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Transport theory for disordered multiple-band systems: Anomalous Hall e�et andanisotropi magnetoresistaneAlexey A. Kovalev,1, 2 Yaroslav Tserkovnyak,1 Karel Výborný,3 and Jairo Sinova2, 31Department of Physis and Astronomy, University of California, Los Angeles, California 90095, USA2Department of Physis, Texas A&M University, College Station, TX 77843-4242, USA3Institute of Physis ASCR, Cukrovarniká 10, 162 53 Praha 6, Czeh Republi(Dated: February 15, 2009)We present a study of transport in multiple-band non-interating Fermi metalli systems based onthe Keldysh formalism, taking into aount the e�ets of Berry urvature due to spin-orbit oupling.We apply this formalism to a Rashba 2DEG ferromagnet and alulate the anomalous Hall e�et(AHE) and anisotropi magnetoresistane (AMR). The numerial alulations reprodue analytialresults in the metalli regime revealing the rossover between the skew sattering mehanism dom-inating in the lean systems and intrinsi mehanism dominating in the moderately dirty systems.As we inrease the disorder further, the AHE starts to diminish due to the spetral broadening ofthe quasipartiles. Although for ertain parameters this redution of the AHE an be approximatedas σxy ∼ σϕ
xx with ϕ varying around 1.6, this is found not to be true in general as σxy an gothrough a hange in sign as a funtion of disorder strength in some ases. The redution region inwhih the quasipartile approximation is meaningful is relatively narrow; therefore, a theory with awider range of appliability is alled for. By onsidering the higher order skew sattering proesses,we resolve some disrepanies between the AHE results obtained by using the Keldysh, Kubo andBoltzmann approahes. We also show that similar higher order proesses are important for theAMR when the nonvertex and vertex parts anel eah other. We alulate the AMR in anisotropisystems properly taking into aount the anisotropy of the non-equilibrium distribution funtion.These alulations on�rm reent �ndings on the unreliability of ommon approximations to theBoltzmann equation.PACS numbers: 72.15.Eb, 72.20.Dp, 72.20.My, 72.25.-bI. INTRODUCTIONReently, the interest in transport alulations inmultiple-band systems1,2 has been rekindled in part dueto the realization of diluted magneti semiondutors(DMS) that have strong spin-orbit interations, vari-able arrier densities, and ferromagneti ordering. Theseproperties imply the existene of the anomalous Halle�et (AHE)3 and the anisotropi magnetoresistane(AMR).4 Even though the mehanisms of the AHE andthe AMR are di�erent, they both have a similar desrip-tion based on the multiple-band transport theory. In thispaper, we formulate a relatively simple framework for do-ing suh transport alulations.The AHE is usually desribed in terms of the anoma-lous Hall resistivity ρxy that measures the transversevoltage with respet to the transport diretion and de-pends on the spontaneous magnetization M along the zdiretion. Theoretial studies of the AHE have a long his-tory beginning with the work of Karplus and Luttinger.5A number of papers on the AHE also appeared not solong ago,6,7,8,9,10,11,12 after the interpretation of the AHEbased on the Berry phase13 was proposed. Neverthe-less, theoretial desription of the AHE is far from be-ing omplete and it often involves umbersome alu-lations without transparent interpretations.14 The di�-ulties appear due to the neessity to onsider the o�-diagonal elements in Bloh band indies (the interbandoherenes indued by harge urrents). There is a gen-

eral trend to fous on partiular simple models in order tooverome the ommon mistakes that are made in treat-ing the AHE. A number of reent publiations onen-trate on the simpler but non-trivial Rashba 2D eletronsystem,1,15,16,17,18,19,20,21,22,23 yet arriving at ontradi-tory preditions. Most of the disagreements have been�nally resolved22,23,24 with some being addressed in thispaper.In alulating the AHE for a given material, the usualapproximations performed to leading order in ~/τεF anfail, where τ is the sattering time and εF is the Fermienergy. The semilassial desription of the Hall ondu-tivity within the usual Boltzmann equation leads to anAHE ontribution due to the sattering asymmetry in theollision term usually labeled as skew sattering.25 Otherterms, arising from subtle issues dealing with interbandoherene during the ollision and aeleration by theeletri �eld between ollisions, are usually introduedby hand through the so alled anomalous veloity26 andside-jump.27 This approah however, is non-systematiand prone to errors from missing terms and wrong in-terpretations, e.g. suh as giving physial meaning togauge dependent quantities. A more systemati way toderive the orret semilassial equations is through theKeldysh formalism in whih these interband oherenese�ets are taken into aount automatially.1,24The system under onsideration also allows us to studythe diagonal resistane as a funtion of the diretion ofthe magnetization. The hange in the resistane as a
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2funtion of the magnetization diretion relative to theurrent or rystallographi diretion is alled the AMRe�et. The mirosopi origin of the AMR in transitionmetal ferromagnets is still elusive28,29,30,31 and detailedalulations require onsideration of ompliated bandstrutures.32,33 A relatively simple host band struture inthe DMS ferromagnets provides a possibility for perform-ing detailed mirosopi alulations based on simplephysial models.34 However, the relaxation time approx-imation used in suh alulations is not always reliablesine it does not fully take into aount the anisotropiesof the system.35 The Kubo formula approah has beenapplied to the AMR alulations in Rashba systems andit has revealed the anellation of the nonvertex and ver-tex parts,36 similar to the spin Hall e�et (SHE) and theAHE.In this paper, we apply the Keldysh formalism fortransport alulations in multiple-band non-interatingFermi systems. This treatment simultaneously takes intoaount the Berry urvature e�ets (interband oher-enes) and sattering, allowing us to immediately aountfor suh physial e�ets as side-jump sattering and skewsattering within the same footing. We alulate theAHE analytially and numerially for the Rashba modeland �nd in agreement with Onoda et al.1,20 three distintregimes: the skew sattering regime, the disorder inde-pendent regime, and the dirty regime in whih, althoughthe basis of theory is not as well established, a distintrapid redution of the AHE is observed as the ondutiv-ity σxx diminishes. Even though almost all ferromagnetisystems are three dimensional, the �ndings of this simple2D model has been linked to higher dimensional systemsarguing that most likely the major ontributions to theAHE ome from the band anti-rossing regions1 similarto one observed in the Rashba model.We further analyze the saling found in the dirtyregime1,20 in whih the AHE seems to diminish in a man-ner that an be approximated as: σxy ∼ σϕ
xx with ϕ beinglose to 1.6. Some experimental results laim to on�rmsuh saling;37,38,39,40,41 however, treatment of some ofthese experimental results has to be done with extra areas the region of interest is often restrited to less than asingle deade, the materials have strong mangetoresis-tanes and in-plane anisotropies assoiated with them,and most of the data assoiated with the zero �eld al-ulation is in fat at very high magneti �elds. Althoughour numerial results on�rm this saling, it is found tobe in a very narrow region as the quasipartile approx-imation fails when τεF ∼ 1. In addition, hanging thesign of the satterer hanges the sign of the skew e�etand no saling is observed. Although this simple modelseems to apture qualitative aspets of the three regions,to make a quantitative link to 3D materials with muhmore omplex behavior seems premature at this stage. Inour alulations, we also identify the hybrid skew sat-tering regime of the AHE resulting from the higher ordersattering proesses. Suh proesses appear to be impor-tant for the AMR as the nonvertex and vertex diagram-

mati parts anel eah other for the Rashba model.36Our results suggest that the relaxation time approxima-tion is not always reliable for the AMR alulations as ithas been shown reently within the Boltzmann equationtreatment.35The paper is organized as follows. In Se. II, we de-velop a general formulation of transport in multiple-bandnon-interating Fermi systems with further generaliza-tions in Appendix A. In Se. III, we alulate the AHEin 2DEG ferromagnet with spin-orbit interation. Theanalytial and numerial results are followed by disus-sions and omparison to other works. In Se. IV, wealulate the AMR in 2DEG ferromagnet with spin-orbitinteration. Finally in Se. V, we present our onlu-sions.II. TRANSPORT IN MULTIPLE-BANDSYSTEMSThe method presented in this setion an be appliedto a multiple-band system desribed by a Hamiltonian
Ĥ0 + V̂ (r) that is a matrix in the band (hiral) index.In this setion, we �rst derive general non-linear equa-tions using nonequilibrium diagrammati tehnique, fur-ther restriting our onsideration to a linear response the-ory. A. Quantum kineti equationWe start by de�ning the following Green's funtions:42
Ĝ11 ≡ −i

〈

TcΨ(1+)Ψ†(1
′

+)
〉

= −i
〈−→

T Ψ(1+)Ψ†(1
′

+)
〉

,

Ĝ21 ≡ −i
〈

TcΨ(1−)Ψ†(1
′

+)
〉

= −i
〈

Ψ(1−)Ψ†(1
′

+)
〉

,

Ĝ12 ≡ −i
〈

TcΨ(1+)Ψ†(1
′

−)
〉

= i
〈

Ψ
†(1′−)Ψ(1+)

〉

,

Ĝ22 ≡ −i
〈

TcΨ(1−)Ψ†(1
′

−)
〉

= −i
〈←−

T Ψ(1−)Ψ†(1
′

−)
〉

,(1)where Tc is the generalized time ordering operator atingon the Keldysh ontour whih an be split in two timeaxis t+ (forward) and t− (bakward), Ψ is the vetor inthe band (hiral) spae orresponding to the Fermi �eld,and 1± = (r, t±) is the variable that desribes the spatialvariable r and the time variable t. The generalized timeordering operator performs an ordinary time ordering −→Tfor the time t+, an anti-time ordering ←−T for the time t−and in the mixed ase t− ours always after t+ withinthe Keldysh time ontour. We an now de�ne the Green'sfuntion in the Keldysh spae:
G̃ =

(

Ĝ11 Ĝ12

Ĝ21 Ĝ22

)

. (2)



3The sattering potential due to impurities in the Keldyshspae has the form:
Ṽ (1, 1′) =

(

V̂ (r) 0

0 −V̂ (r)

)

δ(1− 1′), (3)where V̂ (r) desribes the potential in the band (hiral)spae formed by many satterers whih for urrent on-sideration an have any general matrix form. The nega-tive sign arises here simply beause the lower branh in-tegration is taken from +∞ to −∞ while in the Keldyshloop the time goes from −∞ to +∞. The Green's fun-tion in Eq. (2) allows for a perturbation expansion re-lying on the Feynman rules. However, the four matrixelements of a so de�ned Green's funtion are linearly de-pendent, i.e. Ĝ12+Ĝ21 = Ĝ11+Ĝ22. Hene it is advanta-geous to perform a linear transformation in the Keldyshspae to eliminate one matrix element in Eq. (2):
Ǧ =

(

1 0
1 −1

) (

Ĝ11 Ĝ12

Ĝ21 Ĝ22

) (

1 0
−1 1

)

=

(

ĜR Ĝ<

0 ĜA

)

