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Conventional understanding implies that the ground state of a nonmagnetic quantum mechanical
system should be nodeless. While this notion also provides a valuable guidance in understanding
the ordering of energy levels in semiconductor nanostructures, there are reports that nodal ground
states for holes are possible. However, the existence of such nodal states has been debated and even
viewed merely as an artifact of a k·pmodel. Using complementary approaches of both k·p and tight-
binding models, further supported by an effective Hamiltonian for a continuum model, we reveal
that the nodal ground states in quantum dots are not limited to a specific approach. Remarkably,
the emergence of the nodal hole states at the top of the valence band can be attributed to the
formation of the orbital vortex textures through competition between the hole kinetic energy and
the coupling to the conduction band states. We suggest an experimental test for our predictions of
the reversed energy ordering and the existence of nodal ground states. We discuss how our findings
and the studies of orbital textures could be also relevant for other materials systems.

I. INTRODUCTION

Unlike the common expectation that a bound state
of a particle should be nodeless,1–3 theoretical calcu-
lations in semiconductor quantum wires4 and quantum
dots5–8 (QDs) have predicted hole ground states with a
node. Those ground states occur with the inversion of
the energy level ordering between nodeless (S-like) and
nodal (P -like) wavefunctions due to various factors, such
as the confinement size and strength, the choice of a
material, and the spin-orbit interaction. This peculiar
phenomenon is linked to the formation of dark excitons
that exhibit very long recombination time and the Stokes
shift7,9,10 in the luminescence of InAs and CdSe QDs.
One can expect that such nodal states would also have
intriguing implications for magnetically-doped quantum
dots and provide additional control for their magnetic
ordering.11–25 In this work we show how the presence of
the nodal ground state is associated with the emergence
of orbital textures that minimize the energy of underlying
model we use to describe QDs.

While there appeared some criticism asserting that
the existence of nodal ground state is just a theoreti-
cal artifact,26–28 a systematic effort to either prove or
disprove the occurrence of the level ordering inversion
between the nodal and nodeless states is still missing.
In fact, one is tempted to invoke different arguments
to dismiss the occurrence of such nodal ground states.
Elementary understanding of quantum mechanics would
suggest that the nodeless state and thus minimization of
the kinetic energy should be preferred. A similar reason-
ing would follow from the Sturm-Liouville theorem for
differential equations.29

However, a closer look at the character of the hole
ground state displays more complexities, which prevent
us from simply concluding that a nodal wavefunction can-
not describe the ground state. The hole ground state is
not a “true” ground state, but a state in the middle of
the whole spectrum of single-particle energy levels. The

hole represents a lack of an electron, the ground state
of hole refers to the highest energy state in the valence
band (VB) in the electronic energy dispersion. Addition-
ally, the corresponding Hamiltonian describes multiband
wavefunctions arising from the band structure as shown
in Fig. 1(a). Therefore, the hole ground state with a
nodal wavefunction is not forbidden.
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FIG. 1. A qualitative sketch of a diamond or zinc-blende lat-
tice semiconductor bulk band structure in the k·p and tight-
binding model. (a) Conduction and valence bands are sep-
arated by the energy gap, Eg. The valence band comprises
heavy and light hole (HH,LH) bands, separated at the Γ point
(k = 0) by the spin-orbit gap, ∆SO, from the split-off (SO)
band. The six-band k·p Hamiltonian describes the region
marked by the box. (b) Within the two atom basis of Bra-
vais lattice, linear combinations of atomic orbitals (LCAOs)
form the s-antibonding and p-bonding orbitals. The latter
give rise to valence band once the gap in the bulk band struc-
ture opens due to s-p hybridization. This s-p coupling also
influences the ordering of QD levels. If it is strong enough,
the P -like envelope function state appears at the top of the
valence band.

Even if the suggested nodal ground states are not im-
possible, are the methods employed to identify them in-
deed appropriate? Specifically, their identification relies
on the use of a k·pmodel which is commonly employed to
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describe the band structure in bulk semiconductors. The
model is based on an effective Hamiltonian with periodic
Bloch functions as its solutions which, for a certain crys-
tal momentum k, form a complete set. Near a specific k
(typically Γ-point, k = 0) an accurate band structure is
obtained perturbatively.30

Several qualitative features arising from a k·p model
applied to diamond or zinc-blende semiconductors, such
as the opening of the energy gap, Eg, and the VB struc-
ture are illustrated in Fig. 1(a). In the VB, the heavy and
light holes are separated by the spin-orbit gap, ∆SO, from
the split-off band. The versatility of the k·p model was
successfully used to elucidate a wealth of phenomena in
semiconductors and their nanostructures, including op-
tical properties,3,31 the spin Hall effect,32 and topolog-
ical insulators.33 While a k·p model with an envelope
function approximation is also frequently applied to low-
dimensional systems, such as quantum wells, wires, and
dots,3,31,34 sometimes it is more challenging to justify its
validity.

A complementary picture to examine the occurrence
of the nodal ground states can be obtained from a tight-
binding (TB) model. Unlike the k·p model, one can con-
sider an electron in a solid as localized within an iso-
lated atom placed at each lattice site. If no interaction
between neighboring atoms exists, there are degenerate
energy levels corresponding to s- and p-orbitals, shown
on the left in Fig. 1(b). In a realistic solid, since atoms
are not completely isolated, an electron at one site in-
teracts with the neighboring atoms. In a TB model,
electronic wavefunction in the primitive unit cell can be
approximated by a linear combination of atomic orbitals
(LCAO) of isolated atoms at different sites. If we next
consider hopping among s- and p-orbitals, bonding and
antibonding states will form, Fig. 1(b), middle. Finally,
when we introduce s-p coupling, the semiconducting gap
opens in the bulk. Such an atomistic TB model provides
a different approach to study semiconductor nanostruc-
tures in which the k·p model may not capture the full
symmetry of atomic wavefunctions, and it could help our
microscopic understanding of the level ordering in a QD.

We combine these two complementary models to sys-
tematically explore the presence of nodal ground states
and to eliminate the possibility that our results are an
artifact of a specific method. Within both k·p and TB
models we predict an unconventional level ordering in
which the nodal (P -like) wavefunction can attain an en-
ergy lower than the nodeless (S-like) wavefunciton. This
departure from the conventional nodeless ground state
can be understood even from a simple TB description and
we can attribute it to mixing between orbitals of different
types centered at different atomic sites. We also develop
an effective Hamiltonian from the continuum limit of a
TB model which explains how the emergence of nodal
ground state is related to the orbital ordering and the
formation of orbital textures. Throughout this paper,
uppercase (lowercase) letters S,P (s,p) refer to envelope
functions (atomic orbitals).

Our presentation is organized as follows. After this In-
troduction, in Sec. II we provide some background about
the k·p model and its parameters and then describe the
phase diagram for the occurrence of a nodal ground state.
In Sec. III we describe several TB models in both two and
three dimensional crystal structures and identify the mi-
croscopic origin of the nodal ground state. In Sec. IV
we discuss several implications of our findings and pro-
pose an experiment which could be used to probe the
presence of nodal ground states in quantum dots. Our
conclusions provide the main findings of this work as well
as the possible future directions.

II. k·p MODEL

Formulation of a bulk k·p model can vary significantly
in its complexity, the choice of the specific system, and
the number of bands included. For transparency, we fo-
cus on its main features in a simple implementation in
the non-interacting single electron picture. Invoking the
Bloch theorem, Φnk = unk(r)eik·r, we obtain an effective
Schrödinger equation for Bloch functions

(Ĥ0 + Ĥ1)unk = Enkunk, (1)

with Ĥ0 = p̂2/2m + V and Ĥ1 = ~k̂ · p̂/m + ~2k2/2m,
where n is the the band index, p̂ momentum operator,
the Bloch function unk has the periodicity of the lattice
potential V , and m is the free electron mass. If un0 and
En0 are known at Γ point, Ĥ1 can be treated as a per-
turbation in terms of k suggesting that for QDs, the k·p
model should work better for larger systems where k is
smaller. To some extent, this limitation can be removed
by using a large number of bands so that the bulk k·p
model accurately reproduces the band structure over the
whole Brillouin zone. However, there is only a limited
number of experimentally determined energy gaps and
matrix elements which are needed as the input to the
model.30

We begin with considering a reduced Hilbert space that
consists of heavy hole (HH) and light hole (LH) bands.
The k·p perturbative procedure leads to the Luttinger
Hamiltonian,30,31,35 given in terms of the Kohn-Luttinger
parameters γ1, γ2, and γ3. The standard procedure for
confined systems,31 i.e., the replacement k 7→ −i∇, leads
to

HL =
~2

2m

[(
γ1 +

5

2
γ2

)
∇2 − 2γ3(∇ · Ĵ)2

+ 2(γ3 − γ2)(∇2
xĴ

2
x + c.p.)

]
,

(2)

where Ĵ is the J = 3/2 angular momentum operator, and
c.p. stands for cyclic permutations. Each set of γ1, γ2,
γ3 represents a specific material, and several examples
are given in Table I. The four-band model of Eq. (2)
corresponds to ∆SO → ∞ limit and we often employ
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TABLE I. Kohn-Luttinger parameters γ1, γ2, γ3 and the spin-
orbit gap ∆SO of selected materials.31 For the spherical ap-
proximation to Eq. (2), it holds γ̃2 = (2γ2 + 3γ3)/5.

