2
+(k2

0 − k2
−)

k2
−(k2

0 − k2
+)

∣

∣

∣

∣

~π2(k2
+ − k2

−)
,

σ
II(i)
xy = 0,

(45)whi
h reprodu
es result of Ref. 24 in the limit of large
uto� k0. In referen
e to the Kubo formula formalism,we 
an 
laim the following: the diagrams in Fig. 4a) van-ish after summation (the intrinsi
 and side-jump 
ontri-butions de�ned in Ref. 46 
an
el ea
h other),24 the dia-grams in Figs. 4b)-d) are all proportional to ν+

λ+
− ν−

λ−

≡ 0and also vanish, and the diagrams in Fig. 4e) lead to theresult in Eq. (45). σ
II(i)
xy is zero as the 
orresponding barebubble 
ontribution in Eq. (F3) vanishes. Repeating thesame pro
edure for the region (ii) (−h < ωF < h), we

obtain:
σ

I(ii)
xy =

e2

4π~

(

hα2ν−
λ2
−

− 4hk2
−α2

λ−κ2
−

+
3hk4

−α2

κ4
−ν−

+
8k4

−α2λ2
−

κ4
−ν2

−

Λ

+

[

8h(2h2 + 2ωF α2 + k2
−)

κ2
−

γi
z + (k2

− − k2
+)γi

]

2hk4
−α2

κ4
−

V 2
3

V 3
2

)

,

σ
II(ii)
xy =

e2

4π~
(1− h

√

α4 + λ2
F

), (46)where the diagrams in Fig. 4a) lead to the �rst three dis-order independent terms in Eq. (46) (the intrinsi
, theside-jump and the disorder independent skew s
atteringterms, respe
tively),24 the skew s
attering diagrams inFigs. 4b) and e) lead to the term in Eq. (46) propor-tional to Λ, and the diagrams in Figs. 4
) and d) lead tothe terms in Eq. (46) proportional to V 2
3 /V 3

2 . σ
II(ii)
xy is
al
ulated from a bare bubble 
ontribution given by Eq.(F3) and also 
orresponds to the intrinsi
 
ontribution.Finally for the region (iii) (ωF < −h), we obtain:

σ
I(iii)
xy =

e2

4π~

(

32hω2
Fα4

(h2 + α4)2(k2
− − k2

+)
+

α2(k2
− − k2

+)4

32(h2 + α4)2
Λ

+

[

h(h2ωF + 2α2h2 − 3ωF α4)

(h2 − ωF α2)(h2 + α4)
γi

z + γi

]

hα2(k2
− − k2

+)3

4(h2 + α4)2
V 2

3

V 3
2

,

σ
II(iii)
xy =

e2

4π~

h(λ− − λ+)

(α2 − λ−)(α2 − λ+)
, (47)where the diagrams in Fig. 4a) lead to the disorder in-dependent term in Eq. (47) (it in
ludes the intrinsi
, theside-jump and the disorder independent skew s
attering
ontributions), the skew s
attering diagrams in Figs. 4b)and e) lead to the term in Eq. (47) proportional to Λ, andthe diagrams in Figs. 4
) and d) lead to the terms in Eq.(47) proportional to V 2

3 /V 3
2 . σ

II(ii)
xy is again 
al
ulatedfrom a bare bubble 
ontribution given by Eq. (F3).The diagonal 
ondu
tivities 
an also be 
al
ulated byexpanding Eqs. (E4) and (E6):

σyy =































e2

~

ωF + α2

πV2
, ωF > h

e2

~

k2
−λ2

−

πV2ν2
−κ2

−

, −h < ωF < h

e2

~

(ωF + α2)(α4 + λ2
F )

πV2(α4 + h2)
, ωF < −h

,where we only present the dominant non-vanishing terms
V −1

2 as the higher order terms are quite 
umbersome.C. Numeri
al results and dis
ussionsHere, we present results of our numeri
al 
al
ula-tions based on the formalism developed in Se
tion IIIA.Figures 5,6,7 and 8 show the numeri
al results forthe anomalous Hall 
ondu
tivity as a fun
tion of the
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!x!y = +

!x!y !x!y+

!x!y +
All combinations of

two skew scatterings

!x!y with "R = + +

!x!y !x!y

Third order correction

a)

!x
!y

b)

c)

d)

e)Figure 4: Di�erent diagrammati
 
ontributions to σI
xy withinthe Kubo formula formalism; a) the ladder diagram (ver-tex) 
ontribution ∼ 1, b) the skew s
attering 
ontribution

∼ 1/(niV0) ∼ V3/V 2
2 , 
) the double skew s
attering 
ontribu-tion ∼ 1/ni ∼ V 2

3 /V 3
2 , d) the skew s
attering 
ontribution inwhi
h the retarded (advan
ed) self energy is 
al
ulated up tothe third order ∼ 1/ni ∼ V 2

3 /V 3
2 and e) the fourth order skews
attering 
ontribution ∼ 1/ni ∼ V4/V 2

2 .Fermi energy ωF and the �rst Born s
attering amplitude
γBorn = niV

2
0 m. The strength of the spin-orbit intera
-tion is 
hosen to be the same as in Ref. 1, 2α2/h = 35.9(2α2/Eres = 3.59, Eres = 10h; and the strength of im-purity is V0 = 0.1, 0.3, −0.1 and −0.3. For the retarded(advan
ed) self-energy, the 
uto� in the momentum inte-gration is k0 = 12 whi
h 
orresponds to the energy 
uto�of Ref. 1, εc = 3Eres. The Born s
attering amplitude isvaried by 
hanging the impurity 
on
entration ni.In the 
lean limit, when γBorn → 0, we observe skews
attering behavior (σxy ∼ 1/niV0) in whi
h |σxy| rapidlyin
reases. For repulsive s
atterers (V0 > 0, see Figs. 5and 6), the negative 
ondu
tivity diminishes as we in-
rease the Fermi energy, until the point ωF = −h isrea
hed. At this point, the 
ondu
tivity suddenly in-
reases without a 
hange of sign, in 
ontrast to Ref. 1where the sign 
hange has been observed but in agree-ment with Refs. 22 and 24 (note that Fig. 5 is 
al
u-lated for exa
tly the same parameters as Fig. 5(
) inRef. 1). As we in
rease the Fermi energy further, the
ondu
tivity in
reases again around ωF = h a
quiringa very small negative value. In this regime, both sub-bands are partially o

