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Hybrid skew s
attering regime of the anomalous Hall e�e
t in Rashbasystems: unifying Keldysh, Boltzmann, and Kubo formalisms.Alexey A. Kovalev,1 Karel Výborný,2 and Jairo Sinova1, 21Department of Physi
s, Texas A&M University, College Station, TX 77843-4242, USA2Institute of Physi
s ASCR, Cukrovarni
ká 10, 162 53 Praha 6, Cze
h Republi
(Dated: June 24, 2008)We present the analyti
al des
ription of the anomalous Hall e�e
t (AHE) in a 2DEG ferromagnetwithin the Keldysh formalism. These results unify the three linear response approa
hes to AHEand 
lose the debate on previous dis
repan
ies. We are able to identify a new extrinsi
 AHE regimedominated by a hybrid skew s
attering me
hanism. This new 
ontribution is inversely propor-tional to the impurity 
on
entration, resembling the normal skew s
attering, but independent of theimpurity-strength, resembling the side-jump me
hanism. Within the Kubo formalism this regime is
aptured by higher order diagrams whi
h, although weak, 
an dominate when both subbands areo

upied; this regime 
an be dete
ted by variable remote doping experiments.PACS numbers: 72.15.Eb, 72.20.Dp, 72.20.My, 72.25.-bThe anomalous Hall e�e
t (AHE) has been a subje
tof fundamental resear
h in 
ondensed matter physi
s formany de
ades. The anomalous Hall resistivity ρxy de-s
ribes the transverse voltage with respe
t to the trans-port dire
tion and depends on the spontaneous magne-tization M along the z dire
tion. The origin of theAHE lies in the intrinsi
 band stru
ture properties [1℄,and extrinsi
 spin-asymmetri
 s
attering su
h as skew-s
attering [2℄ and side-jump s
attering [3℄.Even though the AHE has been studied for a long time[4℄, it still remains a 
ontroversial theoreti
al subje
t dueto the di�
ulty to obtain agreement between the dif-ferent linear response 
al
ulations within equivalent sys-tems [5, 6, 7, 8, 9, 10, 11℄. Re
ently, some 
onsensus hasbeen rea
hed between the diagrammati
 Kubo formalism[10℄ and the Boltzmann approa
h [9℄. Appli
ation of theKeldysh formalism to the problem is relatively new [6, 7℄and 
onne
tion to the previous theories is required. Liuet al. [6℄ employ this approa
h but fail to reprodu
e thediagrammati
 results [10℄ be
ause the gradient expansionof the 
ollision integral is not taken into a

ount [9℄. On-oda et al. [7℄ use the Keldysh te
hnique formulated ina gauge invariant way; however, employment of the non-
hiral basis representation la
ks transparen
y and onlyallows for a numeri
al solution.In this Rapid Communi
ation, we derive the kineti
equation that takes into a

ount both the e�e
ts of theBerry 
urvature and the extrinsi
 e�e
ts. We solve thequantum Boltzmann equation analyti
ally in the metal-li
 (weak s
attering) regime, �nding the Hall 
urrent upto zeroth order in the impurity strength. Employing the
hiral basis allows us to immediately identify semi
las-si
al 
ontributions [9℄ su
h as intrinsi
, side-jump andskew-s
attering and therefore make a systemati
 deriva-tion of the Boltzmann semi
lassi
al approa
h. We alsomake a full 
onne
tion to the results of the previous worksusing the Kubo formalism [8, 9, 10, 12℄, hen
e bringingto an end the long standing theoreti
al debate within the

weak s
attering regime. In addition, we 
al
ulate the im-portant higher order (hybrid) skew-s
attering diagrams.In the limit of high density and mobility, this hybrid-skew-s
attering 
ontribution dominates in the metalli
regime and surprisingly has no dependen
e on the s
at-tering strength but it is inversely proportional to the im-purity 
on
entration.The method presented in the following is general, how-ever, in order to obtain simple analyti
al results that
onne
t dire
tly with other mi
ros
opi
 linear response
al
ulations [8, 9, 10℄, we restri
t ourselves to 2D RashbaHamiltonian with additional ex
hange �eld h:
ĤR = ~π2/2m + α~π · σ̂ × z − hσ̂z + V (r), (1)where σ̂ are Pauli matri
es, ~π = k−eA, A(t) = −Et de-s
ribes the external ele
tri
 �eld and V (r) the impurities.Here and throughout the text we take ~ = c = 1. Weemploy a simpli�ed model of impurity s
attering, par-ti
ularly V (r) = V0

