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Anisotropic magnetoresistance (AMR) is a ubiquitous and versatile probe of magnetic order in 

contemporary spintronics research. Its origins are usually ascribed to extrinsic effects (i.e. spin-

dependent electron scattering), whereas intrinsic (i.e. scattering-independent) contributions are 

neglected. Here, we measure AMR of polycrystalline thin films of the standard ferromagnets Co, Ni, 

Ni81Fe19 and Ni50Fe50 over the frequency range from DC to 28 THz. The large bandwidth covers the 

regimes of both diffusive and ballistic intraband electron transport and, thus, allows us to separate 

extrinsic and intrinsic AMR components. Analysis of the THz response based on Boltzmann transport 

theory reveals that the AMR of the Ni, Ni81Fe19 and Ni50Fe50 samples is of predominantly extrinsic 

nature. However, the Co thin film exhibits a sizeable intrinsic AMR contribution, which is constant up 

to 28 THz and amounts to more than 2/3 of the DC AMR contrast of 1%. These features are attributed 

to the hexagonal structure of the Co crystallites. They are interesting for applications in terahertz 

spintronics and terahertz photonics. Our results show that broadband terahertz electromagnetic pulses 

provide new and contact-free insights into magneto-transport phenomena of standard magnetic thin 

films on ultrafast time scales.  

mailto:nadvornik@karlov.mff.cuni.cz


  

FIG. 1. Measuring DC and THz AMR. (a) Schematic of a DC electrical AMR measurement. The resistance 𝑅 of 

a magnetic thin film with magnetization 𝑴 (red arrow) along the applied DC electric field 𝑬DC (blue arrow) is 

measured for different rotation angles 𝛼 of 𝑴. (b) Schematic of the THz AMR measurement. An 𝑥-polarized 

THz pulse with transient electric field 𝑬inc(𝑡) (blue arrow) is incident on the magnetic thin film. After traversal 

of the sample, we detect the 𝑥 component of the THz electric field 𝑬, that is, 𝑬 projected onto the fixed direction 

of 𝑬inc, as a function of the magnetization angle 𝛼. (c) DC longitudinal resistance of Ni81Fe19 vs 𝛼 (red open 

circles) with fit by 𝑅⊥ + Δ𝑅 cos
2 𝛼 (black solid line). (d) THz waveforms 𝑆(𝑡, 𝛼) for 𝛼 = 90° (blue solid line) 

and 0° (red dashed line) vs time 𝑡 for the emitter-detector configuration covering the frequency range 

0.2…2THz. The inset shows a magnified version of the signal around its minimum, indicating a signal change of 

about 1%. (e) Peak-to-peak amplitude of the THz signal waveform 𝑆(𝑡, 𝛼) as a function of 𝛼 (open circles) with 

fit as in panel (c). The signal extrema used for the evaluation are indicated by the black arrows in panel (d).  
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FIG. 2. THz AMR probes of Ni81Fe19 and Co. (a) THz signal waveforms ∆𝑆(𝑡) = 𝑆(𝑡, 0°) − 𝑆(𝑡, 90°)  (red line) 

and �̅�(𝑡) = [𝑆(𝑡, 0°)+ 𝑆(𝑡, 90°)]/2 (blue line) of a THz pulse from a source-detector combination with a 

bandwidth 0.2…2 THz after having traversed the Ni81Fe19 thin film. The difference waveform ∆𝑆(𝑡) reports on 

the change in the sample transmission when the magnetization is rotated from 𝛼 = 90° to 0° [see Fig. 1(b)]. It is 

a signature of the AMR. (b) Same as panel (a), but for measurements with bandwidth 8…28 THz. (c,d) Fourier 

amplitude spectra |∆𝑆(𝜔)| and |�̅�(𝜔)| of the traces of panel (a,b), respectively. Signals are normalized to their 

respective maximum. The mean noise level of |∆𝑆(𝜔)| is indicated by the grey dashed line. (e,f) Relative 

spectral amplitude changes |∆𝑆(𝜔)/�̅�(𝜔)| as derived from panel (c,d), respectively (red circles). Results for Co 

are also shown (black circles). Note that |∆𝑆(𝜔)/�̅�(𝜔)| is closely related to the AMR contrast through Eq. (6). 

The error bars indicate the precision of the measurements as estimated from the noise level in panels (c,d). Data 

in all panels are scaled by the indicated factors for clarity. 

  



 

FIG. 3. Mean conductivity and AMR contrast from DC to 28 THz. (a) Mean complex-valued conductivity 𝜎 =

(𝜎∥ + 𝜎⊥)/2 (upper panel) and magnitude |AMR| of the AMR contrast (lower panel) of the Ni81Fe19 thin film as 

a function of frequency. Solid lines are fits based on the Drude formula [Eqs. (2) and (3)]. DC values are shown 

at the origin of the frequency axis (square symbol). (b,c,d) Same as panel (a), but for Ni50Fe50, Ni and Co, 

respectively. In panel (d), the red dashed line and shaded area indicate the intrinsic contribution (B) with 

amplitude 𝐵 = 0.5 % to AMR. For comparison, the grey dotted curve shows a fit using Eq. (3) without intrinsic 

contribution (𝐵 = 0). For clarity, the scaling of the frequency axis is nonlinear (∝ 𝜔−1/4). The measured 

frequency ranges are determined by the spectral coverage of the THz emitter-detector configurations used (see 

Section III.B). The error bars of the THz data indicate their precision as estimated from repeated measurements 

(for 𝜎) and the spectral noise floor [for |AMR|, see Figs. 2(c,d)]. The overall scaling of |AMR| is accurate within 

an estimated uncertainty of 30% (see Appendix A).  

 

 

 

 



 

 

 Ni81Fe19 Ni50Fe50 Ni Co 

Crystallite symmetry Cubic Cubic Cubic fcc Hexagonal hcp 

𝜎DC (MS/m) 2.5±0.3 3.1±0.2 1.5±0.1 3.2±0.2 

�̅�(0) (MS/m) 2.9±0.2 2.8±0.1 1.4±0.2 2.9±0.2 

�̅� (fs)  9±2 9±2 5±1 11±2 

∆𝜎DC/𝜎DC (%) 1.0±0.1 0.7±0.1 0.37±0.05 0.9±0.1 

∆𝜎(0)/𝜎(0) (%) 1.6±0.4 0.5±0.1 0.3±0.1 0.7±0.2 

𝐵 = −∆(𝛺pl
2 )/�̅�pl

2   (0.0±0.1)×10-2 (0.0±0.1)×10-2 (0.00±0.07)×10-2 (0.5±0.1)×10-2 

𝐴 = −∆𝜏/�̅�  (1.6±0.2)×10-2 (0.5±0.1)×10-2 (0.28±0.07)×10-2 (0.2±0.1)×10-2 

𝐵/𝐴 0.0±0.1 0.0±0.2 0.0±0.3 2.5±1.5 

 

TABLE I. Sample properties and fit parameters. All films are polycrystalline. The parameters 𝜎(𝜔 = 0), 𝜏̅, 

∆𝜎(0)/𝜎(0), 𝐴 and 𝐵 were obtained by fitting the Drude model for conductivity [Eq. (2)] and AMR contrast 

[Eq. (3)] to the data shown in Fig. 3. The ratio 𝐵/𝐴 of extrinsic and intrinsic contributions to the AMR reveals a 

different AMR regime in Co as compared to the other materials. The parameters 𝐴 and 𝐵 were obtained by 

fitting over the whole frequency range 0.2…28 THz and over the range 8…28 THz, both yielding consistent 

values (see Supplemental Note 1). The uncertainties arise from the precision and accuracy of our measurements 

as detailed in Appendix A. 

  



I. INTRODUCTION 

The electrical resistance of a ferromagnet along the applied electric field is known to depend on the 

direction of the magnetization 𝑴 [Fig. 1(a)]. This anisotropic magnetoresistance (AMR)1,2,3,4,5,6,7 is a 

well-studied magnetoresistive effect and a powerful tool to detect the magnetic order parameter of 

ferromagnets as well as ferrimagnets8,9. As AMR is even in the magnetic order parameter, it has lately 

received additional attraction as a probe of the Néel vector of antiferromagnets10. Therefore, AMR has 

large potential for applications in future spintronic devices11. 

The canonic way to describe the origins of AMR relies on an extrinsic mechanism, that is, spin-

dependent electron scattering due to crystal imperfections such as impurities and phonons. In 

transition metals, the 𝑴-dependent rate of electron scattering out of the current-carrying s-states is 

understood to arise from spin-orbit coupling, which reduces the symmetry of the target d-states2,3,5,12. 