,whih leads to the following sattering potential:
V̌ =

(

1 0
1 1

)

Ṽ

(

1 0
1 −1

)

=

(

1 0
0 1

)

V̂ (r)δ(1 − 1′),where ĜR = Ĝ11 − Ĝ12 is the retarded Green's funtion,
ĜA = Ĝ12 − Ĝ22 is the advaned Green's funtion and
Ĝ< = Ĝ12. There are other hoies for the linear trans-formation, and our hoie is ditated by the fat that theGreen's funtion Ĝ< an be immediately related to thedistribution funtion in the Boltzmann equation.43As of now, it is assumed that V̂ (r) desribes some dis-ordered potential and all Green's funtions are averagedover this disorder. In the transformed Keldysh spae, theDyson equation42 beomes:

(

Ĝ−1
0 − Σ̂R −Σ̂<

0 Ĝ−1
0 − Σ̂A

)

⊗
(

ĜR Ĝ<

0 ĜA

)

= 1̌, (4)where R, A, and < respetively stand for the retarded,advaned and lesser omponents of the disorder averagedGreen's funtions and self-energies. The symbol ⊗ de-notes a onvolution (in position, time and band/spin).The diagonal omponents of Eq. (4), yield the two equa-tions for the retarded and advaned Green's funtions:
(Ĝ−1

0 − Σ̂R/A)⊗ ĜR/A = 1̂. (5)The o�-diagonal omponent of Eq. (4) yields the ki-neti equation (sometimes alled quantum Boltzmannequation) whih ontains the non-equilibrium informa-tion neessary to study transport:
[ĜR]−1 ⊗ Ĝ< − Σ̂< ⊗ ĜA = 0. (6)In order to solve Eq. (6), one has to alulate the selfenergy Σ̂< of the partiular problem. Here we fous on

Σ = + +  …..
V

ni

+ +

ni ni ni

U
∨

U
∨

U
∨

G
∨Figure 1: The non-equilibrium self-energy alulated usingthe self-onsistent T matrix approximation in Keldysh spae.sattering by randomly distributed idential impuritiesat zero temperature with

V̂ (r) =
∑

i

η̂U(r− ri), (7)where ri desribes the positions of random impurities ofdensity ni and η̂ is some matrix in the band index (e.g.in setion III, it is a unit matrix orresponding to salarimpurities, and in setion IV, it is a ombination of unitand unitary matries orresponding to harged and mag-neti impurities). A ommon approximation to this prob-lem is the self-onsistent T-matrix approximation (TMA)whih takes into aount all the non-rossing satteringevents from single impurities (see Fig. 1). We assumehere that the system is uniform and Ǧ depends on thedi�erene of spatial variables (r − ri) (however, this re-quirement an be lifted for the short-range disorder as itis shown in Appendix A). In this ase, we an sum upthe in�nite series of diagrams in Fig. 1 arriving at thefollowing expression for the self energy in the momentumrepresentation (for the sake of ompat form we use themomentum representation here):
〈

k|Σ̌|k′
〉

= ni

〈

k|Ť |k
〉

δ(k− k
′), (8)with the following expression for the T matrix operatorof impurity plaed in the origin:

Ť ≡
(

V̌ + V̌ ⊗ Ǧ⊗ V̌ + . . .
)

, (9)where V̌ =

(

η̂ 0
0 η̂

)

U(r)δ(1 − 1′). Combining the T-matrix struture Ť = V̌ ⊗ [1̌+ Ǧ⊗ Ť ] and solving for theo�-diagonal omponent we obtain the equation for thelesser omponent of self energy:
〈

k|Σ̂<|k′
〉

= ni

〈

k|T̂ R ⊗ Ĝ< ⊗ T̂ A|k
〉

δ(k− k
′). (10)The retarded and advaned T-matries are given bythe usual form

T̂ R(A) = V̂ ⊗ (1 + ĜR(A) ⊗ T̂ R(A))

= (1 + T̂ R(A) ⊗ ĜR(A))⊗ V̂ . (11)Equations (6) and (10) form a general losed set of equa-tions for Ĝ<. In order to solve these equations, we anfurther simplify them by looking for a solution of theform
Ĝ< = Ĝ<

2 + Ĝ<
1 , (12)



4where
Ĝ<

2 = nF ⊗ ĜA − ĜR ⊗ nF , (13)and the operator nF is the Fermi distribution funtion.In the ase of zero temperature, nF is the step fun-tion in the frequeny representation nF (ω) = θ(−ω) and
nF (t, t′) = i/ [2π(t− t′ + i0)] in the time representation.Equations (12) and (13) will allow us to separate theFermi sea and Fermi surfae omponents of the lesserGreen's funtion. By substituting Eq. (12) into Eq. (6),we obtain the kineti equation for Ĝ<

1 :
[ĜR]−1 ⊗ Ĝ<

1 − Σ̂<
1 ⊗ ĜA =

[

Ĥ0
⊗, nF

]

⊗ ĜA, (14)with 〈

k|Σ̂<
1 |k′

〉

= ni

〈

k|T̂ R ⊗ Ĝ<
1 ⊗ T̂ A|k

〉

δ(k − k
′),where [

...⊗, ...
] stands for a ommutator. In order to de-rive Eq. (14), Eqs. (5) and (11) are used along with thefat that T̂ R ⊗ Ĝ<

2 ⊗ T̂ A = nF ⊗ T̂ A − T̂ R ⊗ nF , and
Σ̂<

2 = nF ⊗ Σ̂A − Σ̂R ⊗ nF , (15)whih is a onsequene of Eqs. (10,11,13).The lesser Green's funtion ontains all the informa-tion about the transport properties of our system andthe harge urrent density an be alulated as:
jx(y,z) =

e

2
Tr

〈

Ψ
†(1

′

)υ̂x(y,z)(1)Ψ(1)
〉

1=1′
+ c.c.

= − ie

2
Tr

[(

υ̂x(y,z)(1) + υ̂†

x(y,z)(1
′

)
)

Ĝ<(1, 1
′

)
]

1=1′

,(16)where υ̂(1) =
(

−i~∇1 − eÂ(1)/c
)

/m, υ̂
†(1

′

) =
(

i~∇1′ − eÂ
†
(1

′

)/c
)

/m and Â(1) is the generalizedvetor potential matrix in the band index that also de-sribes spin-orbit interations; e = −|e| stands for aneletron harge.B. Linearized Fermi surfae ontributionThe kineti Eq. (14) has not assumed linearity in ele-tri �eld strength nor any partiular temporal depen-dene. Higher order terms in the impurity density niorresponding to non-rossed diagrams have been takeninto aount as the retarded and advaned Green's fun-tions in Eq. (14) are alulated self-onsistently. In thefollowing, we solve the problem for linear response theoryof a uniform and stationary system in the presene of auniform eletri �eld.In the presene of slowly varying perturbations, it isuseful to perform the Wigner transformation, viz. theenter-of-mass oordinates (X = (R, T )) and the Fouriertransform with respet to the relative oordinates (k =
(k, ω)). However, the Wigner oordinate k assoiatedwith the momentum operator −i∇ is not gauge invari-ant and onsequently it is not the orret hoie for de-sribing our system. On the other hand, the kineti mo-mentum k(T ) = −i∇ − eAE(T )/(~c) is gauge invari-ant, and as it will be shown below, for the stationary

ase all time dependene an be oneived in k(T ); herethe vetor potential AE(T ) desribes the external ele-tri �eld. The time derivative within the anonial o-ordinates (marked by wave) beomes a ombination oftime and momentum derivatives within the kineti oor-dinates: ∂T̃ = ∂T + ∂Tk(T )∂k, ∂
R̃

= ∂R, ∂
k̃

= ∂k and
∂ω̃ = ∂ω.In the Wigner representation with the kineti momen-tum, the onvolution of two operators is approximatedas:

Â⊗ B̂ = expi(∂A
X∂B

k −∂A
k ∂B

X )/2 Â(X, k)B̂(X, k)

≈ ÂB̂ + i
2

(

∂X Â∂kB̂ − ∂kÂ∂XB̂
)

,where we use the four vetor notations ∂X∂k = ∂R∂k −
∂T̃ ∂ω and ∂T̃ = ∂T + eE

~
∂k. Here, we assume that avetor potential AE(T ) = −cET whih orresponds toa uniform eletri �eld E. The �rst order gradient ex-pansion is su�ient for the linear response theory, whilethe seond order gradient expansion may be neessaryfor time dependent problems and when the Hamiltonian

Ĥ0 is spatially dependent in order to aount for the or-responding Berry urvature e�ets.2 Sine we are seek-ing homogeneous solutions both in spae and time withrespet to the enter-of-mass oordinates, the only sur-viving terms in the expansion are
Â⊗ B̂ ≈ ÂB̂ − i

2~
eE

(

∂kÂ∂ωB̂ − ∂ωÂ∂kB̂
) (17)Applying the above Wigner transformation to Ĝ<

2 inEq. (13), we obtain diretly
Ĝ<

2 = nF (ĜA−ĜR)+
i

2~
∂ωnF eE(∂kĜA

eq +∂kĜR
eq), (18)where Ĝ

R/A
eq are the Green's funtions evaluated at equi-librium, i.e. E = 0. Ĝ<

2 solves the Kineti Eq. (6) upto zeroth order in the eletri �eld E, and therefore theexpansion in E of Ĝ<
1 and Σ̂<

1 starts from the linear in Eterms. With this knowledge, we apply the Wigner trans-formation to Eq. (14), and �nd the self-onsistent simpleform of the kineti equation for Ĝ<
1 :

Ĝ<
1 = ĜR

eqΣ̂
<
1 ĜA

eq − ieE(∂ωnF )ĜR
eqυ̂ĜA

eq (19)
Σ̂<

1 = ni

∫ d2k′

(2π)2
T̂ R

eq(k,k′)Ĝ<
1 (k′)T̂ A

eq(k
′,k) (20)where υ̂ = ∂Ĥ0/∂~k, and T̂

R/A
eq are self-onsistent T-matries evaluated at equilibrium. In the following se-tion, we show how to solve the kineti Eqs. (19) and (20)for a simple system desribed by the Rashba Hamilto-nian. Whereas solving Eqs. (19) and (20) require onlythe equilibrium retarded and advane Green's funtionsand T-matries, note that for Ĝ<

2 we need to solve theseGreen's funtions up to linear order in E (see below).From the equations above, it is natural to deomposethe ontributions to Ĝ< into the Fermi sea and Fermi



5surfae ontributions1 suh that Ĝ< = Ĝ<
1 + Ĝ<

2 = Ĝ<
I +

Ĝ<
II where

Ĝ<
I = Ĝ<

1 + i
2~

(∂ωnF )eE(∂kĜA
eq + ∂kĜR

eq), (21)
Ĝ<

II = nF (ĜA − ĜR). (22)Next, we linearize Eq. (16) in E, arry out the Wignertransformation and insert the two omponents of Ĝ<, ar-riving at the two orresponding omponents of the ur-rent density:
jI
x(y,z) = −ie

