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Hybrid skew sattering regime of the anomalous Hall e�et in Rashbasystems: unifying Keldysh, Boltzmann, and Kubo formalisms.Alexey A. Kovalev,1 Karel Výborný,2 and Jairo Sinova1, 21Department of Physis, Texas A&M University, College Station, TX 77843-4242, USA2Institute of Physis ASCR, Cukrovarniká 10, 162 53 Praha 6, Czeh Republi(Dated: June 24, 2008)We present the analytial desription of the anomalous Hall e�et (AHE) in a 2DEG ferromagnetwithin the Keldysh formalism. These results unify the three linear response approahes to AHEand lose the debate on previous disrepanies. We are able to identify a new extrinsi AHE regimedominated by a hybrid skew sattering mehanism. This new ontribution is inversely propor-tional to the impurity onentration, resembling the normal skew sattering, but independent of theimpurity-strength, resembling the side-jump mehanism. Within the Kubo formalism this regime isaptured by higher order diagrams whih, although weak, an dominate when both subbands areoupied; this regime an be deteted by variable remote doping experiments.PACS numbers: 72.15.Eb, 72.20.Dp, 72.20.My, 72.25.-bThe anomalous Hall e�et (AHE) has been a subjetof fundamental researh in ondensed matter physis formany deades. The anomalous Hall resistivity ρxy de-sribes the transverse voltage with respet to the trans-port diretion and depends on the spontaneous magne-tization M along the z diretion. The origin of theAHE lies in the intrinsi band struture properties [1℄,and extrinsi spin-asymmetri sattering suh as skew-sattering [2℄ and side-jump sattering [3℄.Even though the AHE has been studied for a long time[4℄, it still remains a ontroversial theoretial subjet dueto the di�ulty to obtain agreement between the dif-ferent linear response alulations within equivalent sys-tems [5, 6, 7, 8, 9, 10, 11℄. Reently, some onsensus hasbeen reahed between the diagrammati Kubo formalism[10℄ and the Boltzmann approah [9℄. Appliation of theKeldysh formalism to the problem is relatively new [6, 7℄and onnetion to the previous theories is required. Liuet al. [6℄ employ this approah but fail to reprodue thediagrammati results [10℄ beause the gradient expansionof the ollision integral is not taken into aount [9℄. On-oda et al. [7℄ use the Keldysh tehnique formulated ina gauge invariant way; however, employment of the non-hiral basis representation laks transpareny and onlyallows for a numerial solution.In this Rapid Communiation, we derive the kinetiequation that takes into aount both the e�ets of theBerry urvature and the extrinsi e�ets. We solve thequantum Boltzmann equation analytially in the metal-li (weak sattering) regime, �nding the Hall urrent upto zeroth order in the impurity strength. Employing thehiral basis allows us to immediately identify semilas-sial ontributions [9℄ suh as intrinsi, side-jump andskew-sattering and therefore make a systemati deriva-tion of the Boltzmann semilassial approah. We alsomake a full onnetion to the results of the previous worksusing the Kubo formalism [8, 9, 10, 12℄, hene bringingto an end the long standing theoretial debate within the

weak sattering regime. In addition, we alulate the im-portant higher order (hybrid) skew-sattering diagrams.In the limit of high density and mobility, this hybrid-skew-sattering ontribution dominates in the metalliregime and surprisingly has no dependene on the sat-tering strength but it is inversely proportional to the im-purity onentration.The method presented in the following is general, how-ever, in order to obtain simple analytial results thatonnet diretly with other mirosopi linear responsealulations [8, 9, 10℄, we restrit ourselves to 2D RashbaHamiltonian with additional exhange �eld h:
ĤR = ~π2/2m + α~π · σ̂ × z − hσ̂z + V (r), (1)where σ̂ are Pauli matries, ~π = k−eA, A(t) = −Et de-sribes the external eletri �eld and V (r) the impurities.Here and throughout the text we take ~ = c = 1. Weemploy a simpli�ed model of impurity sattering, par-tiularly V (r) = V0