Other extrinsic scenarios involve magnetic impurities acting on spin-orbit-coupled p-states (in, for 

instance, dilute magnetic semiconductors13) and non-magnetic impurities acting on states with 

isotropic band dispersion but anisotropic wavefunctions14. 

Only recently, theoretical works pointed out that AMR can already be significant in perfect crystals. 

An example of such intrinsic (i.e. scattering-independent) mechanism is a change in the group velocity 

of Bloch states due to spin-orbit coupling.15,16,17,18,19,20. First signatures of intrinsic contributions to DC 

AMR were reported21,22 based on extensive electric transport measurements and ab initio theory. 

These highly promising results also show that more direct and versatile experimental methods are 

required to extract extrinsic and intrinsic AMR contributions. 

To straightforwardly separate extrinsic (scattering-dependent) and intrinsic (scattering-independent) 

electron transport, we propose to probe the AMR dynamics on time scales both slower and faster than 

the time scale 𝜏 at which electron scattering takes place. To implement this idea, AMR needs to be 

measured over a wide frequency range from DC to several 10 THz. The lower frequencies 𝜔/2𝜋 of 

this interval probe diffusive (i.e. scattering-dominated) transport in which an electron undergoes many 

collisions during one oscillation of the probing electric field (𝜔𝜏 ≪ 1). In contrast, the frequencies at 

the higher end are more sensitive to electron motion in the ballistic limit (i.e. without scattering) 

because the probing electric field oscillates many times between subsequent electron collisions (𝜔𝜏 ≫

1). So far, measurements of AMR of common magnets were reported at either DC, at frequencies 

around 1 THz (Refs. 23, 24, 25) or in the infrared, where AMR is usually referred to as magnetic 

linear birefringence26,27.  

In this work, we measure AMR of common ferromagnets in the regime of both ballistic and diffusive 

electron transport by means of low-noise broadband THz spectroscopy from DC to 28 THz. A 

frequency-resolved data analysis based on Boltzmann transport theory allows us to robustly separate 

the (A) extrinsic and (B) intrinsic components of AMR. We find that component (B) is significant and 

even dominates the total AMR for the case of polycrystalline Co. Using numerical estimates, we 

attribute this observation to the hexagonal structure of the Co crystallites. Owing to its instantaneous 

response up to at least 28 THz, the intrinsic AMR of Co is highly interesting for applications in future 

THz spintronic devices. Our results also highlight that broadband THz AMR is a powerful and 

versatile probe of ultrafast spin dynamics. 

II. AMR IN THE DRUDE-BOLTZMANN FRAMEWORK 

The AMR contrast at frequency 𝜔/2𝜋 is defined as 

AMR(𝜔) = −
𝜎∥ − 𝜎⊥
𝜎⊥

≈ −
Δ𝜎

�̅�
 (1) 



where 𝜎𝑗(𝜔) is the conductivity for the magnetization 𝑴 parallel (𝑗 =∥) or perpendicular (𝑗 =⊥) to the 

applied electric field amplitude 𝑬(𝜔). Typically, the DC AMR contrast (𝜔 = 0) is positive and 

reaches values of the order of 1% to 10% (Ref. 2). Therefore, the difference Δ𝜎 = 𝜎∥ − 𝜎⊥ is relatively 

small, and 𝜎∥ and 𝜎⊥ are very close to the mean conductivity �̅� = (𝜎∥ + 𝜎⊥)/2. We note that the 

𝜎𝑗(𝜔), like all frequency-domain quantities, are generally complex-valued.  

In contrast to the anomalous Hall effect (which is of first order in 𝑴), there are significantly less 

theoretical studies of the microscopic mechanism of AMR (which is quadratic in the order parameter). 

A frequently used theoretical approach is based on the Boltzmann equation describing intraband 

transport14,17,21,28,29. Assuming state-independent relaxation rates, one can derive the Drude 

formula30,31,32,,33 

𝜎𝑗(𝜔) =
𝜎𝑗(0)

1 − i𝜔𝜏𝑗
=
1

𝑍0𝑐

𝛺pl𝑗
2

𝜏𝑗
−1 − i𝜔

 (2) 

where 𝑗 =∥ or ⊥, 𝜔/2𝜋 is the frequency of the driving field, 𝜎𝑗(0) equals the DC conductivity, and 𝜏𝑗 

is the current relaxation time.  

The second part of Eq. (2) is a rewritten Drude formula where 𝑍0 ≈ 377 Ω is the free-space 

impedance, 𝑐 is the speed of light, and 𝛺pl𝑗/2𝜋 is the plasma frequency. This formulation allows us to 

identify (A) extrinsic contributions (due to electron scattering) and (B) intrinsic (scattering-

independent) contributions to the AMR contrast. Inequality 𝜎∥ ≠ 𝜎⊥ of the ∥ and ⊥ conductivities and, 

thus, AMR can arise from the 𝑴-direction dependence of (A) the current relaxation time (𝜏∥ ≠ 𝜏⊥) and 

(B) the plasma frequency (𝛺pl∥ ≠ 𝛺pl⊥). Because 𝛺pl𝑗
2  is given by a summation of the squared electron 

band velocity component 𝑗 over the Fermi surface34,35,36,37, it is a measure of the weight of intrinsic 

(scattering-independent) contributions to the conductivity. In contrast to Ωpl𝑗
2 , the velocity relaxation 

rate 𝜏𝑗
−1 arises from electron-impurity and electron-phonon collisions and, thus, captures extrinsic 

(scattering-related) effects. Note that previous studies using the Boltzmann approach ascribed AMR to 

contribution (A)2,28. 

We expect that in the diffusive transport regime (𝜔𝜏𝑗 ≪ 1), both extrinsic and intrinsic effects 

contribute to AMR, whereas in the ballistic regime (𝜔𝜏𝑗 ≫ 1), intrinsic contributions should dominate. 

To put this expectation onto a quantitative basis, we substitute the Drude formula [Eq. (2)] into the 

definition of the AMR contrast [see Eq. (1) and Appendix B]. The resulting relationship 

AMR =
𝐴

1 − i𝜔𝜏⊥
+ 𝐵 (3) 

has remarkable implications: First, the two terms on its right-hand side scale with 𝐴 = −Δ𝜏/𝜏⊥ and 

𝐵 = −Δ(𝛺pl
2 )/𝛺pl⊥

2  where Δ always refers to the difference of the ∥ and ⊥ component, for instance 

Δ𝜏 = 𝜏∥ − 𝜏⊥. Therefore, the 𝐴 and 𝐵 terms, respectively, quantify the (A) extrinsic (scattering-based) 

and (B) intrinsic (scattering-independent) contribution to AMR.  

Second, as expected, the components (A) and (B) exhibit a distinctly different frequency dependence. 

The extrinsic contribution (A) rolls off with frequency just as the conductivity 𝜎⊥ [Eq. (2)] does. The 

frequency scale of this decrease is set by the velocity relaxation rate 𝜏⊥
−1/2𝜋, which is typically of the 

order of 10 THz38,39. The intrinsic contribution (B), in contrast, is 𝜔-independent, thereby making it 

interesting for potential high-frequency applications in THz spintronics. 

Finally, Eq. (3) guides us how to determine the weight of the two AMR contributions: We need to 

conduct a sufficiently broadband AMR measurement. Our goal is, therefore, to measure the 



anisotropic conductivity of common ferromagnets over the broad range from 𝜔/2𝜋 ∼ 0 to tens of 

THz. 

III. EXPERIMENTAL SETUP 

A. Samples 

As samples, we chose thin films of common ferromagnetic metals with in-plane magnetic anisotropy:  

Ni81Fe19 (thickness of 8 nm), Ni50Fe50 (10 nm), Ni (10 nm) and Co (10 nm). As detailed in Appendix A 

and Supplemental Note 3, they were grown by sputtering on isotropic Si substrates. Subsequently, the 

samples were cut in two pieces to convey the DC and THz experiments. For the THz experiments, a 

part of the substrate was not covered by the metal layer to permit reference transmission measurements 

to extract the THz conductivity.  

