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Recent observations of current-induced magnetization switching at

ferromagnet/normal-conductor interfaces1,2 have important consequences for fu-

ture magnetic memory technology. In one interpretation, the switching origi-

nates from carriers with spin-dependent scattering giving rise to a relativis-

tic anti-damping spin-orbit torque (SOT)3–7 in structures with broken space-

inversion symmetry.1,1–3,3–7,7–9,13,15–20 The alternative interpretation1,2,4–6,19–21

combines the relativistic spin Hall effect (SHE),22–28 making the normal-

conductor an injector of a spin-current, with the non-relativistic spin-transfer

torque (STT)29–32 in the ferromagnet. Remarkably, the SHE in these ex-

periments originates from the Berry phase effect in the band structure of a

clean crystal2,24,25,27,33 and the anti-damping STT is also based on a disorder-

independent transfer of spin from carriers to magnetization. Here we report the

observation of an anti-damping SOT stemming from an analogous Berry phase

effect to the SHE. The SOT alone can therefore induce magnetization dynamics

based on a scattering-independent principle. The ferromagnetic semiconductor

(Ga,Mn)As we use has a broken space-inversion symmetry in the crystal.2,3,7,13

This allows us to consider a bare ferromagnetic film which eliminates by design

any SHE related contribution to the spin torque. We provide an intuitive picture

of the Berry phase origin of the anti-damping SOT and a microscopic modeling

of measured data.

In the quasiclassical transport theory, the linear response of the carrier system to the

applied electric field is described by the non-equilibrium distribution function of carrier

eigenstates which are considered to be unperturbed by the electric field. The form of the

non-equilibrium distribution function is obtained by accounting for the combined effects of

the carrier acceleration in the field and scattering. On the other hand, in the time-dependent

quantum-mechanical perturbation theory the linear response is described by the equilibrium

distribution function and by the perturbation of carrier wavefunctions in the applied electric

field. The latter framework was the basis of the intrinsic Berry phase mechanism introduced

to explain the anomalous Hall effect in (Ga,Mn)As34 and, subsequently, in a number of

other ferromagnets.35 Via the anomalous Hall effect, the Berry phase physics entered the

field of the SHE in spin-orbit coupled paramagnets. Here the concept of a scattering-

independent origin brought the attention of a wide physical community to this relativistic
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phenomenon, eventually turning the SHE into an important field of condensed matter physics

and spintronics.28 In our work we demonstrate that the SOT can also have the relativistic

quantum-mechanical Berry phase origin.

We start by deriving the intuitive picture of our Berry phase anti-damping SOT based on

the Bloch equation description of the carrier spin dynamics. In (Ga,Mn)As, the combination

of the broken inversion symmetry of the zinc-blende lattice and strain can produce spin-orbit

coupling terms in the Hamiltonian which are linear in momentum and have the Rashba

symmetry, HR = α
~ (σxpy − σypx), or the Dresselhaus symmetry, HD = β

~ (σxpx − σypy) (see

Fig. 1a).2,3,7,13 Here σ are the Pauli spin matrices and α and β represent the strength of the

Rashba and Dresselhaus spin-orbit coupling, respectively. The interaction between carrier

spins and magnetization is described by the exchange Hamiltonian term, Hex = Jσ ·M.

In (Ga,Mn)As, M corresponds to the ferromagnetically ordered local moments on the Mn

d-orbitals and J is the antiferromagnetic carrier–local moment kinetic-exchange constant.36

The physical origin of our anti-damping SOT is best illustrated assuming for simplicity a 2D

parabolic form of the spin-independent part of the total Hamiltonian, H = p2

2m
+HR(D)+Hex,

and the limit of Hex � HR(D). In equilibrium, the carrier spins are then approximately

aligned with the exchange field, independent of their momentum. The origin of the SOT

can be understood from solving the Bloch equations for carrier spins during the acceleration

of the carriers in the applied electric field, i.e., between the scattering events. Let’s define

x-direction as the direction of the applied electric field E. For −M ‖ E, the equilibrium

effective magnetic field acting on the carrier spins, s = σ
2
, due to the exchange term is,