upied and only the higher orderskew s
attering22,24 (hybrid skew s
attering) 
ontributesto the anomalous Hall e�e
t. Relatively large hybridskew s
attering is present in Fig. 6 
ompared to Fig. 5 asthe hybrid skew s
attering 
ontribution is proportionalto 1/ni ∼ V 2
0 /γBorn and should be larger for greaterimpurity strength.24 The same is true for the 
onven-tional skew s
attering proportional to 1/V0ni ∼ V0/γBorn, whi
h 
an be immediately seen from Figs. 5, 6, 7 and8. For attra
tive s
atterers (V0 < 0, see Figs. 7 and8) the sign of the ordinary skew s
attering dominatingin the 
lean limit is opposite to the sign of the ordinaryskew s
attering for the repulsive s
atterers. The 
ondu
-
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Figure 5: The anomalous Hall 
ondu
tivity σxy as a fun
tionof the Fermi energy ωF and the Born s
attering amplitude
γBorn. The parameters are 
hosen as 2α2/h = 35.9, k0 = 12and V0 = 0.1. The Fermi energy ωF 
orresponds here to the
lean system and it is renormalized a

ording to Eq. (35) inthe presen
e of disorder.tivity now in
reases until we rea
h the point ωF = −h inwhi
h we observe a sudden drop. One more drop happensaround the point ωF = h where the anomalous Hall 
on-du
tivity 
hanges sign (see Figs. 7 and 8). This 
hange ofsign is 
onsistent with the fa
t that the higher order (hy-brid) skew s
attering (prevailing when both subbands arepartially o

upied) does not 
hange its sign as we 
hangethe sign of disorder.24 Comparing Figs. 7 and 8, we againsee that the hybrid skew s
attering is more pronoun
edfor larger impurity strength.As we in
rease the disorder by in
reasing γBorn, theskew s
attering be
omes less important while the otherme
hanisms, su
h as intrinsi
 and side-jump, be
omemore important. The intrinsi
 
ondu
tivity only gradu-ally de
reases with the disorder be
ause the only e�e
t ofdisorder on the intrinsi
 
omponent 
omes from broaden-ing of Green's fun
tions used in the 
al
ulation of the in-trinsi
 
omponent. For repulsive s
atterers (V0 > 0), theskew s
attering has sign opposite to the sign of intrinsi
and side jump 
ontributions in the region −h < ωF < h(see e.g. Refs. 22 and 24). This explains the sign
hange we observe in Figs. 5, 6 and 10 in the region
−h < ωF < h as we in
rease γBorn (more detailed plotsare presented in Appendix G).The positions of points in whi
h the AHE vanishes 
anbe estimated by 
omparing the Fermi sea intrinsi
 term
σII

xy with the skew s
attering term in Eq. (46) as thosetwo are the major 
ontributions. Physi
ally, the AHEvanishes be
ause the intrinsi
 de�e
tion of ele
trons be-tween the s
attering events 
an be balan
ed by the skews
attering events (in the 
ross-over region between intrin-si
 and extrinsi
 me
hanisms). As the former does notrely on impurities and the latter does (and 
hanges signwith impurities 
hanging sign), we 
an have full 
an
ella-tion of the two by 
hoosing the proper sign and strengthof impurities.
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Figure 6: Identi
al to Fig. 5 plot but for larger strength ofimpurity V0 = 0.3.
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Figure 7: Identi
al to Fig. 5 plot but for negative strength ofimpurity V0 = −0.1.1. Anti
rossings and s
alingsAs it 
an be seen from Figs. 5, 6, 7 and 8, the anoma-lous Hall e�e
t is resonantly in
reased around the bandanti
rossing whi
h suggests that for more general bandstru
tures, the major 
ontribution to the AHE also 
omesfrom the band anti
rossings that happened to be in thevi
inity of the Fermi level.1 This view is well justi�ed forthe intrinsi
 AHE in the metalli
 regime (τεF >> 1) asit follows from the Thouless-Kohmoto-Nightingale-Nijsformula51 applied to the AHE.1 This leads to the intrin-si
 AHE 
ondu
tivity of the order of e2/(4π~) within theregion (ii) in Fig. 2. The full 
ondu
tivity that in
ludesthe intrinsi
, side-jump and skew-s
attering 
ontribu-tions seems to also have the resonant behavior aroundthe anti
rossing for the Rashba model as it follows fromour analysis. Whereas our analysis justi�es fo
using the
al
ulations on simpli�ed phenomenologi
al models nearthe anti-
rossing lo
ations, we emphasize that it is un-likely that these would be 
hara
terized universally bythe Rashba geometry rather than by a 
ombination ofRashba and Dresselhauss symmetry.
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Figure 8: Identi
al to Fig. 5 plot but for negative strength ofimpurity V0 = −0.3.In the regime of strong disorder, where this resonantbehavior is not pronoun
ed, the disorder broadening ofthe Green's fun
tions be
omes more dominant and the
σxy has dependen
e that 
an no longer be expanded 
or-re
tly in powers of τ . This expe
tation 
an be easilyseen from the expressions for σxy in our formulation orthe Kubo formulation, in whi
h

σxy ∝
∑

α,β

〈α|v̂x|β〉〈β|v̂y |α〉
(Eα − Eβ)2

(48)where |α〉 are the exa
t eigenstates in the presen
e of dis-order and the major 
ontribution for σxy in the dirty limit
omes from interband matrix elements. When expandingthings in the momentum basis, the denominator is oftenapproximated as (En(~k) − En′(~k))2 + (~/τ)2) while thematrix elements are evaluated within the disorder freeeigenstates. Hen
e, in the limit of large disorder broad-ening, the denominator is simply repla
ed by (~/τ)2) and
σxy ∼ τ2 (this is di�erent for σxx as the 
ontribution frominterband matrix elements vanishes and σxx ∼ τ). Thisof 
ourse gives an upper bound for the σxy ∼ τη s
al-ing and in intermediate regimes one would expe
t η tobe lower than 2. In Figs. 9 and 10, we study the AHE
al
ulated in the anti
rossing region in order to examinein detail the universal anomalous Hall e�e
t regimes that
ould be valid for more general band stru
tures.We now plot in the logarithmi
 s
ale σxy as a fun
-tion of σxx tuned via ni while all other parameters arekept 
onstant. In the 
lean limit, we re
over the skews
attering behavior (σxy ∼ 1/niV0 ∼ σxx/V0) and ournumeri
al results (bold line) agree well with the analyt-i
al results (dashed line) obtained in Se
. IIIB. In themoderately dirty limit, we observe the intrinsi
-side-jumpregime (σxy = const, this regime is more pronoun
ed forsmaller V0) in whi
h the side-jump and intrinsi
 me
ha-nisms are dominant. All analyti
al 
urves (dashed lines)asymptoti
ally rea
h this regime when σxx is very small.In the stronger disorder regime, as reported in Ref. 1,the numeri
al 
urves have downturn for smaller σxx ap-
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Figure 9: The absolute value of the anomalous Hall 
ondu
-tivity |σxy | versus the 
ondu
tivity σxx for the spin-orbit in-tera
tion strength 2α2/h = 35.9. Dimensionality of quantitiesdisplayed in this plot is restored.proa
hing the third regime in whi
h σxy ∼ σϕ
xx with