∫

d2
k

(2π)2
dω

2π
Tr

(

Ĝ<
I υ̂x(y,z)

)

, (23)
jII
x(y,z) = −ie

∫

d2
k

(2π)2
dω

2π
Tr

(

Ĝ<
II υ̂x(y,z)

)

, (24)where the Fermi surfae (jI
x(y,z)) and Fermi sea (jII

x(y,z))ontributions are idential to ones de�ned within Kubo-Streda formalism.44 Equations (19), (20) and (21) are themain results of this subsetion.C. Linearized Fermi sea ontributionIn order to alulate the Fermi sea ontribution usingEqs. (22) and (24), we expand the retarded (advaned)Green's funtion and self-energy up to the �rst order in
E following the proedure of Onoda et al.:1

ĜR(A) = Ĝ
R(A)
eq + eEĜ

R(A)
E

+ O(E2),

Σ̂R(A) = Σ̂
R(A)
eq + eEΣ̂

R(A)
E

+ O(E2),

(25)where ĜR
E

= 1
e∂EĜR|E=0, Σ̂R

E
= 1

e∂EΣ̂R|E=0 and Ĝ
R/A
eq(Σ̂R(A)

eq ) are the Green's funtions (self-energies) evalu-ated at equilibrium, i.e. E = 0. The Fermi sea lesserGreen's funtion Ĝ<
II alulated up to the �rst order inthe eletri �eld E beomes:

Ĝ<
II = nF (ĜA

eq − ĜR
eq) + nF eE(ĜA

E − ĜR
E). (26)We now substitute Eqs. (25) into Eqs. (5) and (11)only retaining linear terms in E in order to arrive at thefollowing self-onsistent equations:

Ĝ
R(A)
E

(ω) = ĜR
eqΣ̂EĜR

eq − i
2

[

ĜR
eq

(

υ̂+∂~kΣ̂R
eq

)

∂ωĜR
eq

− ∂ωĜR
eq

(

υ̂+∂~kΣ̂R
eq

)

ĜR
eq

]

, (27)
Σ̂

R(A)
E

(ω) = ni

∫

d2k′

(2π)2
T̂ R(A)

eq (k,k′)Ĝ
R(A)
E

(k′)T̂ R(A)
eq (k′,k),(28)where in Eq. (5) we also performed the gradient expan-sion. Equations (26), (27) and (28) are the main resultsof this subsetion.

III. AHE IN RASHBA SYSTEMSIn this setion, we apply the above formalism to 2DEGwith exhange �eld and spin-orbit interation. A gen-eral numerial proedure is followed by analytial resultsvalid in the metalli regime in the limit of small impu-rity sattering broadening ~/τ with respet to the Fermienergy εF . We end the setion with a disussion of thenumerial and analytial results omparing them to otherapproahes. For onveniene, and in order to keep the ex-pressions more onise, we introdue here the dimension-less units that an easily be transformed into dimensionalunits by following equations at the beginning of this se-tion. Note that our formalism annot be used lose tothe energies ω = ±h in Fig. 2, as kF l (l is the mean-freepath) an beome very small and the non-rossing ap-proximation in Fig. 1 may fail. Nevertheless, we do notexpet large orretions to our results around these sin-gularities as the non-diagonal ondutivity seems not tobe strongly a�eted by inluding the rossed diagrams.45A. Calulational proedureWe restrit ourselves here to 2DEG Rashba Hamilto-nian with an exhange �eld h̆ (breve aent here meansthat h is in dimensional units) in order to obtain simpleanalytial results that onnet diretly with other miro-sopi linear response alulations:19,22,46
ĤR = 1̂(~k̆)2/2m + ᾰk̆ · σ̂ × z− h̆σ̂z + 1̂V (r̆), (29)where ᾰ is the strength of spin-orbit interation, σ̂ arePauli matries, ~k̆ = −i~∇ − eA/c, A(t) = −cEt de-sribes the external eletri �eld and V (r) desribes theimpurities. From symmetry onsiderations, the mostgeneral form of the Hamiltonian in Eq. (29) shouldtreat the oordinate r as an operator r + r̂so(k) with

r̂so(k) = λσ̂ × k originating from the projetion proe-dure onto the band under onsideration.47 The spin-orbitinteration an also inlude higher e.g. ubi terms rele-vant for the bulk InSb and the HgTe quantum wells withan inverted band struture.48,49 Here, only linear termswith Rashba symmetry are onsidered with r̂so(k) beingdisregarded as we expet e�et of HSO = r̂so(k)∇V (r)on the AHE to be small for wide band semiondutors inwhih λ is relatively small.50 The disorder in the systemis modeled by impurity delta-satterers:
V (r) = V̆0

∑

i

δ(r̆− r̆i), (30)where r̆i desribes the positions of randomly distributedimpurities of density n̆i.We rewrite the Hamiltonian in dimensionless quanti-ties:
ĤR

εF
= 1̂

1

2
k

2 + αk · σ̂× z− hσ̂z + 1̂V0

∑

i

δ(r− ri), (31)
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Ω(k)

k

(i)

(iii)

(ii) Ω = h

Ω = -h

Figure 2: Eletroni band dispersions of the Rashba model;throughout the paper, εF is the Fermi energy measured fromthe bottom of the lower band while ωF is the Fermi energymeasured from the middle of the gap (region (ii)).where εF is the Fermi energy measured from the mini-mum of energy, k = k̆l0 is the dimensionless momentum.The dimensionality an be restored by substituting ex-pressions for the dimensionless units into the �nal formu-las:
l0 =

√

~2

mεF
, α = ᾰ

√

m

~2εF
, V0 =

mV̆0

~2
,

h =
h̆

εF
, ni = n̆il

2
0, k = k̆l0.Also note that whereas εF is measured from the bottomof the lower band, in the notation below, we introdue

ωF whih is the Fermi energy measured from the middleof the gap (region (ii) in Fig.2).In the following, we solve Eqs. (19) and (20) in order to�nd the non-equilibrium Green's funtion Ĝ<
1 desribingproesses at the Fermi surfae, and Eqs. (27) and (28)for the non-equilibrium Green's funtion Ĝ<

2 - primarilyFermi sea ontribution.We alulate Σ̂
R(A)
eq and the Green's funtions Ĝ

R(A)
equsing the self-onsistent TMA, i.e. diagonal omponentsof Eq. (8):1,20

T̂ R(A)
eq = V0(1̂− V0γ̂

R(A))−1, (32)
Σ̂R(A)

eq = niT̂
R(A)
eq (ω) = Σ

R(A)
eq0 σ̂0 + Σ

R(A)
eqz σ̂z, (33)

Ĝ
R(A)
eq = (ω1̂− Ĥ0 − Σ̂

R(A)
eq )−1

=
(ω − k2

2 − Σ
R(A)
eq0 )σ̂0 + αky σ̂x − αkxσ̂y − (h− Σ

R(A)
eqz )σ̂z

(ω − k2

2 − Σ
R(A)
eq0 )2 − (h− Σ

R(A)
eqz )2 − α2k2

,(34)where γ̂R(A) =
∫

d2k/(2π)2Ĝ
R(A)
eq (k, ω) ≡ γR(A)σ̂0 +

γ
R(A)
z σ̂z . We alulate self-onsistent value of the self en-ergy Σ̂

R(A)
eq (ω) for eah ω by performing su�ient numberof iterations in Eq. (33) in order to ahieve the presribedauray (see Appendix B for details).With the knowledge of the equilibrium Green's fun-tion ĜR
eq(k, ω), we an alulate the loal densities of

Σ =< + + + + + +  …..^

Σ =R
+ + +  …..^ +

a)

b)b)Figure 3: (olor online). An in�nite set of diagrams represent-ing the self-onsistent TMA in alulating; a) the retarded(advaned) self energy - Σ̂
R(A)
eq and b) the lesser omponentof self energy - Σ̂< in Eqs. (33) and (36), respetively.states:

D(ω) ≡ − 1

π

∫

d2k

(2π)2
Im{Tr [

ĜR
eq(k, ω)

]}

,and the total number of eletrons:
N =

∫ ωF

−∞

dωD(ω). (35)The number of eletrons hanges as we inrease the dis-order, and following Eq. (35), ωF is always adjusted sothat the total number of eletrons is onstant.The same TMA is also used to alulate Σ̂< and Σ̂
R(A)
Efrom Eqs. (20) and (28), respetively:

Σ̂<
1 = ni

∫

d2k

(2π)2
T̂ R

eq(ω)Ĝ<
1 (k, ω)T̂ A

eq(ω) (36)
Σ̂

R(A)
E

= ni

∫

d2k

(2π)2
T̂ R(A)

eq (ω)Ĝ
R(A)
E

(k, ω)T̂ R(A)
eq (ω)(37)The TMA with self-onsistent alulation of the equilib-rium Green's funtions Ĝ

R(A)
eq desribed in Appendix Ballows us to take into aount higher order non-rosseddiagrams in the onentration of impurities ni, withweak loalization diagrams being disregarded. The pro-edure of alulating the retarded (advaned) and non-equilibrium self energies in Eqs. (33) and (36) is repre-sented graphially in Fig. 3. In this graphial representa-tion, the bold arrow orresponds to the self-onsistentlyalulated retarded (advaned) Green's funtion.For the delta satterers, T -matrix does not depend onmomentum k whih allows us to perform momentum in-tegrations in Eqs. (36) and (37). It is then useful tointrodue the following 2× 2 matries:

ρ̂(ω) ≡
∫

d2k

(2π)2
Ĝ<

1 (k, ω) (38)
ρ̂

R(A)
E

(ω) ≡
∫

d2k

(2π)2
Ĝ

R(A)
E

(k, ω) (39)The elements of matries ρ̂ and ρ̂E satisfy a system oflinear equations obtained by integrating in momentum



7spae the left and right hand sides of Eqs. (19) and (27),respetively:
ρ̂ =

∫ d2k

(2π)2
ĜR

eq T̂
R
eq(ω)ρ̂(ω)T̂ A

eq(ω)ĜA
eq

−i∂ωnF eE
∫ d2k

(2π)2
ĜR

eqυ̂ĜA
eq

, (40)
ρ̂

R(A)
E

=
∫ d2k

(2π)2
Ĝ

R(A)
eq T̂

R(A)
eq (ω)ρ̂

R(A)
E

(ω)T̂
R(A)
eq (ω)Ĝ

R(A)
eq

− i

2

∫ d2k

(2π)2

(

Ĝ
R(A)
eq υ̂∂ωĜ

R(A)
eq − ∂ωĜ

R(A)
eq υ̂Ĝ

R(A)
eq

)

.(41)The momentum integrations in the right hand side ofEqs. (40) and (41) are done analytially using the generalform of the Green's funtions Ĝ
R(A)
eq (k, ω) in Eq. (34).Without loss of generality, we take the eletri �eld Ealong the y axis E = (0, Ey) and solve the system oflinear Eqs. (40) and (41) for the elements of matries ρ̂and ρ̂E in Appendies C and D, respetively.With this, we alulate the urrent from Eqs. (23) and(24), respetively, with a use of Eqs. (19), (21), (26) and(27):

jI
x(y) = −ie

∫ d2k

(2π)2
dω

2π
Tr

{

ĜR
eq T̂

R
eqρ̂T̂ A

eqĜ
A
eqυ̂x(y)

−ieE∂ωnF

(

ĜR
eqυ̂ĜA

eq −
1

2
(ĜA

eqυ̂ĜA
eq − ĜR

eqυ̂ĜR
eq)

)

υ̂x(y)

}

,(42)
jII
x(y) = ie

∫ d2k

(2π)2
dω

2π
eEnF Tr

[

ĜR
eq T̂

R
eqρ̂

R
E
T̂ R

eqĜ
R
eq υ̂x(y)

− i

2

(

ĜR
eqυ̂∂ωĜR

eq − ∂ωĜR
eqυ̂ĜR

eq

)

υ̂x(y)

]

+ c.c.