All thin films were prepared in the polycrystalline phase. As compiled by Table 1, they consist of 

crystallites having cubic (Ni81Fe19, Ni50Fe50, Ni) or hexagonal symmetry (Co). Because the size of the 

randomly oriented crystals is orders of magnitude smaller than the wavelength of the probing THz 

radiation, all films are macroscopically isotropic in the sample plane in the absence of magnetic order 

(𝑴 = 0). A symmetry analysis of our samples (see Appendix C) shows that the in-plane conductivity 

tensor is fully determined by the two conductivity values 𝜎∥ and 𝜎⊥ parallel and perpendicular to the 

magnetization, independent of the sample azimuth. The difference 𝜎∥ − 𝜎⊥ equals 2〈𝐺〉𝑥𝑦𝑥𝑦𝑴
2 where 

〈𝐺〉𝑥𝑦𝑥𝑦 is the only relevant element of the rotationally averaged AMR tensor.  

B. Conductivity and AMR measurements 

DC measurements. In general, determination of the AMR contrast [Eq. (1)] of our samples relies on 

measuring the ratio of the conductivities for 𝑴 ∥ 𝑬 and 𝑴 ⊥ 𝑬. At DC frequency, this goal was 

achieved by a four-point approach40. A rectangular piece was cleaved from the sample and contacted 

in the corners. A constant current was applied along the longer side, and the voltage drop and, thus, 

resistance 𝑅(𝛼) along this fixed direction was measured as a function of the angle 𝛼 of the in-plane 

magnetization 𝑴 [see Fig. 1(a)]. The AMR contrast [Eq. (1)] is given by −Δ𝜎DC/𝜎DC = Δ𝑅/𝑅 where 

Δ𝑅 and 𝑅 are, respectively, the modulation depth and mean value of 𝑅(𝛼).  

Note that the mean DC conductivity 𝜎DC of the metal film is related to 𝑅 through an unknown factor 

that is given by the current distribution. We, consequently, used the van-der-Pauw method41,42 to 

measure 𝜎DC.  

THz measurements. To determine the AMR contrast of our samples at THz frequencies, we did not 

use any electrical contacts and measured the transmission of a broadband THz electromagnetic pulse 

through the specimen in a quasi-optical manner [Fig. (1b)]. To this end, THz pulses were obtained by 

difference-frequency generation of femtosecond laser pulses (duration of 10 fs, center wavelength of 

800 nm, energy of 1 nJ) from a Ti:sapphire laser oscillator (repetition rate of 80 MHz) in a suitable 

nonlinear-optical material. The THz pulses were linearly polarized along the 𝑥 axis and normally 

incident onto the sample [Fig. 1(b)].  

After transmission through the sample, a wire-grid polarizer projected the THz field 𝑬 onto the 𝑥 axis, 

that is, the polarization direction of the incident THz electric field. The THz pulses were detected by 

electrooptic sampling using a suitable electrooptic crystal43. The resulting THz signal 𝑆 vs time 𝑡 is 

related to the THz electric field component 𝐸𝑥(𝑡) directly behind the sample [Fig. 1(d)] by a linear 

transfer function that cancels in the subsequent data analysis.  

To ensure optimum frequency coverage and signal-to-noise ratio, we used various combinations of 

THz sources and detectors. For AMR measurements, we used a bias-free bimetallic emitter (TeraBlast, 

Protemics GmbH) and 1 mm thick ZnTe(110) crystal as detector for the range 0.2….2 THz, while a 



90 µm thick GaSe emitter and a 10 µm thin ZnTe detection crystal was employed for the range 

8…28 THz. This combination delivers sufficient THz signal amplitude to resolve the small AMR-

induced changes of the sample transmission upon rotation of the magnetization from 0° to 90°. 

For measurement of the mean (diagonal) conductivity 𝜎, where signal amplitudes are sufficiently 

large, we replaced the bimetallic emitter by a spintronic THz emitter43 (TeraSpinTec GmbH) and used 

a 250 µm thick GaP crystal as detector. This combination delivers an order of magnitude less signal 

amplitude but covers the range 1…6 THz, which is useful for the precise determination of parameters 

of the Drude formula [Eq. (2)]. 

Typical examples of transmitted THz signal waveforms are shown in Fig. 1(d) as well as in Figs. 2(a) 

and 2(b) (blue curves). As detailed in Section IV and Appendix A, the measured THz transmission 

signals can be used to determine the mean THz conductivity 𝜎 of a thin metallic layer. Similarly, by 

modulating the magnetization angle 𝛼 between 90° and 0°, we can infer the THz AMR contrast. 

C. Magnetization control 

Slow modulation. The magnetization angle 𝛼 relative to the fixed direction of the applied DC or THz 

electric field [see Figs. 1(a) and 1(b)] was controlled by a suitable external magnetic field. For the DC 

measurements, we used a magnetic field of 1.1 T from a Halbach array of permanent magnets that was 

slowly rotated about the sample. For the THz measurements as a function of all magnetization 

angles 𝛼 between 0 and 360°, we employed a rotatable pair of permanent magnets with a field of 

approximately 40 mT at the sample position.  

Fast modulation. To drastically enhance the signal-to-noise ratio of the THz AMR measurements, we 

modulated the magnetization angle 𝛼 at kilohertz rates by superimposing a sinusoidal AC magnetic 

field (frequency of 6 kHz) from an electromagnet and a perpendicular DC magnetic field from a 

permanent magnet. As the two fields had an amplitude of approximately 30 mT at the sample position, 

the magnetization angle 𝛼 was varied between 𝛼min ≈ 0° and 𝛼max ≈ 90°, that is, between 

approximately parallel and perpendicular to the polarization of the THz wave [see Fig. 1(b)]. Lock-in-

type phase-sensitive demodulation of the THz signal allowed us to extract its magnetic-field- and, 

thus, AMR-induced signal variations. 

The magnetic field strength of the 6 kHz arrangement was sufficient to fully saturate the sample 

magnetization as confirmed by measuring the magnetization direction by THz emission 

spectroscopy43. Note that the expected AMR signal is determined by the sample magnetization rather 

than the external magnetic field, which induces only isotropic2,44,45 and, thus, negligible, conductivity 

changes. Therefore, our various methods of magnetization modulation deliver conductivity 

modulations that can directly be compared to each other.  

IV. RESULTS 

A. Impact of magnetization direction 

To study the sample conductivity as a function of the magnetization angle 𝛼 [Fig. 1(b)], we varied the 

direction of the external magnetic field by the slowly rotating permanent magnets. Figure 1(c) shows 

the measured DC resistance of the Ni81Fe19 thin film vs 𝛼. We observe the typical cos2 𝛼-like 

resistance modulation that is expected for samples described by two conductivities 𝜎∥ and 𝜎⊥ (Ref. 2). 

Indeed, a fit by 𝑅⊥ + Δ𝑅 cos
2 𝛼 yields excellent agreement with the experimental data. From the 

modulation depth and the average resistance �̅� = [𝑅(0°) + 𝑅(90°)]/2, we estimate an AMR contrast 

Δ𝑅/�̅� ≈ −Δ𝜎DC/�̅�DC of approximately 1%. The DC AMR data for the other samples are shown in 

Supplemental Figure S1 while the fit parameters are displayed in Table 1. 



We now turn to the THz measurements. Figure 1(d) displays the signals 𝑆(𝑡, 𝛼) of THz waveforms 

after traversal of the sample for 𝛼 = 0° and 90°. For these measurements, the emitter-detector pair 

covering the range 0.2…2 THz was used. While the two signals are nearly identical, a magnified plot 

around the signal minimum reveals that the signal for 𝛼 = 0° has larger amplitude than the signal for 

𝛼 = 90°. This observation is consistent with the DC measurements [Fig. 1(c)] and Eq. (A2): Changing 

the magnetization angle from 𝛼 = 0° to 90° yields a smaller sample resistance and, thus, larger 

conductivity, resulting in better screening of the incident THz field and, therefore, in a smaller THz 

field amplitude behind the sample.  

To complete the picture, we determined the peak-to-peak amplitude of all THz signals 𝑆(𝑡, 𝛼) as 

indicated by the two black arrows in Fig. 1(d). The resulting THz peak-to-peak amplitude is displayed 

in Fig. 1(e) as a function of the magnetization angle 𝛼. It exhibits the same 𝛼 dependence and 

comparable contrast as the DC resistance [Fig. 1(c)]. Again, a cos2 𝛼 fit yields excellent agreement 

with the experimental data [Fig. 1(e)]. We explicitly confirmed that the 𝛼-dependent signal component 

disappeared when either (i) test samples without magnetic layer were used, (ii) the strength of the 

magnetic field was lowered below a critical value or (iii) the THz beam was blocked. 