Material γ1 γ2 γ3 ∆SO(meV) γ̃2/γ1

GaAs 6.85 2.10 2.90 341 0.377

InAs 20.40 8.30 9.10 380 0.430

CdTe 5.30 1.70 2.00 949 0.355

Ge 13.38 4.24 5.69 290 0.382

the spherical approximation in which both γ2 and γ3 are
replaced by3,36

γ̃2 = (2γ2 + 3γ3)/5. (3)

This approximation suppresses the warping (anisotropy)
of Fermi surface in the bulk and the effective masses are
then mHH = m/(γ1 − 2γ̃2) and mLH = m/(γ1 + 2γ̃2).3

VB energy levels for QDs can be calculated by diagonal-
ization of Eq. (2) expressed in a suitably chosen basis in
k-space for the envelope functions.37 We consider a cu-
bic domain of dimensions Lx = Ly = Lz ≡ L with zero
boundary conditions unless explicitly mentioned other-
wise.

The four-band model described by Eq. (2) can be gen-
eralized to six bands by including the two split-off bands
of the VB and spin-orbit interaction

ĤSO = 2
∆SO

3
Ŝ · L̂, (4)

where Ŝ and L̂ are spin and orbital angular momentum
operators, and ∆SO is the splitting shown in Fig. 1(a).
Instead of the 4× 4 matrix in Eq. (2), we then use stan-
dard six-band model as in Eq. (A8) from Ref. 39 with
k 7→ −i∇ replaced. In the limit ∆SO = 0, the spin-orbit
coupling effects are eliminated, and the 6 × 6 Luttinger
Hamiltonian is only parameterized by the ratio γ̃2/γ1 and
ε0 = π2~2γ1/(2mL

2) once the spherical approximation is
invoked. Cubic QD energy levels are plotted in Fig. 2 as
a function of this parameter which simulates a continu-
ous variation of the material in terms of mHH and mLH .
In the opposite limit of ∆SO → ∞, our Hamiltonian re-
covers analogous results, such as Fig. 2 of Ref. 38 which
is obtained with four-band model.40 We find a crossing
between two types of ground states as γ̃2/γ1 increases
and it occurs well before the upper limit of γ̃2/γ1 = 0.5
is reached. Larger values of γ̃2/γ1 correspond to materi-
als with small mLH/mHH and the upper limit maps to
mHH →∞.

Both energy levels shown by bold lines in Fig. 2 are
sixfold degenerate and their envelope functions modulus
squared is shown in the upper part of the figure. These
results imply that, in contrast to the common notion,
the topmost energy level in the VB can be the P -like
state with a node rather than the S-like state without
a node. The crossing between these two states occurs
at approximately γ̃2/γ1 = 0.31. Below this value, S-like
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FIG. 2. Hole energy spectrum of a cubic QD for ∆SO = 0
under the spherical approximation. The chosen characteristic
energy scale for the Luttinger Hamiltonian ε0 = 76.3 meV cor-
responds to an InAs QD (L = 9.8 nm)41 when γ̃2/γ1 = 0.430.
Zero energy is placed at the top of the VB in the bulk. Dif-
ferent Kohn-Luttinger parameters γ̃2/γ1 can be interpreted
as representing different material choices. Squared moduli
|Ψ(x, y, z)|2, z = L/2, of the envelope functions of the two
uppermost levels (not counting the degeneracy) are shown as
insets. The crossing of these two sixfold degenerate levels
delimits the region of the P -like ground state: γ̃2/γ1 > 0.31.

states are at the top of the VB above the P -like states
and this ordering is reversed as γ̃2/γ1 increases. Similar
behavior is found in spherical QDs.8 In the following,
we discuss in which materials the reversed ordering may
occur.

While the ratio γ̃2/γ1 is important, it is not the only
factor that determines the ordering of the two uppermost
states. The crossing of the S- and P -like states also de-
pends on other factors, such as the strength of spin-orbit
coupling, the depth V0 and shape of the confinement, and
the presence of interfacial and surface QD states. Even if
we employ the spherical approximation of Eq. (3), there
are several parameters on which the energy level order-
ing depends. We discuss the influence of γ̃2/γ1, V0 and
∆SO on the topmost VB level wavefunction character in
Fig. 3. The color code indicates the (squared) weight
of the unperturbed S-like wavefunction,37 in the darker
areas the P -like states are closer to the band edge than
S-like states.

In Fig. 3(a) we assume an infinitely deep confine-
ment, arguably a good approximation for colloidal QDs.3

Around γ̃2/γ1 = 0.4 there is a window of the reversed
ordering of states, favoring P -like ground state. Mate-
rials such as InAs, GaAs and Ge within this range are
expected to demonstrate the reversed ordering. An in-
crease in the normalized spin-orbit coupling, ∆SO/ε0 ap-
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FIG. 3. QD ground state envelope function projection to the
S-like states. Darker areas correspond to P -like states. The
ground state character (a) as a function of the Kohn-Luttinger
parameter ratio γ̃2/γ1 and the spin-orbit coupling strength
∆SO; (b) as a function of the confinement depth V0 and the
spin-orbit coupling strength ∆SO with InAs QD parameters as
shown in Table I (γ2 6= γ3). ∆SO and V0 are normalized with
ε0 = π2~2γ1/(2mL2). Parameters corresponding to several
typical semiconductors are shown for L = 9.8 nm.41

pears detrimental to the P -like ground state. Because of
this reason, the well-established material for single-QD
optical experiments, CdTe, misses the range of reversed
level ordering. However, its relatively large value of ∆SO

could still be compensated for by smaller dimensions of
the QD, since the ordering depends on ∆SO/ε0 ∝ L2. We
also examine the influence of the finite confinement depth
in Fig. 3(b) and consider a well-in-a-well structure. For
this panel, we consider InAs parameters given in Table I
with γ2 6= γ3 and include a piecewise constant potential
V (r) ∝ V0 in our total Hamiltonian.37 The marked points
are labeled by their confinement depths corresponding to
a InAs QD with L = 9.8 nm. While deeper confinement
makes the reversed ordering more likely, at a fixed effec-
tive depth V0/ε0 an increase in the spin-orbit coupling
can promote P -like ground state, in contrast to what
was shown for infinite confinement in Fig. 3(a). These
dissimilar trends suggest that the interface between the
QD and the surrounding material or vacuum can alter
the ordering of S- and P -like states.

We conclude this account of the k·p model and its re-
sults by recalling that several assumptions,20 such as the
smoothness of the confinement potential (on the atomic
scale) and sufficiently small k values involved in the wave-
functions may have not been fully satisfied in a rigorous
manner. It may then be rather puzzling that a k·p model
can provide a good agreement with experiments,3 even
when its validity is unclear.

III. TIGHT-BINDING (TB) MODEL

To scrutinize the relevance of the P-like ground state,
obtained in Section II using k·p model, it is important
to examine if such findings will be preserved within a
different framework. In atomistic TB models, abrupt in-
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FIG. 4. TB model results for a Ge QD. (a) Diamond lat-
tice structure consisting of 512 atoms in total. Large (blue)
spheres: Ge atoms (344); small (red) spheres: passivation
layer atoms (168). (b) Bulk band structure compared to dis-
crete QD energy levels (only few levels close to the bulk band
gap are shown). The probability densities for the (c) hole
ground state (v1) and the (d) first excited state of holes (v2),
both of them are proportional to the color intensity of the
spheres. The arrows in (c) describe the orbital texture (see
the discussion of Fig. 6).

terface between the QD material and vacuum is intro-
duced naturally. No special boundary conditions need to
be considered although we still need to pay attention to
QD termination and passivation. Guided by the phase
diagram obtained from the k·p model in Fig. 3(a), we
now turn to an idealized TB model for Ge QD to test
the possibility for the P-like ground state. Our results,
illustrated in Fig. 4, reveal that such a nodal state in-
deed appears at the top of the valence band and is as-
sociated with an orbital texture. In order to understand
the origin of the reversed ordering of energy levels, we
discuss TB models on simpler crystal lattices such as a
two-dimensional (2D) square lattice in Sec. III A. We
then identify the hybridization between s- and p-orbitals
on neighboring atomic sites as the driving mechanism for
the ordering reversal, construct a continuum model which
renders this mechanism clearly understandable and re-
turn to the more realistic TB models to confirm that this
mechanism leads to results as shown in Fig. 4.

Our TB models consider only the nearest-neighbor
hopping with one s- and three p-orbitals at each atomic
site. Since k·p model in the previous section shows that
the spin-orbit interaction does not promote the occur-
rence of the P -like ground state — it even tends to
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TABLE II. The Slater-Koster table of interatomic matrix
elements.42,43 l,m, n are direction cosines between nearest
neighbors, i.e., (l,m, n) = δ/|δ|, where δ represents a vec-
tor pointing from the left orbital to the right orbital in the
subscript. Other matrix elements are found by permutation.
Vss, Vppσ, Vppπ, and Vsp are defined in the text.