∑
i δ(r − ri), where ri desribes thepositions of randomly distributed impurities. We also es-timate the spin-orbit oupling omponent of the disorderpotential and show to be important only in the very highdensity regime [16, 17℄.We start by writing the Dyson equation [15℄:

(
[ĜR

0 ]−1 − Σ̂R −Σ̂K

0 [ĜA
0 ]−1 − Σ̂A

)
⊗

(
ĜR ĜK

0 ĜA

)
= 1̌,(2)where R, A, and K stand for retarded, advaned andKeldysh omponents of the Green's funtions and self-energies, and the subsript 0 labels the disorder free sys-tem. The symbol ⊗ denotes a onvolution (in position,time and spin). By onsidering Eq. (2) and its onjugate,we arrive at the Kineti equation [15℄:

[ĜR
0 ]−1 ⊗ Ĝ< − Ĝ< ⊗ [ĜA

0 ]−1 = Σ̂R ⊗ Ĝ<−

Ĝ< ⊗ Σ̂A + Σ̂< ⊗ ĜA − ĜR ⊗ Σ̂<

, (3)
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2where Ĝ</Σ̂< ≡ (ĜK/Σ̂K + ĜA/Σ̂A − ĜR/Σ̂R)/2. Theiterative version of Eq. (2) orresponding to the repeatedsattering by impurities is Σ̌ = Σ̌0 ⊗
[
1̌ + Ǧ ⊗ Σ̌

], where
Σ̌0 is the self-energy from a single sattering event inKeldysh spae. The Keldysh omponent of this equation,gives the relation:

Σ̂< =
[
1 + ĜR ⊗ Σ̂R

]
⊗ Σ̂<

0 ⊗
[
1 + Σ̂A ⊗ ĜA

]
+

Σ̂R ⊗ Ĝ< ⊗ Σ̂A, (4)where for a single sattering event we have Σ̂<
0 = 0.Equations (3) and (4) form a general losed set of equa-tions for Ĝ< and are solved in the following.In the presene of slowly varying perturbations, itis useful to perform the Wigner transformation, viz.the enter-of-mass oordinates (X = (R, T )) and theFourier transform with respet to the relative oordi-nates (k = (k, ω)). In suh representation, the onvolu-tion of two operators is approximated as Â⊗ B̂ ≈ ÂB̂ +

i
2

(
∂X Â∂kB̂ − ∂kÂ∂XB̂

), where we use the four vetornotations ∂X∂k = ∂R∂k − ∂ eT ∂ω and ∂ eT = ∂T + eE∂k.Applying this to the Kineti Eq. (3) we obtain:
[
Ĥ0, Ĝ

<
]

+
i

2

{
eEυ̂0, ∂ωĜ<

eq

}
+ ieE∂kĜ<

eq = Σ̂RĜ<−

Ĝ<Σ̂A + Σ̂<ĜA − ĜRΣ̂< +
i

2

([
Σ̂R, Ĝ<

eq

]

p
−

[
Ĝ<

eq, Σ̂
A
]

p
+

[
Σ̂<

eq, Ĝ
A
]

p
−

[
ĜR, Σ̂<

eq

]

p

)

,(5)where [Â, B̂]p ≡ (∂XÂ∂kB̂ − ∂kÂ∂X B̂), υ̂0 = ∂kĤ0,
Ĝ<

eq = nF (ĜA−ĜR) and Σ̂<
eq = nF (Σ̂A−Σ̂R). In derivingEq. (5), one retains only the �rst order terms in eletri�eld E and use the fat that our system is homogeneousand stationary (∂RĜ< = 0, ∂T Ĝ< = 0).To establish the onnetion with the several meh-anisms identi�ed semilassially when interpreting theAHE, we transform Eq. (5) into the hiral basis in whih

