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Abstract

Ferromagnetic Co2MnGa has recently attracted significant attention due to effects related to non-

trivial topology of its band structure, however a systematic study of canonical magneto-galvanic

transport effects is missing. Focusing on high quality thin films, here we systematically measure

anisotropic magnetoresistance (AMR) and its thermoelectric counterpart (AMTP). We model the

AMR data by free energy minimisation within the Stoner–Wohlfarth formalism and conclude that

both crystalline and non-crystalline components of this magneto-transport phenomenon are present

in Co2MnGa. Unlike the AMR which is small in relative terms (∼ 0.1%), the AMTP is large due

to a change of sign of the Seebeck coefficient as a function of temperature. This fact is discussed

in the context of the Mott rule and further analysis of AMTP components is presented.

∗ Corresponding author: philipp.ritzinger@web.de
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Electron transport phenomena in magnetically ordered materials span a vast range both

historically and from the point of view of complexity. While some of them which have

been known for a long time, such as the anisotropic magnetoresistance (AMR) [1], remain a

subject of roughly constant interest until today [2–4] others rose to prominence only recently.

Such is the case of the anomalous Nernst effect [5] (ANE) for example, an outstanding

member of the field of spin caloritronics [6]. In a typical thin film geometry with magnetic

field applied in the direction normal to the film plane and a thermal gradient in the sample

plane, the ANE signal is detected in the other (perpendicular) in-plane direction. This effect

is particularly strong in ferromagnetic Co2MnGa [7] (identified as a Weyl semimetal [8])

and having thus drawn considerable interest it has been investigated in sufficient detail

already [9–11].

In this work, we extend the discussion also to effects which occur when magnetic field is

applied in the sample plane. The studied thin film of Heusler alloy Co2MnGa represents an

ideal model system because of its high crystalline quality, relatively strong magneto-thermal

response, its high Curie temperature (TC = 694 K) and high spin polarisation [12]. We

study systematically the magneto-thermal transport response when the magnetic field is

rotated in three perpendicular rotation planes. Along with AMR, the anisotropic magneto-

thermopower (AMTP) is reported and compared qualitatively. We discuss the applicability

of a simple Stoner–Wohlfarth-based model (as used recently in a different context, for ex-

ample in Ref. [3]) to the AMTP data and compare the ratio of amplitudes of AMTP and

AMR in various samples and at different temperatures. We report crystalline contributions

to both AMR and AMTP and interestingly, some of these seem missing (or at least they are

significantly weaker) in the latter effect. Inconsistencies related to the straightforward ap-

plication of the Mott rule to our measurements suggest a sizable phonon [13] or magnon [14]

drag contribution to the thermopower.

This paper is structured as follows: in Sec I we are motivating the comparison of

anisotropic magnetoresistance (AMR) and anisotropic magnetothermopower (AMTP) and

provide some background on these two effects. In Sec II, the formalism used for the data

analysis is introduced and sample fabrication and characterisation is described in Sec. III.

Finally, experimental results are shown and discussed in Sec. IV; an outlook and and sum-

mary is provided in Sec. V.
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I. INTRODUCTION

Both AMR and AMTP refer to voltage variation as a function of the angle between

magnetization and the driving force (electrical current j in case of AMR and temperature

gradient ∇T in case of AMTP) or the angle between magnetization and the crystal axes

in the respective setting. Although they could probe similar physical properties, there are

many more reports about AMR than about AMTP, mostly due to experimental challenges

in measuring AMTP. In the following, we give a brief introduction of both.

Since the original observation of AMR by William Thomson [1] the AMR is typically

understood as a variation of resistance as a function of magnetisation M direction [15]

∆ρyy(ϕ) = CI cos 2ϕ, with ϕ denoting the angle between current and magnetisation. How-

ever, there is another level of complexity in AMR. In 1938, the discussion of this effect was

extended to the influence of crystalline symmetry. W. Doering [16] carried out symmetry-

based AMR analysis [17] of resistivity tensor using a series expansion up to fourth order in

powers of the direction cosines of the magnetization. These expansions contain AMR terms

different from the ”non-crystalline” cos 2ϕ ones and such additional terms are sometimes

called ”crystalline” AMR since they reflect the crystal symmetry and not the symmetry

breaking induced by the electrical current direction. Consequently, unlike the non-crystalline

AMR, the crystalline AMR contributions can be non-zero even if ϕ = π/2 remains constant

(for example, during the magnetic field rotation in the plane perpendicular to j. Such a

situation will be discussed in the experimental setup sketched in Fig. 2(e) below.

AMTP is the thermoelectrical counterpart of AMR. The basic phenomenon (voltage

drop induced by a temperature gradient) was discovered by T.J. Seebeck already in 1821,

thus establishing the field of thermoelectrics. Hints at its anisotropy came much later [18]

however and since then, AMTP has attracted relatively small attention compared to the

AMR. Nevertheless, increasing global demand for energetically sustainable solutions [19]

and the need of advanced microscopy techniques [20] sparked new interest in this effect.