Ess = Vss

Esx = lVsp

Exs = −lVsp
Exx = l2Vppσ + (1− l2)Vppπ

Exy = ln2Vppσ − lmVppπ
Exz = ln2Vppσ − lnVppπ

suppress it — we assume it absent, which would cor-
respond to ∆SO = 0 in the notation of Sec. II. The
spin-up and spin-down states are then degenerate and
we can focus on one of them only. The TB model is
parametrized30 by the s and p-orbital on-site energies,

〈s(R)|Ĥ |s(R)〉 = Es, 〈pi(R)|Ĥ |pi(R)〉 = Epi ≡ Ep,
where i = x, y, z, and four hopping parameters between

the nearest-neighbors Vss = 〈s(R)|Ĥ |s(R+ dx̂)〉, Vsp =

〈s(R)|Ĥ |px(R + dx̂)〉, Vppσ = 〈px(R)|Ĥ |px(R + dx̂)〉,
and Vppπ = 〈py(R)|Ĥ |py(R+ dx̂)〉, where Ĥ is the full
Hamltonian, R is the lattice site, d is the distance be-
tween the nearest-neighbors. Note that x̂ is a unit vector
along [100] direction, not an operator. These definitions
of hopping parameters are illustrated in Fig. 5(a). In
accordance with Slater-Koster rules (see Table II), the
most general TB Hamiltonian we use in this paper can
be written as,

Ĥ =
∑
R

Eα|α(R)〉〈α(R)|

+
∑

R,δ,α,α′

Eαα′ |α(R)〉〈α(R+ δ)|, (5)

where δ is a vector pointing from R to the nearest-
neighbors, and |α(R)〉 is α ∈ {s, px, py, pz}-orbital state
at site R. Eα is the on-site energy of α-orbital, while
Eαα′ are δ dependent energy integrals between α- and
α′-orbitals separated by δ.

Based on our k·p calculations in Fig. 3, we chose a
diamond-structure germanium QD to search for a P -like
state at the top of the VB. Having found parameters of
the passivation layer to avoid surface states (see Sec. III
C and Appendix C), we show in Fig. 4(c,d) that the two
topmost states are indeed P -like and S-like, bearing re-
semblance to the k·p model results. The QD considered
consists of total of 512 atomic sites, including the passi-
vation layer atoms shown by smaller red dots in Fig. 4(a).
The QD energy levels are shown together with the bulk
band structure in Fig. 4(b) and we can see that the P -like
state lies above the S-like state. We defer the detailed
description of our Ge QD model to Sec. III C and pro-
ceed to analyze simplified TB models that also show the
reversal of energy level ordering.

site 1! site 2! site 1! site 2!

(b) 

(a) 
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Vss < 0 Vppσ > 0
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effective 
orbital 

FIG. 5. Overlap (hopping) parameters of atomic and effective
orbitals. (a) Schematic representation of the interatomic hop-
ping parameters. (b) Two adjacent atomic p-orbitals in zinc-
blende or diamond lattice can be approximated as an effective
orbital. In such cases, π/σ bonds may have different sign of
hopping parameters compared to simple cases described in
(a).

A. Square lattice

A square lattice provides a simple TB model that still
contains the reversed level ordering. The transparency
of this approach allows us to develop an intuitive under-
standing of the origin of the reversed level ordering and
to further support it using an effective Hamiltonian for a
continuum model. We consider a square lattice of N by
N atomic sites and express all parameters of the ensuing
3N2-dimensional Hamiltonian matrix in terms of

Esp ≡ Es − Ep > 0. (6)

pz-orbitals are assumed to be decoupled from the other
orbitals and are disregarded. By choosing Vss/Esp =
−0.01, Vppσ/Esp = 0.01, Vppπ/Esp = 0.01 and Vsp �
Esp, we obtain bulk band structure of this 2D crystal
that is analogous to that of a 3D zinc-blende semicon-
ductor. The equal sign of the σ- and π-bond hopping
parameters can be understood from the analogous situ-
ation of effective px-, py-orbitals described in Fig. 5(b).
These effective orbitals can be considered VB states that
comprise the bonding p-orbitals while conduction band
(CB) states arise from the antibonding s-orbitals. How-
ever, for clarity of the description of our model, we keep
the representations of simple atomic orbitals shown in
Fig. 5(a) without losing generality of our results.

Turning our attention to confined systems, we look for
the eigenfunctions in the standard general form |ψ〉 =∑
R,α cα(R)|α(R)〉 where |α(R)〉 is the α ∈ {s, px, py}-

orbital. The coefficients cα(R) can be understood as
the multi-component envelope function and p(R) =∑
α |cα(R)|2 is the probability of an electron being at

the site R in the given state. Examples of this probabil-
ity in the S-like and P -like states in 3D diamond lattice
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FIG. 6. Square QD model with 36 atoms. (a) Vector (arrow)
representation of atomic p-orbitals. The length is the total
amplitude and the direction indicates the composition of px-
and py-orbitals. (b)S-like and (c) P -like vortex hole states
are shown for Vsp = 0 using the arrow representation. (d) VB
energy levels as a function of Vsp. For Vsp = 0 the ground
state is S-like. At a larger Vsp the ordering is reversed, marked
by a thick arrow, and the ground state becomes the P -like
vortex state. Dashed lines are analytical perturbative results
(see text). For comparison with the analytical result, Vss →
0 limit is considered for both. (e) Schematic diagram that
explains how vortex state (12)x− (21)y forms from two P -like
states (12)x and (21)y (see text).

system are shown in Fig. 4(c,d). To analyze the wave-
functions on a 2D square lattice, it is useful to introduce
the following basis

(nxny)α ≡
2

N + 1

∑
R

sin
πnxRx

(N + 1)a
sin

πnyRy
(N + 1)a

|α(R)〉,

(7)
where the positive integers nx and ny can be under-
stood as the quantum numbers for the envelope func-
tions, R = (Rx, Ry) corresponds to lattice point posi-
tion and a is the lattice constant. For Vsp = 0, the
TB Hamiltonian can be diagonalized exactly, yielding the
usual sequence of CB states (11)s, {(12)s, (21)s}, (22)s,
{(31)s, (13)s}, etc. (states are ordered by increasing en-
ergy, {. . .} indicate degenerate states). Going from the
top of the VB down to lower energies, the sequence be-
gins with {(11)x, (11)y} and {(12)x, (12)y, (21)x, (21)y},
i.e., normal ordering of energy levels with an S-like state
being favored to P -like states in terms of energy. Note
that there is no coupling between the valence and con-
duction bands in this simplified model.

Once the s-p hybridization is included (Vsp 6= 0), the
valence and CB states start couple with each other lead-
ing to level repulsion and removal of some degeneracies.
Levels at the top of the VB are hence pushed down in
energy as the calculations in Fig. 6(d) show. One of the
originally (at Vsp = 0) fourfold degenerate P -like states
(when Vppπ = Vppσ) turns out to have energy almost inde-

(a) (b)

FIG. 7. Illustrations of how Ĥsp interaction effectively be-
haves like divergence operator to the envelope function (see

Eq. (9)). (a) Ĥsp acting on an s-orbital center results in four
p-orbitals at the neighboring sites. This is analogous to di-
vergence of a vector field in continuum approximation. (b)

Ĥsp acting on p-orbitals with varying amplitude in 1D chain
gives s-orbitals with the amplitudes given by the derivative
of p-orbital amplitudes.

pendent of Vsp and hence, there occurs a crossing with the
S-like {(11)x, (11)y}manifold at V cross

sp /Esp ≈ 0.17.44 As
a result, this specific P -like state becomes “hole ground
state” for Vsp > V cross

sp . The central question to answer
now is, where does the P -like hole state insensitivity to
Vsp come from?

Intuitive understanding of the energy level behavior
at the top of the VB can be gained using orbital tex-
ture representation of the corresponding wavefunctions.
Neglecting their s-orbital part, we assign an arrow to
each lattice point R whose length is proportional to
|cpx(R)|2 + |cpy (R)|2. Direction of the arrow reflects the
orbital composition at that lattice site, horizontal (verti-
cal) orientation indicating purely px (py) orbital. One of
the S-like states is described by the orbital texture shown
in Fig. 6(b), the other has the same texture rotated by
90◦. The P -like state shown in Fig. 6(c), on the other
hand, exhibits a vortex in the orbital texture. This state,
Orbital Vortex State (OVS), is distinguished among four
degenerate P -like states at Vsp = 0. It consists of P -like
states with collinear wavefunctions as shown in Fig. 6(e),
indicating that the OVS wavefunction is approximatelly
(21)y− (12)x up to normalization. Analysis of the actual
wavefunction (besides the orbital textures), confirms this
conclusion as we describe below. We now derive a con-
tinuum approximation of our TB model which explains
why the state with a vortex in the orbital texture is less
sensitive to the s-p hybridization than the S-like state in
Fig. 6(b).