We conclude that the 𝛼-dependent THz signal arises from the anisotropic conductivity of the magnetic 

thin film under study. As the 𝛼-dependence and relative magnitude of this signal [Fig. 1(e)] coincide 

with that of the DC AMR signal [Fig. 1(c)], we assign the 𝛼-dependent THz signal modulation to the 

AMR effect at THz frequencies.  

B. THz AMR differential spectra 

To enable spectral analysis of the THz AMR with strongly increased signal-to-noise ratio, we 

modulated the magnetization angle 𝛼 at a frequency of 6 kHz between 𝛼min ≈ 0° and 𝛼max ≈ 90° 

[see Fig. 1(b)]. By demodulation with a lock-in-type technique, we obtain the difference signal 

∆𝑆(𝑡) = 𝑆(𝑡, 𝛼min) − 𝑆(𝑡, 𝛼max), (4) 

while in a separate measurement, the mean signal 

𝑆̅(𝑡) =
𝑆(𝑡, 𝛼min) + 𝑆(𝑡, 𝛼max)

2
 (5) 

is acquired.  

Typical time-domain raw data and their spectra are shown in Figs. 2(a)-2(d) for the case of the 

Ni81Fe19 thin film. While Fig. 2(a) displays the signals ∆𝑆(𝑡) and 𝑆̅(𝑡) for an incident 0.2…2 THz 

pulse, Fig. 2(b) shows corresponding traces for a 8…28 THz pulse. By Fourier-transformation of the 

data of Figs. 2(a) and 2(b), the amplitude spectra ∆𝑆(𝜔) and 𝑆̅(𝜔) of Figs. 2(c) and 2(d) are obtained. 

Relative 𝛼-induced spectral amplitude changes |∆𝑆(𝜔)/𝑆̅(𝜔)| are displayed in Figs. 2(e) and 2(f) for 

Ni81Fe19 and Co, respectively.  

The raw data of Figs. 2(c) and 2(d) reveal an interesting behavior: Both ∆𝑆(𝜔) and 𝑆̅(𝜔) have exactly 

the same spectrum at 0.2…2 THz [Fig. 2(c)], but differ noticeably at 8…28 THz [Fig. 2(d)]. 

Figures 2(e) and 2(f) confirm this observation: |∆𝑆(𝜔)/𝑆̅(𝜔)|, which scales with the AMR magnitude 

[see Eq. (6)], is independent of frequency below 2 THz [Fig. 2(e)], but starts decreasing above 2 THz, 

eventually reducing to about 50% at 20 THz [Fig. 2(f)]. This behavior is consistent with the 

amplitudes of the time-domain data [Figs. 2(a) and 2(b)] and their spectra [Figs. 2(c) and 2(d)]. Thus, 

Figs. 2(e) and 2(f) show that AMR is operative at frequencies up to 30 THz, but decreases on a scale 

of ~10 THz which coincides with typical current relaxation rates38,39. 

C. From signals to conductivities and AMR 



Mean conductivities. To better understand these observations, we also determined the mean 

conductivity �̅� of our samples at 1…6 THz and 8…28 THz (see Section III.B). For this purpose, we 

measured the signals 𝑆̅(𝑡) [mean signal of Eq. (5) with respect to the full sample] and the reference 

signal 𝑆ref(𝑡) corresponding to transmission through the plain substrate in sample regions without 

metal film. Using the Tinkham formula46 (see Appendix A), we obtained the mean conductivity of the 

metal layer.  

Real and imaginary part of the mean conductivity �̅� vs frequency 𝜔/2𝜋 are displayed in Figs. 3(a-d) 

(top panels) along with the DC conductivity 𝜎DC for all four samples studied. We note that the 

measured DC conductivity agrees well with the THz mean conductivity between 1 and 4 THz. 

To gain access to microscopic parameters, we fit the measured conductivities using the Drude formula 

[Eq. (2)]. As shown by the solid lines of Figs. 3(a)-3(d), the Drude-Boltzmann framework provides a 

very good description of our experimental data over more than two frequency decades. Broadband 

Drude-like behavior of metals is quite common and was previously observed also for other magnetic 

thin films47,48,49,50, magnetic multilayers33 and nonmagnetic metals30,51. The best-fit parameters of our 

data, the mean zero-frequency conductivity 𝜎(0) and the mean scattering rate 𝜏̅, are summarized in 

Table 1. Again, we obtain a good match between the measured DC conductivity 𝜎DC and the zero-

frequency extrapolation 𝜎(0). The current relaxation times �̅� are found to be of the order of 10 fs, 

which is a typical value for metal thin films33,38,39. 

AMR contrast. To infer the AMR contrast [Eq. (1)], we use the �̅�(𝜔) as determined by the fits above 

and the relationship (see Appendix A) 

AMR(𝜔) =
∆𝑆(𝜔)

𝑆̅(𝜔)
[1 +

𝑛S(𝜔) + 𝑛A(𝜔)

𝑍0𝑑�̅�(𝜔)
]. (6) 

Here, 𝑛S and 𝑛A are the frequency-dependent refractive indices of air and substrate, and 𝑑 is the 

thickness of the metal layer. 

The modulus |AMR(𝜔)| is displayed in Fig. 3 (bottom panels) vs frequency for all materials 

investigated. We see that the AMR contrast is approximately frequency-independent for 𝜔/2𝜋 <

2 THz with magnitudes ranging from 0.3% (Ni) up to 1.6% (Ni81Fe19). These values are compatible 

with the DC quantities obtained by contact-based measurements within the uncertainties of our 

methodology. The various error sources are discussed in Appendix A. 

We did not attempt to determine the phase of the AMR contrast because the signals ∆𝑆 and 𝑆̅ were 

taken at different times. Therefore, the complex-valued ratio ∆𝑆(𝜔)/𝑆̅(𝜔) may be subject to an 

unknown phase shift which does not allow us to determine the phase of AMR(𝜔) through Eq. (6). We 

emphasize that this lack of information is, however, no issue because the modulus of AMR(𝜔) is fully 

sufficient to determine the ratio 𝐵/𝐴 of intrinsic and extrinsic AMR contributions as shown in the 

following. 

D. Intrinsic AMR component 

Figure 3 allows us to tackle the major goal of this work: To determine the weight of scattering-based 

and scattering-independent components of AMR [see Eq. (3)]. For 𝜔/2𝜋 > 2 THz, we find that the 

AMR contrast decreases by about 50% from 10 to 20 THz for both Ni81Fe19 and Ni50Fe50. The slope of 

this decrease is similar to that of the conductivity Re �̅�. This observation and the discussion following 

Eq. (3) suggest that AMR contribution (A) is dominant for these films. In contrast, for Co, we find an 

AMR decrease of less than 10% from 10 to 20 THz, although the conductivity rolls off by more than 

50% in this range. This finding and Eq. (3) indicate that the AMR of Co has a significant frequency-

independent contribution (B). 



To address this point quantitatively, we determined the weights 𝐴 and 𝐵 of the two AMR contributions 

(A) and (B) by fitting Eq. (3) to the measured |AMR(𝜔)| (Fig. 3). Here, 𝐴, 𝐵 are the only fit 

parameters, whereas the value of the scattering time 𝜏⊥ ≈ 𝜏 is fixed by our analysis of the mean 

conductivity. Fitting was performed over both the full frequency range 0.2…28 THz and the high 

frequency range 8…28 THz (see Supplemental Note 1). With both procedures, we obtained excellent 

and consistent agreement of measured data and fits for all four investigated materials (Fig. 3).  

The relevant parameters are summarized in Table 1. We find very small ratios 𝐵/𝐴 of the order of 

10−3 for Ni81Fe19, Ni50Fe50 and Ni. According to Eq. (3), an increase of 𝐵/𝐴 would make the 

calculated curve |AMR(𝜔)| even flatter at frequencies above 8 THz and result in less agreement with 

the experimental data [Fig. 3(a-c)]. Therefore, the intrinsic contribution (B) to the AMR of the 

Ni81Fe19, Ni50Fe50 and Ni samples is negligible.  

We witness a strongly contrasting behavior for our Co thin film. A fit without the presence of an 

intrinsic contribution [𝐵 = 0 in Eq. (3)] yields a curve with significantly larger slope above 8 THz 

[grey dotted line in Fig. 3(d)], which agrees poorly with experimental data. A fit without this 

constraint results in very good agreement of Eq. (3) with the measured modulus of the AMR contrast 

for 𝐵/𝐴 = 2.5 ± 1.5. Therefore, the intrinsic contribution to the AMR contrast [red dashed horizontal 

line in Fig. 3(d)] is a factor of about 2 larger than the extrinsic component. At the same time, Co 

exhibits a THz AMR of 0.7%, only 50% smaller than that of Ni81Fe19, which turns out to have the 

largest THz AMR of the four materials studied here. We have, thus, found direct experimental 

evidence for intrinsic contributions to AMR in a common ferromagnet.  