Beq
eff ≈ (2JM, 0, 0), in units of energy. During the acceleration in the applied electric field,

dpx
dt

= eEx, and the effective magnetic field acquires a time-dependent y-component due to

HR for which
dBeff,y

dt
= 2α

~
dpx
dt

, as illustrated in Fig. 1b. For small tilts of the spins from

equilibrium, the Bloch equations ds
dt

= 1
~(s×Beff ) yield, sx ≈ s, sy ≈ s

Beff,y

Beq
eff

, and

sz ≈ −
~s

(Beq
eff )

2

dBeff,y

dt
= − s

2J2M2
αeEx . (1)

The non-equilibrium spin orientation of the carries acquires a time and momentum indepen-

dent sz component.

As illustrated in Figs. 1b,c, sz depends on the direction of the magnetization M with

respect to the applied electric field. It has a maximum for M (anti)parallel to E and
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vanishes for M perpendicular to E. For a general direction of M we obtain,

sz,M ≈
s

2J2M2
αeEx cos θM−E . (2)

The total non-equilibrium spin polarization Sz is obtained by integrating sz,M over all oc-

cupied states. The non-equilibrium spin polarization produces an out-of-plane field which

exerts a torque on the in-plane magnetization. From Eq. (2) we obtain that this intrinsic

SOT is anti-damping-like,

dM

dt
=
J

~
(M× Sz ẑ) ∼M× ([E× ẑ]×M) . (3)

For the Rashba spin-orbit coupling, Eq. (3) applies to all directions of the applied electric

field with respect to crystal axes. By replacing HR with HD we can follow the same argu-

ments and arrive at the corresponding expressions for the anti-damping SOT. In the case

of the Dresselhaus spin-orbit coupling, the symmetry of the anti-damping SOT depends

on the direction of E with respect to crystal axes, as seen from Fig. 1a. For a particular

electric field direction one can interpolate the angle, θM−E, dependence of the Dresselhaus

out of plane field by the relative phase of the Rashba and Dresselhaus polarization along E.

In the following table we summarise the angle dependence of the Rashba and Dresselhaus

contributions to sz,M for electric fields along different crystal directions.

Rashba: sz,M ∼ Dresselhaus: sz,M ∼
E ‖ [100] cos θM−E sin θM−E

E ‖ [010] cos θM−E − sin θM−E

E ‖ [110] cos θM−E cos θM−E

E ‖ [1− 10] cos θM−E − cos θM−E

To highlight the analogy between our anti-damping SOT and the Berry phase origin of

the SHE24,25 we illustrate in Fig. 1d the solution of the Bloch equations in the absence of the

exchange Hamiltonian term.25 In this case Beq
eff depends on the carrier momentum which

implies a momentum-dependent z-component of the non-equilibrium spin,

sz,p ≈
s~2

2αp2
αeEx sin θp . (4)

Clearly the same spin rotation mechanism which generates the spin accumulation in the case

of our anti-damping SOT (Fig. 1b) is responsible for the scattering-independent spin-current

in the SHE (Fig. 1d).
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To complete the picture of the common origin between the microscopic physics of the

Berry phase SHE and our anti-damping SOT we point out that equivalent expressions for

the SHE spin current and the SOT spin polarization can be obtained from the quantum-

transport Kubo formula. The expression for the out-of-plane non-equilibrium spin polariza-

tion that generates our anti-damping SOT is given by

Sz =
~
V

∑
k,a6=b

(fk,a − fk,b)
Im[〈k, a|sz|k, b〉〈k, b|eE · v|k, a〉]

(Ek,a − Ek,b)2
, (5)

where a, b indicate the band indices. Here fka are the Fermi-Dirac distribution functions

corresponding to band energies Eka. This expression is analogous to Eq. (9) in Ref. 25 for

the Berry phase intrinsic SHE.