Recent thermoelectric studies in solid state magnetism focus mostly on the evaluation

of Σ (the Seebeck coefficient [21]) or the anomalous Nernst effect (ANE) [6]. The Seebeck

coefficient provides information about the charge carriers, such as concentration, effective

mass or dominant type (electrons or holes) and ANE stirs interest due to the connection

to band structure topology [22] and better technological prospects in thermoelectric energy

3



harvesting [23]. In addition to the ANE, the Seebeck coefficient anisotropy comes with

the possibility for its tensor components Σxy and Σyy to depend on the magnetic field

direction: the anisotropic magneto-thermopower (AMTP) which is a direct analog to the

non-crystalline AMR, can be expressed as

Σxy = SI sin 2ϕ accompanied by

∆Σyy = SI cos 2ϕ, (1)

where ∆Σyy is the difference between Σyy and its average. These relations pertinent to

polycrystalline materials can be straightforwardly derived by angular averaging the Seebeck

tensor as given by Eq. 3.31 in Ref. [24] and we also discuss this relationship in Sec. III.

In contrast to ANE, the AMTP is rarely a topic of systematic studies; with few excep-

tions [25, 26] reports are usually limited to assume its existence (in longitudinal [27, 28] or

transversal [18, 29] geometry also known as the planar Nernst effect) and the AMTP often

assumes the role of an unwanted artefact. The main reasons are the notorious difficulty to

precisely quantify direction and amplitude of a thermal gradient and small magnitude of the

measured thermo-voltages, typically on resolution limit of a common laboratory equipment.

This makes the AMTP experiment significantly more challenging than a simple resistivity

measurement with a well-defined current direction. The thermal gradient quantification is

even more complex in thin film samples where the substrate acts as a heat sink. The lack

of detailed understanding of AMTP becomes obvious when considering systems with vari-

ous contributions to AMR. In particular, very few reports show more complex symmetry of

AMTP [25], the existence of a crystalline component in the AMTP is not yet established

and a comparison between the crystalline contributions to AMR and AMTP is entirely miss-

ing. The understanding of AMTP is not only a fundamental scientific question, but it is

equally important in order to exclude various artefacts in experiments during which thermal

gradient is unintentionally generated.

II. SAMPLE FABRICATION AND CHARACTERIZATION

The Co2MnGa thin-film samples are fabricated by magnetron sputtering on MgO(001)

substrates using a multisource Bestec UHV deposition system from Co, Mn and MnGa

sputter targets. Growth and post-growth annealing was performed at 500◦C. After the
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Co2MnGa thin-film growth, 3 nm of Al were deposited at room temperature to prevent

oxidation. Further details of the growth procedure can be found elsewhere [30]. Here, two

samples showing highest crystal quality with Co2MnGa thickness of 40 nm and 50 nm are

studied. The chemical composition and structural investigation conducted by X-ray diffrac-

tion techniques showed Bragg peaks corresponding to the material composition revealing

a high degree of atomic order similar to Refs. [9, 30]. Figure 1(c) shows the symmetric

radial X-ray diffraction scans, which includes diffraction from lattice planes parallel to the

substrate surface. Given the epitaxial alignment of Co2MnGa(001)[110] ‖ MgO(001)[100],

i.e. an in-plane 45◦ degree rotation, only the 00L Bragg peaks are visible in Fig. 1(c). Well

defined, narrow Bragg peaks evidence the good chemical homogeneity and crystal quality.

While bulk Co2MnGa has a cubic L21 crystal structure the thin-films exhibit an epitaxial

strain-induced tetragonal distortion with slight contraction along the out of plane [001] di-

rection. Resulting c/a ratio is around 0.99 [30]. Figure 1(d) shows X-ray reflectivity data of

the 40 nm and 50 nm thick Co2MnGa epilayer displaying Kiessig fringes that extend beyond

the measurement range. This bears witness to a low surface and interface roughness which

were determined to be below 7 Å by modelling using an extended Parratt formalism [31].

Magnetization of these epilayers was measured in a SQUID magnetometer, which is shown

in Fig. 1(b). The saturation magnetic moment of about 4 µB / f.u. is consistent with

literature (saturation magnetisation Msat 720 kA/m) [9, 11]. The films were patterned into

40µm wide Hall bars by optical lithography and by a combination of HCl and Ar/O2 plasma

etching. A schematic image of the sample is shown in Fig. 1(a). After the etching, the heater

and thermometers were fabricated in a lift-off process with 30 nm of sputtered Pt. Platinum

wires, highlighted as pink areas in Fig. 1(a), at the top of the Hall bar serve as on-chip

heater, while platinum wires at the side work as an on-chip thermometer (green areas).