We focus on the states at the top of the VB and take
the s-p hybridization as a weak perturbation, the small
parameter being Vsp/Esp. The TB Hamiltonian down-
folded into the subspace of px-, py-orbitals reads

Ĥeff = Ĥp + ∆V̂ = Ĥp −
1

Esp
P̂pĤ

2
spP̂p. (8)

The projection operator to the px, py subspace is de-
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noted by P̂p and Ĥsp is the part of the TB Hamiltonian
proportional to Vsp. We also assume that the VB and
CB band widths are small compared to Esp. We write

Ĥsp as

Ĥsp = Vsp
∑

R,δ,i=x,y

[cos(θiδ)|s(R)〉〈pi(R+δ)|+h.c.], (9)

with R the lattice sites, δ the nearest neighbor vec-
tors, i = x, y index for px, py-orbitals, and h.c. for Her-
mitian conjugate. The direction cosine of δ is writ-
ten as cos θiδ = êi · (δ/|δ|) in accordance with Slater-
Koster rules (see Table II). Equation (9) is visualized
in Fig. 7(a). Due to the direction cosine cos θiδ, hopping
from a site R to adjacent sites R± δ gives opposite signs
to the resultant atomic orbitals, and this can be approx-
imated as a derivative operator to the envelope function
of a wavefunction in the continuum limit. Applying the
general form of a wavefunction containing only px- and
py-orbitals

|Ψp〉 =
∑
R

∑
i=x,y

ψi(R)|pi(R)〉, (10)

to ∆V̂ defined by Eq. (8), we obtain (see Appendix A for
details)

〈px(R)|∆V̂ |Ψp〉 =
V 2
sp

Esp

×
[
ψx(R+ 2ax̂) + ψx(R− 2ax̂)− 2ψx(R)

+ψy(R+ ax̂+ aŷ)− ψy(R− ax̂+ aŷ)

−ψy(R+ ax̂− aŷ) + ψy(R− ax̂− aŷ)
]
. (11)

Assuming slow variations of the wavefunction at the
atomic length scale, we can make the continuum approx-
imation,

〈px(R)|∆V̂ |Ψp〉 ≈
4V 2

spa
2

Esp

[
∂2ψx
∂x2

(R) +
∂2ψy
∂x∂y

(R)

]
=

4(Vspa)2

Esp

∂

∂x
∇ ·ψ(R).

(12)

We represent the wavefunction from Eq. (10) as a vector
field ψ(R) = [ψx(R), ψy(R)]T . The two components in
ψ(R) refer to wavefunctions in the p-orbital space and
its divergence term is defined as ∇ · ψ = ∂xψx + ∂yψy.
An equation analogous to Eq. (12) can be found for

〈py(R)|∆V̂ |Ψp〉.
By replacing the discrete lattice points R by an inte-

gral over r, we arrive at Hψ = 〈Ψp|Ĥeff |Ψp〉, the contin-
uum Hamiltonian projected to the p-orbital subspace,

Hψ =

∫
d2r

×
[
Vpσa

2ψ∗(r)∇2ψ(r)− 4(Vspa)2

Esp
|∇ ·ψ(r)|2

]
.

(13)

The first term is the usual TB kinetic energy that ac-
counts only for the p-orbital part of the wavefunction and
the second term reflects the effect of s-orbital admixtures.
It is a negative (positive in hole representation) diver-
gence term that penalizes certain orbital textures. For a
texture as in Fig. 6(b), where all vectors are mutually
parallel, the zero boundary conditions imply that vec-
tor lengths must change along the ‘streamlines’ causing
a large value of |∂xψx(r)|. On the other hand, the vor-
tex orbital texture in Fig. 6(c) allows to combine a small
value of the divergence term in Eq. (13) with the bound-
ary conditions satisfied. At the same time, this texture
requires that there be a node in the center of the QD so
that divergent kinetic energy (first term) in Eq. (13) is
avoided. Hence the OVS becomes the topmost state in
the VB at large enough values of Vsp. By construction,
the divergence term only occurs with multicomponent
wavefunctions that can be represented by a vector field
(orbital texture) while single-component wavefunctions
such as the CB states have the usual S-like ground state.
Details on the continuum model are given in Appendix A.

This intuitive understanding of Vsp/Esp insensitivity
of OVS based on continuum limit can be confirmed in
the discrete square lattice TB model. Also in the second
order perturbative calculation with respect to Vsp/Esp,
analytical expressions can be obtained for the discrete
lattice, and we will show below with Eq. (19) that both
results precisely match. Results of this calculation are
shown by the dashed lines in Fig. 6(d). Although we do
not expect the perturbative calculation to give quantita-
tively precise value of V cross

sp , the difference from the full
(non-perturbative) TB calculation is not very large. The
unperturbed wavefunctions of the S-like states are

(11)x, (11)y (14)

and the four degenerate (Vsp = 0) P -like states are

(12)x − (21)y, (12)x + (21)y,

(21)x − (12)y, (21)x + (12)y,
(15)

up to normalization. Since ∆V̂ of Eq. (8) is symmetric to
inversion both in the x and y directions, we can straight-
forwardly derive coupling rules between the VB and CB
such as

〈(11)s|∆V̂ |(12)i〉
{

= 0, i = x

6= 0, i = y.
(16)

Carrying out the degenerate-level perturbative calcula-
tion, we find that the degenerate P -like VB levels split
into four states, and the OVS is written as,

|OVS〉 = 1/
√

2
[
|(12)x〉 − |(21)y〉

]
. (17)

Owing to the coupling rules of Eq. (16), we immediately

find 〈(11)s|∆V̂ |OVS〉 = 0. To show that |OVS〉 is the
most weakly coupled state of the four P -like states, it
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is necessary to mention that the coupling strength de-
creases with high values of nx, ny (see Appendix. E). The
lowest CB state to which |OVS〉 couples is (42)s − (24)s
and the corresponding matrix element of ∆V̂ is small for
this state. On the other hand, a relatively large value
of 〈(21)s|∆V̂ |(11)x〉 leads to the strong coupling of the
S-like state with the CB state, and to the band repulsion
that makes the S-like state energy drop quicker than the
OVS with increasing Vsp as seen in Fig. 6(d).

In the Vss → 0 limit the energy level reversal can be
analyzed quantitatively using

∆ES = −4
V 2
sp

Esp

N − 1

N + 1
sin2 π

N + 1
,

∆EP = ∆ES × (18)1− 1

N2 − 1
×
{

8 cos π
N+1 cos2 π/2

N+1

(1 + 2 cos π
N+1 ) sin π

N+1

}2
 ,

which denote the energy level shift of the S-like states and
the OVS, respectively. Note that the complete expression
for energy is E0

S + ∆ES and E0
P + ∆EP , where E0

S > E0
P

are the energies at Vsp = 0. In the limit of an infinite
number of atoms we get

lim
N→∞

∆EP /∆ES = 1−
(

8

3π

)2

≈ 0.28, (19)

implying that the level repulsion from the CB levels is
stronger for the S-like states as we have argued so far.
Identical result to Eq. (19) is derived within continuum
model and is shown in Eqs. (A-11) and (A-12) in Ap-
pendix A. The energy of the S-like state will therefore
eventually drop below the one of the OVS, provided we
stay in the perturbative regime for accordingly large val-
ues of Vsp. Full model calculations in Fig. 6(d) show that
the crossing indeed occurs.

While the reversal of the energy level ordering occurs,
s-p hybridization promotes the modification of orbital
textures of S- and P -like states as well. Evolution of
orbital textures as a function of Vsp is shown in Fig. 8,
with each row belonging to three topmost levels of the VB
for different TB parameter regimes, the top level states
being alway on the left. This figure contains results of
the full TB model calculation. In Fig. 8(a), the states
are ordered as (11)x, (11)y and OVS in the regime of
Vsp � Esp before the S-P level crossing in Fig. 6(d). Af-
ter the S-P level crossing occurs for larger Vsp, the P -like
state becomes the ground state and the S-like states get
appreciable admixtures from other basis states of Eq. (7)
as it can be seen in Fig. 8(b) The original S-like state is
gradually modified so that the divergence of the orbital
texture is decreased, i.e., the alignment or the “stream-
line” of arrows acquires non-zero curvature as Vsp in-
creases. As Vsp increases further that Vsp � Vppσ and
Vppπ in Fig. 8(c), the divergence term in the continuum
Hamiltonian, Eq. (13), becomes much more important
than the p-p kinetic energy, and we approach a different

(a) 

(b) 

(c) 

Hole Energy!

Esp � Vppσ = Vppσ, Vsp � V cross
s

Esp � Vsp � Vppσ = Vppσ

Esp � Vppσ = Vppσ � Vsp

FIG. 8. The evolution of orbital textures of hole states in a
square lattice, using the vector representation from Fig. 6. (a)
In the small Vsp limit; left panels: twofold degenerate ground
states with an S-like envelope, right panel: the first excited
vortex P -like state (OVS). (b) Orbital textures after the S-P
level crossing for larger Vsp. The excited S-like states acquire
curvature to reduce the divergence term in Eq. (13). (c) The
limit of Vsp � Vppσ and Vppπ. The P -like state remains as
the ground state, while the S-like states develop multi-vortex
texture.

limit in which the divergence of the texture approaches
zero. Due to this zero divergence, the Vsp-dependence
in energy vanishes in the large Vsp limit, as shown in
Fig. 6(d). The P -like state remains as the ground state
(see Appendix A for its explicit expression of the wave-
function), while the curvature in the S-like states in (b)
develops into a vortex-anti-vortex texture, with opposite
winding numbers. The vortices are gradually introduced
into the S-like states through the boundary of the finite
sample, as we go from (b) to (c).