We now discuss our low-temperature (6 K) experiments in which we identify the pres-

ence of the anti-damping SOT in our in-plane magnetized (Ga,Mn)As samples. We follow

the methodology of several previous experiments2,7 and use current induced ferromagnetic

resonance to investigate the magnitude and symmetries of the alternating fields responsible

for resonantly driving the magnetisation. In our experiment, illustrated schematically in

Fig. 2a, a signal generator drives a microwave frequency current through a 4 µm × 40 µm

micro-bar patterned from a 18 nm thick (Ga,Mn)As epilayer with nominal 5% Mn-doping.

A bias tee is used to measure the dc voltage across the sample, which is generated according

to Ohm’s law due to the product of the oscillating magneto-resistance (during magnetisation

precession) and the microwave current.37 Solving the equation of motion for the magnetisa-

tion (the LLG equation) for a small excitation field vector (hx, hy, hz) exp [iωt] we find dc

voltages containing symmetric (VS) and anti-symmetric (VA) Lorentzian functions, shown

in Fig. 2b. As the saturated magnetization of the sample is rotated, using θM−E to indicate

the angle from the current/bar direction, the in-plane and out-of plane components of the

excitation field are associated with VS and VA via:

VS ∝ hz sin 2θM−E , (6)

VA ∝ −hx sin θM−E sin 2θM−E + hy cos θM−E sin 2θM−E . (7)

In this way we are able to determine, at a given magnetization orientation, the current

induced field vector. In Fig. 2c we show the angle dependence of VS and VA for an in-

plane rotation of the magnetization for a micro-bar patterned in the [100] crystal direction.
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As described in the Supplementary information, the voltages VS and VA are related to the

alternating excitation field, using the micro-magnetic parameters and AMR of the sample.

The in-plane field components, determined from VA, are well fitted by a M-independent

current induced field vector (µ0hx, µ0hy)=(-91,-15) µT referenced to a current density of

105 Acm−2. Since VS is non-zero, it is seen that there is also a significant hz component

of the current induced field. Furthermore, since VS is not simply described by sin 2θM−E,

hz depends on the in-plane orientation of the magnetization. To analyse the symmetry of

the out-of-plane field we fit the angle dependence of VS, finding for the [100] bar shown in

(Fig. 2c) that µ0hz = (13 + 95 sin θM−E + 41 cos θM−E) µT.

We measure 8 samples, 2 patterned in each crystal direction and plot in Fig. 3 the resulting

sin θM−E and cos θM−E coefficients of hz. The corresponding in-plane fields are also shown:

since these are approximately magnetisation-independent they can be represented in Fig. 3

by a single vector. In the [100] bar we found that the sin θM−E coefficient of hz, which

according to the theoretical model originates in the Dresselhaus spin-orbit term, is greater

than the cos θM−E coefficient related to the Rashba spin-orbit term (see Table 1). If we

examine the symmetries of hz in our sample set, we find that they change in the manner

expected for samples with dominant Dresselhaus term; a trend that is in agreement with the

in-plane fields. The angle-dependence of hz measured throughout our samples indicates an

anti-damping like SOT with the theoretically predicted symmetries. Since the magnitude of

the measured hz is comparable to the in-plane fields (see Supplementary information for a

detailed comparison), the anti-damping and field-like SOTs are equally important for driving

the magnetisation dynamics in our experiment.

To model the measured anti-damping SOT, assuming its Berry phase intrinsic origin,

we start from the effective kinetic-exchange Hamiltonian describing (Ga,Mn)As:36 H =

HKL + Hstrain + Hex. Here Hex = JpdcMnSMnM̂ · s, HKL and Hstrain refer to the strained

Kohn-Luttinger Hamiltonian for the hole systems of GaAs (see Supplementary information),

s is the hole spin operator, SMn = 5/2, cMn is the Mn density, and Jpd = 55 meV nm3 is

the kinetic-exchange coupling between the localized d-electrons and the valence band holes.