V. DISCUSSION 

To summarize, we successfully measured AMR of thin films of the standard ferromagnets Ni81Fe19, 

Ni50Fe50, Ni and Co from DC to 28 THz. Our data can excellently be described by the Drude formula 

for the conductivity parallel and perpendicular to the sample magnetization. We identify two distinctly 

different contributions to AMR: (A) a frequency-dependent extrinsic component due to magnetization-

dependent electron scattering and (B) a frequency-independent intrinsic component arising from 

magnetization-dependent electronic group velocities. While contribution (B) is usually neglected in 

Boltzmann-type models of AMR2,3,5,12, it can be significant already at DC and even dominate the AMR 

above 20 THz in Co. 

A. Origin of the intrinsic AMR of Co 

The question arises why contribution (B) to AMR is much larger in Co than in Ni, Ni50Fe50 and 

Ni81Fe19. We ascribe this distinctly different behavior to the crystal symmetry of the materials studied 

here. While crystalline Ni, Ni50Fe50 and Ni81Fe19 are cubic (fcc, point group m3m), Co has hexagonal 

symmetry (hcp, point group 6/mmm). The lower symmetry of Co allows for different values of 

observables for directions parallel and perpendicular to the c axis. Examples include the refractive 

index (making Co optically anisotropic already for 𝑴 = 0), the electron orbital angular momentum 

and spin-orbit coupling energies52. 

A strongly anisotropic spin-orbit coupling strength implies that the electronic band structure changes 

substantially when the magnetization 𝑴 is parallel or perpendicular to the c axis. Therefore, the 

squared plasma frequency 𝛺pl𝑗
2 , which is a summation of the squared electron band velocity 

component 𝑗 over the Fermi surface34,35, should change strongly as well. 

We put this expectation to test by numerically estimating the weight 𝐵 of the scattering-independent 

component (B) of the conductivity, that is, the 𝑴-dependent variation of the squared plasma frequency 

𝛺pl𝑗
2  of Co [see Eq. (3) and Appendix C]. Preliminary results indicate that when 𝑴 is tilted out of the 

basal 𝑥-𝑦 plane into a direction parallel to the c axis (𝑧 axis) of Co, the plasma frequency 𝛺pl𝑧 



decreases by a value of the order of 4%. In contrast, the calculations for Ni indicate that the plasma 

frequency varies significantly less than 1% as a function of the magnetization direction. Our numerical 

estimates, thus, confirm the expected variation of the plasma frequency 𝛺pl𝑧 when 𝑴 is rotated out of 

the basal plane of Co. 

B. Impact of polycrystallinity 

We note that the samples of our experiment are polycrystalline. In a simplified picture, one can 

imagine this situation as an ensemble of three subsets of Co crystallites whose c axes point along 

either the 𝑥, 𝑦 or 𝑧 axis with the same probability of 1/3. For simplicity, we assume that only the 

magnetization component along the c axis will modify the conductivity. When the driving THz field 𝑬 

is applied along the 𝑧 direction and the resulting current density 𝒋 is measured along 𝑬, the relevant 

conductivity 𝜎𝑧𝑧 changes only due to those crystallites whose c axis is parallel to the 𝑧 axis. Therefore, 

the current density along 𝑬 will change when 𝑴 is rotated from 𝑴 ∥ 𝑬 to 𝑴 ⊥ 𝑬, and at least part of 

the AMR of the crystallites is inherited by the polycrystalline sample.  

In a more rigorous way, the polycrystallinity of the sample can be taken into account by averaging the 

conductivity tensor over all crystal orientations while keeping the magnetization 𝑴 fixed. One can, 

equivalently, perform a rotational average of the AMR tensor 𝐺𝑗𝑘𝑙𝑚 = (1/2)𝜕
2𝜎𝑗𝑘/𝜕𝑀𝑙𝜕𝑀𝑚 (see 

Appendix C). The elements 𝐺𝑗𝑗𝑙𝑙 are proportional to the change in 𝛺pl𝑙
2  with respect to 𝑀𝑙

2. While the 

refractive index of polycrystalline Co in the absence of magnetic order (𝑴 = 0) becomes completely 

isotropic, the AMR to a large extent survives the rotational averaging process. For polycrystalline Co, 

we estimate the scattering-independent AMR contrast by a linear combination of the numerically 

estimated tensor elements 𝐺𝑗𝑗𝑙𝑙. As detailed in Appendix C, we obtain an AMR contrast of (0.8 ±

0.5)% for Co and 0% for Ni, which is in excellent agreement with the measured scattering-

independent contribution of 𝐵 = (0.5 ± 0.1)% and (0 ± 0.07)% (Table 1), respectively. 

C. Role of interband transitions 

The Drude-Boltzmann theory of AMR and other electronic transport phenomena rely on intraband 

transitions: The probing THz field, possibly in conjunction with a phonon or an impurity, causes an 

electron to scatter from one Bloch state into another one in the same band of the electronic band 

structure. Above a certain probing frequency, however, interband transitions, that is, transitions 

between different bands, become operative.  

Intraband transitions can often be well described by the Drude formula [Eq. (2)], and their contribution 

to the conductivity decays with 1/𝜔 for large enough frequencies. For interband transitions, we expect 

a different frequency dependence of the conductivity than for intraband transitions. Such crossover 

from intraband to vertical (i.e. wavevector-conserving) interband transitions was, for example, 

observed for the semimetal graphite already at frequencies between 10 and 20 THz (Ref. 53).  

In our conductivity spectra (Fig. 3), however, we do not observe indications of interband transitions 

because we are able to well describe all measured curves by the simple Drude formula [Eq. (2)] over 

the full frequency range 0…28 THz. For Ni, this notion is consistent with earlier work47 in which the 

onset of interband transitions was found at a photon energy of 0.15 eV (corresponding to 36 THz), 

which is outside the frequency range considered here. Similarly, for Co and Fe, previous studies report 

that the lowest interband transitions are at 0.18 eV (44 THz)54,55 and 0.20 eV (48 THz)48,49. We 

conclude that in the materials studied here, intraband transitions dominate the response at least up to 

30 THz. Therefore, our insights into intrinsic and extrinsic AMR contributions at THz frequencies can 

directly be transferred to the DC AMR. 

VI. CONCLUSIONS 



In conclusion, low-noise broadband THz spectroscopy enables one to measure AMR from ~0.2 to tens 

of THz. The wide bandwidth provides access to important transport parameters. Our measurements 

reveal extrinsic and sizeable intrinsic contributions to the AMR contrast, thereby providing new and 

surprising insights into a mature effect.  

Polycrystalline Co exhibits a sizeable intrinsic contribution which can consistently be ascribed to the 

crystalline anisotropy of the hexagonal (hcp) structure of Co crystallites. Our interpretation is 

supported by rotational averaging of the AMR tensor and numerical estimates. It highlights a strategy 

to identify materials with a large intrinsic AMR contribution, which is relevant for potential broadband 

THz spintronic applications.  

Probing of the intrinsic AMR component is also highly interesting from a spectroscopic viewpoint 

because it reports on magnetic-order-induced variations of the electronic band structure. We anticipate 

that broadband THz AMR will be a highly useful, versatile and ultrafast probe of all flavors of 

magnetic order and transport parameters of spintronic materials. It can be applied to standard thin 

films, both crystalline22 or polycrystalline, and under ambient conditions without the need of 

microstructuring and contacting. In particular, THz AMR should also be applicable to metallic 

antiferromagnets such as CuMnAs and Mn2Au that have recently moved into the focus of spintronics 

research11,56.  

As our THz radiation is pulsed, THz AMR can be measured with a time resolution down to 100 fs. 