B. Simple cubic and face centered cubic structure

Before we proceed to TB models of the actual semi-
conductor materials (in our case, diamond structure), we
consider two 3D models as an intermediate step. 3D
models include also pz-orbitals on each atomic site and
the 2D basis of Eq. (7) can be generalized to (nxnynz)α,
α ∈ {s, px, py, pz}. The most straightforward extension
of the 2D square lattice is a 3D simple cubic (SC) lattice.
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Both square and SC lattice lead to mutually analogous
results. Levels at the top of the VB, shown in Fig. 9(a)
as a function of Vsp, closely resemble those of Fig. 6(d)
but the degeneracies are different. There are now three
degenerate S-like states, a trivial consequence of different
dimensionality, written as

(111)x, (111)y, (111)z, (20)

in the Vsp → 0 limit. Contrary to the square lattice,
the OVS is no longer non-degenerate and its manifold is
spanned by

(211)y − (121)x, (121)z − (112)y, (112)x − (211)z. (21)

The Vsp = 0 level from which these P -like states emerge
is ninefold degenerate. The perturbative analysis that
led us to Eq. (18) in the case of the square lattice can be
carried out analogously and we find, for example, the
(111)x S-like state couples strongly to the (211)s CB
state. On the other hand, the P -like states couple much
more weakly to the CB, owing to the high values of nx,
ny, nz involved just as it was the case for the square
lattice. For example, (211)y − (121)x couples first to no
lower state than (421)s−(241)s in the CB (see discussion
in Appendix E).
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FIG. 9. Energy levels in a (a) SC and (b) FCC QDs are
plotted as a function of Vsp for fixed, −Vss/Esp = Vppσ/Esp =
Vppπ/Esp = 0.01.

The bulk four-band SC model can be downfolded into
an effective 3× 3 Hamiltonian as it is explained in detail

in Appendix B. This mapping allows to link the Kohn-
Luttinger parameters of the k·p model to the TB param-
eters by comparing the band curvatures in the Γ-point
and it leads to

γ3/γ1 =
4V 2

sp/εg

2Vppσ + 4Vppπ + 8V 2
sp/εg

, (22)

where εg is defined in Eq. (B-4). If we insert the pa-
rameters of the calculation in Fig. 9(a) together with
Vsp = V cross

sp ≈ 0.2Esp, we obtain γ3/γ1 ≈ 0.43. This
value falls into the OVS region in Fig. 3(a), demonstrat-
ing a correspondence between the TB and k·p models.

Similar results are obtained for the FCC model, the
notable difference being a somewhat smaller value of
V cross
sp which can be seen in Fig. 9(b). The FCC model

is the closest to the atomistic model of a zinc-blende or
diamond-structure material with the restriction imposed
that each primitive unit cell is described by a single ef-
fective atomic site. The reversed level ordering at the
top of the VB clearly stems from the s-p hybridization
in this model and it can be intuitively understood on the
basis of the continuum model of Eq. (13). In the next
subsection, we discuss the subtleties of lifting the men-
tioned restriction and the move towards a more realistic
model of the QD.

C. Diamond structure

In case of the diamond lattice (equivalent to the zinc-
blende lattice with anions replaced by the same element
as cations), there are the antibonding combination of the
two s-orbitals and the bonding combinations of px, py, pz
that form the bottom of the CB and the top of the VB,
respectively, as schematically shown in Fig. 1(b). Such an
effective model was the starting point for the calculations
of the preceding subsection. The ordering of the on-site
energies with Esp > 0 is a consequence of them being spe-
cific effective orbitals belonging to a pair of atoms rather
than actual atomic s- and p-orbitals (recall Fig. 5). From
the overall perspective of the bulk band structure implied
by this effective model, the role of Vsp is rather minor,
and more importantly, this parameter is not responsible
for the formation of the gap between CB and VB. This
role was assigned to Esp.

The diamond or zinc-blende lattice eight-band TB
models (spin is still disregarded) is substantially differ-
ent, i.e., the gap opens primarily due to s-p hybridiza-
tion as illustrated in Fig. 1(b). We will show that the
s-p hybridization retains its effects that were discussed
with the simpler models (see Fig. 6 and 9) also in di-
amond structure, but the value of Vsp has to be always
kept large enough so that the gap opens in the bulk band
structure. In other words, it does not make sense to con-
sider the Vsp → 0 limit in diamond structure, because
the bulk band structure will not even have a band gap
in such limit. For confined systems, couplings between
the individual bands are altered and this Vsp-related
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“gap-forming” mechanism may fail which can manifest
itself in the formation of midgap states. Both spurious45

and physical46 midgap states have been discussed in the
literature.31 The latter one can be avoided by suitable
passivation of the QD surface, for example by covering
the QD surface by a layer of hydrogen atoms.

We focus on germanium as a material with diamond
lattice guided by the k·p calculations in Fig. 3. We
use the bulk TB model parameters Esp = −8.41 eV,
Vss = −1.695 eV, Vppσ = 4.065 eV, Vppπ = −1.05 eV
which consider only the nearest-neighbor interactions47

(see Appendix B). Realistic effective masses are obtained
for the bulk band structure with Vsp = 2.3 eV, but this
simplified model with nearest-neighbor interactions pre-
dicts too high CB energy at L-point in the Brillouin zone,
and therefore, it fails to reproduce the indirect band gap
in natural germanium. A 344-atom QD of approximately
cubic shape is first constructed from Ge atoms shown as
larger blue dots in Fig. 4(a). Then, the whole structure is
covered by an extra “passivation layer” of distinct atoms
(smaller red dots in the same figure). If this procedure
is skipped, energy levels close to the bulk band gap have
wavefunctions localized at the QD surface suggesting that
the aforementioned failure of the “gap-forming” mecha-
nism has taken place. To avoid it, we adjust the passiva-
tion layer atom on-site energy Epass so that the surface
states are well separated in energy from the band gap.
The details in QD construction and passivation proce-
dure are described in Appendix C. We have verified that
our results do not depend strongly on the value of Epass

as long as the surface states do not approach the band
gap.
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FIG. 10. Energy levels at the top of the VB for a 344-atom
α-type Ge QD covered with passivation layer as a function of
Vsp (Vsp = 2.3 eV is the natural value for Ge).

Figure 10 extends the calculations on which Fig. 4 was
based, by considering a range of values of Vsp. While
for Vsp = 2.3 eV, the OVS occurs, we observe that this
reversed ordering of S-like and P -like hole levels persists
only down to values Vsp ≈ 1.2 eV. Character of the en-
velope functions, that allows to label the two levels as
S- and P -like, is demonstrated in panels (c,d) of Fig. 4.

TABLE III. Position of the level crossing between the S-like
and P -like states in Ge QD. The value V cross

sp = 1.30 eV be-
longs to the system examined in Fig. 10. Size of the system is
specified in terms of the number of atomic layers considered
(not counting the passivation layer), α and β refer to different
terminations of the structure as explained in Appendix C in
detail.

termination 14 layers 18 layers 22 layers 26 layers

V cross
sp α-type 1.30 1.37 1.40 1.46

(eV) β-type 3.00 2.56 2.40 2.30

In contrast to the SC and FCC lattice TB models, the
degeneracy of levels in Fig. 10 is lower. Rather than two
triplets seen for the SC and FCC lattice, we find a sin-
glet and a doublet both for the S-like and P -like states.
Both magnitude and sign (which indicates the ordering of
the singlet and the doublet) of the corresponding energy
splittings, ∆S,P , depend on the QD size and structural
details. The latter is discussed in Appendix C, and here
we focus on the other aspect of ∆S,P that decrease with
increasing size of the QD. Any change in the energy off-
set of the S- and P -like levels (for example, due to the
changes in ∆S,P ) in Fig. 10 will change the position of
their crossing, V cross

sp . Consequently, as summarized in
Table III, the value of V cross

sp varies depending on the size
of the QD. We find that regardless of the QD structure
termination (two examples, α-type and β-type, referred
to in Table III are precisely defined in Appendix C), these
values tend to converge to V cross

sp that is lower than the
bulk value of 2.3 eV. Within our TB model of Ge, we
can conclude that the OVS becomes the ground state for
sufficiently large QDs made of this material. In a suit-
ably chosen material, our findings demonstrate that P -
like states can be at the top of the VB. However, for more
rigorous verification, there are other factors to be stud-
ied in more detail, such as next-nearest-neighbor interac-
tions, spin-orbit interaction, and more elaborate surface
passivation treatment.

Since no effect of QD structure termination and/or
passivation is included in the k·p calculations, we con-
clude that such models cannot quantitatively describe the
level positions in QDs. However, as long as the surface
effects are not dominant, k·p and TB models agree in
predicting the energy level reversal for sufficiently strong
s-p hybridization.