ϕ ≈ 1.6 in Fig. 9. However, a universal s
aling 
an-not be 
laimed sin
e for large and positive strength ofimpurities in Fig. 10 we only observe the redu
tion ofthe AHE.One should keep in mind that the gradient expansion isnot fully justi�ed 
lose to the line τεF = 1 and our resultsare meaningful only for τεF > 1. Furthermore, sin
e inthis regime the resonant behavior is strongly diminished,in realisti
 three-dimensional systems, the result 
ouldbe more a

urately expressed via the averaged matrixelements with some appropriate treatment of the disorderbroadening.Although some experimental works 
laim to 
on�rmthe s
aling σxy ∼ σϕ
xx with ϕ around 1.6.37,38,39,40,41 
om-parison of theory and experiments has to be done with
are sin
e determining a s
aling exponent over a singlede
ade is often di�
ult and has led to many errors in thepast. For example, in DMS ferromagnets (mentioned inRef. 1 to support the s
aling hypothesis) the 
hange ofdoping will 
ause 
hange in the impurity 
on
entration,in the magnetization and even in the band stru
ture.The theoreti
al 
al
ulations only take into a

ount the
hange in the impurity 
on
entration and further assumea Rashba symmetry at the 
rossing points.1,20 Note alsothat within the theoreti
al treatment, the Hall 
ondu
-tivity 
hanges its sign for repulsive impurities (V0 > 0)in Fig. 10 whi
h is expe
ted as the skew s
attering domi-nating in the 
lean limit has the sign opposite to the signof the intrinsi
 
ontribution dominating in the dirty limit(see Eq. (46)). These types of 
hanges of signs have alsobeen observed in experimental systems, e.g. DMS,52 andof 
ourse at that stage s
aling is not justi�ed.
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Figure 10: Identi
al to Fig. 9 plot ex
ept for the disorderwhi
h is repulsive here (V0 > 0). Note that the 
ondu
tivity
σxy 
hanges sign around the 
usps.IV. AMR IN RASHBA SYSTEMSIn the previous se
tion, we showed how the formalismdeveloped in Se
tion II 
an be applied to 
al
ulations ofthe anomalous Hall e�e
t in multiple-band systems onthe example of a Rashba system. In this Se
tion, we per-form 
al
ulations of the anisotropi
 magnetoresistan
e(AMR) in 2DEG with the in-plane ex
hange �eld, spin-orbit intera
tion and magneti
 impurities following thesame formalism. A general numeri
al pro
edure allowsus to rigorously perform AMR 
al
ulations in multiple-band anisotropi
 systems. Within the Boltzmann equa-tion approa
h, su
h 
al
ulations are usually performedby using the relaxation time approximation in whi
h thetransport relaxation time τ is 
al
ulated from the s
at-tering amplitudes without fully taking into a

ount theasymmetries.30,34 This approa
h was improved in Ref.53 by introdu
ing the perpendi
ular relaxation time τ⊥.However, in some 
ases this improvement is yet not suf-�
ient and Vyborny et al. formulated a pro
edure for�nding an exa
t solution to the Boltzmann equation inRef. 35. Here we propose an alternative approa
h forAMR 
al
ulations in multiple-band anisotropi
 systemsto the one proposed in Ref. 35.We 
onsider here a 2DEG Rashba Hamiltonian withadditional in-plane ex
hange �eld hx dire
ted along the
x- axis without any loss of generality :

ĤR = k̃
2/2 + αk̃ · σ̂ × z− hxσ̂x − hσ̂z + V̂ (r), (49)where now V̂ (r) des
ribes the disorder 
orresponding todilute 
harged magneti
 impurities:34,54,55
V̂ (r) = V0(aσ̂0 + σ̂x)

∑

i

δ(r− ri), (50)



12where ri des
ribes the positions of random impurities andwe assume that the magneti
 impurities are magnetizedalong the ex
hange �eld. The quantity a des
ribes therelative strength of the ele
tri
 part of impurity with re-spe
t to the magneti
 part. Note that the AMR is mea-sured by 
hanging the dire
tion of ele
tri
 �eld E whi
his equivalent to 
hanging the dire
tion of the ex
hange�eld.For the AMR, we only need the diagonal 
ondu
tivi-ties, thus the Fermi sea 
ontribution given by Eq. (43)vanishes. The AMR 
an be 
al
ulated from Eq. (42) andwe only need to 
al
ulate Green's fun
tions at the Fermilevel. We 
al
ulate Σ̂
R(A)
eq and Green's fun
tions Ĝ

R(A)
equsing the self-
onsistent TMA:

T̂ R(A)
eq = V0(1̂ − V0γ̂

R(A))−1 (51)
Σ̂R(A)

eq = niT̂
R(A)
eq (ω) = Σ

R(A)
eq0 σ̂0 + Σ

R(A)
eqx σ̂x + Σ

R(A)
eqz σ̂z ,(52)