∑
i δ(r − ri), where ri des
ribes thepositions of randomly distributed impurities. We also es-timate the spin-orbit 
oupling 
omponent of the disorderpotential and show to be important only in the very highdensity regime [16, 17℄.We start by writing the Dyson equation [15℄:

(
[ĜR

0 ]−1 − Σ̂R −Σ̂K

0 [ĜA
0 ]−1 − Σ̂A

)
⊗

(
ĜR ĜK

0 ĜA

)
= 1̌,(2)where R, A, and K stand for retarded, advan
ed andKeldysh 
omponents of the Green's fun
tions and self-energies, and the subs
ript 0 labels the disorder free sys-tem. The symbol ⊗ denotes a 
onvolution (in position,time and spin). By 
onsidering Eq. (2) and its 
onjugate,we arrive at the Kineti
 equation [15℄:

[ĜR
0 ]−1 ⊗ Ĝ< − Ĝ< ⊗ [ĜA

0 ]−1 = Σ̂R ⊗ Ĝ<−

Ĝ< ⊗ Σ̂A + Σ̂< ⊗ ĜA − ĜR ⊗ Σ̂<

, (3)
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2where Ĝ</Σ̂< ≡ (ĜK/Σ̂K + ĜA/Σ̂A − ĜR/Σ̂R)/2. Theiterative version of Eq. (2) 
orresponding to the repeateds
attering by impurities is Σ̌ = Σ̌0 ⊗
[
1̌ + Ǧ ⊗ Σ̌

], where
Σ̌0 is the self-energy from a single s
attering event inKeldysh spa
e. The Keldysh 
omponent of this equation,gives the relation:

Σ̂< =
[
1 + ĜR ⊗ Σ̂R

]
⊗ Σ̂<

0 ⊗
[
1 + Σ̂A ⊗ ĜA

]
+

Σ̂R ⊗ Ĝ< ⊗ Σ̂A, (4)where for a single s
attering event we have Σ̂<
0 = 0.Equations (3) and (4) form a general 
losed set of equa-tions for Ĝ< and are solved in the following.In the presen
e of slowly varying perturbations, itis useful to perform the Wigner transformation, viz.the 
enter-of-mass 
oordinates (X = (R, T )) and theFourier transform with respe
t to the relative 
oordi-nates (k = (k, ω)). In su
h representation, the 
onvolu-tion of two operators is approximated as Â⊗ B̂ ≈ ÂB̂ +

i
2

(
∂X Â∂kB̂ − ∂kÂ∂XB̂

), where we use the four ve
tornotations ∂X∂k = ∂R∂k − ∂ eT ∂ω and ∂ eT = ∂T + eE∂k.Applying this to the Kineti
 Eq. (3) we obtain:
[
Ĥ0, Ĝ

<
]

+
i

2

{
eEυ̂0, ∂ωĜ<

eq

}
+ ieE∂kĜ<

eq = Σ̂RĜ<−

Ĝ<Σ̂A + Σ̂<ĜA − ĜRΣ̂< +
i

2

([
Σ̂R, Ĝ<

eq

]

p
−

[
Ĝ<

eq, Σ̂
A
]

p
+

[
Σ̂<

eq, Ĝ
A
]

p
−

[
ĜR, Σ̂<

eq

]

p

)

,(5)where [Â, B̂]p ≡ (∂XÂ∂kB̂ − ∂kÂ∂X B̂), υ̂0 = ∂kĤ0,
Ĝ<

eq = nF (ĜA−ĜR) and Σ̂<
eq = nF (Σ̂A−Σ̂R). In derivingEq. (5), one retains only the �rst order terms in ele
tri
�eld E and use the fa
t that our system is homogeneousand stationary (∂RĜ< = 0, ∂T Ĝ< = 0).To establish the 
onne
tion with the several me
h-anisms identi�ed semi
lassi
ally when interpreting theAHE, we transform Eq. (5) into the 
hiral basis in whi
h