IV. CONCLUSIONS

In this work we provide a systematic support for the
reversed level ordering of the lowest energy hole states, at
the top of the VB of a semiconductor QD. In contrast to
the conventional understanding, a nodal P -like state can
become the ground state, having a lower energy that the
nodeless S-like state. While some of the previous theo-
retical reports of such “nodal ground states” have been
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known in semiconductor nanostructures, there was a de-
bate if they are just an artifact of a k·p model applied to
small QDs, outside the region of its usual validity,4,7,48,49

and would be absent in the first-principles calculations.50

Similar concerns could then be raised about the experi-
mental reports of the nodal ground state and the reversed
level ordering, if their interpretation excluding other pos-
sibilities also relies on the k·p approach.7,51 Furthermore,
the prior reports of the nodal ground states have yet to
explain their microscopic origin and the underlying mech-
anism for their formation.

Our results for the nodal ground states in the VB are
obtained from the complementary k·p and TB models
and further supported by a simple picture from a con-
tinuum model, thus ruling out that an unconventional
level ordering could be limited to an artifact of a sin-
gle method. Moreover, the transparency of our approach
provides also a microscopic understanding for the evolu-
tion of the nodal states to the top of the VB and the
related orbital ordering. We report a striking difference
between the orbital textures of the nodal and nodeless
states. In particular, we explain how the nodal ground
state can be associated with the orbital vortex state,
whose energy is nearly independent of the s-p hopping
parameter over a wide range of its values.
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FIG. 11. A sketch of the photoluminescence spectrum of a
QD with a single Mn atom placed at its center. The absence
(presence) of sixfold splitting distinguishes the nodal (node-
less) state. (a) Conventional and (b) reversed level ordering of
the hole states at the top of the VB. The photoluminescence
peaks are labeled by the corresponding symmetry of the VB
envelope functions involved in the radiative transitions. The
CB electron has S-like ground states.

To test experimentally our predictions for the nodal

ground state, we suggest considering photoluminescence
measurements in QDs doped with a single magnetic im-
purity, typically Mn. Similar pioneering experiments
have already been performed in II-VI epitaxially grown
quantum dots.20,24 When spin of the single Mn atom
(S = 5/2) is decoupled from from carriers in the QD,
corresponding photoluminescence line will be (2S + 1)-
fold degenerate. The exchange interaction of the Mn and
the hole spin can be expressed as,21

Ĥex = JexĴ · Ŝδ(r −R) (23)

where Jex is the hole-Mn exchange integral, Ĵ and Ŝ are
the hole and the Mn spin operator with the Mn atom at
positionR. This exchange interaction lifts the sixfold Mn
degeneracy with the splitting proportional to the modu-
lus squared of the wavefunction at the Mn position.

For a conventional nodeless S-like hole state, the de-
generacy of the observed photoluminescence would dis-
play multiple peaks in the spectrum. Experiments
are often carried out with asymmetrically shaped QDs
and in case of the flat self-assembled QDs,24 the de-
generacy of these multiplets is two, corresponding to
the heavy-hole Jz = 3/2 and Jz = −3/2 compo-
nents of the exciton. Each of the six doublets can
be labelled by (Jz, Sz):

20,21,24 from the ground state
(3/2,−5/2), (−3/2, 5/2), to the highest energy state
(3/2, 5/2), (−3/2,−5/2). The measured magnitude of
the S-like state splitting in (Cd,Mn)Te quantum dot was
on the order of 1 meV.24 In contrast, if the Mn atom is
located at the center of a cubic or spherical quantum dot,
the nodal P -like state should suppress the hole-Mn ex-
change interaction (as the node in an envelope function
coincides with the Mn location), producing no splitting
in the photoluminescence. Schematically, these two out-
comes are illustrated in Fig. 11 and could be used to
identify the reversed level ordering and the nodal ground
state in the VB. We also point out that from the theo-
retical point of view, the P -like state should survive in
asymmetrical QDs as we discuss in Appendix D.

In an idealized k·p model of a strong electron and hole
confinement, the optical selection rules would give a van-
ishing radiative transition between the orthogonal S- and
P -like states in the CB and VB, respectively. This is not
the case in realistic quantum dots of ill-defined parity.
The photoluminescence peak for the nodal state would be
partially suppressed, but not vanish, as compared to the
nodeless state and indicated in Fig. 11. In fact, our pro-
posed scenario for the photoluminescence signature of the
nodal states is providing motivation to revisit measure-
ments of QDs with single Mn.52 However, an appropriate
identification would still require a detailed data analysis
which we hope will be stimulated by our predictions for
the VB orbital ordering and its implications.

Focusing on magnetically-doped quantum dots with
many Mn impurities could also provide a useful test if
our understanding of orbital ordering can lead to addi-
tional means of controlling magnetism. For example, it
was predicted19 that an electrostatic deformation of a
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quantum confinement could reversibly turn on and off
the magnetic ordering of Mn spins, even at a fixed num-
ber of carriers. This was expected to be a consequence
of the confinement-induced change in the carrier spin
state. In contrast, even without changing the carrier spin
state, our analysis for altering the ordering of between the
nodeless and nodal states would imply a change in the
exchange interaction (as indicated in Fig. 11) and thus
modify the magnetic ordering.

A further motivation for our studies of nodal ground
states in semiconductor nanostructures is provided by
their experimental observation in other confined systems
with multiband electronic structure of the host lattice
near the band edge. An interesting question would be
to explore related orbital textures of such nodal states.
For example, a Li donor impurity in Si has an “inverted”
sequence of energy levels with a nodal ground state of
P -like symmetry.53–55
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APPENDIX A: CONTINUUM MODEL

Here we explain the derivation of our continuum model
for square lattice in Sec. III A and the resulting effective
Hamiltonian in Eq. (13). We start from s- and p-orbitals
with on-site energies Es and Ep (Es > Ep). s-orbitals
form the CB, and p-orbitals the VB. We assume that the
bonding within each orbital is weak and s and p band-

widths are much smaller than Esp ≡ Es − Ep and we
can treat the s-p bonding (hopping) as the perturbation.
The unperturbed Hamiltonian in the TB model with s-p
hopping parameter Vsp = 0 can be written as

Ĥ0 =
∑
k

(
εs(k)|s(k)〉〈s(k)|+εp(k)|ψp(k)〉〈ψp(k)|

)
,

(A-1)
where εs,p are dispersion relations for s- and p-orbitals,
respectively. Here, |ψp(k)〉 is the Bloch state for p-
orbitals. The s-p bonding as the perturbation is given
in Eq. (9). The bandwidths of εs,p(k) are much smaller
than Esp. Then in the second order perturbation theory,

through the operator for the s-p hybridization Ĥsp, the
energy denominator [εp(k)− εs(k)]−1 can be replaced by
(−Esp)−1.

To evaluate the second order term ∆V̂ from Eq. (8),
we note that in the square lattice with a lattice constant
a, we can express the effect of Ĥsp on atomic orbitals as

Ĥsp|pi(R)〉 = −Vsp
(
|s(R+ aêi)〉 − |s(R− aêi)〉

)
,

Ĥsp|s(R)〉 = Vsp
∑
i=x,y

(
|pi(R+ aêi)〉 − |pi(R− aêi)〉

)
.

(A-2)
Similarly, to perform the downfolding method in

Eq. (8), we can also express the effect of Ĥ2
sp on p-orbitals

Ĥ2
sp|px(R)〉 = −V 2

sp

(
|px(R+ 2ax̂)〉+ |px(R− 2ax̂)〉 − 2|px(R)〉

)
(A-3)

−V 2
sp

(
|py(R+ ax̂+ aŷ)〉 − |py(R+ ax̂− aŷ)〉 − |py(R− ax̂+ aŷ)〉+ |py(R− ax̂− aŷ)〉

)
,

and

Ĥ2
sp|py(R)〉 = −V 2

sp

(
|py(R+ 2aŷ)〉+ |py(R− 2aŷ)〉 − 2|py(R)〉

)
(A-4)

−V 2
sp

(
|px(R+ ax̂+ aŷ)〉 − |px(R+ ax̂− aŷ)〉 − |px(R− ax̂+ aŷ)〉+ |px(R− ax̂− aŷ)〉

)
.

Together with Eqs. (A-3) and (A-4), Eq. (11) is used

to derive the representation of ∆V̂ in Eq. (12) and with
continuum approximation, Eq. (10) is obtained. Now, we

show how the unperturbed Hamiltonian Ĥ0 can be rep-
resented as the usual kinetic energy term. For a slowly-

varying wavefunction,

Ĥ0|px(R)〉 = Vppσ[|px(R+ ax̂)〉+ |px(R− ax̂)〉]
+ Vppπ[|px(R+ aŷ)〉+ |px(R− aŷ)〉], (A-5)

and

〈px(R)|Ĥ0|Ψp〉 ≈ 2(Vppσ + Vpπ)

+ Vppσa
2 ∂

2ψx
∂x2

(R) + Vppπa
2 ∂

2ψx
∂y2

(R). (A-6)
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If we assume that Vppσ = Vppπ, the above result fur-
ther simplifies. The effective Hamiltonian written for the
two-component vector-field wavefunction ψp(r) can be

derived from Hψ = 〈Ψp|Ĥeff |Ψp〉 and by replacing the
discrete lattice points R by an integral over r, we get

Hψ =
∑
i=x,y

∫
d2rψ∗i (r)

×
[
Vppσa

2∇2ψi(r) +
4(Vspa)2

Esp
∂i[∇ ·ψ(r)]

]
, (A-7)

where we have ignored the constant energy shift Vppσ.
Assuming that the wavefunction is zero at the boundary
due to confinement potential, after integration-by-parts,
we obtain Eq. (13). Using the above method, we can in
principle derive an effective Hamiltonian for any lattice
structure.