The Dresselhaus and Rashba symmetry parts of the strain Hamiltonian in the hole-picture
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are given by

Hstrain = −3C4 [sx (εyy − εzz) kx + c.p.] (8)

−3C5 [εxy(kysx − kxsy) + c.p.] ,

where C4 = 10 eVÅ and we take C5 = C4.5,6 These momentum-dependent Hstrain terms are

essential for the generation of SOT because they break the space-inversion symmetry. The

momentum-dependent spin-orbit contribution to HKL does not produce directly a SOT but

it does interfere with the linear in-plane momentum terms in Hstrain to reduce the magnitude

of the SOT and introduce higher harmonics in the θM−E dependence of µ0hz. We have also

replaced HKL with a parabolic model with effective mass m∗ = 0.5me and included the spin-

orbit coupling only through the Rashba and Dresselhaus-symmetry strain terms given by

Eq. (8). The expected cos θM−E or sin θM−E symmetry without higher harmonics follows.

In addition, a large increase of the amplitude of the effect is observed since the broken

inversion symmetry spin-texture does not compete with the centro-symmetric one induced

by the large spin-orbit coupled HKL term. This indicates that for a system in which the

dominant spin-orbit coupling is linear in momentum our Berry phase anti-damping SOT

will be largest.

In Fig. 4 we show calculations for our (Ga,Mn)As samples including the spin-orbit coupled

HKL term (full lines) term or replacing it with the parabolic model (dashed lines). The

non-equilibrium spin density induced by the Berry phase effect is obtained from the Kubo

formula:3

Sz =
~

2πV
Re

∑
k,a6=b

〈k, a|sz|k, b〉〈k, b|eE · v|k, a〉[GA
kaG

R
kb −GR

kaG
R
kb], (9)

where the Green’s functions GR
ka(E)|E=EF

≡ GR
ka = 1/(EF − Eka + iΓ), with the property

GA = (GR)∗. EF is the Fermi energy and Γ is the disorder induced spectral broadening,

taken in the simulations to be 25 meV. Note that in the disorder-free limit, Eq. (9) turns

into Eq. (5) introduced above. The relation between Sz and the effective magnetic field

generating the Berry phase SOT is given by µ0hz = −(Jpd/gµB)Sz, where µB is the Bohr

magneton, and g = 2 corresponds to the localized d-electrons in (Ga,Mn)As (for more details

on the modeling see Supplementary Information).

Results of our calculations are compared in Fig. 4 with experimental dependencies of hz on

θM−E measured in the 4 micro-bar directions. As expected, the parabolic model calculations
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strongly overestimate the SOT field hz. On the other hand, including the competing centro-

symmetric HKL term, which is present in the (Ga,Mn)As valence band, gives the correct

order of magnitude of hz as compared to experiment. Moreover, by including the HKL term

we can also explain the presence of higher harmonics in the θM−E dependencies seen in

experiment. This confirms that the experimentally observed anti-damping SOT is of the

Berry phase origin.

To conclude, we have predicted a Berry phase SOT phenomenon and experimentally

identified the effect in (Ga,Mn)As which is a model ferromagnetic system with broken space

inversion symmetry in the bulk crystal. Learning from the analogy with the intrinsic Berry

phase anomalous Hall effect, first identified in (Ga,Mn)As and subsequently observed in a

number of ferromagnets, we infer that our Berry phase SOT is a generic phenomenon in

spin-orbit coupled magnetic systems with broken space-inversion symmetry. In particular,

the Berry phase SOT might be present in ferromagnet/paramagnet bilayers with the broken

structural inversion symmetry. The resulting Rashba-like anti-damping SOT has the same

basic symmetry of its magnetization dependence as the earlier reported SHE-STT mech-

anism. Therefore, two strong relativistic mechanisms of scattering-independent origin can

contribute in the current-induced magnetization switching in these technologically important

magnetic structures.