Ĥ0 takes the diagonal form Ŝ†Ĥ0Ŝ = 1̂k2/2m− σ̂zλ, υ̂ =
Ŝ†

υ̂0Ŝ, and:̂
S =

(
cos θ/2 sin θ/2

ieiϕ sin θ/2 −ieiϕ cos θ/2

)
,where λ =

√
(αk)2 + h2, cos(θ) = h/λ and tan(φ) =

ky/kx. We �rst obtain the intrinsi
 Hall e�e
t by disre-garding the 
ollision integral in the r.h.s. of Eq. (5). Inthe 
hiral basis, only nondiagonal terms of Ĝ< give non-zero 
ontributions to the intrinsi
 AHE and they are:
Gc<

+− = ieE
(
iυ+−

y ∂ω

[
nF (A+ + A−)

]
/2+

(
GR

+GR
− − GA

+GA
−

)
υ+−

y nF

)
/2λ

Gc<
−+ = −ieE

(
iυ−+

y ∂ω

[
nF (A+ + A−)

]
/2+

(
GR

+GR
− − GA

+GA
−

)
υ−+

y nF

)
/2λ, (6)

where G
R(A)
± = 1/(ω − E± + (−)iΓ

(∗)
± ), Γ± = Γ ∓ Γz

h

λ
,

E± = k2/2m ± λ, A± = i(GR
± − GA

±) and Ĝc< is Ĝ< inthe 
hiral basis (Γ and Γz are de�ned below; however,they don't a�e
t the intrinsi
 
urrent in the vanishing Γlimit). The Green's fun
tion Ĝc< allows us to �nd theintrinsi
 Hall 
urrent along the x- axis:
jx = −ie

∫
d2

k

(2π)2
dω

2π
Tr[Ĝc<υ̂x] = (7)

−ie2E

∫
d2

k

(2π)2
dω

2π
nF

(υ+−
y υ−+

x − υ−+
y υ+−

x )(A+ − A−)

4λ2

= E
e2

4π

(
1 − h

λ−
− (1 − h

λ+
)θ(ωF − h)

)
, (8)where λ± =

√
(αk±)2 + h2 and k2

± = 2m(ωF ∓ λ±) de-s
ribe Fermi ve
tors for the lower/upper 
hiral bands.The intrinsi
 solution Eq. (6) 
ontains both the 
ontri-bution at the Fermi level and from the Fermi sea, oftenreferred to as σII
xy 
ondu
tivity within the Kubo-Stredaformalism. Our next aim is to �nd the 
ontributions thatarise due to impurity s
attering at the Fermi level. Weseparate Eq. (5) into two parts, one is proportional to

nF and the other is proportional to ∂ωnF . The part pro-portional to ∂ωnF , i.e. the Fermi-surfa
e, is:
[
Ĥ0, Ĝ

<
]
−

∂ωnF

2

{
eEυ̂0, Â

}
= Σ̂RĜ< − Ĝ<Σ̂A + Σ̂<ĜA−

ĜRΣ̂< −
∂ωnF

2
(Γ̂∂kĜA + ∂kĜRΓ̂ − Â∂kΣ̂A − ∂kΣ̂RÂ)

,(9)where Â = i(ĜR − ĜA) and Γ̂ = i(Σ̂R − Σ̂A). Note that
∂kΣ̂R(A) = 0 for the simple delta s
atterers. We 
al
ulate
Σ̂R(A)< and Green's fun
tions ĜR(A) using the T -matrixapproximation up to ni-linear terms (in the Pauli basis)[10℄:
Σ̂R(A) = niV

2
0 γ̂(∗)(1 − V0γ̂

(∗))−1 ≡ ∓i(Γ(∗)σ̂0 + Γ(∗)
z σ̂z),(10)

Σ̂< = niV
2
0

∫
d2k

(2π)2
(1 − V0γ̂)−1Ĝ<(1 − V0γ̂

∗)−1,(11)where γ̂ =
∫

d2k/(2π)2ĜR ≡ γσ̂0 + γzσ̂z, ĜR = (ω1̂ −
Ĥ0 − Σ̂R)−1, with γ = γr + iγi, γz = γr

z + iγi
z, and
al
ulated up to the lowest order:

γr =
m

4π
ln

∣∣h2 − ω2
F

∣∣
k4
0/4m2

+
α2 ln

∣∣k2
+/k2

−

∣∣
π(k2

+ − k2
−)/m3

;

γi = −
ν− + ν+

4
; γr

z =
h ln

∣∣k2
+/k2

−

∣∣
π(k2

+ − k2
−)/m2

; γi
z =

h

4
(
ν+

λ+
−

ν−
λ−

)

,where ν± = mλ±

λ±±α2m , ν+ = 0 when ωF < h, ν+

λ+
= ν−

λ−when ωF > h and k0 being the 
uto� in the integrationover the k ve
tor. Note that we use the renormalizations
ωF → ωF − ImΓ and h → h− ImΓz in Eqs. (9,11) whi
hallows us to have purely imaginary self energies ΣR(A).



3
Figure 1: Diagrams representing the averaging pro
edure in
al
ulating Σ̂

< in Eq. (11) where the upper part of the plot
orresponds to Σ̂
A and the lower part 
orresponds to Σ̂

R.The diagram a) leads to the side-jump 
ontribution and thedisorder-independent skew s
attering [13℄, the diagrams b)and 
) lead to 
onventional skew s
attering, and the diagramsd), e) and f) lead to the higher order skew s
attering.However, real parts γr and γr
z still appear in Σ̂< in Eq.(11).In order to �nd the 
urrent in Eq. (7) up to zerothorder in V0, we transform all elements of Eqs. (9,11)into the 
hiral basis and solve the kineti
 equation up tozeroth order in V0. That solution is used to solve thediagonal 
omponents of the kineti
 equation up to these
ond order in V0. Note that the expansion of Ĝc<

+−/−+starts from zero order terms in V0 (see Eq. (6)) while theexpansion of Ĝc<
++/−−

starts from terms proportional to
V −2

0 whi
h means that we only need to solve the non-diagonal 
omponents of the 
hiral kineti
 equation up tozeroth order in V0 while the diagonal 
omponents of thekineti
 equation has to be solved up to the se
ond order.We �nd di�erent 
omponents of Ĝc< = Ĝc<
eq + Ĝc<

int +

Ĝc<
(−2) + Ĝc<

sj + Ĝc<
sk in the range (i) −h < ωF < h whenonly ”− ” 
hiral band is 
rossed by the Fermi level. Theintrinsi
 
ontribution is already in
luded in Eq. (8) andits Fermi level part is Ĝc<

int = −iE∂ωnF A−(α cos ϕ
4λ−

σ̂x −
hα sin ϕ

4λ2
−

σ̂y). By solving the diagonal 
omponents of theKineti
 equation up to zeroth order in V0, we obtain thepart of Ĝc< proportional to V −2
0 :

Ĝc<
(−2) = −iE∂ωnF A− 4λ2

−k− sin ϕ

niV 2
0 κ2

−ν2
−

σ̂−−,where κ± =
√

(αk±)2 + 4h2 and σ̂−−/++ = (σ̂0 ± σ̂z)/2.By solving the non-diagonal 
omponents of the Kineti
equation up to zeroth order in V0, we obtain the non-diagonal elements of the side-jump 
ontribution:
Ĝc<

sj =
E∂ωnF αk2

−

λ−

(
(GA

− + GR
−)(λ−σ̂y cosϕ − hσ̂x sinϕ)

4ν−κ2
−

+

iA−(λ−σ̂x cosϕ + 3hσ̂y sin ϕ)

4ν−κ2
−

+
2iA−h cosϕσ̂−−

κ2
−

) ,(12)

while the diagonal 
ontributions of side-jump are foundby 
onsidering the diagram a) in Fig. 1 and by solvingthe diagonal 
omponents of the kineti
 equation up tothe se
ond order in V0. By 
onsidering the diagrams b)-f) in Fig. 1 and by solving the diagonal 
omponents ofthe kineti
 equation up to the se
ond order in V0, we ob-tain the skew s
attering 
ontribution (the last term 
or-responds to the diagram a) and the disorder-independentskew s
attering [13℄):
Ĝc<

sk = iE∂ωnF A−

(
8Λ

nimV0
−

8γi

nimV0
tan ϕ+

32α2k2
−γrγi

z

niκ2
−

+
3hν−
λ2
−

)
α2k3

−λ2
−

κ4
−ν2

−

σ̂−− cosϕ
(13)where Λ = (

V 3
1

V 3
0

γi
z +

V 4
2

V 3
0

(3γrγi
z + γiγr

z)). Using Eq. (7),we arrive at the the Hall 
ondu
tivity [14℄:
σxy = σII

xy +
e2

4π

(
hα2ν−

λ2
−

−
4hk2

−α2

λ−κ2
−

+

3hk4
−α2

κ4
−ν−

+
8k4

−α2λ2
−

niV0κ4
−ν2

−

(Λ +
4k2

−α2γrγi
z

κ2
−m

V 6
1

V 5
0

)