This feature opens up the exciting possibility to monitor material-relevant parameters on the natural 

time scales of spin, electron and lattice dynamics57. In this way, THz AMR complements other 

recently developed ultrafast spintronic techniques such as THz anomalous Hall effect50,58,59, THz 

tunnel magnetoresistance25, THz giant magnetoresistance33 and magnetization-dependent THz 

emission43,60,61,62,63 that have provided new insights into the dynamics of spin transport and spin-to-

charge-current conversion. Finally, because the THz range coincides with a variety of excitations 

(such as phonons and magnons), the method presented here allows us to study the impact of such 

resonances on magneto-transport at their natural frequencies. 
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APPENDIX A: EXPERIMENTAL DETAILS 

1. Sample growth and characterization 

All samples were deposited by sputtering or thermal evaporation techniques64 on thermally oxidized 

Si|SiO2(100 nm) substrates. Details on growth and characterization can be found in Supplemental 

Note 3. In brief, the Ni81Fe19 thin film (thickness of 8 nm) was grown by DC sputtering (sputter power 

of 800 W, Ar pressure of 0.5 Pa). X-ray diffraction (𝜃-2𝜃 scans) reveals a very weak (111) reflection, 

indicating a crystallite size of about 3 nm. A weak (220) reflection confirms the polycrystalline growth 

of the sample. The layer thicknesses were inferred from the X-ray reflectometry measurements.  

The Ni50Fe50(10 nm) layer was deposited by DC magnetron sputtering (sputter power 30 W, Ar 

pressure 0.4 Pa). After the sputtering process, the sample was capped with an MgO(7 nm) layer grown 

by in-situ molecular beam epitaxy (MBE) and electron-beam evaporation and by an Al2O3(5 nm) layer 



by ex-situ atomic layer deposition. The Co(10 nm) film was grown by thermal evaporation in ultrahigh 

vacuum (MBE) and capped by MgO(5 nm) and Al2O3(5 nm) using the techniques described above. 

The Ni(10 nm) film was prepared by thermal evaporation in a vacuum chamber and capped by 

Al(3 nm), which fully oxidizes under ambient conditions65. The crystal structure of the Co film was 

monitored during growth using reflection high-energy electron diffraction. We find a polycrystalline 

hcp structure with random crystal orientation. 

2. THz conductivity measurements 

Our sample system is a stack S|F|A consisting of a metal thin film F (thickness 𝑑) between substrate S 

(refractive index 𝑛S) and air A (refractive index 𝑛A). To determine the conductance of F, we conduct 

transmission measurements [see Fig. 1(b)]. In a first measurement, we characterize the THz field 𝑬 

directly behind the F layer. As the field 𝑬inc incident on the sample is unknown, we conduct a second 

measurement on a reference sample S|R|A where the sample film F is replaced by a reference film R 

with known refractive index. In practice, the reference measurement is performed in sample regions 

where no metal film is deposited. Thus, our reference material is air (R = A), whose refractive index 

equals 1 to very good approximation. 

In our setup, the field 𝑬inc = 𝐸inc𝒖 is normally incident onto the sample and linearly polarized 

parallel to the vertical unit vector 𝒖 [Fig. 1(b)]. The field 𝑬 behind the sample is projected onto the 

same direction 𝒖 by means of a polarizer. We, thus measure a signal 𝑆 which is related to the 

projection 𝒖 ⋅ 𝑬 through the transfer function of our setup. Likewise, the signal 𝑆ref  from the 

reference sample is obtained. By dividing the signals 𝑆(𝜔) and 𝑆ref(𝜔) in the frequency domain, the 

setup transfer function cancels. As derived in Appendix B, the ratio 𝑆(𝜔)/𝑆ref(𝜔) is related to 

sample-intrinsic parameters by  

𝑆(𝜔)

𝑆ref(𝜔)
=

1

1 + 𝑍ref(𝜔)𝜎(𝜔)𝑑
[1 +

AMR(𝜔) cos2 𝛼

1 + [𝑍ref(𝜔)𝜎(𝜔)𝑑]
−1
] (A1) 

where 𝑍ref = 𝑍0/[𝑛S(𝜔) + 𝑛A(𝜔)] is the impedance of the reference sample.  

As the AMR contrast AMR(𝜔) amounts to only a few per cent, the second term in the square bracket 

of Eq. (A1) is much smaller than the first one. Consequently, we determine the first term by a simple 

transmission measurement through the sample averaged over all magnetization directions and through 

the reference without metal film. We obtain the familiar Tinkham formula46 

𝑆(𝜔)

𝑆ref(𝜔)
=

1

1 + 𝑍ref(𝜔)𝜎(𝜔)𝑑
 (A2) 

which implies that 

𝜎(𝜔) =
1

𝑍ref(𝜔)𝑑
(
𝑆ref(𝜔)

𝑆(𝜔)
− 1). (A3) 

To measure the AMR-related term in Eq. (A1), we modulate 𝛼 between 0 and 90°. We obtain 

Δ𝑆(𝜔) = 𝑆(𝜔, 0°) − 𝑆(𝜔, 90°) and, thus, 

Δ𝑆(𝜔)

𝑆(𝜔)
=

AMR(𝜔)

1 + [𝑍ref(𝜔)𝜎(𝜔)𝑑]
−1
, (A4) 

which is equivalent to Eq. (6) of the main text.  

3. Error considerations 



THz measurements. The uncertainties of the fit parameters 𝜎(0), 𝜏 [Eq. (2)] and 𝐴, 𝐵 [Eq. (3)] are 

given by the uncertainties of the signals Δ𝑆 and 𝑆 and the statistics of the fit procedure. They are 

summarized in Table 1 and Supplemental Table S1. 

The precision of 𝑆 is estimated by the standard error of repeated measurements of this signal. To 

estimate the uncertainties of Δ𝑆, two contributions were considered. The first one is the statistical error 

of Δ𝑆 that arises from the shot noise of our measurement. It is estimated by the constant noise floor 

outside the signal bandwidth of the THz-emitter-detector configuration used. An example of the noise 

floor for Ni81Fe19 is shown in Supplemental Fig. S5.  

The second error contribution to Δ𝑆 arises from the finite precision with which the magnets for rapid 

modulation of the angle 𝛼 of the external magnetic field could be positioned. As a consequence, the 

minimum angle 𝛼min and the maximum angle 𝛼max deviated from the target angles 0° and 90°, 

respectively. This systematic error only results in an overall rescaling of Δ𝑆 by an estimated upper 

limit of 30%. Importantly, it does not affect the frequency dependence of Δ𝑆. It may, however, differ 

between the measurements in the ranges 0.2…2 THz and 8…28 THz where the permanent magnet and 

the electromagnet were repositioned. This issue was tackled by fitting Eq. (3) over the full frequency 

range 0.2…28 THz and the higher range 8…28 THz only. We obtained consistent results, as 

summarized in the Supplemental Note 1 and Supplemental Table S1. 

DC measurements. For the electrical measurements of 𝜎DC by the van-der-Pauw method, the 

measurement error is of the order of 5% and predominantly arises from the nonvanishing size of the 

contacts and their positioning within the sample perimeter40,41,42. The error of the electrical 

measurement of the AMR contrast by our four-point approach is governed by the uncertainty of the 

direction of the current flow between electrical contacts, the directional homogeneity of the external 

magnetic field of the Halbach array and the fit statistics of the raw data (see Fig. S1). 

Comparison DC THz. From Fig. 3, we observe that the values of the THz AMR contrast below 

2 THz are smaller than the DC AMR contrast for Ni50Fe50, Ni and Co. This behavior can be explained 

by a deviation of 𝛼max − 𝛼min from 90°, which leads to a reduction of the measured THz AMR 

contrast. For Ni81Fe19, we observe the opposite behavior which, we believe, arises from the different 

aspect ratios of the rectangular samples used for the DC AMR measurements. While the aspect ratio of 

the Ni81Fe19 sample was close to 1:1, it was roughly 4:1 for the other samples. As a consequence, the 

current flow in the Ni81Fe19 sample was less homogeneous, resulting in an apparently smaller 

measured DC AMR contrast.  

 

APPENDIX B: DERIVATION OF EQS. (3) AND (A1)  

The following derivations refer to complex-valued quantities in the frequency domain. For the sake of 

simplicity, the argument 𝜔 is omitted.  

1. Derivation of Eq. (3) 

We first rewrite the Drude formula30,31 [Eq. (2)] as 

𝜎𝑗(𝜔) =
𝛺pl𝑗
2 /𝑍0𝑐

𝜏𝑗
−1 − i𝜔

=:
𝑁𝑗

𝐷𝑗
 (B1) 

where 𝑗 = 1, 2 refers to the ⊥ and ∥ configuration, respectively. Linearization with respect to 

Δ(𝛺pl
2 ) = 𝛺pl2

2 − 𝛺pl1
2 ≪ 𝛺pl𝑗

2  and Δ𝜏 = 𝜏2 − 𝜏1 ≪ 𝜏𝑗 yields 

−AMR =
Δ𝜎

𝜎1
=
𝜎2 − 𝜎1
𝜎1

=
Δ𝑁

𝑁1
−
Δ𝐷

𝐷1
=
Δ(𝛺pl

2 )

𝛺pl1
2 +

Δ𝜏

𝜏1
2

1

𝜏1
−1 − i𝜔

= −𝐵 −
𝐴

1 − i𝜔𝜏1
 (B2) 



with 𝐵 = −Δ(𝛺pl
2 )/𝛺pl1

2  and 𝐴 = −Δ𝜏/𝜏1. Further analysis shows that the error of the linearization is 

of the order of Δ(𝛺pl
2 )∆𝜏, which is negligible here. 