Experimental Setup

In the AMR experiments, a sufficiently strong magnetic field (µ0H = 1.5 T stronger than

Msat ≈ 0.9 T and the anisotropy field ≈ 0.6 T corresponding to ku) is rotated in three

rotation planes called XY, ZY and ZX plane as shown in Fig. 2 (a), (c) and (e). Current

I = 0.2 mA (corresponding to current density 1.2× 106 A/cm2) is applied along the y-axis.

At each step of the magnetic field rotation, data is collected for I = +0.2 mA and for
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I = −0.2 mA and averaged, in order to cancel out the thermoelectric contributions, which

occur in form of voltage offsets. The experiments are conducted at different temperatures

between 10 K and 300 K. The data are shown as symbols in Fig. 2.

In the AMTP experiments, magnetic field is rotated in the same rotation planes XY, ZY

and ZX. The experiments are conducted at several temperatures between 100 and 300 K; at

lower temperatures the AMTP signal decreases below the resolution owing to the decrease

of entropy.

The thermometers are first calibrated by sweeping the temperature of the cryostat from

low temperature to room temperature and using a Cernox thermometer in the cryostat as a

reference. At each studied temperature, a constant current of Ithermom = 0.1 mA is applied on

the on-chip thermometers (platinum wires, green areas in Fig 1), while the measured voltage

serves as measure of the temperature. Thermal gradient is generated by Joule heating of the

heater, typically we apply a current of Iheater = 17.5 mA. The on-chip thermometry allowed

us to determine the thermal gradient ∇T , which is 0.4 K/mm at T = 100 K and 0.5 K/mm

at 200 K - 300 K [9]. In order to reduce noise, the magnetic field was rotated several times

and at each rotation step, several voltage measurements are taken. In addition, the presented

data are averaged over several magnetic field rotations. Since the thermal gradient takes

long time to stabilise, it was not reversed at each step of the rotation as in the case of the

AMR.

III. PHENOMENOLOGICAL MODEL

The phenomenological model used in this work was previously employed by Lim-

mer et al. [24, 32] for AMR in (Ga, Mn)As and extended to AMTP in the same material

system by Althammer [25] and we present a brief summary here. Similar schemes are used

also in the context of AMR in antiferromagnets. [3]

Coordinate system is chosen as follows: z is the surface normal vector, which is in the

[0 0 1] direction, electric field and thermal gradient are applied along [1 1 0] denoted by y

and x = y× z. A sketch of the Hall bar with the coordinate system is shown in Fig 1(a).

The basic simplifying assumption is that magnetisation M is saturated (which is plausible

given the very narrow hysteresis loop shown in Fig. 1(b) and that we are in a single-domain

state. Stoner-Wohlfarth (SW) model [33] can then be used to infer the magnetisation di-
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rection m = M/Msat (here, Msat is the saturation magnetisation) for any given applied

magnetic field H by minimizing the free energy density F . We note that this approach

is capable of reproducing hysteresis effects but these never occur in the parameter range

of interest here. Both the Zeeman energy and magnetic anisotropies contribute to F and

the latter in Co2MnGa shows a cubic anisotropy kc and an uniaxial anisotropy ku which is

expected due to demagnetization energy and substrate-induced strain. With µ0 being the

vacuum permeability, we use F = −µ0H · M + kum
2
z because the cubic anisotropy can be

neglected (FMR measurements [34] show that it is two orders of magnitude smaller than

the applied magnetic field).

The resistivity tensor is obtained by making a series expansion in powers of cartesian

components of m up to the fourth order. This ansatz was first developed by Birss and

Muduli et al. and applied for example [32] to (Ga, Mn)As. The tensor writes as:

ρij(m) = ρ
(0)
ij + ρ

(1)
ijkmk + ρ

(2)
ijklmkml + ρ

(3)
ijklmmkmlmm + ρ

(4)
ijklmnmkmlmmmn + ... (2)

where ρ
(0)
ij , ρ

(1)
ijk , ρ

(2)
ijkl, ρ

(3)
ijklm and ρ

(4)
ijklmn are the expansion coefficients and magnetisation

direction components mn ∈ {m[1 0 0],m[0 1 0],m[0 0 1]}.

The number of independent parameters is reduced owing to mkml = mlmk, the Onsager

relation ρij(m) = ρji(−m) and Neumann’s principle [35] pertaining to the crystal symmetry.

The last mentioned is tetragonal in our case, whereas the tetragonal axis is in z-direction,

since the thin-film samples are strained by the MgO substrate (see Sec. II). The complete

form of the resistivity tensor is not needed for the further process and can be found in the

Appendix. The longitudinal resistivity ρlong is obtained by projecting the resistivity tensor

ρ along the current direction by making use of Ohm’s law E = ρ · J and Elong = j ·E, where

J is the current density vector and j = J/J is the corresponding unit vector, in our case

j = 1√
(2)

(1, 1, 0) = y. The projection writes as:

ρlong = ρyy = j · ρ · j (3)

The longitudinal resistivity ρyy in our configuration is therefore given by:

ρyy = ρ0 + ay2 ·m2
y + az2 ·m2

z + ay4 ·m4
y + az4 ·m4

z + azy2 ·m2
z ·m2

y (4)

where ρ0 is the offset resistivity, ay2 and az2 are the coefficients of the lowest-order AMR

terms, ay4, azy2 and az4 are the coefficients of the higher-order AMR terms and my and mz

are the y- and z-component of m in the coordinate system {x, y, z} as introduced above.
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The derivation of the longitudinal Seebeck coefficient Σyy is analogous to the resistivity.