.(43)where we use ∂kĜ
R(A)
eq = Ĝ

R(A)
eq υ̂Ĝ

R(A)
eq , whih holds forthe model of delta impurities. In Eq. (42), we performanalytial integrations over momentum k and energy ωwhile in Eq. (43), we only perform analytial integrationover momentum. The results of these integrations aregiven in Appendies E and F for Eqs. (42) and (43),respetively.B. Analytial results in the metalli regimeIn the metalli regime, we are able to obtain analytialresults as it is su�ient to onsider only �nite numberof terms in the expansion with respet to the strength ofimpurity in Fig. 3. For the same reason, we are also ableto generalize the disorder in Eq. (30) (generalization ofthe theory is given in Appendix A) as follows:

V (r) =
∑

i

V i
0 δ(r− ri), (44)

where ri is random, the strength of eah impurity hasthe same arbitrary distribution and all strength distribu-tions are independent leading to the �rst four umulants:
〈

V i
0

〉

dis
= 0, ni

〈

(V i
0 )2

〉

dis
= V2, ni

〈

(V i
0 )3

〉

dis
= V3 and

ni

〈

(V i
0 )4

〉

dis
= V4 where ni is the onentration of im-purities. For the disorder desribed in Eq. (30), we have

√

V2/ni = 3

√

V3/ni = 4

√

V4/ni = V0 and for the tele-graph white noise disorder we have V3 = 0 as it is men-tioned in Appendix A.In this setion, we �rst expand the retarded (advaned)self energy in Eq. (33) up to the third order in V0 (or upto the terms V3 in Eq. (A4)). The lesser omponent ofthe self-energy in Eq. (36) has to be expanded up to thefourth order in V0 (or up to the terms V4 in Eq. (A5))whih orresponds to the four legged diagrams in Fig.3b). This ensures that the expansion of the ondutivity
σI

xy following from Eqs. (E3,E5) aptures all possibleterms proportional to 1/V0 and 1.The expansion of σII
xy following from Eq. (F3) is some-what simpler as it only ontains the terms proportionalto 1 and its alulation requires onsideration of onlyone bare bubble diagram (e.g. summation of vertiesleads to higher order orretions). In our disussion, wethus onentrate on the diagrams for alulating σI

xy andalso present the result for the bare bubble diagram of
σII

xy. Note that in the expansion of σI(II), it is importantto properly onsider the branh ut of the � ln� funtiontaken as (−∞, 0]. The diagrams in Fig. 3 have diretorrespondene to the Kubo formalism diagrams in Fig.4 used in Ref. 22. This allows us to separate the ondu-tivity into terms that diretly relate to eah diagram inFig. 4.We distinguish three regimes for the position of theFermi energy with respet to the gap of the size 2h; (i)
ωF > h, (ii) −h < ωF < h and (iii) ωF < −h (seeFig. 2). To simplify formulas, we introdue the followingnotation:

k2
± = 2(ωF + α2 ∓

√

h2 + 2ωF α2 + α4),

λ± =
√

(αk±)2 + h2, λF =
√

2ωF α2 + h2,

κ± =
√

(αk±)2 + 4h2,

ν± = k

∣

∣

∣

∣

dω(k)

dk

∣

∣

∣

∣

−1

=



























λ±

λ± ± α2
, ωF > h

λ−

λ− − α2
, −h < ωF < h

λ±

|λ± − α2| , ωF < −h

,where ν± is the density of states at the Fermi level and
k± are the two Fermi wave numbers for the regimes (i)and (iii). In the regime (ii), k+ beomes pure imaginaryand only k− has the meaning of the Fermi wave number.Further, we introdue the following parameter:

Λ =
V3

V 2
2

γi
z +

V4

V 2
2

(3γrγi
z + γiγr

z),



8where γ̂ =
∫

d2k/(2π)2ĜR
0 ≡ γσ̂0 + γzσ̂z, with γ =

γr + iγi, γz = γr
z + iγi

z. Note that the two dimensionalintegral over momentum diverges and γ̂ is alulated byintroduing the momentum uto�, see Appendix B. Byexpanding the result of Appendix B up to the zeroth or-der in the strength of impurities, we obtain:
γr =

(k2
− − 2ωF ) ln

∣

∣

∣

∣

k2
−

k2
0 − k2

−

∣

∣

∣

∣

− (k2
+ − 2ωF ) ln

∣

∣

∣

∣

k2
+

k2
0 − k2

+

∣

∣

∣

∣

2π(k2
− − k2

+)
,

γr
z =

h

π(k2
+ − k2

−)
ln

∣

∣

∣

∣

k2
+(k2

0 − k2
−)

k2
−(k2

0 − k2
+)

∣

∣

∣

∣

,

γi =























−ν− + ν+

4
, ωF > h

−ν−
4

, −h < ωF < h

−k2
− + k2

+ − 4ωF

2(k2
− − k2

+)
, ωF < −h

,

γi
z =



























h

4
(
ν+

λ+
− ν−

λ−

), ωF > h

−h

4

ν−
λ−

, −h < ωF < h

− 2h

k2
− − k2

+

, ωF < −h

,where k0 is the uto� in the momentum integration.As it follows from the Appendies E and F, the non di-agonal ondutivities σ
I(II)
xy an be alulated by properlyhoosing the � ln� branh that orresponds to the regimes(i), (ii) or (iii), respetively. The result of expandingEqs. (E3,E5) and Eq. (F3) for ondutivities σI

xy and
σII

xy, respetively, in the region (i) (ωF > h) beomes:
σ

I(i)
xy =

2e2α2

~π
Λ = − V4

V 2
2

e2hα2 ln

∣

∣

∣

∣

k2
+(k2

0 − k2
−)

k2
−(k2

0 − k2
+)

∣

∣

∣

∣

~π2(k2
+ − k2

−)
,

σ
II(i)
xy = 0,

(45)whih reprodues result of Ref. 24 in the limit of largeuto� k0. In referene to the Kubo formula formalism,we an laim the following: the diagrams in Fig. 4a) van-ish after summation (the intrinsi and side-jump ontri-butions de�ned in Ref. 46 anel eah other),24 the dia-grams in Figs. 4b)-d) are all proportional to ν+

λ+
− ν−

λ−

≡ 0and also vanish, and the diagrams in Fig. 4e) lead to theresult in Eq. (45). σ
II(i)
xy is zero as the orresponding barebubble ontribution in Eq. (F3) vanishes. Repeating thesame proedure for the region (ii) (−h < ωF < h), we

obtain:
σ

I(ii)
xy =

e2

4π~

(

hα2ν−
λ2
−

− 4hk2
−α2

λ−κ2
−

+
3hk4

−α2

κ4
−ν−

+
8k4

−α2λ2
−

κ4
−ν2

−

Λ

+

[

8h(2h2 + 2ωF α2 + k2
−)

κ2
−

γi
z + (k2

− − k2
+)γi

]

2hk4
−α2

κ4
−

V 2
3

V 3
2

)

,

σ
II(ii)
xy =

e2

4π~
(1− h

√

α4 + λ2
F

), (46)where the diagrams in Fig. 4a) lead to the �rst three dis-order independent terms in Eq. (46) (the intrinsi, theside-jump and the disorder independent skew satteringterms, respetively),24 the skew sattering diagrams inFigs. 4b) and e) lead to the term in Eq. (46) propor-tional to Λ, and the diagrams in Figs. 4) and d) lead tothe terms in Eq. (46) proportional to V 2
3 /V 3

2 . σ
II(ii)
xy isalulated from a bare bubble ontribution given by Eq.(F3) and also orresponds to the intrinsi ontribution.Finally for the region (iii) (ωF < −h), we obtain:

σ
I(iii)
xy =

e2

4π~

(

32hω2
Fα4

(h2 + α4)2(k2
− − k2

+)
+

α2(k2
− − k2

+)4

32(h2 + α4)2
Λ

+

[

h(h2ωF + 2α2h2 − 3ωF α4)

(h2 − ωF α2)(h2 + α4)
γi

z + γi

]

hα2(k2
− − k2

+)3

4(h2 + α4)2
V 2

3

V 3
2

,

σ
II(iii)
xy =

e2

4π~

h(λ− − λ+)

(α2 − λ−)(α2 − λ+)
, (47)where the diagrams in Fig. 4a) lead to the disorder in-dependent term in Eq. (47) (it inludes the intrinsi, theside-jump and the disorder independent skew satteringontributions), the skew sattering diagrams in Figs. 4b)and e) lead to the term in Eq. (47) proportional to Λ, andthe diagrams in Figs. 4) and d) lead to the terms in Eq.(47) proportional to V 2

3 /V 3
2 . σ

II(ii)
xy is again alulatedfrom a bare bubble ontribution given by Eq. (F3).The diagonal ondutivities an also be alulated byexpanding Eqs. (E4) and (E6):

σyy =































e2

~

ωF + α2

πV2
, ωF > h

e2

~

k2
−λ2

−

πV2ν2
−κ2

−

, −h < ωF < h

e2

~

(ωF + α2)(α4 + λ2
F )

πV2(α4 + h2)
, ωF < −h

,where we only present the dominant non-vanishing terms
V −1

2 as the higher order terms are quite umbersome.C. Numerial results and disussionsHere, we present results of our numerial alula-tions based on the formalism developed in Setion IIIA.Figures 5,6,7 and 8 show the numerial results forthe anomalous Hall ondutivity as a funtion of the
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!x!y = +

!x!y !x!y+

!x!y +
All combinations of

two skew scatterings

!x!y with "R = + +

!x!y !x!y

Third order correction

a)

!x
!y

b)

c)

d)

e)Figure 4: Di�erent diagrammati ontributions to σI
xy withinthe Kubo formula formalism; a) the ladder diagram (ver-tex) ontribution ∼ 1, b) the skew sattering ontribution