2. Derivation of Eq. (A1)  

Wave equation. In our setup, the incident THz pulse propagates along the 𝑧 axis, which is 

perpendicular to the sample plane [see Fig. 1(b)]. Therefore, 𝑧 is the only relevant spatial coordinate, 

and we choose its origin such that the metal film F is located between 𝑧 = 0 and 𝑑. We assume that 

substrate S and air A are optically isotropic and homogeneous and can, thus, be described by scalar 

refractive indices 𝑛S and 𝑛A, respectively. The metal thin film F, in contrast, is allowed to be 

inhomogeneous along 𝑧 and optically anisotropic. It is adequately described by the conductivity tensor 

(matrix) 𝜎(𝑧). 

In frequency space, the THz field 𝑬(𝑧) is determined by the wave equation66 

(𝜕𝑧
2 + 𝛽2)𝑬 = 𝑸ext. (B3) 

Here, 𝑸ext quantifies the sample-external source of the incident THz wave, and the squared 

wavenumber matrix 𝛽2(𝑧) captures the linear-optical properties of the system. Its difference to the 

reference system fulfills 

(𝛽2 − 𝛽ref
2 ) (𝑧) =

i𝑍0
𝜔/𝑐

𝜎(𝑧) (B4) 

where 𝑍0 ≈ 377 Ω is the free-space impedance. The reference system is the sample without metal 

film, that is, just the substrate and air half-spaces. We rewrite Eq. (B3) as 

(𝜕𝑧
2 + 𝛽ref

2 )𝑬 = 𝑸ext +𝑸:= 𝑸ext +
𝑍0
i𝜔/𝑐

𝜎𝑬 (B5) 

where the term 𝑸(𝑧) quantifies the source of the field component that arises from the response of the 

metal film with conductivity 𝜎. By inverting the operator 𝜕𝑧
2 + 𝛽ref

2  in Eq. (B5), one obtains the 

integral equation66  

𝑬(𝑧) = 𝑬ref(𝑧) + ∫d𝑧
′ 𝒢ref(𝑧, 𝑧

′)𝑸(𝑧′) (B6) 

where 𝒢ref(𝑧, 𝑧
′) is the optical Green’s function of the reference sample. Equation (B6) has a clear 

physical interpretation: The total THz field 𝑬(𝑧) is the sum of the field 𝑬ref(𝑧) of the reference 

sample (no metal film) plus the field generated by the field-induced currents in the metal. 

Thin-film approximation. To solve Eq. (B6), we apply the so-called thin-film approximation and 

assume that the field is constant throughout the thickness of the metal film, that is, 

𝑬(𝑧) = 𝑬, 𝑬ref(𝑧) = 𝑬ref  (B7) 

in the vicinity of 𝑧 = 0. This assumption is fulfilled if the thickness of the metal film is much smaller 

than the wavelength and the attenuation length of the THz wave inside the metal. Likewise, for 𝑧 ≈ 0, 

the Green’s function of the reference sample becomes a (𝑧, 𝑧′)-independent scalar, that is, 

𝒢ref(𝑧, 𝑧
′) = 𝑔ref:=

1

i ⋅ (𝛽S + 𝛽A)
 (B8) 

where 𝛽𝑗 = 𝑛𝑗𝜔/𝑐 is the wavenumber of the substrate (𝑗 = S) and air (𝑗 = A). By combining 

Eqs. (B5), (B7) and (B8) with Eq. (B6), we finally obtain the total field 

𝑬 =
1

1 + 𝑍ref𝐺F
𝑬ref, (B9) 



where 

𝑍ref =
𝑍0

𝑛S + 𝑛A
   and  𝐺F = ∫d𝑧

′ 𝜎(𝑧′), (B10) 

respectively, is the impedance of the reference system close to the S/A interface and the (anisotropic) 

conductance of the metal film F. For a homogeneous film with 𝑧-independent conductivity 𝜎, we have 

𝐺F = 𝜎𝑑. 

Application to our sample. For our magnetic thin film F, the conductivity can be split according to 

𝜎 = 𝜎0 + Δ𝜎 where 𝜎0 is the isotropic conductivity in the absence of magnetization (𝑴 = 0), while 

the anisotropic part Δ𝜎 captures all magnetoresistive effects. By linearizing Eq. (B9) with respect to 

Δ𝜎, we find 

𝑬 =
𝑬ref

1 + 𝑍ref𝐺F0
−

𝑍refΔ𝐺F𝑬ref
(1 + 𝑍ref𝐺F0)

2
, (B11) 

where 𝐺F0 = ∫d𝑧
′ 𝜎0(𝑧

′) is the conductance for 𝑴 = 0, and Δ𝐺F = ∫d𝑧
′ Δ𝜎(𝑧′) is the 

magnetoresistive contribution. 

In our experiment, the incident field and, thus, reference are linearly polarized parallel to the 𝑥 axis 

[see Fig. 1(b)]. Therefore, they can be written as 𝑬inc = 𝐸inc𝒖 and 𝑬ref = 𝐸ref𝒖 where 𝒖 is the unit 

vector (|𝒖|2 = 𝒖2 = 1) of the 𝑥 axis. In addition, the field 𝑬 behind the sample is projected onto the 

same direction 𝒖 by a polarizer, resulting in 𝐸 = 𝒖 ⋅ 𝑬. We multiply Eq. (B11) with 𝒖 from the left 

side and arrive at  

𝐸

𝐸ref
=

1

1 + 𝑍ref𝐺F0
−

𝑍refΔ𝐺F𝒖𝒖
(1 + 𝑍ref𝐺F0)

2
, (B12) 

where Δ𝐺F𝒖𝒖 = 𝒖 ⋅ Δ𝐺F𝒖 is the magnetization-induced change in the conductance projected onto 𝒖. 

For our polycrystalline, homogeneous and ferromagnetic F layer, we have 𝐺F0 = 𝜎0𝑑 and Δ𝐺F =

Δ𝜎𝑑. According to Eq. (C2), the magnetoresistive part Δ𝜎 of the conductivity tensor fulfills 

Δ𝜎𝒖 = 𝑎𝑴× 𝒖 + 𝑏𝑴(𝑴 ⋅ 𝒖). (B13) 

The first term is the anomalous Hall effect50 with 𝕀 denoting the unity matrix, and the second term is 

the AMR. The contribution of isotropic magnetoresistance can be added to 𝜎0, but was neglected here 

because it is much smaller than 𝜎0. The constants 𝑎 and 𝑏 are material-specific, and 𝑏 is directly 

related to the AMR tensor.  

Equations (B13) and (C3) imply that 𝒖 ⋅ Δ𝜎𝒖 = 𝑏𝑴2 cos2 𝛼 = (𝜎∥ − 𝜎⊥) cos
2 𝛼 where 𝛼 is the angle 

between 𝑴 and 𝒖 [Fig. 1(b)]. Therefore, projection of the transmitted field onto 𝒖 does not contain 

any contribution of the anomalous Hall effect since these field changes are perpendicular to 𝒖. By 

substituting this result into Eq. (B12), we obtain 

𝐸

𝐸ref
=

1

1 + 𝑍ref𝜎𝑑
−
𝑍ref𝑑(𝜎∥ − 𝜎⊥) cos

2 𝛼

(1 + 𝑍ref𝜎𝑑)
2

. (B14) 

Here, we replaced 𝜎0 by 𝜎 = (𝜎∥ + 𝜎⊥)/2 in the denominators of Eq. (B14) with negligible error 

because |𝜎∥ − 𝜎⊥| ≪ 𝜎0 ≈ 𝜎. Along with the AMR contrast AMR = −(𝜎∥ − 𝜎⊥)/𝜎, Eq. (B14) turns 

into 

𝐸(𝜔)

𝐸ref(𝜔)
=

1

1 + 𝑍ref𝜎𝑑
[1 +

AMRcos2 𝛼

1 + (𝑍ref𝜎𝑑)
−1
], (B15) 

which is the desired relationship of the main text. 