The only difference is here that the Onsager relation connects the Seebeck tensor with the

Peltier tensor and thus cannot be used to reduce the number of independent parameters.

Hence, Σyy contains an additional term:

Σyy = Σ0 + sy2 ·m2
y + sz2 ·m2

z + szyx ·mz ·my ·mx + szy2 ·m2
z ·m2

y + sy4 ·m4
y + sz4 ·m4

z (5)

where analogously Σ0 is the thermoelectric offset, sy2 and sz2 are the coefficients of the

lowest-order AMTP terms and sy4, sz4, szy2 and szyx are the coefficients of the higher-order

AMTP terms. Since the magnetic field is going to be rotated in either the XY-, the ZY- or

the ZX-plane and amongst the anisotropies only the out-of-plane uniaxial term is significant,

one of the mi is in every plane expected to be zero (e.g. mx in the ZY-plane), the term

mz ·my ·mx is expected to be zero in every of our rotation planes and is thus ignored. Hence,

the AMR and AMTP formulae contain the same terms in our measurement setup. We note

that for polycrystals, only the first two terms in Eq. (5) remain and moreover, 1
2
sy2 = SI

Eq. (1). In other words, all other terms in Eq. (5) can be classified as crystalline AMTP.

In the following, we will analyse experimental AMR and AMTP data using Eqs. (4)

and (5) combined with the SW model which provides a link between external magnetic

field and magnetisation m = (mx,my,mz) that enters those equations. The final results of

the fitting procedure are depicted in Fig. 2. It will be shown in Fig. 3 that for AMR, all

terms in Eq. (4) need to be retained lest the quality of fits deteriorate significantly in some

measurement configurations. On the other hand, the last three terms of Eq. (5) are not

needed for a good fit of AMTP; szyx cannot be inferred from our data as already mentioned.

IV. RESULTS

Experimental data (symbols) and fits using the phenomenological model (lines) for both

AMR and AMTP in the 50 nm sample are shown in panels (b), (d) and (f) of Fig. 2. While

the AMR and AMTP data, with suitable scaling, seem alike in panels (b) and (d), the

rotation of M in the plane perpendicular to j (see Fig. 2f) gives a different picture. We

elaborate on this finding below and only note here, that in the latter configuration, non-

crystalline terms [15] do not contribute to the measured AMR and AMTP which will now

be discussed separately.
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AMR Quantity 40 nm 50 nm 40 nm 50 nm AMTP Quantity

ρ0 [µΩ cm] 185.2 186.0 -15.57 -6.61 Σ0 [µV/K]

ay2 [µΩ cm] -0.730 -0.267 -0.216 -0.248 sy2 [µV/K]

az2 [µΩ cm] -0.229 0.046 0.270 0.283 sz2 [µV/K]

ay4 [µΩ cm] 0.155 0.064 - - sy4 [µV/K]

az4 [µΩ cm] -0.242 -0.106 - - sz4 [µV/K]

azy2 [µΩ cm] 0.008 0.008 - - szy2 [µV/K]

TABLE I. Fitted AMR and AMTP parameters at room temperature.

AMR

The phenomenological fit to AMR data (blue crosses in Fig. 2) takes into account the

uniaxial magnetic anisotropy ku, lowest-order terms ay2 and az2 and also higher-order AMR

terms ay4, az4 and azy2. Eq. (4) combined with ku of the SW model resulted in a very good

agreement between the data and model. On the other hand, fits omitting the higher-order

crystalline terms (specifically, ay4, az4 and azy2) shown on the left of Fig. 3 lead to a clear

trace of the omitted terms in the residuals. Such a reduced form of Eq. (4) does not allow to

reproduce the data well, even when a cubic magnetization anisotropy is included in the SW

model (not shown in Fig. 3). The obtained AMR parameters corresponding to T = 300 K

(RT) are shown in Tab. I.

Inferred RT values of ku (438 and 416 kJ/m3 for the 40 and 50 nm sample, respectively)

are in a good agreement with ferromagnetic resonance measurements carried out indepen-

dently [34] and the temperature dependence of such magnetic anisotropy, see Fig. 4(a), is

consistent [36] with that of the magnetisation (see Fig. 1b). Turning our attention to the

transport coefficients, the largest of the AMR parameters is the in-plane lowest-order one:

ay2. It is negative, which reflects that the resistivity is smaller for m ‖ j than for m ⊥ j,

a situation commonly referred to as negative AMR [37]. This is opposite to what is found

in more common ferromagnets such as iron, nickel, cobalt and their alloys [38] and more

importantly, it is also consistent with the finding of Sato et al. [39] who found a negative

AMR ratio (ρ‖ − ρ⊥)/ρ⊥ in Co2MnGa for current along [1 1 0]. Some other ferromagnetic

systems, (Ga,Mn)As for instance [15], carry negative AMR too.