∼ 1/(niV0) ∼ V3/V 2
2 , ) the double skew sattering ontribu-tion ∼ 1/ni ∼ V 2

3 /V 3
2 , d) the skew sattering ontribution inwhih the retarded (advaned) self energy is alulated up tothe third order ∼ 1/ni ∼ V 2

3 /V 3
2 and e) the fourth order skewsattering ontribution ∼ 1/ni ∼ V4/V 2

2 .Fermi energy ωF and the �rst Born sattering amplitude
γBorn = niV

2
0 m. The strength of the spin-orbit intera-tion is hosen to be the same as in Ref. 1, 2α2/h = 35.9(2α2/Eres = 3.59, Eres = 10h; and the strength of im-purity is V0 = 0.1, 0.3, −0.1 and −0.3. For the retarded(advaned) self-energy, the uto� in the momentum inte-gration is k0 = 12 whih orresponds to the energy uto�of Ref. 1, εc = 3Eres. The Born sattering amplitude isvaried by hanging the impurity onentration ni.In the lean limit, when γBorn → 0, we observe skewsattering behavior (σxy ∼ 1/niV0) in whih |σxy| rapidlyinreases. For repulsive satterers (V0 > 0, see Figs. 5and 6), the negative ondutivity diminishes as we in-rease the Fermi energy, until the point ωF = −h isreahed. At this point, the ondutivity suddenly in-reases without a hange of sign, in ontrast to Ref. 1where the sign hange has been observed but in agree-ment with Refs. 22 and 24 (note that Fig. 5 is alu-lated for exatly the same parameters as Fig. 5() inRef. 1). As we inrease the Fermi energy further, theondutivity inreases again around ωF = h aquiringa very small negative value. In this regime, both sub-bands are partially oupied and only the higher orderskew sattering22,24 (hybrid skew sattering) ontributesto the anomalous Hall e�et. Relatively large hybridskew sattering is present in Fig. 6 ompared to Fig. 5 asthe hybrid skew sattering ontribution is proportionalto 1/ni ∼ V 2
0 /γBorn and should be larger for greaterimpurity strength.24 The same is true for the onven-tional skew sattering proportional to 1/V0ni ∼ V0/γBorn, whih an be immediately seen from Figs. 5, 6, 7 and8. For attrative satterers (V0 < 0, see Figs. 7 and8) the sign of the ordinary skew sattering dominatingin the lean limit is opposite to the sign of the ordinaryskew sattering for the repulsive satterers. The ondu-
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Figure 5: The anomalous Hall ondutivity σxy as a funtionof the Fermi energy ωF and the Born sattering amplitude
γBorn. The parameters are hosen as 2α2/h = 35.9, k0 = 12and V0 = 0.1. The Fermi energy ωF orresponds here to thelean system and it is renormalized aording to Eq. (35) inthe presene of disorder.tivity now inreases until we reah the point ωF = −h inwhih we observe a sudden drop. One more drop happensaround the point ωF = h where the anomalous Hall on-dutivity hanges sign (see Figs. 7 and 8). This hange ofsign is onsistent with the fat that the higher order (hy-brid) skew sattering (prevailing when both subbands arepartially oupied) does not hange its sign as we hangethe sign of disorder.24 Comparing Figs. 7 and 8, we againsee that the hybrid skew sattering is more pronounedfor larger impurity strength.As we inrease the disorder by inreasing γBorn, theskew sattering beomes less important while the othermehanisms, suh as intrinsi and side-jump, beomemore important. The intrinsi ondutivity only gradu-ally dereases with the disorder beause the only e�et ofdisorder on the intrinsi omponent omes from broaden-ing of Green's funtions used in the alulation of the in-trinsi omponent. For repulsive satterers (V0 > 0), theskew sattering has sign opposite to the sign of intrinsiand side jump ontributions in the region −h < ωF < h(see e.g. Refs. 22 and 24). This explains the signhange we observe in Figs. 5, 6 and 10 in the region
−h < ωF < h as we inrease γBorn (more detailed plotsare presented in Appendix G).The positions of points in whih the AHE vanishes anbe estimated by omparing the Fermi sea intrinsi term
σII

xy with the skew sattering term in Eq. (46) as thosetwo are the major ontributions. Physially, the AHEvanishes beause the intrinsi de�etion of eletrons be-tween the sattering events an be balaned by the skewsattering events (in the ross-over region between intrin-si and extrinsi mehanisms). As the former does notrely on impurities and the latter does (and hanges signwith impurities hanging sign), we an have full anella-tion of the two by hoosing the proper sign and strengthof impurities.
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Figure 6: Idential to Fig. 5 plot but for larger strength ofimpurity V0 = 0.3.
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Figure 7: Idential to Fig. 5 plot but for negative strength ofimpurity V0 = −0.1.1. Antirossings and salingsAs it an be seen from Figs. 5, 6, 7 and 8, the anoma-lous Hall e�et is resonantly inreased around the bandantirossing whih suggests that for more general bandstrutures, the major ontribution to the AHE also omesfrom the band antirossings that happened to be in theviinity of the Fermi level.1 This view is well justi�ed forthe intrinsi AHE in the metalli regime (τεF >> 1) asit follows from the Thouless-Kohmoto-Nightingale-Nijsformula51 applied to the AHE.1 This leads to the intrin-si AHE ondutivity of the order of e2/(4π~) within theregion (ii) in Fig. 2. The full ondutivity that inludesthe intrinsi, side-jump and skew-sattering ontribu-tions seems to also have the resonant behavior aroundthe antirossing for the Rashba model as it follows fromour analysis. Whereas our analysis justi�es fousing thealulations on simpli�ed phenomenologial models nearthe anti-rossing loations, we emphasize that it is un-likely that these would be haraterized universally bythe Rashba geometry rather than by a ombination ofRashba and Dresselhauss symmetry.
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Figure 8: Idential to Fig. 5 plot but for negative strength ofimpurity V0 = −0.3.In the regime of strong disorder, where this resonantbehavior is not pronouned, the disorder broadening ofthe Green's funtions beomes more dominant and the
σxy has dependene that an no longer be expanded or-retly in powers of τ . This expetation an be easilyseen from the expressions for σxy in our formulation orthe Kubo formulation, in whih

σxy ∝
∑

α,β

〈α|v̂x|β〉〈β|v̂y |α〉
(Eα − Eβ)2

(48)where |α〉 are the exat eigenstates in the presene of dis-order and the major ontribution for σxy in the dirty limitomes from interband matrix elements. When expandingthings in the momentum basis, the denominator is oftenapproximated as (En(~k) − En′(~k))2 + (~/τ)2) while thematrix elements are evaluated within the disorder freeeigenstates. Hene, in the limit of large disorder broad-ening, the denominator is simply replaed by (~/τ)2) and
σxy ∼ τ2 (this is di�erent for σxx as the ontribution frominterband matrix elements vanishes and σxx ∼ τ). Thisof ourse gives an upper bound for the σxy ∼ τη sal-ing and in intermediate regimes one would expet η tobe lower than 2. In Figs. 9 and 10, we study the AHEalulated in the antirossing region in order to examinein detail the universal anomalous Hall e�et regimes thatould be valid for more general band strutures.We now plot in the logarithmi sale σxy as a fun-tion of σxx tuned via ni while all other parameters arekept onstant. In the lean limit, we reover the skewsattering behavior (σxy ∼ 1/niV0 ∼ σxx/V0) and ournumerial results (bold line) agree well with the analyt-ial results (dashed line) obtained in Se. IIIB. In themoderately dirty limit, we observe the intrinsi-side-jumpregime (σxy = const, this regime is more pronouned forsmaller V0) in whih the side-jump and intrinsi meha-nisms are dominant. All analytial urves (dashed lines)asymptotially reah this regime when σxx is very small.In the stronger disorder regime, as reported in Ref. 1,the numerial urves have downturn for smaller σxx ap-
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Figure 9: The absolute value of the anomalous Hall ondu-tivity |σxy | versus the ondutivity σxx for the spin-orbit in-teration strength 2α2/h = 35.9. Dimensionality of quantitiesdisplayed in this plot is restored.proahing the third regime in whih σxy ∼ σϕ
xx with

ϕ ≈ 1.6 in Fig. 9. However, a universal saling an-not be laimed sine for large and positive strength ofimpurities in Fig. 10 we only observe the redution ofthe AHE.One should keep in mind that the gradient expansion isnot fully justi�ed lose to the line τεF = 1 and our resultsare meaningful only for τεF > 1. Furthermore, sine inthis regime the resonant behavior is strongly diminished,in realisti three-dimensional systems, the result ouldbe more aurately expressed via the averaged matrixelements with some appropriate treatment of the disorderbroadening.Although some experimental works laim to on�rmthe saling σxy ∼ σϕ
xx with ϕ around 1.6.37,38,39,40,41 om-parison of theory and experiments has to be done withare sine determining a saling exponent over a singledeade is often di�ult and has led to many errors in thepast. For example, in DMS ferromagnets (mentioned inRef. 1 to support the saling hypothesis) the hange ofdoping will ause hange in the impurity onentration,in the magnetization and even in the band struture.The theoretial alulations only take into aount thehange in the impurity onentration and further assumea Rashba symmetry at the rossing points.1,20 Note alsothat within the theoretial treatment, the Hall ondu-tivity hanges its sign for repulsive impurities (V0 > 0)in Fig. 10 whih is expeted as the skew sattering domi-nating in the lean limit has the sign opposite to the signof the intrinsi ontribution dominating in the dirty limit(see Eq. (46)). These types of hanges of signs have alsobeen observed in experimental systems, e.g. DMS,52 andof ourse at that stage saling is not justi�ed.
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Figure 10: Idential to Fig. 9 plot exept for the disorderwhih is repulsive here (V0 > 0). Note that the ondutivity
σxy hanges sign around the usps.IV. AMR IN RASHBA SYSTEMSIn the previous setion, we showed how the formalismdeveloped in Setion II an be applied to alulations ofthe anomalous Hall e�et in multiple-band systems onthe example of a Rashba system. In this Setion, we per-form alulations of the anisotropi magnetoresistane(AMR) in 2DEG with the in-plane exhange �eld, spin-orbit interation and magneti impurities following thesame formalism. A general numerial proedure allowsus to rigorously perform AMR alulations in multiple-band anisotropi systems. Within the Boltzmann equa-tion approah, suh alulations are usually performedby using the relaxation time approximation in whih thetransport relaxation time τ is alulated from the sat-tering amplitudes without fully taking into aount theasymmetries.30,34 This approah was improved in Ref.53 by introduing the perpendiular relaxation time τ⊥.However, in some ases this improvement is yet not suf-�ient and Vyborny et al. formulated a proedure for�nding an exat solution to the Boltzmann equation inRef. 35. Here we propose an alternative approah forAMR alulations in multiple-band anisotropi systemsto the one proposed in Ref. 35.We onsider here a 2DEG Rashba Hamiltonian withadditional in-plane exhange �eld hx direted along the
x- axis without any loss of generality :