) , (14)where σII
xy = e2

4π (1− h√
α4+λ2

F

) and λF =
√

h2 + 2α2mωF .In Eqs. (13,14) we have made a straightforward gen-eralization to a more general model of disorder: V (r) =∑
i V i

0 δ(r−ri) with ri random and strength distributionssatisfying 〈
V i

0

〉
dis

= 0, 〈
(V i

0 )2
〉

dis
= V 2

0 , 〈
(V i

0 )3
〉

dis
= V 3

1and 〈
(V i

0 )4
〉

dis
= V 4

2 . For the disorder des
ribed afterEq. (1), we have V0 = V1 = V2 and for the white noisedisorder we have V1 = 0. Note that this result redu
es tothe Kubo formalism result of Ref. [10℄ when the last termbra
ket is 
al
ulated up to zeroth order in the strengthof the disorder.We repeat the same pro
edure in the range (ii) h < ωFwhen both 
hiral bands are partially o

upied. By usingEq. (7), within this limit we obtain that the intrinsi
 andside-jump 
ontributions 
an
el ea
h other, in agreementwith Refs. 8, 9, 10, the Fermi sea 
ontribution vanishes( σII
xy = 0 ) from Eq. (6), and the Hall 
ondu
tivity isonly non-zero for the higher order skew s
attering arisingfrom diagrams d)-f):

σxy =
V 4
2

niV 4
0

e2hα2 ln
∣∣∣k2

−

k2
+

∣∣∣
π2(k2

− − k2
+)

×

α2k2
−k2

+(k2
+ − k2

−)/m + 2
√

α4 + λ2
F (k4

+λ− − k4
−λ+)

16(α4 + λ2
F )3/2(λ2

F − h2)/α2
=

− V 4
2

niV 4
0

e2hα2 ln
∣∣k2

−/k2
+

∣∣
π2(k2

− − k2
+)

.(15)This 
ontribution from the higher order diagrams d)-f)was not 
onsidered in prior 
al
ulations within the Kuboformalism [8, 10℄ and only dis
ussed without being 
al-
ulated in Ref. 9. We have also used the numeri
al pro-
edure of Onoda et al. [7℄ to verify this analyti
al result
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Figure 2: (Color online.) The anomalous Hall 
ondu
tivity
σyx vs. the Fermi energy ωF and the spin-orbit 
oupling α(
on
entration of impurities ni = 10

11
m−2, ex
hange split-ting h = 10meV and m∗

= 0.05m). The plot a) 
orrespondsto the mobility 60m2/Vs or weak impurity s
attering strengthwhile the plot b) 
orresponds to the mobility 12 m2/Vs andlarger impurity strength. In the inset, σ1

xy 
orresponds to theextrinsi
 skew s
attering.that identi�es this new extrinsi
 regime in the 2DEG withRashba. Although the 
ontribution in this regime is pro-portional to 1/ni it does not depend on V0 as V −1
0 , as itis usual for the skew s
attering. The result in Eq. (15)
an be understood within the Boltzmann approa
h bywriting the s
attering rates in the 
hiral basis:

ωσσ′(k, k′) =
2π

~
niT

R
c (k, k′)σσ′T A

c (k′, k)σ′σδ(ǫk − ǫk′),(16)where T̂
R(A)
c (k, k′) = Ŝ†(k)(1 − V0γ̂

(∗))−1Ŝ(k′). Theasymmetri
 part with respe
t to k, k′ in Eq. (16) isresponsible for the skew s
attering and is proportional to
niV

3
0 Λ. Consequently, the Hall 
urrent should be pro-portional to

σskew
xy ∼ niV

3
0 Λ(τ tr

± )2 ∼
niV

3
0 (γi

z + V0(3γrγi
z + γiγr

z ))