To analyze the ground state structure in the small Vsp
limit, we start with the unperturbed kinetic energy eigen-
states substitute, in the two-component notation,

ψS (r) =
2

L
[sin

πx

L
sin

πy

L
, 0]T , (A-8)

ψP (r) =

√
2

L
[sin

πx

L
sin

2πy

L
,− sin

2πx

L
sin

πy

L
]T , (A-9)

for S- and OVS (P -like) states with their unperturbed
energies

E0
S = −2π2Vppσa

2

L2
and E0

P = −5π2Vppσa
2

L2
, (A-10)

respectively. It is straightforward to calculate their per-
turbed energy in the order of V 2

sp,

∆ES = −4(πVspa)2

EspL2
, (A-11)

∆EP = ∆ES

[
1−

(
8

3π

)2
]
. (A-12)

Using L/a = N and sin [π/(N + 1)] ∼ π/N in the limit
N → ∞, this result is equivalent to Eqs. (18) and (19).
As Vsp increases, the OVS energy changes slower than
that of the S-like states, and the OVS eventually becomes
the hole ground state.

Now, we consider the opposite limit of Vsp � Vppσ
and Vppπ. The unperturbed Hamiltonian becomes the
divergence term in Eq. (13) and its Schrödinger equation
becomes

4(Vspa)2

Esp
∇[∇ ·ψ(r)] = E0ψ(r), (A-13)

with the unperturbed energy E0. With the infinite poten-
tial well limit, finite Vppσ and Vppπ require that the vector
ψ(r) must vanish on the boundary. Solving the differen-
tial equation ∇·ψ(r) = 0 with zero boundary conditions,
its solutions automatically satisfy the above Schrödinger
equation with E0 = 0. We find the ground state of
the kinetic energy within the subspace of such solutions.
With the observation of the ground state texture, we pro-
pose a state in a separable form, ψx(x, y) = f(x)g(y)
and ψy(x, y) = −g(x)f(y). From the zero divergence
condition, we require g(x) = f ′(x). The new bound-
ary conditions on f(x), that is f(0) = f(L) = 0 and
f ′(0) = f ′(L) = 0, can be accommodated by writing
f(x) = [h(x)]2 with h(0) = h(L) = 0. Since the proposed
form of the ground state must optimize the kinetic en-
ergy, we start by a quadratic polynomial h(x) = x(L−x)
with the least curvature. The form of the polynomial
can be improved variationally by including higher orders.
Therefore the proposed ground state wavefunction reads,

ψ∞P (r) = 2C·h(x)h(y)
[
h(x)h′(y),−h′(x)h(y)

]T
, (A-14)

with the normalization constant C. This state pre-
serves the P -like symmetry with the zero-divergence con-
dition strictly imposed. The agreement of this wave-
function and the numerical solution to the continuum
model, Eq. (13), is excellent at the discrepancy of 1.1%
with the error defined as

∫
|ψ∞P (r)− ψnum

P (r)|2dxdy for
Vsp � Vppσ. Due to this zero-divergence condition, the
unperturbed energy has no Vsp dependence and, as shown
in Fig. 6(d), the energy eigenvalue of the P -like state be-
comes independent of Vsp as Vsp →∞. The energy of the
P -like state can be evaluated by the expectation value of
the p-p kinetic energy term as,

E∞P = −5.45π2Vppσa
2

L2
= 1.09E0

P , (A-15)

in the limit of Vsp →∞. It is remarkable that this expres-
sion is very close to that of the Vsp = 0 limit, Eq. (A-10),
which justifies the very weak Vsp dependence throughout
for all Vsp from the TB result, as shown in Fig. 6(d).

APPENDIX B: TIGHT-BINDING MODEL FOR SIMPLE CUBIC, FACE CENTERED CUBIC, AND
DIAMOND LATTICE

This Appendix presents more details on the various TB models discussed in the Secs. III B and C and we establish
a connection between the k·p and TB models. We first consider a bulk sample with a SC lattice having four orbitals,
s, px, py, and pz. The relevant parameters are the difference of the on-site energies Esp and hopping parameters Vppσ,
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Vppπ, Vss and Vsp as defined in Sec. III. The corresponding TB Hamiltonian is given as

H4×4
SC =


F (kx, ky, kz) 0 0 2iVsp sin kxa

0 F (ky, kx, kz) 0 2iVsp sin kya

0 0 F (kz, kx, ky) 2iVsp sin kza

−2iVsp sin kxa −2iVsp sin kya −2iVsp sin kza Esp +G(kx, ky, kz)

 , (B-1)

where

F (kx, ky, kz) = 2Vppσ cos kxa+ 2Vppπ(cos kya+ cos kza),

G(kx, ky, kz) = 2Vss(cos kxa+ cos kya+ cos kza),
(B-2)

and a is the lattice constant. Using the Löwdin approximation56 H3×3
ij ≈ H4×4

ij +
∑
α∈{s}H4×4

iα H4×4
αj /(E − H4×4

αα ),

original basis space {s, px, py, px} can be folded into the reduced Hilbert space of {px, py, px}. Then, the reduced
Hamiltonian is written as,

H3×3
SC =

4V 2
sp

εg


εg

4V 2
sp
F (kx, ky, kz) + sin2 kxa sin kxa sin kya sin kza sin kxa

sin kya sin kxa
εg

4V 2
sp
F (ky, kz, kx) + sin2 kya sin kya sin kza

sin kza sin kxa sin kza sin kya
εg

4V 2
sp
F (kz, kx, ky) + sin2 kza

 , (B-3)

with F0 = F (0, 0, 0) and G0 = G(0, 0, 0), where

εg = F0 − (Esp +G0). (B-4)

The effective 3× 3 Hamiltonian describes the VB only. Now assuming |k|a� 1, we expand each matrix element up
to the second-order in k to obtain H3×3 as

≈

 F0 +Ak2
x +B(k2

y + k2
z) Ckxky Ckzkx

Ckxky F0 +Ak2
y +B(k2

z + k2
x) Ckykz

Ckzkx Ckzky F0 +Ak2
z +B(k2

x + k2
y)

 , (B-5)

where A = −(Vppσ − 4V 2
sp/εg)a

2, B = −Vppπa2, and C = 4V 2
spa

2/εg.

On the other hand, a 6 × 6 Luttinger Hamiltonian can be transformed into the exactly same form35 of a matrix
representation as Eq. (B-5) through a basis transformation with γ1 = −2m(A+ 2B)/3~2, γ2 = −m(A−B)/3~2, and
γ3 = −mC/3~2. The coefficient A, B, and C correspond to the original definition from Ref. 35 and 57. We provide a
useful correspondence between the TB hopping parameters and Kohn-Luttinger parameters,

γ1 =
2ma2

3~
(Vppσ + 2Vppπ − 4V 2

sp/εg),

γ2 =
ma2

3~
(Vppσ − Vppπ − 4V 2

sp/εg), (B-6)

γ3 = −ma
2

3~
4V 2

sp.

These expressions directly lead to Eq. (22).
We now proceed to describe the FCC and diamond lattice TB Hamiltonian matrices used in Secs. III B and C. The

four-band FCC TB model is written as,

H4×4
FCC =


I(kx, ky, kz) K(kx, ky) K(kx, kz) iK(kx, ky, kz)

K(ky, kx) I(ky, kx, kz) K(ky, kz) iK(ky, kz, kx)

K(kz, kx) K(kz, ky) I(kz, kx, ky) iK(kz, kx, ky)

−iK(kx, ky, kz) −iK(ky, kz, kx) −iK(kz, kx, ky) E0 + J(kx, ky, kz)

 (B-7)

where,

I(kx, ky, kz) = (Vppσ + Vppπ)(C+
xy + C+

zx) + 2VppπC
+
yz, (B-8)

J(kx, ky, kz) = 2Vss(C
+
xy + C+

yz + C+
zx), (B-9)

K(kx, ky) = (Vppσ − Vppπ)C−xy, (B-10)

K(kx, ky, kz) =
√

2Vsp(S
+
xy + S+

zx), (B-11)

C±xy = cos(kx + ky)a/2± cos(kx − ky)a/2, (B-12)

S±xy = sin(kx + ky)a/2± sin(kx − ky)a/2. (B-13)
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Hamiltonian for the diamond lattice which contains two atoms in a primitive unit cell is written as,(
D1 M

M∗ D2

)
, (B-14)

where the two diagonal blocks D1 = D2 = diag(Esp, 0, 0, 0) are identical since the cation and anion atoms are the
same for diamond lattice. The off-diagonal 4× 4 block M can be expressed using parameters Vxx, Vxy, related to the
parameters discussed in Sec. III C and defined by Vxx = 4(Vppσ + 2Vppπ)/3, Vxy = 4(Vppσ −Vppπ)/3. Following Chadi
and Cohen,47