ĤR = k̃
2/2 + αk̃ · σ̂ × z− hxσ̂x − hσ̂z + V̂ (r), (49)where now V̂ (r) desribes the disorder orresponding todilute harged magneti impurities:34,54,55
V̂ (r) = V0(aσ̂0 + σ̂x)

∑

i

δ(r− ri), (50)



12where ri desribes the positions of random impurities andwe assume that the magneti impurities are magnetizedalong the exhange �eld. The quantity a desribes therelative strength of the eletri part of impurity with re-spet to the magneti part. Note that the AMR is mea-sured by hanging the diretion of eletri �eld E whihis equivalent to hanging the diretion of the exhange�eld.For the AMR, we only need the diagonal ondutivi-ties, thus the Fermi sea ontribution given by Eq. (43)vanishes. The AMR an be alulated from Eq. (42) andwe only need to alulate Green's funtions at the Fermilevel. We alulate Σ̂
R(A)
eq and Green's funtions Ĝ

R(A)
equsing the self-onsistent TMA:

T̂ R(A)
eq = V0(1̂ − V0γ̂

R(A))−1 (51)
Σ̂R(A)

eq = niT̂
R(A)
eq (ω) = Σ

R(A)
eq0 σ̂0 + Σ

R(A)
eqx σ̂x + Σ

R(A)
eqz σ̂z ,(52)

Ĝ
R(A)
eq = (ω1̂− Ĥ0 − Σ̂

R(A)
eq )−1

=
(ω − k2

2 − Σ
R(A)
eq0 )σ̂0 + αky σ̂x − αkxσ̂y

(ω − k2

2 − Σ
R(A)
eq0 )2 − (h− Σ

R(A)
eqz )2 − α2k2 + 2hxαky

+
−(h− Σ

R(A)
eqz )σ̂z − (hx − Σ

R(A)
eqx )σ̂x

(ω − k2

2 − Σ
R(A)
eq0 )2 − (h− Σ

R(A)
eqz )2 − α2k2 + 2hxαky(53)where γ̂R(A) =

∫

d2k/(2π)2Ĝ
R(A)
eq (k, ω) ≡ γR(A)σ̂0 +

γ
R(A)
x σ̂x+γ

R(A)
z σ̂z. We alulate the self-onsistent valueof the self energy Σ̂

R(A)
eq (ωF ) by iterating Eq. (52) untilthe presribed auray is reahed.As soon as we know the T -matrix, we an substituteit into Eq. (40) and �nd the matrix ρ̂ by performing themomentum integrations in the r.h.s.. Finally, by substi-tuting ρ̂ into Eq. (42) we an alulate the ondutiv-ity. Note that throughout this setion, the angular partof the momentum integrations is alulated analytiallywhile the radial part is alulated numerially.The anisotropi resistane in our system is de�ned asfollows: AMR = −σxx − σyy

σxx + σyyand it desribes the relative di�erene in ondutivity forurrent �owing parallel or perpendiular to the magneti-zation (represented by the exhange �eld and/or impuritymagnetization).First, we alulate the anisotropi magnetoresistanein Rashba system with in-plane exhange �eld and non-magneti delta satterers (see Eq. 30, the magneti sat-terers are absent in this model). Kato et al. found van-ishing AMR in the regime (i) (see Fig. 2) when bothsubbands are partially oupied due to the anellation ofthe nonvertex and vertex parts in the Kubo formulation.In Fig. 11, we observe the non-vanishing AMR in theregime (i) and this suggests the importane of the higher
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Figure 11: The AMR (100% orresponds to AMR = 1) as afuntion of the dimensionless spin-orbit interation strength
α/

√
ωF (ωF is ounted from the middle of the gap in Fig.2). The parameters of the model are: V0 = −0.6 and −0.9,

ni/ωF = 0.01 and hx/ωF = 0.3 .order diagrams (suh as plotted in Fig. 4e)) not only forthe AHE but also for the AMR. The AMR e�et result-ing from the higher order diagrams is more pronounedfor the larger strength of impurities, similar to the AHE.The AMR approahes its maximum around the point atwhih the exhange energy is omparable to the spin orbitenergy, 2hx ∼ α. We note that the non-zero but ompar-atively weak magnitude of the AMR here in the Rashbasystem is reminisent of the results in three-dimensionalDMS ferromagnets.34 This agrees with physial intuition.Under omparison of two mehanisms by whih AMR anarise - arrier polarization/anisotropy in wavefuntions,and impurity polarization/anisotropy in sattering oper-ator (see Fig. 1 of Ref. 34) - the former implies a ompe-tition between the exhange and spin-orbit terms (in theHamiltonian) resulting in redued anisotropy strength.Consequently, even though observation of the AMRe�et is deemable in the absene of magneti satter-ers, we expet muh more pronouned e�et when themagneti satterers are present. Our numerial resultsin Fig. 12 (plotted together with the analytial resultsfrom Ref. 35) on�rm this. For the ase when the Fermilevel rosses only one band (region (ii) in Fig. 2), it wasfound in Ref. 35 that AMR = 1/(2 − a2) when |a| < 1and AMR = 1/a2 when |a| > 1, provided the exhange�elds are small. For the ase when the Fermi level rossestwo bands (region (i) in Fig. 2) it was found in Ref. 35that AMR = a2 when |a| < 1 and AMR = 1/a2 when
|a| > 1, in the limit of large Fermi energy (omparedto the spin-orbit and exhange splitting). We observe aperfet agreement between our numerial results and theanalytial results from Ref. 35. The result in Fig. 12a)
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Figure 12: The AMR as a funtion of the relative strength a ofthe eletri and magneti parts of impurity potential, by solidline we plot analytial results and dots represent numerialresults; a) Fermi level rosses only one band (ωF = 0) withthe following dimensionless parameters V0 = 0.05, α = 1.4,
ni = 0.0015, hx = 0.0015 and h = 0.015; b) Fermi level rossesboth bands V0 = 0.05, α = 0.03, ni = 0.002, hx = 0.002 and
h = 0.001.annot be reprodued within the ommon approximateapproahes30,34,53 based on the relaxation time approxi-mation as it was pointed out in Ref. 35. The non-physialdivergene in σyy at the point a = 1 in Fig. 12 is ausedby the speial hoie of the sattering potential.35 Assoon as the spatial dependenes of the eletri and mag-neti parts ease to be idential (in Eq. (50), they orre-spond both to delta-satterers) the divergene of the σyyis removed (ausing AMR< 1).V. CONCLUSIONSWe have developed a framework for transport al-ulations in multiple-band non-interating Fermi sys-tems. By applying this framework to Rashba 2DEG,we have resolved some reent disrepanies related tothe AHE in suh systems. The �ndings of this simple2D model have been linked to higher dimensional sys-tems arguing that most likely the major ontributions tothe AHE ome from the band anti-rossing regions sim-ilar to one observed in the Rashba model. Our analyt-ial and numerial results reveal the rossover betweenthe skew sattering dominated regime in lean systems(σxy ∼ V0/γBorn ∼ σxx) and the intrinsi dominatedregime in moderately dirty systems (σxy ∼ const). Indirty systems, we observe the third distint regime alsodominated by the intrinsi ontribution. In this regime,the AHE diminishes in a manner similar to σxy ∼ σϕ

xxwith ϕ being lose to 1.6. This, however, annot be

alled by saling as the theory is not meaningful in asu�iently wide range of σxy and σxx due to breakdownof the quasipartile approximation when τεF ∼ 1. Forthe repulsive impurities, we observe that the intrinsi andskew anomalous Hall e�ets have opposite signs. As a re-sult, the rossover between those two is also aompaniedby the hange of sign of the AHE. We suggest to engi-neer samples with repulsive impurities in order to see thishange of sign in the AHE.We have resolved some disrepanies between the AHEresults obtained by using the Keldysh, Kubo and Boltz-mann approahes by onsidering the higher order skewsattering proesses. We have also shown that simi-lar higher order proesses are also important for theAMR when the nonvertex and vertex parts anel eahother. We have alulated the AMR in anisotropi sys-tems properly taking into aount the anisotropy of thenon-equilibrium distribution funtion. These alula-tions on�rm reent �ndings on the unreliability of om-mon approximate approahes to the Boltzmann equation.AknowledgmentsWe gratefully aknowledge fruitful disussions with E.I. Rashba, V. Dugaev, J. Inoue, T. Jungwirth, A. H.MaDonald, G.E.W. Bauer, N. Nagaosa and S. Onoda.This work was supported by the Alfred P. Sloan Foun-dation (YT), by ONR under grant onr-n000140610122,by NSF under grant DMR-0547875, by SWAN-NRI andgrants KJB100100802, LC510 and AV0Z10100521. J.S.is a Cottrell Sholar of the Researh Foundation.Appendix A: GENERALIZATIONS FORSHORT-RANGE DISORDERIn setion IIA, we derive the kineti equation with theself-energy expression that is valid for uniform systems.Here, we generalize this self-energy to non-uniform sys-tems in the presene of a short range disorder postulatedby the following in�nite set of orrelators:
〈V V 〉 = 〈V 〉 〈V 〉+ V2δr1r2

,
〈V V V 〉 =

∑ 〈V V 〉 〈V 〉+ V3δr1r2r3
,

〈V V V V 〉 =
∑

(〈V V V 〉 〈V 〉+ 〈V V 〉 〈V V 〉) + V4δr1r2r3r4
,

....