Temperature dependences of the AMR parameters are shown in Fig. 4. Their trends
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for the 50 nm sample are similar to those of the 40 nm sample except for the out-of-plane

lowest-order az2 parameter; even so, the both data sets in Fig. 4(e) seem to have a minimum

slightly below RT. According to the absolute value, the magnitude of the parameters in

descending order are as follows: |ay2| > |az4| > |az2| > |ay4| > |azy2|.

Such observations, however, lack any universal validity. Trends regarding the order of

magnitude or the sign of the coefficients can be observed, yet they cannot be generalized.

This is also confirmed by results of similar studies in Co2FeAl [25] and in (Ga, Mn)As [24,

25, 32]. Hence, there are always exceptions to a rule: |ay2| is usually the largest of the

AMR coefficients (but not for very thin samples [40]) and ay4 is in most cases positive

(but not at very low temperatures in the 50 nm sample) to give two examples. Since our

model is phenomenological and the microscopic origins of the AMR mechanisms are not

fully understood for Co2MnGa, an explanation of the observed behaviour remains an open

question.

Attempts to identify the underlying mechanisms of AMR in related materials have been

undertaken by Kokado and Tsunoda [41] whereas the focus was on electron scattering. They

used a two-current model, taking into account s-to-s and s-to-d scattering. The Hamiltonian

of the localized d-states includes spin-orbit interaction, an exchange field and a crystal field

of cubic or tetragonal symmetry, where the tetragonal distortion is in [0 0 1] direction. They

found that the ay4 contribution (C4 in their notation) appears under a tetragonal symmetric

crystal field, but almost vanishes under cubic symmetry. This is consistent to other studies

that reported that a four-fold-contribution (ay4 in our notation) is not needed to describe

the in-plane AMR. However, thin-films are expected to be strained by the substrate and

thus to show some tetragonality, which leads to a non-zero ay4 contribution. On the other

hand, the strain is different in each sample. Thus, studies that reported a two-fold in-plane

AMR (i.e. ay4 = 0) might have samples with relatively low strain, which are almost cubic.

AMTP

To fit the AMTP data, we used a procedure analogous to fitting AMR except for the

anisotropy constant ku: this parameter has already been determined before and we now

kept it fixed. Note, that due to the on-chip heating the actual temperature might be slightly

different than indicated. However since the change of ku with temperature is small, it does
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not change the accuracy of our approach. Given our measurement geometry, mxmymz = 0 at

all times, hence Eq. (5) contains the same terms as Eq. (4) and in particular, we started with

the lowest-order terms sy2 and sz2. Only these lowest-order parameters and the magnetic

anisotropy were needed to obtain good fits to the AMTP data, which is a pronounced

difference to the AMR. A reason for this difference could be the noise which is stronger

in the AMTP data as compared to the AMR. We have not been able to achieve as good

resolution as in the case of the AMR. However, the noise allows us to determine a maximum

value of possible higher-order terms, which need to be smaller than the noise. In absolute

terms, the noise is of the order of magnitude 0.10 µV/K and below, which implies that the

higher-order symmetries are smaller than about one fifth of the lowest-order symmetries (see

Tab. I). This is not only a striking difference to AMR in our samples, where lower- and higher-

order coefficients are in the same order of magnitude, but also to the analysis of AMTP in

(Ga, Mn)As by Althammer [25], where the existence of higher-order AMTP parameter is

reported. In relative terms, the noise shown in Fig. 3 (as residuals after subtracting the

fits from experimental data) is large which is a consequence of difficulties in controlling

the temperature gradient under experimental conditions. The temperature evolution of the

AMTP parameters as well as a comparison to the lowest-order AMR parameters is shown

in Fig. 5(b).

In Fig. 5(a), the Seebeck coefficient Σ0 is shown as function of temperature. In literature,

the Seebeck coefficient of Co2MnGa ranges between approximately −2µV/K and −30µV/K

at RT, whereas no clear trend is recognizable and the present measurements fall within this

range: we find Σ0 for both samples close to −15µV/K. Seebeck coefficient of the 50 nm sam-

ple is increasing in absolute value with increasing temperature, as expected from previously

published experiments [42, 43].

As mentioned in Sec. I, the sign of Σ0 is attributed to the dominant charge carrier

type, which are electrons for Σ0 < 0. A negative Seebeck coefficient is reported not only in

Co2MnGa, but in Co-based Heusler compounds in general [7]. The sign change of Σ0 would

mean that the dominant charge carrier type switches from electrons to holes for decreasing

temperatures. This was shown to occur in other materials depending on the doping [44].