Ĝ
R(A)
eq = (ω1̂− Ĥ0 − Σ̂

R(A)
eq )−1

=
(ω − k2

2 − Σ
R(A)
eq0 )σ̂0 + αky σ̂x − αkxσ̂y

(ω − k2

2 − Σ
R(A)
eq0 )2 − (h− Σ

R(A)
eqz )2 − α2k2 + 2hxαky

+
−(h− Σ

R(A)
eqz )σ̂z − (hx − Σ

R(A)
eqx )σ̂x

(ω − k2

2 − Σ
R(A)
eq0 )2 − (h− Σ

R(A)
eqz )2 − α2k2 + 2hxαky(53)where γ̂R(A) =

∫

d2k/(2π)2Ĝ
R(A)
eq (k, ω) ≡ γR(A)σ̂0 +

γ
R(A)
x σ̂x+γ

R(A)
z σ̂z. We 
al
ulate the self-
onsistent valueof the self energy Σ̂

R(A)
eq (ωF ) by iterating Eq. (52) untilthe pres
ribed a

ura
y is rea
hed.As soon as we know the T -matrix, we 
an substituteit into Eq. (40) and �nd the matrix ρ̂ by performing themomentum integrations in the r.h.s.. Finally, by substi-tuting ρ̂ into Eq. (42) we 
an 
al
ulate the 
ondu
tiv-ity. Note that throughout this se
tion, the angular partof the momentum integrations is 
al
ulated analyti
allywhile the radial part is 
al
ulated numeri
ally.The anisotropi
 resistan
e in our system is de�ned asfollows: AMR = −σxx − σyy

σxx + σyyand it des
ribes the relative di�eren
e in 
ondu
tivity for
urrent �owing parallel or perpendi
ular to the magneti-zation (represented by the ex
hange �eld and/or impuritymagnetization).First, we 
al
ulate the anisotropi
 magnetoresistan
ein Rashba system with in-plane ex
hange �eld and non-magneti
 delta s
atterers (see Eq. 30, the magneti
 s
at-terers are absent in this model). Kato et al. found van-ishing AMR in the regime (i) (see Fig. 2) when bothsubbands are partially o

upied due to the 
an
ellation ofthe nonvertex and vertex parts in the Kubo formulation.In Fig. 11, we observe the non-vanishing AMR in theregime (i) and this suggests the importan
e of the higher
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Figure 11: The AMR (100% 
orresponds to AMR = 1) as afun
tion of the dimensionless spin-orbit intera
tion strength
α/

√
ωF (ωF is 
ounted from the middle of the gap in Fig.2). The parameters of the model are: V0 = −0.6 and −0.9,

ni/ωF = 0.01 and hx/ωF = 0.3 .order diagrams (su
h as plotted in Fig. 4e)) not only forthe AHE but also for the AMR. The AMR e�e
t result-ing from the higher order diagrams is more pronoun
edfor the larger strength of impurities, similar to the AHE.The AMR approa
hes its maximum around the point atwhi
h the ex
hange energy is 
omparable to the spin orbitenergy, 2hx ∼ α. We note that the non-zero but 
ompar-atively weak magnitude of the AMR here in the Rashbasystem is reminis
ent of the results in three-dimensionalDMS ferromagnets.34 This agrees with physi
al intuition.Under 
omparison of two me
hanisms by whi
h AMR 
anarise - 
arrier polarization/anisotropy in wavefun
tions,and impurity polarization/anisotropy in s
attering oper-ator (see Fig. 1 of Ref. 34) - the former implies a 
ompe-tition between the ex
hange and spin-orbit terms (in theHamiltonian) resulting in redu
ed anisotropy strength.Consequently, even though observation of the AMRe�e
t is deemable in the absen
e of magneti
 s
atter-ers, we expe
t mu
h more pronoun
ed e�e
t when themagneti
 s
atterers are present. Our numeri
al resultsin Fig. 12 (plotted together with the analyti
al resultsfrom Ref. 35) 
on�rm this. For the 
ase when the Fermilevel 
rosses only one band (region (ii) in Fig. 2), it wasfound in Ref. 35 that AMR = 1/(2 − a2) when |a| < 1and AMR = 1/a2 when |a| > 1, provided the ex
hange�elds are small. For the 
ase when the Fermi level 
rossestwo bands (region (i) in Fig. 2) it was found in Ref. 35that AMR = a2 when |a| < 1 and AMR = 1/a2 when
|a| > 1, in the limit of large Fermi energy (
omparedto the spin-orbit and ex
hange splitting). We observe aperfe
t agreement between our numeri
al results and theanalyti
al results from Ref. 35. The result in Fig. 12a)
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Figure 12: The AMR as a fun
tion of the relative strength a ofthe ele
tri
 and magneti
 parts of impurity potential, by solidline we plot analyti
al results and dots represent numeri
alresults; a) Fermi level 
rosses only one band (ωF = 0) withthe following dimensionless parameters V0 = 0.05, α = 1.4,
ni = 0.0015, hx = 0.0015 and h = 0.015; b) Fermi level 
rossesboth bands V0 = 0.05, α = 0.03, ni = 0.002, hx = 0.002 and
h = 0.001.
annot be reprodu
ed within the 
ommon approximateapproa
hes30,34,53 based on the relaxation time approxi-mation as it was pointed out in Ref. 35. The non-physi
aldivergen
e in σyy at the point a = 1 in Fig. 12 is 
ausedby the spe
ial 
hoi
e of the s
attering potential.35 Assoon as the spatial dependen
es of the ele
tri
 and mag-neti
 parts 
ease to be identi
al (in Eq. (50), they 
orre-spond both to delta-s
atterers) the divergen
e of the σyyis removed (
ausing AMR< 1).V. CONCLUSIONSWe have developed a framework for transport 
al-
ulations in multiple-band non-intera
ting Fermi sys-tems. By applying this framework to Rashba 2DEG,we have resolved some re
ent dis
repan
ies related tothe AHE in su
h systems. The �ndings of this simple2D model have been linked to higher dimensional sys-tems arguing that most likely the major 
ontributions tothe AHE 
ome from the band anti-
rossing regions sim-ilar to one observed in the Rashba model. Our analyt-i
al and numeri
al results reveal the 
rossover betweenthe skew s
attering dominated regime in 
lean systems(σxy ∼ V0/γBorn ∼ σxx) and the intrinsi
 dominatedregime in moderately dirty systems (σxy ∼ const). Indirty systems, we observe the third distin
t regime alsodominated by the intrinsi
 
ontribution. In this regime,the AHE diminishes in a manner similar to σxy ∼ σϕ

xxwith ϕ being 
lose to 1.6. This, however, 
annot be


alled by s
aling as the theory is not meaningful in asu�
iently wide range of σxy and σxx due to breakdownof the quasiparti
le approximation when τεF ∼ 1. Forthe repulsive impurities, we observe that the intrinsi
 andskew anomalous Hall e�e
ts have opposite signs. As a re-sult, the 
rossover between those two is also a