.... (A1)where we sum all possible deouplings of the orrela-tors into a produt of two lower order orrelators and
δr1r2r3...rN

=
∏

i=1..N−1 δ(ri − ri+1). Note that usuallythe averaged impurity potential is zero, 〈V 〉 = V1 = 0.After performing the averaging proedure for theGreen's funtion, we again arrive at the kineti Eq. (6)with the self-energy given by the following formal expres-sion:

http://arXiv.org/abs/onr-n/0001406
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Σ̌ =

(

V̌0 + V̌0 ⊗ Ǧ⊗ V̌0 + . . .
)

|V n
0
→Vn

, (A2)where V̌0 = V0

(

η̂ 0
0 η̂

)

δ(1 − 1′) and in the term of n-th order proportional to V n
0 we replae V n

0 by Vn whihensures that the orrelators in Eq. (A1) are properlyonsidered. It is onvenient to introdue the notation:
Ě =

(

V̌0 + V̌0 ⊗ Ǧ⊗ V̌0 + . . .
)

, (A3)whih, in analogy with the self-energy, also has retarded(advaned) ER(A) and lesser E< omponents. Eq. (A3)an be rewritten in the form of T -matrix equation, Ě =
V̌ ⊗ [1̌ + Ǧ ⊗ Ě], whih leads to the expressions for theself-energies:

ΣR(A) = ER(A)|V n
0
→Vn

,

Σ< =
(

ER ⊗G< ⊗ EA
)

|V n
0
→Vn

,
(A4)where the notation |V n

0
→Vn

is formal and it means that
ER(A) has to be �st expanded with respet to V0 andthen the substitution has to be applied. Eqs. (14) and(15) an now be rederived for non-uniform systems withthe disorder given by Eq. (A1).Nevertheless, for the purposes of this paper, it is suf-�ient to onsider the uniform and stationary ase. Thisleads to substantial simpli�ations outlined in setionsIIB and IIC. Results of setions IIB and IIC also holdfor the disorder given by Eq. (A1) with the exeptionof Eqs. (20) and (28) that should be replaed by thefollowing equations:

Σ̂<
1 =

[

ÊR
eq

(

∫ d2k′

(2π)2
Ĝ<

1 (k′)

)

ÊA
eq

]

V n
0
→Vn

,

Σ̂
R(A)
E

=

[

Ê
R(A)
eq

(

∫ d2k′

(2π)2
Ĝ

R(A)
E

(k′)

)

Ê
R(A)
eq

]

V n
0
→Vn

.(A5)Finally, we would like to present several examples inwhih the disorder given by Eq. (A1) is realized. Thesimplest example is given by Eq. (30) and in this ase
Vn = V n

0 . For the disorder given by Eq. (44), we have
Vn = ni

〈

(V i
0 )n

〉

dis
. For the Gaussian white-noise dis-order, only V2 is non-zero and Vn|n6=2 = 0. For thetelegraph white-noise disorder all odd orrelators vanish,

V2n+1 = 0.Appendix B: CALCULATION OFSELF-CONSISTENT SELF ENERGY Σ̂
R(A)
eqThe following relations an be alulated by a diretanalytial integration of Eq. (34):

γ̂R(A) =

∫

d2k/(2π)2Ĝ
R(A)
eq (k, ω) ≡ γR(A)σ̂0 + γR(A)

z σ̂z,

γR =
(K+ − 2W ) [ln(K0 −K+)− ln(−K+)]

2π(K− −K+)

− (K− − 2W ) [ln(K0 −K−)− ln(−K−)]

2π(K− −K+)

,

γR
z =

ln(K0 −K+)− ln(−K+)− ln(K0 −K−) + ln(−K−)

π(K− −K+)/H
,

γA = (γR)∗; γA
x(y,z) = (γR

x(y,z))
∗ γR

y(z) = 0,where W = ω−ΣR
eq0, H = h−ΣR

eqz , K± = 2(W + α2 ∓√
H2 + 2Wα2 + α4) and K0 = k2

0 desribes the ut-o�
k0 in momentum integration.For eah energy, ΣR

eq0(ω) and ΣR
eqz(ω) are alulated byperforming a number of iterations with the onsequentiteration aording to

Σ
R(A)
eq0 =

1

2
Tr

[

niV0(1̂ − V0γ̂
R(A))−1σ̂0

]

,

Σ
R(A)
eqz =

1

2
Tr

[

niV0(1̂− V0γ̂
R(A))−1σ̂z

]

.The iterations are performed until the presribed au-ray is reahed.
Appendix C: CALCULATION OF THE MATRIX

ρ̂(ω)For the eletri �eld E along the y axis E = (0, Ey),we solve here the linear Eq. (40) for the elements of thematrix ρ̂(ω) by performing analytially the momentumintegrations of the Green's funtions Ĝ
R(A)
0 (k, ω) (givenby Eq. (34)) in the right hand side. For eah energy ω,we obtain the following expressions that also depend onthe self-onsistent values of ΣR

00(ω) and ΣR
0z(ω):

ρ−−(ω) = ρ++(ω) = 0,
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ρ+−(ω) = i∂ωnF eEyα

{

[

K2
− + 4(H + W )(H∗ −W ∗)

]

ln(−K−)

(K− −K∗
−)(K− −K+)(K− −K∗

+)π
−

[

K∗2
− + 4(H + W )(H∗ −W ∗)

]

ln(−K∗
−)

(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)π

+

[

K2
+ + 4(H + W )(H∗ −W ∗)

]

ln(−K+)

(K− −K+)(K∗
− −K+)(K+ −K∗

+)π
−

[

K∗2
+ + 4(H + W )(H∗ −W ∗)

]

ln(−K∗
+)

(K− −K∗
+)(K∗

− −K∗
+)(K+ −K∗

+)π

}/

{

−1 +

[

(2H −K− + 2W )(2H∗ + K− − 2W ∗) ln(−K−)

(K− −K∗
−)(K− −K+)(K− −K∗

+)π
− (2H −K∗

− + 2W )(2H∗ + K∗
− − 2W ∗) ln(−K∗

−)

(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)π

+
(2H −K+ + 2W )(2H∗ + K+ − 2W ∗) ln(−K+)

(K− −K+)(K∗
− −K+)(K+ −K∗

+)π
− (2H −K∗

+ + 2W )(2H∗ + K∗
+ − 2W ∗) ln(−K∗

+)

(K− −K∗
+)(K∗

− −K∗
+)(K+ −K∗

+)π

]

niT++T ∗
−−

}

ρ−+(ω) = i∂ωnF eEyα

{

[

K2
− + 4(H −W )(H∗ + W ∗)

]

ln(−K−)

(K− −K∗
−)(K− −K+)(K− −K∗

+)π
−

[

K∗2
− + 4(H −W )(H∗ + W ∗)

]

ln(−K∗
−)

(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)π

+

(

K2
+ + 4(H −W )(H∗ + W ∗)

)

ln(−K+)

(K− −K+)(K∗
− −K+)(K+ −K∗

+)π
−

(

K∗2
+ + 4(H −W )(H∗ + W ∗)

)

ln(−K∗
+)

(K− −K∗
+)(K∗

− −K∗
+)(K+ −K∗

+)π

}/

{

−1 +

[

(2H + K− − 2W )(2H∗ −K− + 2W ∗) ln(−K−)

(K− −K∗
−)(K− −K+)(K− −K∗

+)π
− (2H + K∗

− − 2W )(2H∗ −K∗
− + 2W ∗) ln(−K∗

−)

(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)π

+
(2H + K+ − 2W )(2H∗ −K+ + 2W ∗) ln(−K+)

(K− −K+)(K∗
− −K+)(K+ −K∗

+)π
− (2H + K∗

+ − 2W )(2H∗ −K∗
+ + 2W ∗) ln(−K∗

+)

(K− −K∗
+)(K∗

− −K∗
+)(K+ −K∗

+)π

]

niT−−T ∗
++

}

Appendix D: CALCULATION OF THE MATRIX
ρ̂

R(A)
E

(ω)For the eletri �eld E along the y axis E = (0, Ey), wesolve here the linear Eq. (41) for the elements of the ma-trix ρ̂
R(A)
E

(ω) by performing analytially the momentumintegrations of the Green's funtions Ĝ
R(A)
0 (k, ω) (given

by Eq. (34)) in the right hand side. For eah energy ω,we obtain the following expressions that also depend onthe self-onsistent values of ΣR
00(ω) and ΣR

0z(ω):
ρR

Ey−−(ω) = ρR
Ey++(ω) = 0,

ρR
Ey+−(ω) = 4iα

[

H(−1 + ∂ωΣR
00)−W∂ωΣR

0z

]

{

K2
− −K2

+ + 2K−K+

[

− ln(−K−) + ln(−K+)
]

}/

{

(K− −K+)
[

K3
−K+π + K3

+K−π + K2
−K+niT−−T++ − 4K+niT−−T++

(

H2 −W 2
)

+K2
+K−niT−−T++ − 4K−niT−−T++

(

H2 −W 2
)

− 2πK2
+K2

− − 8K+K−niT−−T++W
]

+2K−K+niT−−T++

[

4H2 + (K− − 2W )(−K+ + 2W )
][

ln(−K−)− ln(−K+)
]

}

ρR
Ey−+(ω) = −ρR

Ey+−(ω)Appendix E: CALCULATION OF THE FERMISURFACE CONDUCTIVITYFor the eletri �eld E along the y axis E = (0, Ey),we perform momentum k and frequeny ω integrations inEq. (42). It is onvenient to divide the resultant ondu-tivity into two parts; the bare bubble part σIb
xy(yy) thatorresponds to alulating only the seond line in Eq.(42) e�etively assuming that ρ̂(ωF ) = 0, and self onsis-

tent part σIsc
xy(yy) that orresponds to alulating the �rstline in Eq. (42) that takes into aount orretion due toself-onsistent alulation of ρ̂(ωF ):

σI
xy = σIb

xy + σIsc
xy , (E1)

σI
yy = σIb

yy + σIsc
yy , (E2)We arrive at analytial expressions for the bare bub-



16ble ontributions to the ondutivities σIb
xy and σIb

yy thatdepend on the self-onsistent values of ΣR
00(ωF ) and ΣR

0z(ωF ) at the Fermi surfae:
σIb

xy

e2/~
=

2iα2 [−H∗(K− + 2W ) + H(K− + 2W ∗)] ln(−K−)

(K− −K∗
−)(K− −K+)(K− −K∗

+)π2
+

2iα2
[

H∗(K∗
− + 2W )−H(K∗

− + 2W ∗)
]

ln(−K∗
−)

(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)π2

+
2iα2 [−H∗(K+ + 2W ) + H(K+ + 2W ∗)] ln(−K+)

(K− −K+)(K∗
− −K+)(K+ −K∗

+)π2
+

2iα2
[

H∗(K∗
+ + 2W )−H(K∗

+ + 2W ∗)
]

ln(−K∗
+)

(K− −K∗
+)(K∗

− −K∗
+)(K+ −K∗

+)π2

,(E3)
σIb

yy

e2/~
= −K2

−(K− − 3K+)K∗
+ ln(−K−)

4(K− −K+)3(K− −K∗
+)π2

− K3
−

(

K−(K− + K∗
−)− (K− + 3K∗

−)K+ + 2K2
+

)

ln(−K−)

4(K− −K∗
−)(K− −K+)3(K− −K∗

+)π2

+
K−K∗2

− (K∗
− − 3K∗

+) ln(−K∗
−)

4(K− −K∗
−)(K∗

− −K∗
+)3π2

+
K∗3

−

(

K∗
−(K∗

− + K+)− (K∗
− + 3K+)K∗

+ + 2K∗2
+

)

ln(−K∗
−)

4(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)3π2

−K2
+(3K− −K+)K∗

+ ln(−K+)

4(K− −K+)3(K+ −K∗
+)π2

− K3
+

(

2K2
− + K+(K∗

− + K+)−K−(3K∗
− + K+)

)

ln(−K+)

4(K∗
− −K+)(K− −K+)3(K+ −K∗

+)π2

+
K−K∗2

+ (3K∗
− −K∗

+) ln(−K∗
+)

4(K− −K∗
+)(K∗

− −K∗
+)3π2

+
K∗3

+

(

2K∗2
− + K∗

+(K+ + K∗
+)−K∗

−(3K+ + K∗
+)