However, other scenarios are also plausible which we discuss in the next subsection and we

now turn our attention to the AMTP.

We notice that neither sy2 nor sz2, whose temperature dependence is shown in Fig. 5(b),
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can be correlated to their AMR counterparts. While az2 is decreasing with increasing tem-

perature and the dependence of ay2 is non-monotonic, the AMTP parameters exhibit very

different dependence, although they were measured on exactly same device in the and same

structure. At T = 250 K in both AMTP parameters, there is an outlier. This might be due

to a thermal offset variation. Together with the sign change of sz2 the lack of correlation

between the AMR and AMTP is evident. This is in striking contrast to the transversal trans-

port measured in the same material [11]. In that study the AHE and ANE were measured

simultaneously and clear correlation was observed including the presence of outliers.

From our study it appears that comparing the lowest-order parameters, no common trend

can be found between the AMR parameters and their respective AMTP counterpart when

looking at the temperature dependence. Moreover, in case of the ZX rotation (see Fig. 2f),

even the raw angular sweep data are clearly very different: the fourth-order terms can be

basically seen by naked eye in the AMR while in the AMTP, they are apparently absent and

no such terms can be the identified in the residuals on right panels of Fig. 3. In the systematic

study of AMR and AMTP in (Ga, Mn) As by Althammer, higher-order contributions have

been found for both effects, but the parameters did not appear to be correlated with each

other. Since the amount of data in this and all past studies is relatively small, further studies

are desirable to investigate if any correlation between AMR und AMTP coefficients exists.

The fact, that in two different systems the AMR and the AMTP follow different trends

is, however, a strong indication, that there might be a more fundamental reason behind this

discrepancy such as the suppressed role of anisotropic scattering in the AMTP, which calls

for further investigation; below, we discuss one possible direction of such tentative research.

Mott rule and phonon drag

Electron and heat transport linear response coefficients are tensorial quantities which

obey Onsager relations [45] and combine into the Seebeck coefficient Σ0. To see this, we

rewrite the electron transport equation as

E = ρj + Σ0∇T
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and set j = 0. Under the assumption of elastic scattering, the Mott rule holds (still in

tensorial sense)

Σ0 = −eL0Tρσ
′ = eL0Tρ

′σ (6)

where ρσ = 1 and the prime denotes the derivative with respect to energy E at chemical

potential. For semiconductors, this derivative can be straightforwardly accessed through

carrier-density-dependent conductivity [46] but no such possibility is obvious in our metallic

system. However, when resistivity is broken down into a magnetisation-independent back-

ground ρ0 and a small correction ∆ρ that effectively constitutes the AMR, the following

observation is possible.

Let us first assume that ρ which depends both on E and M can be written as

ρ(E,M) = ρ0(E) + ∆ρ(M). (7)

Eq. (6) can then be rewritten as Σ0 = eL0Tρ
′
0σ and since ρ0 is a scalar quantity, it essentially

implies that AMTP is proportional to the AMR (tensors Σ0 and σ are proportional through

a scalar factor). In terms of data shown in Fig. 2, this could seem to imply that dominant

non-crystalline contributions of AMR (XY and ZY rotations) indeed follow while the more

delicate and smaller crystalline terms (ZX rotation) break the assumption (7) and give

different AMR and AMTP angular dependences.

On a careful inspection however, we notice that AMR and AMTP amplitudes in the left

and middle panels of Fig. 2 are not proportional the same way as the average ρ and Σ0 (this

is made explicit by scaling of the vertical axes on the left three panels in Fig. 3). While the

assumption (7) may be not accurately fulfilled (specifically, the ∆ρ term is unlikely to be

perfectly energy-independent), there is also another possibility to explain this discrepancy.

We note that thermopower is strongly temperature-dependent (data in Fig. 5a show that

it changes almost by a factor of three between 250 and 300 K) and at the same time, ρ0

changes only at the order of per cent in the same temperature interval.

This explanation is related to the phonon drag contribution to thermopower which is not

included in the Mott formula (6). In semiconductors, this contribution can easily exceed

(see Fig. 12 in Protik&Broido [13]) the electronic thermopower or, in other words, it can

reach the level of 100 µV/K. It is therefore plausible that the measured (relatively small)

value of Σ0 is the result of competition of two (large, relative to Σ0) contributions: the usual

electronic contribution related to the Fermi-Dirac factor fFD(E) depending on temperature

13



and the phonon drag contribution caused by electron-phonon interaction. Once the phonon

drag contribution would be removed from the measured Σ0, the amplitude-to-average ratio

of AMTP drops to the same level as for the AMR (here, we again refer to the Fig. 2(b

and (d) consistent with proportionality of AMR and AMTP implied by the Mott formula

under assumption (7). This way, our measurements suggest a sizable phonon drag effect

in the thermopower of Co2MnGa. Alternatively, magnon drag could be at works [14, 47].