(niV 2
0 )2

,where τ tr
± is the transport time for the ± 
hiral bands.The 
onventional skew s
attering (V −1

0 order) appearsdue to the di�eren
e in the life-time for the± 
hiral bandsgiven by γi
z. However, for the Rashba model when bothsubbands are partially o

upied we have γi

z = 0. In thislimit, the asymmetry in the s
attering still appears due tothe di�eren
e in the Fermi energy renormalization for the
± 
hiral bands given by γr

z and leads to a V0 independent
ontribution proportional to 1/ni.In Fig. 2, we plot the anomalous Hall 
ondu
tiv-ity as a fun
tion of the Fermi energy ωF and the spin-orbit 
oupling α for attra
tive impurities (V0 < 0). Wetake typi
al parameters 
orresponding to a high qual-ity 2DEG samples: the 
arrier 
on
entration is in therange 1011
m−2, the maximum spin-orbit 
oupling is
5 × 10−11eVm and the mobilities are 12 and 60 m2/Vs.In the inset of Fig. 2 we analyze the importan
e ofthe extrinsi
 skew s
attering 
aused by the impurity

indu
ed spin-orbit intera
tion HSO = λ (σ × ∇V ) · k(λ = 0.052nm2 for GaAs [16℄) that is always present inrealisti
 systems. For the estimate we use the 
orrespond-ing Hall 
ondu
tivity [17℄, σ1
xy = e2λ

16niV0

(
ν−k4

− − ν+k4
+

).This 
ondu
tivity be
omes important for larger 
arrier
on
entrations and there should be a region of 
ross-over between the hybrid skew s
attering and the extrin-si
 skew s
attering (some interferen
e between the twoe�e
ts may take pla
e). In the limit (i) (ωF < h), we ob-serve skew s
attering behavior (σxy ∼ 1/niV0) when theinverse Born s
attering amplitude τ = 1/niV
2
0 m ≫ 1/ǫF(ǫF is the Fermi energy measured from the bottom of theband). For smaller τ , all 
urves have asymptoti
 behaviorrea
hing a sum of side-jump and intrinsi
 
ontributionsas it 
an be seen from Eq. (14) whi
h represents the
ross-over between the intrinsi
-side-jump and extrinsi
anomalous Hall e�e
t. In the transition region to thelimit (ii) (ωF > h), we observe a sudden drop of theHall 
ondu
tivity (see Fig. 2) with a sign 
hange. Thehybrid skew s
attering should be observable in sampleswith dopants situated 
loser to the 2DEG to maximizethe impurity strength as it 
an be seen from the inset ofFig. 2. Onoda et al. [7℄ analyze the region of τǫF ∼ 1,�nding σxy ∼ σ1.6

xx s
aling. This region is beyond appli-
ability of our results whi
h rely on the weak s
atteringlimit τǫF ≫ 1, sin
e our approximations ignore the 
or-re
tions to the 
ondu
tivity ∼ 1/τǫF and the gradientexpansion in this regime is not fully justi�ed.Summarizing, we analyti
ally 
al
ulate the anomalousHall 
urrent in a 2DEG ferromagnet with spin-orbit in-tera
tion using the Keldysh formalism. Complete agree-ment to the Kubo formula approa
h and to the Boltz-mann equation approa
h is obtained. By 
onsidering thehigher order skew-s
attering diagrams, we are able to 
al-
ulate a Hall 
urrent due to a hybrid skew s
atteringme
hanism whi
h is dominant when both subbands arepartially o

upied or when the system has white noisedisorder. This parti
ular Hall 
urrent does not dependon the impurity sign and strength.We gratefully a
knowledge dis
ussions with V. Dugaev,J. Inoue, T. Jungwirth, A. H. Ma
Donald, Ar. Abanov,G.E.W. Bauer, N. Sinitsyn and S. Onoda. This workwas supported by ONR under grant onr-n000140610122,by NSF under grant DMR-0547875 by SWAN-NRI andgrants KJB100100802, LC510 and AV0Z10100521. J.S.is a Cottrell S
holar of the Resear
h Foundation.[1℄ R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154(1954).[2℄ J. Smit, Physi
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