Ĥ0 takes the diagonal form Ŝ†Ĥ0Ŝ = 1̂k2/2m− σ̂zλ, υ̂ =
Ŝ†

υ̂0Ŝ, and:̂
S =

(
cos θ/2 sin θ/2

ieiϕ sin θ/2 −ieiϕ cos θ/2

)
,where λ =

√
(αk)2 + h2, cos(θ) = h/λ and tan(φ) =

ky/kx. We �rst obtain the intrinsi Hall e�et by disre-garding the ollision integral in the r.h.s. of Eq. (5). Inthe hiral basis, only nondiagonal terms of Ĝ< give non-zero ontributions to the intrinsi AHE and they are:
Gc<

+− = ieE
(
iυ+−

y ∂ω

[
nF (A+ + A−)

]
/2+

(
GR

+GR
− − GA

+GA
−

)
υ+−

y nF

)
/2λ

Gc<
−+ = −ieE

(
iυ−+

y ∂ω

[
nF (A+ + A−)

]
/2+

(
GR

+GR
− − GA

+GA
−

)
υ−+

y nF

)
/2λ, (6)

where G
R(A)
± = 1/(ω − E± + (−)iΓ

(∗)
± ), Γ± = Γ ∓ Γz

h

λ
,

E± = k2/2m ± λ, A± = i(GR
± − GA

±) and Ĝc< is Ĝ< inthe hiral basis (Γ and Γz are de�ned below; however,they don't a�et the intrinsi urrent in the vanishing Γlimit). The Green's funtion Ĝc< allows us to �nd theintrinsi Hall urrent along the x- axis:
jx = −ie

∫
d2

k

(2π)2
dω

2π
Tr[Ĝc<υ̂x] = (7)

−ie2E

∫
d2

k

(2π)2
dω

2π
nF

(υ+−
y υ−+

x − υ−+
y υ+−

x )(A+ − A−)

4λ2

= E
e2

4π

(
1 − h

λ−
− (1 − h

λ+
)θ(ωF − h)

)
, (8)where λ± =

√
(αk±)2 + h2 and k2

± = 2m(ωF ∓ λ±) de-sribe Fermi vetors for the lower/upper hiral bands.The intrinsi solution Eq. (6) ontains both the ontri-bution at the Fermi level and from the Fermi sea, oftenreferred to as σII
xy ondutivity within the Kubo-Stredaformalism. Our next aim is to �nd the ontributions thatarise due to impurity sattering at the Fermi level. Weseparate Eq. (5) into two parts, one is proportional to

nF and the other is proportional to ∂ωnF . The part pro-portional to ∂ωnF , i.e. the Fermi-surfae, is:
[
Ĥ0, Ĝ

<
]
−

∂ωnF

2

{
eEυ̂0, Â

}
= Σ̂RĜ< − Ĝ<Σ̂A + Σ̂<ĜA−

ĜRΣ̂< −
∂ωnF

2
(Γ̂∂kĜA + ∂kĜRΓ̂ − Â∂kΣ̂A − ∂kΣ̂RÂ)

,(9)where Â = i(ĜR − ĜA) and Γ̂ = i(Σ̂R − Σ̂A). Note that
∂kΣ̂R(A) = 0 for the simple delta satterers. We alulate
Σ̂R(A)< and Green's funtions ĜR(A) using the T -matrixapproximation up to ni-linear terms (in the Pauli basis)[10℄:
Σ̂R(A) = niV

2
0 γ̂(∗)(1 − V0γ̂

(∗))−1 ≡ ∓i(Γ(∗)σ̂0 + Γ(∗)
z σ̂z),(10)

Σ̂< = niV
2
0

∫
d2k

(2π)2
(1 − V0γ̂)−1Ĝ<(1 − V0γ̂

∗)−1,(11)where γ̂ =
∫

d2k/(2π)2ĜR ≡ γσ̂0 + γzσ̂z, ĜR = (ω1̂ −
Ĥ0 − Σ̂R)−1, with γ = γr + iγi, γz = γr

z + iγi
z, andalulated up to the lowest order:

γr =
m

4π
ln

∣∣h2 − ω2
F

∣∣
k4
0/4m2

+
α2 ln

∣∣k2
+/k2

−

∣∣
π(k2

+ − k2
−)/m3

;

γi = −
ν− + ν+

4
; γr

z =
h ln

∣∣k2
+/k2

−

∣∣
π(k2

+ − k2
−)/m2

; γi
z =

h

4
(
ν+

λ+
−

ν−
λ−

)

,where ν± = mλ±

λ±±α2m , ν+ = 0 when ωF < h, ν+

λ+
= ν−

λ−when ωF > h and k0 being the uto� in the integrationover the k vetor. Note that we use the renormalizations
ωF → ωF − ImΓ and h → h− ImΓz in Eqs. (9,11) whihallows us to have purely imaginary self energies ΣR(A).