 

APPENDIX C: AMR OF POLYCRYSTALLINE SAMPLES 

1. Symmetry analysis 

The AMR tensor of an arbitrary ferromagnetic material is defined by 𝐺𝑗𝑘𝑙𝑚 = (1/2)𝜕
2𝜎𝑗𝑘/𝜕𝑀𝑙𝜕𝑀𝑚. 

Depending on the point symmetry group of the material, a substantial number of tensor elements is 

strictly zero or depends on each other, thereby resulting in a relatively small number of independent 

tensor elements. For the hexagonal crystal structure of Co (hcp, point group 6/mmm), we have67,68 

(

 
 
 

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑧𝑥
𝜎𝑥𝑦)

 
 
 
=

(

 
 
 
 

𝐺𝑥𝑥𝑥𝑥 𝐺𝑥𝑥𝑦𝑦 𝐺𝑥𝑥𝑧𝑧 0 0 0

𝐺𝑥𝑥𝑦𝑦 𝐺𝑥𝑥𝑥𝑥 𝐺𝑥𝑥𝑧𝑧 0 0 0

𝐺𝑧𝑧𝑥𝑥 𝐺𝑧𝑧𝑥𝑥 𝐺𝑧𝑧𝑧𝑧 0 0 0
0 0 0 2𝐺𝑦𝑧𝑦𝑧 0 0

0 0 0 0 2𝐺𝑦𝑧𝑦𝑧 0

0 0 0 0 0 𝐺𝑥𝑥𝑥𝑥 − 𝐺𝑥𝑥𝑦𝑦)

 
 
 
 

(

 
 
 
 

𝑀𝑥
2

𝑀𝑦
2

𝑀𝑧
2

𝑀𝑦𝑀𝑧
𝑀𝑧𝑀𝑥
𝑀𝑥𝑀𝑦)

 
 
 
 

, (C1) 

where the 𝑧 axis is oriented along the c axis of Co.  

For the cubic crystal structure of Ni, Ni50Fe50 and Ni81Fe19 (fcc, point group m3m), one has the 

additional constraints 𝐺𝑥𝑥𝑦𝑦 = 𝐺𝑥𝑥𝑧𝑧 = 𝐺𝑧𝑧𝑥𝑥, 𝐺𝑥𝑥𝑥𝑥 = 𝐺𝑧𝑧𝑧𝑧 and 𝐺𝑥𝑥𝑥𝑥 − 𝐺𝑥𝑥𝑦𝑦 = 2𝐺𝑦𝑧𝑦𝑧. 

Therefore, two independent elements such as 𝐺𝑥𝑥𝑦𝑦 and 𝐺𝑦𝑧𝑦𝑧 = 𝐺𝑧𝑥𝑧𝑥 = 𝐺𝑥𝑦𝑥𝑦 completely determine 

the AMR tensor in this case. 

2. Rotational averaging 

The AMR tensor of a polycrystalline material is obtained by rotational averaging69,70 of the tensor 

𝐺𝑗𝑘𝑙𝑚 of the crystalline material. The resulting tensor 〈𝐺〉𝑗𝑘𝑙𝑚 fulfills the same symmetry constraints 

as the AMR tensor of a cubic crystal with point group m3m. Thus, knowledge of the two independent 

elements 〈𝐺〉𝑥𝑦𝑥𝑦 and 〈𝐺〉𝑥𝑥𝑦𝑦 is sufficient. For a ferromagnetic material of this symmetry class, the 

current density 𝒋 induced by an electric field 𝑬 can up to second order in the magnetization 𝑴 

compactly be written as67,68 

𝒋 = 𝜎𝑬 = 𝜎0𝑬+ 𝑎𝑴× 𝑬 + 𝑏𝑴(𝑴 ⋅ 𝑬) + 𝑐𝑴
2𝑬. (C2) 

Here, the first term on the right-hand side is the current in the absence of magnetic order, the second 

term with constant 𝑎 is the anomalous Hall effect, the third term is the AMR with 𝑏 = 2〈𝐺〉𝑥𝑦𝑥𝑦, and 

the last term is an isotropic magnetoresistance with 𝑐 = 〈𝐺〉𝑥𝑥𝑦𝑦. For a thin film of this material with 

𝑴 and 𝑬 in the film plane, the conductivity is 𝜎⊥ = 𝜎0 + 𝑐𝑴
2 if 𝑴 ⊥ 𝑬, whereas it is 𝜎∥ = 𝜎⊥ + 𝑏𝑴

2 

if 𝑴 ∥ 𝑬. We, thus, have 

𝜎∥ − 𝜎⊥ = 𝑏𝑴
2 = 2〈𝐺〉𝑥𝑦𝑥𝑦𝑴

2. (C3) 

For polycrystalline Co, we performed rotational averaging69,70 of the AMR tensor  and obtained  

30〈𝐺〉𝑥𝑦𝑥𝑦 = 7𝐺𝑥𝑥𝑥𝑥 + 2𝐺𝑧𝑧𝑧𝑧 − 5𝐺𝑥𝑥𝑦𝑦 − 2𝐺𝑥𝑥𝑧𝑧 − 2𝐺𝑧𝑧𝑥𝑥 + 12𝐺𝑦𝑧𝑦𝑧 (C4) 

whereas for polycrystalline Ni, we found 

〈𝐺〉𝑥𝑦𝑥𝑦 = 𝐺𝑥𝑦𝑥𝑦 . (C5) 

3. AMR estimate of polycrystalline samples 

We conducted ab initio calculations of the plasma frequency of crystalline Ni and Co as detailed in 

Supplemental Note 2. These values can be compared to the weight 𝐵 of the intrinsic AMR 

contribution we measured on polycrystalline samples of Ni and Co. For Ni, the calculated plasma 



frequencies are independent of the magnetization direction (see Supplemental Table S3), consistent 

with 𝐵 = (0 ± 0.07)% as inferred from our measurements. 

To deal with Co, we assume that its AMR exclusively arises from intrinsic contributions and use 

Eqs. (1), (C3) and (C4) to write 

−𝐵 =
Δ𝜎

𝜎
=
2

𝜎
〈𝐺〉𝑥𝑦𝑥𝑦𝑴

2 =
2

𝜎
∑𝑴2𝐺𝑖𝑗𝑘𝑙𝑎𝑖𝑗𝑘𝑙 ≈

2

𝜎
∑𝑴2𝐺𝑧𝑧𝑗𝑗𝑎𝑧𝑧𝑗𝑗 . (C6) 

The coefficients 𝑎𝑖𝑗𝑘𝑙 are related to the rotational averaging [see Eq. (C4)], and in the last step of 

Eq. (C6), we neglected 𝐺𝑦𝑧𝑦𝑧. According to our ab initio calculations (see Supplemental Table S3), we 

infer that only the plasma frequencies and, thus, the conductivities 𝜎𝑧𝑧 [see Eq. (2)] along the c axis (𝑧 

axis) of crystalline Co depend on the direction of the magnetization 𝑴. On the other hand, from 

Eq. (C4), we see that 𝑎𝑧𝑧𝑥𝑥 = −1/15, 𝑎𝑧𝑧𝑦𝑦 = 0 and 𝑎𝑧𝑧𝑧𝑧𝑧 = 1/15. With these conditions, Eq. (C6) 

becomes 

−𝐵 ≈
2

15𝜎
(𝑴2𝐺𝑧𝑧𝑧𝑧 −𝑴

2𝐺𝑧𝑧𝑥𝑥) =
2

15

𝜎𝑧𝑧;𝑧𝑧 − 𝜎𝑧𝑧;𝑥𝑥 

𝜎
. (C7) 

In the last step, we used that 𝑴2𝐺𝑧𝑧𝑗𝑗 = 𝜎𝑧𝑧;𝑗𝑗 − 𝜎𝑧𝑧
0  where 𝜎𝑧𝑧;𝑗𝑗 is the 𝑧 conductivity when the 

sample is magnetized along the 𝑗 direction, and 𝜎𝑧𝑧
0  is the 𝑧 conductivity for 𝑴 = 0. We finally 

assume that the current relaxation time of Co is isotropic for 𝑴 = 0. By combining Eqs. (2) and (C7) 

and using Supplemental Table S3, we obtain 

𝐵 ≈ −
2

15

𝛺pl𝑧𝑧;𝑧𝑧
2 − 𝛺pl𝑧𝑧;𝑥𝑥

2  

𝛺pl
2

= (0.8 ± 0.5)%, (C8) 

which is in excellent agreement with the experimentally determined value of 𝐵 = (0.5 ± 0.1)%. 
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