M =


4Vssg1 − 4√

3
Vspg2 − 4√

3
Vspg3 − 4√

3
Vspg4

4√
3
Vspg2 Vxxg1 Vxyg4 Vxyg3

4√
3
Vspg3 Vxyg4 Vxxg1 Vxyg2

4√
3
Vspg4 Vxyg3 Vxyg2 Vxxg1

 , (B-15)

where

g1 = (1/4){exp[id1 · k] + exp[id2 · k] + exp[id3 · k] + exp[id4 · k]}
g2 = (1/4){exp[id1 · k] + exp[id2 · k]− exp[id3 · k]− exp[id4 · k]}
g3 = (1/4){exp[id1 · k]− exp[id2 · k] + exp[id3 · k]− exp[id4 · k]}
g4 = (1/4){exp[id1 · k]− exp[id2 · k]− exp[id3 · k] + exp[id4 · k]}

(B-16)

with d1 = (1, 1, 1)(a/4), d2 = (1,−1,−1)(a/4), d3 = (−1, 1,−1)(a/4) and d4 = (−1,−1, 1)(a/4). We use Ge
parameters from Ref. 47 for the nearest-neighbors to keep our model simple and the corresponding bulk band structure
is shown in Fig. 4(b).

APPENDIX C: ISSUES RELATED TO THE
TERMINATION AND PASSIVATION OF THE

QD STRUCTURE

Compared to the SC and FCC lattice, diamond lattice
allows for multiple ways of termination in a finite-size
structure. The choice of termination as well as the prop-
erties of the surface layer of atoms (passivation) often
have a strong influence on the QD electronic structure.
We start by discussing the diamond lattice termination.

A possible procedure to construct a cubic QD is the
following. We take a 3 × 3 × 3 stack of FCC unit cells
and combine it with its copy shifted by 1/4 of the body
diagonal. The resulting 344 atoms can be divided into
14 layers written down as ABCDABCDABCDAB in the
notation of Fig. 12(a). This procedure corresponds to the
β-type termination discussed in Sec. III C and Table III.
The other type (α) discussed corresponds to DABCD-
ABCDABCDA for 14 layers. Larger QDs are constructed
according to the same pattern: C...D (A...B) for α (β).

These two different lattice terminations give qualita-
tively different QD electronic structures in terms of the
level degeneracy at the top of the VB. In the large Vsp
limit, both α- and β-type (passivated) clusters show a P -
like state at the top of the VB. However, while the state
is non-degenerate for β-type, it forms a doublet state
for the α-type. This can be seen as a finite-crystal field
splitting of the originally three-dimensional manifold of
P -like states discussed in Sec. III B for the SC and FCC

lattices, a splitting that changes sign depending on the
cluster termination. Regardless of this, an analogous plot
to Fig. 10 showing the Vsp-dependence of energy levels in
a β-type cluster exhibits a crossing between S- and P -
like levels albeit at a different (larger) value of Vsp as it is
summarized in Table III. It appears that the mechanism
of the level reversal does not depend on the termination,
and moreover, with a larger size of QD, the splittings,
∆S and ∆P decrease.

We now turn our attention to the passivation of the QD
surface. If we consider the unpassivated 14-layer α-type
Ge QD, we find that it is difficult to identify the band
gap in its spectrum. There is a gap in the sequence of
energy levels as shown in Fig. 12(b) but it is shifted with
respect to the bulk band gap (shown by dashed lines) and
more importantly, the wavefunctions of the states at the
anticipated top of the VB (and bottom of the CB) are lo-
calized at the QD surface rather than extending through
the volume of the QD. Since surface passivation is known
to be important both from the perspective of enhancing
measured optical properties58,59 and calculated positions
of energies in VB and CB,46,60 we have added an ex-
tra atomic layer to the clusters which we investigated,
making sure that there remains no dangling bond of the
QD core. The passivation layer atoms are assumed to
have the same hopping to the QD core atoms as the core
atoms between each other and to keep the model simple,
we assign a single on-site energy Epass to their s- and p-
orbitals. In our convention, Epass is taken relative to the
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FIG. 12. (a) Diamond lattice unit cell with layers labeled.
Starting from the bottom face, each face at 1/4, 2/4, and
3/4 of the unit cell height are labeled as A, B, C, and D,
respectively. The top face is equivalent to the the bottom face.
Comparison of Ge QD energy calculation (b) with and (c)
without passivation for α-type termination. Insets show the
states in the smaller region near the bulk band gap, denoted
by two dashed lines. Note that the confinement made the gap
of the QD larger than the bulk energy gap.

on-site energy of QD core atom p-orbitals. By adjusting
Esp sufficiently far from the bulk band gap region, we
remove the states localized at the surface from the gap
and recover the band gap in the QD spectrum as it can
be seen in Fig. 12(c). For all calculations with passivated
Ge QDs in this article, we use Epass = −5.41 eV.

APPENDIX D: GEOMETRICAL FACTOR IN
ENERGY ORDERING

The geometry of actual QDs investigated in experi-
ments deviates from a perfectly spheric or cubic shape.
Our analysis has so far focused on a simple cubic geom-
etry. Although the termination and passivation issues
discussed in Appendix C already reduce the level of per-
fection of the QD shape, it is useful to estimate how ge-

ometrical changes in QD influence energy level ordering.

1 1.5 2
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-100
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Lx,y�Lz

E
ne

rg
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Hm
eV

L P-like

S-like

FIG. 13. The evolution of InAs QD valence band energies as
function of the aspect ratio. The lowest P -like state levels
split for the aspect ratio different from unity. Lz is fixed,
while Lx = Ly ∈ [Lz,2Lz].

Using the same approach as in Ref. 61, we calcu-
late levels in a L = 9.8 nm InAs QD of cuboid shape
Lx = Ly 6= Lz. Material parameters γ1,2,3 for this cal-
culation were taken from Table I (without spherical ap-
proximation) but ∆SO was set to zero. As Figure 13
shows, the originally threefold degenerate S-like and P -
like levels split as the aspect ratio Lx,y/Lz deviates from
one. The top level of the VB is a P -like doublet and even
though its separation in energy from the lower-lying S-
like state decreases with increasing Lx,y/Lz, the two lev-
els do not cross up to aspect ratios as large as five. These
results support the view of the P -like ground state as a
robust feature of QDs fabricated from a suitably chosen
material.

APPENDIX E: PERTURBATIVE ANALYSIS OF
THE TIGHT-BINDING MODELS

We have already given an example of the coupling rules
for ∆V̂ of Eq. (8) between the VB and CB states in
Eq. (16). For a general CB state (nxny)s and a gen-
eral VB state (nxny)x or (nxny)y, the matrix elements

of Ĥsp defined in Eq. (9) can be written down analyt-
ically. They take on a particularly simple form in the
continuum (N →∞) limit,

〈(nm)x|Ĥsp|(n′m′)s〉 =8Vspδmm′Ann′ ,

〈(nm)y|Ĥsp|(n′m′)s〉 =8Vspδnn′Amm′ ,
(E-1)

where Ann′ = 0 if n and n′ are both odd or both even
and nn′/((n′)2 − n2) otherwise.
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FIG. 14. Couplings of the six top VB states to CB states.
The first two rows correspond to S-like states, the other four
to the P -like states in 2D. Blue fields with crosses or yellow
fields with circles indicate strong/weak coupling.

We focus on the two S-like states given in Eq. (14) and
four P -like states given in Eq. (15) that are degenerate
when Vsp = 0. After a transformation applied to to the
S-like states, the six VB states of our interest can be
listed as shown in the left column of Fig. 14. CB states
can also be represented in an analogous manner in order

to make our analysis clear. It turns out that most ma-
trix elements of ∆V̂ between these six VB states and CB
states vanish. In Fig. 14, large (small) non-zero matrix
elements for the given pair of VB and CB state are in-
dicated by a cross (circle). If we choose a VB state, we
can determine how strongly its energy depends on Vsp
by inspection of the corresponding row in the table. To
the second order of the perturbative analysis, the energy
change is proportional to V 2

sp multiplied by the sum of
squared matrix elements and we can convince ourselves
that in five of the six rows of Fig. 14, there is always
at least one large matrix element. The only row which
only contains small matrix elements corresponds to the
state (12)x − (21)y which is the OVS of Eq. (17). The
consequent weak Vsp-dependence of this state’s energy is
at the root of the level crossing in Fig. 6(d).

The weak interaction of OVS with the CB levels is due
to OVS symmetry which renders the couplings to the
low-nx, ny CB states zero. The lowest CB state to which
OVS couples is (42)s− (24)s and because of the large nx
and ny involved in this state, the coupling matrix element
in Eq. (E-1) is relatively small compared to the couplings
in other rows of Fig. 14.
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22 R. Oszwa ldowski, I. Žutić, and A. G. Petukhov, Phys. Rev.
Lett. 106, 177201 (2011).

23 J. M. Pientka, R. Oszwaldowski, A. G. Petukhov, J. E.
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