ompaniedby the 
hange of sign of the AHE. We suggest to engi-neer samples with repulsive impurities in order to see this
hange of sign in the AHE.We have resolved some dis
repan
ies between the AHEresults obtained by using the Keldysh, Kubo and Boltz-mann approa
hes by 
onsidering the higher order skews
attering pro
esses. We have also shown that simi-lar higher order pro
esses are also important for theAMR when the nonvertex and vertex parts 
an
el ea
hother. We have 
al
ulated the AMR in anisotropi
 sys-tems properly taking into a

ount the anisotropy of thenon-equilibrium distribution fun
tion. These 
al
ula-tions 
on�rm re
ent �ndings on the unreliability of 
om-mon approximate approa
hes to the Boltzmann equation.A
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h Foundation.Appendix A: GENERALIZATIONS FORSHORT-RANGE DISORDERIn se
tion IIA, we derive the kineti
 equation with theself-energy expression that is valid for uniform systems.Here, we generalize this self-energy to non-uniform sys-tems in the presen
e of a short range disorder postulatedby the following in�nite set of 
orrelators:
〈V V 〉 = 〈V 〉 〈V 〉+ V2δr1r2

,
〈V V V 〉 =

∑ 〈V V 〉 〈V 〉+ V3δr1r2r3
,

〈V V V V 〉 =
∑

(〈V V V 〉 〈V 〉+ 〈V V 〉 〈V V 〉) + V4δr1r2r3r4
,

....

.... (A1)where we sum all possible de
ouplings of the 
orrela-tors into a produ
t of two lower order 
orrelators and
δr1r2r3...rN

=
∏

i=1..N−1 δ(ri − ri+1). Note that usuallythe averaged impurity potential is zero, 〈V 〉 = V1 = 0.After performing the averaging pro
edure for theGreen's fun
tion, we again arrive at the kineti
 Eq. (6)with the self-energy given by the following formal expres-sion:

http://arXiv.org/abs/onr-n/0001406
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Σ̌ =

(

V̌0 + V̌0 ⊗ Ǧ⊗ V̌0 + . . .
)

|V n
0
→Vn

, (A2)where V̌0 = V0

(

η̂ 0
0 η̂

)

δ(1 − 1′) and in the term of n-th order proportional to V n
0 we repla
e V n

0 by Vn whi
hensures that the 
orrelators in Eq. (A1) are properly
onsidered. It is 
onvenient to introdu
e the notation:
Ě =

(

V̌0 + V̌0 ⊗ Ǧ⊗ V̌0 + . . .
)

, (A3)whi
h, in analogy with the self-energy, also has retarded(advan
ed) ER(A) and lesser E< 
omponents. Eq. (A3)
an be rewritten in the form of T -matrix equation, Ě =
V̌ ⊗ [1̌ + Ǧ ⊗ Ě], whi
h leads to the expressions for theself-energies:

ΣR(A) = ER(A)|V n
0
→Vn

,

Σ< =
(

ER ⊗G< ⊗ EA
)

|V n
0
→Vn

,
(A4)where the notation |V n

0
→Vn

is formal and it means that
ER(A) has to be �st expanded with respe
t to V0 andthen the substitution has to be applied. Eqs. (14) and(15) 
an now be rederived for non-uniform systems withthe disorder given by Eq. (A1).Nevertheless, for the purposes of this paper, it is suf-�
ient to 
onsider the uniform and stationary 
ase. Thisleads to substantial simpli�
ations outlined in se
tionsIIB and IIC. Results of se
tions IIB and IIC also holdfor the disorder given by Eq. (A1) with the ex
eptionof Eqs. (20) and (28) that should be repla
ed by thefollowing equations:

Σ̂<
1 =

[

ÊR
eq

(

∫ d2k′

(2π)2
Ĝ<

1 (k′)

)

ÊA
eq

]

V n
0
→Vn

,

Σ̂
R(A)
E

=

[

Ê
R(A)
eq

(

∫ d2k′

(2π)2
Ĝ

R(A)
E

(k′)

)

Ê
R(A)
eq

]

V n
0
→Vn

.(A5)Finally, we would like to present several examples inwhi
h the disorder given by Eq. (A1) is realized. Thesimplest example is given by Eq. (30) and in this 
ase
Vn = V n

0 . For the disorder given by Eq. (44), we have
Vn = ni

〈

(V i
0 )n

〉

dis
. For the Gaussian white-noise dis-order, only V2 is non-zero and Vn|n6=2 = 0. For thetelegraph white-noise disorder all odd 
orrelators vanish,

V2n+1 = 0.Appendix B: CALCULATION OFSELF-CONSISTENT SELF ENERGY Σ̂
R(A)
eqThe following relations 
an be 
al
ulated by a dire
tanalyti
al integration of Eq. (34):

γ̂R(A) =

∫

d2k/(2π)2Ĝ
R(A)
eq (k, ω) ≡ γR(A)σ̂0 + γR(A)

z σ̂z,

γR =
(K+ − 2W ) [ln(K0 −K+)− ln(−K+)]

2π(K− −K+)

− (K− − 2W ) [ln(K0 −K−)− ln(−K−)]

2π(K− −K+)

,

γR
z =

ln(K0 −K+)− ln(−K+)− ln(K0 −K−) + ln(−K−)

π(K− −K+)/H
,

γA = (γR)∗; γA
x(y,z) = (γR

x(y,z))
∗ γR

y(z) = 0,where W = ω−ΣR
eq0, H = h−ΣR

eqz , K± = 2(W + α2 ∓√
H2 + 2Wα2 + α4) and K0 = k2

0 des
ribes the 
ut-o�
k0 in momentum integration.For ea
h energy, ΣR

eq0(ω) and ΣR
eqz(ω) are 
al
ulated byperforming a number of iterations with the 
onsequentiteration a

ording to

Σ
R(A)
eq0 =

1

2
Tr

[

niV0(1̂ − V0γ̂
R(A))−1σ̂0

]

,

Σ
R(A)
eqz =

1

2
Tr

[

niV0(1̂− V0γ̂
R(A))−1σ̂z

]

.The iterations are performed until the pres
ribed a

u-ra
y is rea
hed.
Appendix C: CALCULATION OF THE MATRIX

ρ̂(ω)For the ele
tri
 �eld E along the y axis E = (0, Ey),we solve here the linear Eq. (40) for the elements of thematrix ρ̂(ω) by performing analyti
ally the momentumintegrations of the Green's fun
tions Ĝ
R(A)
0 (k, ω) (givenby Eq. (34)) in the right hand side. For ea
h energy ω,we obtain the following expressions that also depend onthe self-
onsistent values of ΣR