3
Figure 1: Diagrams representing the averaging proedure inalulating Σ̂

< in Eq. (11) where the upper part of the plotorresponds to Σ̂
A and the lower part orresponds to Σ̂

R.The diagram a) leads to the side-jump ontribution and thedisorder-independent skew sattering [13℄, the diagrams b)and ) lead to onventional skew sattering, and the diagramsd), e) and f) lead to the higher order skew sattering.However, real parts γr and γr
z still appear in Σ̂< in Eq.(11).In order to �nd the urrent in Eq. (7) up to zerothorder in V0, we transform all elements of Eqs. (9,11)into the hiral basis and solve the kineti equation up tozeroth order in V0. That solution is used to solve thediagonal omponents of the kineti equation up to theseond order in V0. Note that the expansion of Ĝc<

+−/−+starts from zero order terms in V0 (see Eq. (6)) while theexpansion of Ĝc<
++/−−

starts from terms proportional to
V −2

0 whih means that we only need to solve the non-diagonal omponents of the hiral kineti equation up tozeroth order in V0 while the diagonal omponents of thekineti equation has to be solved up to the seond order.We �nd di�erent omponents of Ĝc< = Ĝc<
eq + Ĝc<

int +

Ĝc<
(−2) + Ĝc<

sj + Ĝc<
sk in the range (i) −h < ωF < h whenonly ”− ” hiral band is rossed by the Fermi level. Theintrinsi ontribution is already inluded in Eq. (8) andits Fermi level part is Ĝc<

int = −iE∂ωnF A−(α cos ϕ
4λ−

σ̂x −
hα sin ϕ

4λ2
−

σ̂y). By solving the diagonal omponents of theKineti equation up to zeroth order in V0, we obtain thepart of Ĝc< proportional to V −2
0 :

Ĝc<
(−2) = −iE∂ωnF A− 4λ2

−k− sin ϕ

niV 2
0 κ2

−ν2
−

σ̂−−,where κ± =
√

(αk±)2 + 4h2 and σ̂−−/++ = (σ̂0 ± σ̂z)/2.By solving the non-diagonal omponents of the Kinetiequation up to zeroth order in V0, we obtain the non-diagonal elements of the side-jump ontribution:
Ĝc<

sj =
E∂ωnF αk2

−

λ−

(
(GA

− + GR
−)(λ−σ̂y cosϕ − hσ̂x sinϕ)

4ν−κ2
−

+

iA−(λ−σ̂x cosϕ + 3hσ̂y sin ϕ)

4ν−κ2
−

+
2iA−h cosϕσ̂−−

κ2
−

) ,(12)

while the diagonal ontributions of side-jump are foundby onsidering the diagram a) in Fig. 1 and by solvingthe diagonal omponents of the kineti equation up tothe seond order in V0. By onsidering the diagrams b)-f) in Fig. 1 and by solving the diagonal omponents ofthe kineti equation up to the seond order in V0, we ob-tain the skew sattering ontribution (the last term or-responds to the diagram a) and the disorder-independentskew sattering [13℄):
Ĝc<

sk = iE∂ωnF A−

(
8Λ

nimV0
−

8γi

nimV0
tan ϕ+

32α2k2
−γrγi

z

niκ2
−

+
3hν−
λ2
−

)
α2k3

−λ2
−

κ4
−ν2

−

σ̂−− cosϕ
(13)where Λ = (

V 3
1

V 3
0

γi
z +

V 4
2

V 3
0

(3γrγi
z + γiγr

z)). Using Eq. (7),we arrive at the the Hall ondutivity [14℄:
σxy = σII

xy +
e2

4π

(
hα2ν−

λ2
−

−
4hk2

−α2

λ−κ2
−

+

3hk4
−α2

κ4
−ν−

+
8k4

−α2λ2
−

niV0κ4
−ν2

−

(Λ +
4k2

−α2γrγi
z

κ2
−m

V 6
1

V 5
0

)