Regarding Fig. 2(f) we note that quite clearly, proportionality between AMR and AMTP

is by no means exact and it seems (in the view of data in Fig. 5(b) that thermopower in

Co2MnGa is more sensitive to crystallographic orientation than resistivity.

V. SUMMARY

In this study, we compared the AMR and AMTP in two Co2MnGa-thin-film samples

using a simple Free Energy density and phenomenological symmetry-based models for AMR

and AMTP based on a series expansion in powers of the magnetization direction vector

m. We showed that non-zero resistivity-contributions up to 4th order are necessary for a

sensible modeling, where in the AMTP only lowest-order contributions are necessary. The

AMR and AMTP are not showing any trends in common, which is consistent with previous

studies in (Ga, Mn)As. We experimentally confirm presence of a crystalline contribution to

the AMTP. It appears that the universal Mott rule validity is broken due to a discrepancy of

the symmetries of AMR and AMTP in one rotation plane. This discrepancy was discussed

in terms of a significant phonon (magnon) drag contribution to thermopower, which might

be the origin of such a discrepancy.

The results of this study call for further enquiry: First of all, we need to broaden our

understanding about the origins and governing influences in AMR, but also in AMTP. The-

oretical studies discussing influences in AMTP similar to whose about AMR are desirable.

Experimental studies using sets of samples which are systematic with respect to strain,

composition or other influences can help us also along this way.
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Appendix A: Notes on derivation of Eqs. 4,5

Comments on the full form of ρ(i) in Eq. (2) are given here, from which Eq. (4) can be

derived. A more detailed description can be found in Appendix A.1 of thesis [40] of one of

the authors. Only terms corresponding to cubic symmetry are included and summation over

repeated indexes (Einstein notation) is implied. Note that the underlying coordinate system

is equivalent to the one applied in Eq. 2, thus: mn ∈ {m[1 0 0],m[0 1 0],m[0 0 1]}. We skip ρ
(1)
ijk

which does not appear in ρlong the in-plane geometry (it corresponds to the anomalous Hall

effect). The lowest non-trivial order thus becomes

ρ
(2)
ijklmkml = C1


m2

x 0 0

0 m2
y 0

0 0 m2
z

 + C2


0 mxmy mxmz

mxmy 0 mymz

mxmz mymz 0

 .

The third-order terms, ρ
(3)
ijklm, again do not contribute in Eq. (3), and the fourth-order terms

ρ
(4)
ijklmnmkmlmmmn become

E1


m4

x 0 0

0 m4
y 0

0 0 m4
z

+E2


m2

ym
2
z 0 0

0 m2
xm

2
z 0

0 0 m2
xm

2
y

+E3


0 mxmym

2
z mxmzm

2
y

mxmym
2
z 0 mymzm

2
x

mxmzm
2
y mymzm

2
x 0

 .

Additional terms appear when lower symmetry is assumed, which is in our case due to

the tetragonal distortion along the ẑ = [0 0 1] axis of the thin-film samples. The following

zeroth-order and second-order terms add to the resistivity tensor in the case of tetragonal

symmetry: 
0 0 0

0 0 0

0 0 a

 +


c3m

2
z 0 c2mxmz

0 c3m
2
z c2mymz

c2mxmz c2mymz c1m
2
z
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Under tetragonal symmetry, the fourth-order terms are supplemented by:
e2m

2
ym

2
z + e4m

4
z e3mxmym

2
z e6mxm

2
ymz + e7mxm

3
z

e3mxmym
2
z e2m

2
xm

2
z + e4m

4
z e6m

2
xmymz + e7mym

3
z

e6mxm
2
ymz + e7mxm

3
z e6m

2
xmymz + e7mym

3
z e5m

2
xm

2
y + e1m

4
z


In a similar (yet distinct) manner, the Seebeck tensor can be expanded, see Appendix B.1

of Ref. [40]. In the case of tetragonal symmetry, to which Eq. (5) applies, several additional

terms appear but they do not contribute to Σyy except for

D7mxmymz


−1 0 0

0 1 0

0 0 0


which gives rise to the last term in Eq. (5). Therefore even in our setup, ρyy and Σyy allow

in principle for a different functional form albeit not with our constraint to XY, YZ, and XZ

rotations of magnetic field. Further information can be found in Ref. [25] or in the Appendix

of Ref. [40].
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Sawicki, D. Kriegner, J. Zubáč, K. Olejńık, V. Novák, T. Jungwirth, M. Shahrokhvand, U.

Zeitler, S. S. Dhesi, and F. Maccherozzi, Phys. Rev. B 101, 094429 (2020)
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P. Nemec, T. Jungwirth, B. Kaestner, and J. Wunderlich, Phys. Rev. Materials 4, 094413

(2020)

[21] O.M.Løvvik, Espen Flage-Larsen, and Gunstein Skomedal, J. Appl. Phys. 128, 125105 (2020)

[22] Electronic bands in the bulk can be characterised by topological invariants which indicate

whether or not there will be surface states. These are related to Berry curvature, a quantity
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[31] U. Pietsch, V. Holý, and T. Baumbach, High-resolution X-ray Scattering: From Thin Films

to Lateral Nanostructures (Springer, New York, 2004).