00(ω) and ΣR
0z(ω):

ρ−−(ω) = ρ++(ω) = 0,
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ρ+−(ω) = i∂ωnF eEyα

{

[

K2
− + 4(H + W )(H∗ −W ∗)

]

ln(−K−)

(K− −K∗
−)(K− −K+)(K− −K∗

+)π
−

[

K∗2
− + 4(H + W )(H∗ −W ∗)

]

ln(−K∗
−)

(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)π

+

[

K2
+ + 4(H + W )(H∗ −W ∗)

]

ln(−K+)

(K− −K+)(K∗
− −K+)(K+ −K∗

+)π
−

[

K∗2
+ + 4(H + W )(H∗ −W ∗)

]

ln(−K∗
+)

(K− −K∗
+)(K∗

− −K∗
+)(K+ −K∗

+)π

}/

{

−1 +

[

(2H −K− + 2W )(2H∗ + K− − 2W ∗) ln(−K−)

(K− −K∗
−)(K− −K+)(K− −K∗

+)π
− (2H −K∗

− + 2W )(2H∗ + K∗
− − 2W ∗) ln(−K∗

−)

(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)π

+
(2H −K+ + 2W )(2H∗ + K+ − 2W ∗) ln(−K+)

(K− −K+)(K∗
− −K+)(K+ −K∗

+)π
− (2H −K∗

+ + 2W )(2H∗ + K∗
+ − 2W ∗) ln(−K∗

+)

(K− −K∗
+)(K∗

− −K∗
+)(K+ −K∗

+)π

]

niT++T ∗
−−

}

ρ−+(ω) = i∂ωnF eEyα

{

[

K2
− + 4(H −W )(H∗ + W ∗)

]

ln(−K−)

(K− −K∗
−)(K− −K+)(K− −K∗

+)π
−

[

K∗2
− + 4(H −W )(H∗ + W ∗)

]

ln(−K∗
−)

(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)π

+

(

K2
+ + 4(H −W )(H∗ + W ∗)

)

ln(−K+)

(K− −K+)(K∗
− −K+)(K+ −K∗

+)π
−

(

K∗2
+ + 4(H −W )(H∗ + W ∗)

)

ln(−K∗
+)

(K− −K∗
+)(K∗

− −K∗
+)(K+ −K∗

+)π

}/

{

−1 +

[

(2H + K− − 2W )(2H∗ −K− + 2W ∗) ln(−K−)

(K− −K∗
−)(K− −K+)(K− −K∗

+)π
− (2H + K∗

− − 2W )(2H∗ −K∗
− + 2W ∗) ln(−K∗

−)

(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)π

+
(2H + K+ − 2W )(2H∗ −K+ + 2W ∗) ln(−K+)

(K− −K+)(K∗
− −K+)(K+ −K∗

+)π
− (2H + K∗

+ − 2W )(2H∗ −K∗
+ + 2W ∗) ln(−K∗

+)

(K− −K∗
+)(K∗

− −K∗
+)(K+ −K∗

+)π

]

niT−−T ∗
++

}

Appendix D: CALCULATION OF THE MATRIX
ρ̂

R(A)
E

(ω)For the ele
tri
 �eld E along the y axis E = (0, Ey), wesolve here the linear Eq. (41) for the elements of the ma-trix ρ̂
R(A)
E

(ω) by performing analyti
ally the momentumintegrations of the Green's fun
tions Ĝ
R(A)
0 (k, ω) (given

by Eq. (34)) in the right hand side. For ea
h energy ω,we obtain the following expressions that also depend onthe self-
onsistent values of ΣR
00(ω) and ΣR

0z(ω):
ρR

Ey−−(ω) = ρR
Ey++(ω) = 0,

ρR
Ey+−(ω) = 4iα

[

H(−1 + ∂ωΣR
00)−W∂ωΣR

0z

]

{

K2
− −K2

+ + 2K−K+

[

− ln(−K−) + ln(−K+)
]

}/

{

(K− −K+)
[

K3
−K+π + K3

+K−π + K2
−K+niT−−T++ − 4K+niT−−T++

(

H2 −W 2
)

+K2
+K−niT−−T++ − 4K−niT−−T++

(

H2 −W 2
)

− 2πK2
+K2

− − 8K+K−niT−−T++W
]

+2K−K+niT−−T++

[

4H2 + (K− − 2W )(−K+ + 2W )
][

ln(−K−)− ln(−K+)
]

}

ρR
Ey−+(ω) = −ρR

Ey+−(ω)Appendix E: CALCULATION OF THE FERMISURFACE CONDUCTIVITYFor the ele
tri
 �eld E along the y axis E = (0, Ey),we perform momentum k and frequen
y ω integrations inEq. (42). It is 
onvenient to divide the resultant 
ondu
-tivity into two parts; the bare bubble part σIb
xy(yy) that
orresponds to 
al
ulating only the se
ond line in Eq.(42) e�e
tively assuming that ρ̂(ωF ) = 0, and self 
onsis-

tent part σIsc
xy(yy) that 
orresponds to 
al
ulating the �rstline in Eq. (42) that takes into a

ount 
orre
tion due toself-
onsistent 
al
ulation of ρ̂(ωF ):

σI
xy = σIb

xy + σIsc
xy , (E1)

σI
yy = σIb

yy + σIsc
yy , (E2)We arrive at analyti
al expressions for the bare bub-



16ble 
ontributions to the 
ondu
tivities σIb
xy and σIb

yy thatdepend on the self-
onsistent values of ΣR
00(ωF ) and ΣR

0z(ωF ) at the Fermi surfa
e:
σIb

xy

e2/~
=

2iα2 [−H∗(K− + 2W ) + H(K− + 2W ∗)] ln(−K−)

(K− −K∗
−)(K− −K+)(K− −K∗

+)π2
+

2iα2
[

H∗(K∗
− + 2W )−H(K∗

− + 2W ∗)
]

ln(−K∗
−)

(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)π2

+
2iα2 [−H∗(K+ + 2W ) + H(K+ + 2W ∗)] ln(−K+)

(K− −K+)(K∗
− −K+)(K+ −K∗

+)π2
+

2iα2
[

H∗(K∗
+ + 2W )−H(K∗

+ + 2W ∗)
]

ln(−K∗
+)