) , (14)where σII
xy = e2

4π (1− h√
α4+λ2

F

) and λF =
√

h2 + 2α2mωF .In Eqs. (13,14) we have made a straightforward gen-eralization to a more general model of disorder: V (r) =∑
i V i

0 δ(r−ri) with ri random and strength distributionssatisfying 〈
V i

0

〉
dis

= 0, 〈
(V i

0 )2
〉

dis
= V 2

0 , 〈
(V i

0 )3
〉

dis
= V 3

1and 〈
(V i

0 )4
〉

dis
= V 4

2 . For the disorder desribed afterEq. (1), we have V0 = V1 = V2 and for the white noisedisorder we have V1 = 0. Note that this result redues tothe Kubo formalism result of Ref. [10℄ when the last termbraket is alulated up to zeroth order in the strengthof the disorder.We repeat the same proedure in the range (ii) h < ωFwhen both hiral bands are partially oupied. By usingEq. (7), within this limit we obtain that the intrinsi andside-jump ontributions anel eah other, in agreementwith Refs. 8, 9, 10, the Fermi sea ontribution vanishes( σII
xy = 0 ) from Eq. (6), and the Hall ondutivity isonly non-zero for the higher order skew sattering arisingfrom diagrams d)-f):

σxy =
V 4
2

niV 4
0

e2hα2 ln
∣∣∣k2

−

k2
+

∣∣∣
π2(k2

− − k2
+)

×

α2k2
−k2

+(k2
+ − k2

−)/m + 2
√

α4 + λ2
F (k4

+λ− − k4
−λ+)

16(α4 + λ2
F )3/2(λ2

F − h2)/α2
=

− V 4
2

niV 4
0

e2hα2 ln
∣∣k2

−/k2
+

∣∣
π2(k2

− − k2
+)

.(15)This ontribution from the higher order diagrams d)-f)was not onsidered in prior alulations within the Kuboformalism [8, 10℄ and only disussed without being al-ulated in Ref. 9. We have also used the numerial pro-edure of Onoda et al. [7℄ to verify this analytial result
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Figure 2: (Color online.) The anomalous Hall ondutivity
σyx vs. the Fermi energy ωF and the spin-orbit oupling α(onentration of impurities ni = 10

11m−2, exhange split-ting h = 10meV and m∗

= 0.05m). The plot a) orrespondsto the mobility 60m2/Vs or weak impurity sattering strengthwhile the plot b) orresponds to the mobility 12 m2/Vs andlarger impurity strength. In the inset, σ1

xy orresponds to theextrinsi skew sattering.that identi�es this new extrinsi regime in the 2DEG withRashba. Although the ontribution in this regime is pro-portional to 1/ni it does not depend on V0 as V −1
0 , as itis usual for the skew sattering. The result in Eq. (15)an be understood within the Boltzmann approah bywriting the sattering rates in the hiral basis:

ωσσ′(k, k′) =
2π

~
niT

R
c (k, k′)σσ′T A

c (k′, k)σ′σδ(ǫk − ǫk′),(16)where T̂
R(A)
c (k, k′) = Ŝ†(k)(1 − V0γ̂

(∗))−1Ŝ(k′). Theasymmetri part with respet to k, k′ in Eq. (16) isresponsible for the skew sattering and is proportional to
niV

3
0 Λ. Consequently, the Hall urrent should be pro-portional to

σskew
xy ∼ niV

3
0 Λ(τ tr

± )2 ∼
niV

3
0 (γi

z + V0(3γrγi
z + γiγr

z ))

(niV 2
0 )2

,where τ tr
± is the transport time for the ± hiral bands.The onventional skew sattering (V −1