[32] W. Limmer, M. Glunk, J. Daeubler, T. Hummel, W. Schoch, R. Sauer, C. Bihler, H. Huebl,

M. S. Brandt, and S. T. B. Goennenwein, Phys. Rev. B 74, 205205 (2006)

[33] E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Roy. Soc. A 240, 599 (1948).

[34] P. Swekis, A. S. Sukhanov, Y.-C. Chen, A. Gloskovskii, G. H. Fecher, I. Panagiotopoulos, V.

Ukleev, A. Devishvili, A. Vorobiev, D. S. Inosov, S. T. B. Goennenwein, C. Felser and A.

Markou (unpublished)

[35] A tensor representing a macroscopic physical property of a crystal must be invariant under

all symmetry operations of the corresponding point-group.

[36] C. Zener, Phys. Rev. 96, 1335 (1954).

[37] M. Tsunoda, H. Takahashi, S. Kokado, Y. Komasaki, A. Sakuma and M. Takahashi, Appl.

Phys. Express 3, 113003 (2010)

18
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[45] L. Smrčka and P. Vašek, Czech. J. Phys. B 26, 1137–1147 (1976)

[46] T. Miyasato, N. Abe, T. Fujii, A. Asamitsu, S. Onoda, Y. Onose, N. Nagaosa, and Y. Tokura,

Phys. Rev. Lett. 99, 086602 (2007)

[47] S. J. Watzman, R. A. Duine, Y. Tserkovnyak, S. R. Boona, H. Jin, A. Prakash, Y. Zheng,

and J. P. Heremans, Phys. Rev. B 94, 144407 (2016)

19



FIG. 1. Sample characterization. a) Schematic image of the sample. The white areas are Co2MnGa.

Vxx (AMR) are the contacts used for measusing voltage in the AMR experiment, while the current

I was applied between Vxx (AMTP). In the AMTP experiment, the voltage was measured at Vxx

(AMTP). The red colored areas are Pt wires which are used in the AMTP experiments as on-chip

heater and thermometer (green). b) in-plane and out-of-plane measurement of the magnetization

vs. applied magnetic field. The inset show the magnetization vs. temperature. The saturated

magnetic moment is approx. 4µB per formula unit. c) X-ray diffraction radial scans of Co2MnGa

films with 40 and 50nm thickness. Bragg peaks labeled by an asterisk (*) originate from the (00L)

series of the MgO substrate, while Bragg peaks of Co2MnGa are labeled by their Miller indices.

d) X-ray reflectivity pattern of the 40 nm and 50 nm thick Co2MnGa films. Experimental data

are shown as data points, while the solid line represents a model fit based on the extended Parratt

formalism.
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FIG. 2. Results of the AMR and AMTP measurement (crosses) and fitting (continuous lines) in

the 50 nm sample at 300 K (AMR) and 250 K (AMTP). a) b), c) Schematic sketch of the magnetic

field rotation in the XY, ZY, ZX plane with respect to the coordinate system and the sample. d),

e), f) AMR (blue, left y-axes) and AMTP (orange, right y-axes) results; note the shifts of vertical

axes indicated at the top of each panel: minimum resistivity, which occurs for m ‖ j, is 171 µΩ.cm.
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FIG. 3. (a,c,e) Data from Fig. 2 where AMR (AMTP) is fitted by Eq. 4 (Eq. 5, respectively) with

second-order terms only; a lower quality, compared to Fig. 2(f), of the AMR fit in the bottom panel

is clearly apparent but systematic deviations can also be observed for the XY and ZY rotations.

(b,d,f) The difference of the experimental data and fits on the left (fit residuals), see text for a

detailed discussion.
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FIG. 4. Temperature evolution of the parameters obtained by the phenomenological fit to AMR

data. (A) Uniaxial magnetic anisotropy, (B-F) parameters for AMR defined in Eq. 4.
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FIG. 5. a) Longitudinal Seebeck coefficient Σ0 as a function of the temperature. The different

samples are distinguished by the shape of symbols. The absolute value of the Seebeck coefficient

of the 50 nm sample is monotonously increasing with temperature. There is a sign change at

low temperatures. The Seebeck coefficients at T = 300 K for the 40 and 50 nm sample are of

comparable magnitude. b) Comparison of the AMTP and the corresponding AMR parameters in

the 50 nm sample as a function of temperature. AMR and AMTP are distinguished by linestyle.

The m2
y contributions are in shades of orange, the m2

z contributions in shades of green. They do

not seem to follow any common trend. Error bars of AMTP and AMR parameters in b) (implied

by the fitting procedure) are too small to be visually resolved.
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