(K− −K∗
+)(K∗

− −K∗
+)(K+ −K∗

+)π2

,(E3)
σIb

yy

e2/~
= −K2

−(K− − 3K+)K∗
+ ln(−K−)

4(K− −K+)3(K− −K∗
+)π2

− K3
−

(

K−(K− + K∗
−)− (K− + 3K∗

−)K+ + 2K2
+

)

ln(−K−)

4(K− −K∗
−)(K− −K+)3(K− −K∗

+)π2

+
K−K∗2

− (K∗
− − 3K∗

+) ln(−K∗
−)

4(K− −K∗
−)(K∗

− −K∗
+)3π2

+
K∗3

−

(

K∗
−(K∗

− + K+)− (K∗
− + 3K+)K∗

+ + 2K∗2
+

)

ln(−K∗
−)

4(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)3π2

−K2
+(3K− −K+)K∗

+ ln(−K+)

4(K− −K+)3(K+ −K∗
+)π2

− K3
+

(

2K2
− + K+(K∗

− + K+)−K−(3K∗
− + K+)

)

ln(−K+)

4(K∗
− −K+)(K− −K+)3(K+ −K∗

+)π2

+
K−K∗2

+ (3K∗
− −K∗

+) ln(−K∗
+)

4(K− −K∗
+)(K∗

− −K∗
+)3π2

+
K∗3

+

(

2K∗2
− + K∗

+(K+ + K∗
+)−K∗

−(3K+ + K∗
+)

)

ln(−K∗
+)

4(K− −K∗
+)(K∗

− −K∗
+)3(K+ −K∗

+)π2

−K−K+

(

K∗2
− + K∗2

+

)

−K2
−

(

K∗2
− −K∗

−K∗
+ + K∗2

+

)

−K2
+

(

K∗2
− −K∗

−K∗
+ + K∗2

+

)

2(K− −K+)2(K∗
− −K∗

+)2π2

−2
(

4WW ∗α2 + 2HH∗
(

K− − 2α2
)

−K2
−

(

W + W ∗ + α2
)

+ 2K−

(

WW ∗ + (W + W ∗)α2
))

ln(−K−)

2(K− −K∗
−)(K− −K+)(K− −K∗

+)π2

+
2

(

4WW ∗α2 + 2HH∗
(

K∗
− − 2α2

)

−K∗2
−

(

W + W ∗ + α2
)

+ 2K∗
−

(

WW ∗ + (W + W ∗)α2
))

ln(−K∗
−)

2(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)π2

−2
(

4WW ∗α2 + 2HH∗
(

K+ − 2α2
)

−K2
+

(

W + W ∗ + α2
)

+ 2K+

(

WW ∗ + (W + W ∗)α2
))

ln(−K+)

2(K− −K+)(K∗
− −K+)(K+ −K∗

+)π2

+
2

(

4WW ∗α2 + 2HH∗
(

K∗
+ − 2α2

)

−K∗2
+

(

W + W ∗ + α2
)

+ 2K∗
+

(

WW ∗ + (W + W ∗)α2
))

ln(−K∗
+)

2(K− −K∗
+)(−K∗

− + K∗
+)(−K+ + K∗

+)π2

−2
(

−2H2 + (K− + K+ − 2W )W
)

2(K− −K+)2π2
−

(

(K− + K+)
(

4H2 + K−K+

)

− 8K−K+W − 4(K− + K+)W 2
)

α2

2K−(K− −K+)2K+π2

− [ln(−K−)− ln(−K+)]

×2
(

W (−2K−K+ + (K− + K+)W ) +
(

−K−K+ + 2(K− + K+)W + 4W 2
)

α2 + H2
(

K− + K+ − 4α2
))

2(K− −K+)3π2

−2
(

−2H∗2 + (K∗
− + K∗

+ − 2W ∗)W ∗
)

2(K∗
− −K∗

+)2π2
−

(

(K∗
− + K∗

+)
(

4H∗2 + K∗
−K∗

+

)

− 8K∗
−K∗

+W ∗ − 4(K∗
− + K∗

+)W ∗2
)

α2

2K∗
−(K∗

− −K∗
+)2K∗

+π2

−
[

ln(−K∗
−)− ln(−K∗

+)
]

×2
(

W ∗(−2K∗
−K∗

+ + (K∗
− + K∗

+)W ∗) +
(

−K∗
−K∗

+ + 2(K∗
− + K∗

+)W ∗ + 4W ∗2
)

α2 + H∗2
(

K∗
− + K∗

+ − 4α2
))

2(K∗
− −K∗

+)3π2 (E4)where in this Appendix all parameter are taken at theFermi surfa
e: W = ωF − ΣR
00(ωF ), H = h − ΣR

0z(ωF ) ,
K± = 2(W + α2 ∓

√
H2 + 2Wα2 + α4). The analyti
al expressions for the self-
onsistent 
on-tributions to the 
ondu
tivities σIsc

xy and σIsc
yy be
ome:
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σIsc

xy

e2/~
=

αni

(

ρ+−T++T ∗
−−

(

K2
− + 4(H + W )(H∗ −W ∗)

)

− ρ−+T−−T ∗
++

(

K2
− + 4(H −W )(H∗ + W ∗)

))

ln(−K−)

2(K− −K∗
−)(K− −K+)(K− −K∗

+)π2eEy

−αni

(

ρ+−T++T ∗
−−

(

K∗2
− + 4(H + W )(H∗ −W ∗)

)

− ρ−+T−−T ∗
++

(

K∗2
− + 4(H −W )(H∗ + W ∗)

))

ln(−K∗
−)

2(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)π2eEy

+
αni

(

ρ+−T++T ∗
−−

(

K2
+ + 4(H + W )(H∗ −W ∗)

)

− ρ−+T−−T ∗
++

(

K2
+ + 4(H −W )(H∗ + W ∗)

))

ln(−K+)

2(K− −K+)(K∗
− −K+)(K+ −K∗

+)π2eEy

−αni

(

ρ+−T++T ∗
−−

(

K∗2
+ + 4(H + W )(H∗ −W ∗)

)

− ρ−+T−−T ∗
++

(

K∗2
+ + 4(H −W )(H∗ + W ∗)

))

ln(−K∗
+)

2(K− −K∗
+)(−K∗

− + K∗
+)(−K+ + K∗

+)π2eEy

,(E5)
σIsc

yy

e2/~
=

iαni

(

ρ+−T++T ∗
−−

(

K2
− + 4(H + W )(H∗ −W ∗)