)

ln(−K∗
+)

4(K− −K∗
+)(K∗

− −K∗
+)3(K+ −K∗

+)π2

−K−K+

(

K∗2
− + K∗2

+

)

−K2
−

(

K∗2
− −K∗

−K∗
+ + K∗2

+

)

−K2
+

(

K∗2
− −K∗

−K∗
+ + K∗2

+

)

2(K− −K+)2(K∗
− −K∗

+)2π2

−2
(

4WW ∗α2 + 2HH∗
(

K− − 2α2
)

−K2
−

(

W + W ∗ + α2
)

+ 2K−

(

WW ∗ + (W + W ∗)α2
))

ln(−K−)

2(K− −K∗
−)(K− −K+)(K− −K∗

+)π2

+
2

(

4WW ∗α2 + 2HH∗
(

K∗
− − 2α2

)

−K∗2
−

(

W + W ∗ + α2
)

+ 2K∗
−

(

WW ∗ + (W + W ∗)α2
))

ln(−K∗
−)

2(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)π2

−2
(

4WW ∗α2 + 2HH∗
(

K+ − 2α2
)

−K2
+

(

W + W ∗ + α2
)

+ 2K+

(

WW ∗ + (W + W ∗)α2
))

ln(−K+)

2(K− −K+)(K∗
− −K+)(K+ −K∗

+)π2

+
2

(

4WW ∗α2 + 2HH∗
(

K∗
+ − 2α2

)

−K∗2
+

(

W + W ∗ + α2
)

+ 2K∗
+

(

WW ∗ + (W + W ∗)α2
))

ln(−K∗
+)

2(K− −K∗
+)(−K∗

− + K∗
+)(−K+ + K∗

+)π2

−2
(

−2H2 + (K− + K+ − 2W )W
)

2(K− −K+)2π2
−

(

(K− + K+)
(

4H2 + K−K+

)

− 8K−K+W − 4(K− + K+)W 2
)

α2

2K−(K− −K+)2K+π2

− [ln(−K−)− ln(−K+)]

×2
(

W (−2K−K+ + (K− + K+)W ) +
(

−K−K+ + 2(K− + K+)W + 4W 2
)

α2 + H2
(

K− + K+ − 4α2
))

2(K− −K+)3π2

−2
(

−2H∗2 + (K∗
− + K∗

+ − 2W ∗)W ∗
)

2(K∗
− −K∗

+)2π2
−

(

(K∗
− + K∗

+)
(

4H∗2 + K∗
−K∗

+

)

− 8K∗
−K∗

+W ∗ − 4(K∗
− + K∗

+)W ∗2
)

α2

2K∗
−(K∗

− −K∗
+)2K∗

+π2

−
[

ln(−K∗
−)− ln(−K∗

+)
]

×2
(

W ∗(−2K∗
−K∗

+ + (K∗
− + K∗

+)W ∗) +
(

−K∗
−K∗

+ + 2(K∗
− + K∗

+)W ∗ + 4W ∗2
)

α2 + H∗2
(

K∗
− + K∗

+ − 4α2
))

2(K∗
− −K∗

+)3π2 (E4)where in this Appendix all parameter are taken at theFermi surfae: W = ωF − ΣR
00(ωF ), H = h − ΣR

0z(ωF ) ,
K± = 2(W + α2 ∓

√
H2 + 2Wα2 + α4). The analytial expressions for the self-onsistent on-tributions to the ondutivities σIsc

xy and σIsc
yy beome:
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σIsc

xy

e2/~
=

αni

(

ρ+−T++T ∗
−−

(

K2
− + 4(H + W )(H∗ −W ∗)

)

− ρ−+T−−T ∗
++

(

K2
− + 4(H −W )(H∗ + W ∗)

))

ln(−K−)

2(K− −K∗
−)(K− −K+)(K− −K∗

+)π2eEy

−αni

(

ρ+−T++T ∗
−−

(

K∗2
− + 4(H + W )(H∗ −W ∗)

)

− ρ−+T−−T ∗
++

(

K∗2
− + 4(H −W )(H∗ + W ∗)

))

ln(−K∗
−)

2(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)π2eEy

+
αni

(

ρ+−T++T ∗
−−

(

K2
+ + 4(H + W )(H∗ −W ∗)

)

− ρ−+T−−T ∗
++

(

K2
+ + 4(H −W )(H∗ + W ∗)

))

ln(−K+)

2(K− −K+)(K∗
− −K+)(K+ −K∗

+)π2eEy

−αni

(

ρ+−T++T ∗
−−

(

K∗2
+ + 4(H + W )(H∗ −W ∗)

)

− ρ−+T−−T ∗
++

(

K∗2
+ + 4(H −W )(H∗ + W ∗)

))

ln(−K∗
+)

2(K− −K∗
+)(−K∗

− + K∗
+)(−K+ + K∗

+)π2eEy

,(E5)
σIsc

yy

e2/~
=

iαni

(

ρ+−T++T ∗
−−

(

K2
− + 4(H + W )(H∗ −W ∗)

)

+ ρ−+T−−T ∗
++

(

K2
− + 4(H −W )(H∗ + W ∗)

))

ln(−K−)

2(K− −K∗
−)(K− −K+)(K− −K∗

+)π2eEy

− iαni

(

ρ+−T++T ∗
−−

(

K∗2
− + 4(H + W )(H∗ −W ∗)

)

+ ρ−+T−−T ∗
++

(

K∗2
− + 4(H −W )(H∗ + W ∗)

))

ln(−K∗
−)

2(K− −K∗
−)(K∗

− −K+)(K∗
− −K∗

+)π2eEy

+
iαni

(

ρ+−T++T ∗
−−

(

K2
+ + 4(H + W )(H∗ −W ∗)

)

+ ρ−+T−−T ∗
++

(

K2
+ + 4(H −W )(H∗ + W ∗)

))

ln(−K+)

2(K− −K+)(K∗
− −K+)(K+ −K∗

+)π2eEy

− iαni

(

ρ+−T++T ∗
−−

(

K∗2
+ + 4(H + W )(H∗ −W ∗)

)

+ ρ−+T−−T ∗
++

(

K∗2
+ + 4(H −W )(H∗ + W ∗)

))

ln(−K∗
+)

2(K− −K∗
+)(−K∗

− + K∗
+)(−K+ + K∗

+)π2eEy (E6)where again all parameters are alulated at the Fermisurfae.Appendix F: CALCULATION OF THE FERMISEA CONDUCTIVITYFor the eletri �eld E along the y axis E = (0, Ey), weperform momentum integrations in Eq. (43) arriving at
the following expressions for ondutivities σII

xy and σII
yy :

σII
xy = σIIb

xy + σIIsc
xy , (F1)

σII
yy = 0, (F2)

σIIb
xy

e2/~
=

∫

dωnF

{

4iα2
[

H(1− ∂ωΣR
00)(K− + K+) + ∂ωΣR

0z(K+W + K−(K+ + W ))
]

K−K+(K− −K+)2π2

−2iα2
[

4(1− ∂ωΣR
00)H + ∂ωΣR

0z(K− + K+ + 4W )
]

(ln(−K−)− ln(−K+))

(K− −K+)3π2

}

+ c.c.

(F3)
σIIsc

xy

e2/~
=

∫

dωnF

α(ρR
Ey−+ − ρR

Ey+−)T−−T++

(

4H2 + K−K+ − 4W 2
) (

K2
− −K2

+ + 2K−K+(− ln(−K−) + ln(−K+))
)

2K−K+(K− −K+)3π2

+c.c. = 0 (F4)The fat that σIIsc
xy = 0 follows from the identity 4H2+

K−K+ − 4W 2 ≡ 0.As one an see, σII
yy and σIIsc

xy ontributions to theFermi sea Hall ondutivity vanish and the non-vanishing ontribution σIIb
xy depends on the self-onsistent values of

ΣR
00(ω) and ΣR

0z(ω) and its alulation from Eq. (F3) re-quires numerial integration over ω.
Appendix G: DETAILED RESULTS FOR THEHALL CONDUCTIVITYIn order to gain more insight into the behavior of theanomalous Hall e�et, in Figs. 13 and 14 we plot di�erent omponents of the AHE ondutivity, partiularly theFermi sea ontribution σII

xy, the bare bubble ontribution
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Figure 13: The anomalous Hall ondutivity σTot
xy = σIb

xy + σIsc
xy + σII

xy and its omponents (σIb
xy, σIsc

xy , σII
xy) versus the averagedrelaxation rate 1/τ = 2ImΣA

00 (de�ned in Appendix B). The spin-orbit interation strength is 2mα2/Eres = 3.59 (Eres = 10h);the strength of impurities: V0 = 0.01, 0.1, 0.2, 0.3; the Fermi energy εF /Eres = 0.9 for ωF = 0, εF /Eres = 0.5 for ωF = −4hand εF /Eres = 1.5 for ωF = 6h. Dimensionality of quantities displayed in this plot is restored.
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Figure 14: Idential to Fig. 13 plot with attrative disorder (V0 = −0.01, −0.1, −0.2, −0.3).
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σIb

xy (this orresponds to σI intxy in Ref. 1) and the selfonsistent ontribution σIsc
xy (this orresponds to σextxy inRef. 1). In Fig. 13, we take the same parameters as inFigs. 7 and 8 of Ref. 1 and we �nd disagreement withRef. 1 in the results for the ontribution σextxy (σIsc

xy ).The ontributions σIb
xy and σII

xy perfetly agree with Ref.1. In the lean limit τ → ∞, we see that σIsc
xy and thusthe total Hall ondutivity σTot

xy diverge. This diver-gene (σIsc
xy ∼ 1/niV0 in the regions (ii) and (iii) and

σIsc
xy ∼ 1/ni in the region (i), see Fig. 2) is due tothe skew sattering. The ondutivity σIsc

xy also on-tains the side-jump ontribution whih an be best seenin Fig. 13a) in the sharp peak in the ondutivity forsmall 1/τ . The skew sattering ontribution deays muhfaster ompared to the side-jump and intrinsi meha-nisms as we go to larger 1/τ . As a result, we an expet

a ross-over between the region dominated by the skewsattering and the region dominated by the side-jump-intrinsi mehanisms. When both subbands are partiallyoupied (see Figs. 13f) and 14f)), the higher order skewsattering is still present. However, we do not expeta well pronouned ross-over as the intrinsi ontribu-tion anels the side-jump ontribution in the metalliregime (see Eq. (45)). By omparing Figs. 13f) and14f), one an see that the higher order skew sattering(hybrid skew sattering)24 does not hange sign when wehange the sign of impurities.When the side-jump-intrinsi and the skew satteringomponents have opposite signs, as in Fig. (13), we ob-serve the AHE sign hange instead of the ross-over. InFigs. 13a)-d), the skew sattering is negative in the leanlimit while the side-jump-intrinsi part is positive. Thisinevitably leads to the sign hange of the ondutivity
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