0 order) appearsdue to the di�erene in the life-time for the± hiral bandsgiven by γi
z. However, for the Rashba model when bothsubbands are partially oupied we have γi

z = 0. In thislimit, the asymmetry in the sattering still appears due tothe di�erene in the Fermi energy renormalization for the
± hiral bands given by γr

z and leads to a V0 independentontribution proportional to 1/ni.In Fig. 2, we plot the anomalous Hall ondutiv-ity as a funtion of the Fermi energy ωF and the spin-orbit oupling α for attrative impurities (V0 < 0). Wetake typial parameters orresponding to a high qual-ity 2DEG samples: the arrier onentration is in therange 1011m−2, the maximum spin-orbit oupling is
5 × 10−11eVm and the mobilities are 12 and 60 m2/Vs.In the inset of Fig. 2 we analyze the importane ofthe extrinsi skew sattering aused by the impurity

indued spin-orbit interation HSO = λ (σ × ∇V ) · k(λ = 0.052nm2 for GaAs [16℄) that is always present inrealisti systems. For the estimate we use the orrespond-ing Hall ondutivity [17℄, σ1
xy = e2λ

16niV0

(
ν−k4

− − ν+k4
+

).This ondutivity beomes important for larger arrieronentrations and there should be a region of ross-over between the hybrid skew sattering and the extrin-si skew sattering (some interferene between the twoe�ets may take plae). In the limit (i) (ωF < h), we ob-serve skew sattering behavior (σxy ∼ 1/niV0) when theinverse Born sattering amplitude τ = 1/niV
2
0 m ≫ 1/ǫF(ǫF is the Fermi energy measured from the bottom of theband). For smaller τ , all urves have asymptoti behaviorreahing a sum of side-jump and intrinsi ontributionsas it an be seen from Eq. (14) whih represents theross-over between the intrinsi-side-jump and extrinsianomalous Hall e�et. In the transition region to thelimit (ii) (ωF > h), we observe a sudden drop of theHall ondutivity (see Fig. 2) with a sign hange. Thehybrid skew sattering should be observable in sampleswith dopants situated loser to the 2DEG to maximizethe impurity strength as it an be seen from the inset ofFig. 2. Onoda et al. [7℄ analyze the region of τǫF ∼ 1,�nding σxy ∼ σ1.6

xx saling. This region is beyond appli-ability of our results whih rely on the weak satteringlimit τǫF ≫ 1, sine our approximations ignore the or-retions to the ondutivity ∼ 1/τǫF and the gradientexpansion in this regime is not fully justi�ed.Summarizing, we analytially alulate the anomalousHall urrent in a 2DEG ferromagnet with spin-orbit in-teration using the Keldysh formalism. Complete agree-ment to the Kubo formula approah and to the Boltz-mann equation approah is obtained. By onsidering thehigher order skew-sattering diagrams, we are able to al-ulate a Hall urrent due to a hybrid skew satteringmehanism whih is dominant when both subbands arepartially oupied or when the system has white noisedisorder. This partiular Hall urrent does not dependon the impurity sign and strength.We gratefully aknowledge disussions with V. Dugaev,J. Inoue, T. Jungwirth, A. H. MaDonald, Ar. Abanov,G.E.W. Bauer, N. Sinitsyn and S. Onoda. This workwas supported by ONR under grant onr-n000140610122,by NSF under grant DMR-0547875 by SWAN-NRI andgrants KJB100100802, LC510 and AV0Z10100521. J.S.is a Cottrell Sholar of the Researh Foundation.[1℄ R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154(1954).[2℄ J. Smit, Physia 21, 877 (1955).[3℄ L. Berger, Phys. Rev. B 2, 4559 (1970).[4℄ P. Nozieres and C. Lewiner, J. Physique 34, 901 (1973).[5℄ V. K. Dugaev et al, Phys. Rev. B 71, 224423 (2005).[6℄ S. Y. Liu, N. J. M. Horing, and X. L. Lei, Phys. Rev. B
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