)

+ ρ−+T−−T ∗
++

(

K2
− + 4(H −W )(H∗ + W ∗)

))

ln(−K−)

2(K− −K∗
−)(K− −K+)(K− −K∗

+)π2eEy

− iαni

(

ρ+−T++T ∗
−−

(

K∗2
− + 4(H + W )(H∗ −W ∗)

)

+ ρ−+T−−T ∗
++

(

K∗2
− + 4(H −W )(H∗ + W ∗)

))

ln(−K∗
−)

2(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)π2eEy

+
iαni

(

ρ+−T++T ∗
−−

(

K2
+ + 4(H + W )(H∗ −W ∗)

)

+ ρ−+T−−T ∗
++

(

K2
+ + 4(H −W )(H∗ + W ∗)

))

ln(−K+)

2(K− −K+)(K∗
− −K+)(K+ −K∗

+)π2eEy

− iαni

(

ρ+−T++T ∗
−−

(

K∗2
+ + 4(H + W )(H∗ −W ∗)

)

+ ρ−+T−−T ∗
++

(

K∗2
+ + 4(H −W )(H∗ + W ∗)

))

ln(−K∗
+)

2(K− −K∗
+)(−K∗

− + K∗
+)(−K+ + K∗

+)π2eEy (E6)where again all parameters are 
al
ulated at the Fermisurfa
e.Appendix F: CALCULATION OF THE FERMISEA CONDUCTIVITYFor the ele
tri
 �eld E along the y axis E = (0, Ey), weperform momentum integrations in Eq. (43) arriving at
the following expressions for 
ondu
tivities σII

xy and σII
yy :

σII
xy = σIIb

xy + σIIsc
xy , (F1)

σII
yy = 0, (F2)

σIIb
xy

e2/~
=

∫

dωnF

{

4iα2
[

H(1− ∂ωΣR
00)(K− + K+) + ∂ωΣR

0z(K+W + K−(K+ + W ))
]

K−K+(K− −K+)2π2

−2iα2
[

4(1− ∂ωΣR
00)H + ∂ωΣR

0z(K− + K+ + 4W )
]

(ln(−K−)− ln(−K+))

(K− −K+)3π2

}

+ c.c.

(F3)
σIIsc

xy

e2/~
=

∫

dωnF

α(ρR
Ey−+ − ρR

Ey+−)T−−T++

(

4H2 + K−K+ − 4W 2
) (

K2
− −K2

+ + 2K−K+(− ln(−K−) + ln(−K+))
)

2K−K+(K− −K+)3π2

+c.c. = 0 (F4)The fa
t that σIIsc
xy = 0 follows from the identity 4H2+

K−K+ − 4W 2 ≡ 0.As one 
an see, σII
yy and σIIsc

xy 
ontributions to theFermi sea Hall 
ondu
tivity vanish and the non-vanishing 
ontribution σIIb
xy depends on the self-
onsistent values of

ΣR
00(ω) and ΣR

0z(ω) and its 
al
ulation from Eq. (F3) re-quires numeri
al integration over ω.
Appendix G: DETAILED RESULTS FOR THEHALL CONDUCTIVITYIn order to gain more insight into the behavior of theanomalous Hall e�e
t, in Figs. 13 and 14 we plot di�erent 
omponents of the AHE 
ondu
tivity, parti
ularly theFermi sea 
ontribution σII

xy, the bare bubble 
ontribution
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Figure 13: The anomalous Hall 
ondu
tivity σTot
xy = σIb

xy + σIsc
xy + σII

xy and its 
omponents (σIb
xy, σIsc

xy , σII
xy) versus the averagedrelaxation rate 1/τ = 2ImΣA

00 (de�ned in Appendix B). The spin-orbit intera
tion strength is 2mα2/Eres = 3.59 (Eres = 10h);the strength of impurities: V0 = 0.01, 0.1, 0.2, 0.3; the Fermi energy εF /Eres = 0.9 for ωF = 0, εF /Eres = 0.5 for ωF = −4hand εF /Eres = 1.5 for ωF = 6h. Dimensionality of quantities displayed in this plot is restored.
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Figure 14: Identi
al to Fig. 13 plot with attra
tive disorder (V0 = −0.01, −0.1, −0.2, −0.3).
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σIb

xy (this 
orresponds to σI intxy in Ref. 1) and the self
onsistent 
ontribution σIsc
xy (this 
orresponds to σextxy inRef. 1). In Fig. 13, we take the same parameters as inFigs. 7 and 8 of Ref. 1 and we �nd disagreement withRef. 1 in the results for the 
ontribution σextxy (σIsc

xy ).The 
ontributions σIb
xy and σII

xy perfe
tly agree with Ref.1. In the 
lean limit τ → ∞, we see that σIsc
xy and thusthe total Hall 
ondu
tivity σTot

xy diverge. This diver-gen
e (σIsc
xy ∼ 1/niV0 in the regions (ii) and (iii) and

σIsc
xy ∼ 1/ni in the region (i), see Fig. 2) is due tothe skew s
attering. The 
ondu
tivity σIsc

xy also 
on-tains the side-jump 
ontribution whi
h 
an be best seenin Fig. 13a) in the sharp peak in the 
ondu
tivity forsmall 1/τ . The skew s
attering 
ontribution de
ays mu
hfaster 
ompared to the side-jump and intrinsi
 me
ha-nisms as we go to larger 1/τ . As a result, we 
an expe
t

a 
ross-over between the region dominated by the skews
attering and the region dominated by the side-jump-intrinsi
 me
hanisms. When both subbands are partiallyo

upied (see Figs. 13f) and 14f)), the higher order skews
attering is still present. However, we do not expe
ta well pronoun
ed 
ross-over as the intrinsi
 
ontribu-tion 
an
els the side-jump 
ontribution in the metalli
regime (see Eq. (45)). By 
omparing Figs. 13f) and14f), one 
an see that the higher order skew s
attering(hybrid skew s
attering)24 does not 
hange sign when we
hange the sign of impurities.When the side-jump-intrinsi
 and the skew s
attering
omponents have opposite signs, as in Fig. (13), we ob-serve the AHE sign 
hange instead of the 
ross-over. InFigs. 13a)-d), the skew s
attering is negative in the 
leanlimit while the side-jump-intrinsi
 part is positive. Thisinevitably leads to the sign 
hange of the 
ondu
tivity
σxy as we in
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