Methods and Materials

Materials: The 18 nm thick (Ga0.95,Mn0.05)As epilayer was grown on a GaAs [001]

substrate by molecular beam epitaxy, performed at a substrate temperature of 230 C. It

was subsequently annealed for 8 hours at 200 C. It has a Curie temperature of 132 K; a

room temperature conductivity of 387 Ω−1cm−1 which increases to 549 Ω−1cm−1 at 5 K;

and has a carrier concentration at 5 K determined by high magnetic field Hall measurement

of 1.1× 1021 cm−3.

Devices: Two terminal microbars are patterned in different crystal directions by electron

beam lithography to have dimensions of 4×40 µm. These bars have a typical low temperature

resistance of 10 kΩ (data-table in supplementary information).

Experimental procedure: A pulse modulated (at 789 Hz) microwave signal (at 11

GHz) with a source power of (20 dBm) is transmitted down to cryogenic temperatures using
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low-loss, low semi-rigid cables. The microwave signal is launched onto a printed circuit

board patterned with a coplanar waveguide, and then injected into the sample via a bond-

wire. The rectification voltage, generated during microwave precession, is separated from

the microwave circuit using a bias tee, amplified with a voltage amplifier and then detected

with lock-in amplifier. All measurements are performed with the samples at 6 K.

Calibration of microwave current: The resistance of a (Ga,Mn)As micro-bar depends

on temperature, and therefore on the Joule heating by an electrical current. First, the

resistance change of the micro-bar due to Joule heating of a direct current is measured.

Then, the resistance change is measured as a function of applied microwave power. We

assume the same Joule heating (and therefore resistance change of the micro-bar) for the

same direct and rms microwave currents, enabling us to calibrate the unknown microwave

current against the known direct current.
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FIG. 1: Spin-orbit coupling and anti-damping SOT. a, Rashba (red) and Dresselhaus (blue)

spin textures. b, For the case of a Rashba-like symmetry, the out-of-plane non-equilibrium carrier

spin-density that generates the Berry phase anti-damping SOT has a maximum for E (anti)parallel

to M. In this configuration the equilibrium effective field Beq
eff and the additional field ∆Beff ⊥M

due to the acceleration are perpendicular to each other causing all spins to tilt in the same out-

of-plane direction. c, For the case of a Rashba-like symmetry, the out-of-plane non-equilibrium

carrier spin-density is zero for E ⊥ M since Beq
eff and ∆Beff are parallel to each other. d, The

analogous physical phenomena for zero magnetization induces a tilt of the spin out of the plane

that has opposite sign for momenta pointing to the left or the right of the electric field, inducing

in this way the intrinsic Berry phase SHE.25
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magnetisation precession. Microwave power goes through a bias-tee and into the (Ga,Mn)As

micro-bar which is placed inside a cryostat. The injected microwave current drives FMR that is

detected via a dc voltage Vdc across the micro-bar. We define θM−E as an angle of the static

magnetisation direction determined by the external magnetic field, measured from the current

flow direction. b, Typical spin-orbit FMR signal driven by an alternating current at 11 GHz and

measured by Vdc as a function of external magnetic field. The data were fitted by a combination of

symmetric and anti-symmetric Lorentzian functions. c, Symmetric and antisymmetric component

of Vdc as a function of θM−E for current along the [100] direction.
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FIG. 3: In-plane and out-of-plane SOT fields. In-plane spin-orbit field and coefficients of the

cos θM−E and sin θM−E fits to the angle-dependence of out-of-plane SOT field for our sample set.

For the in-plane fields, a single sample in each micro-bar direction is shown (corresponding to the

same samples that yield the blue out-of-plane data points). In the out-of-plane data, 2 samples are

shown in each micro-bar direction. The symmetries expected for the anti-damping SOT, on the

basis of the theoretical model for the Dresselhaus term in the spin-orbit interaction, are shown by

light green shading. All data are normalised to a current density of 105 Acm−2.
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FIG. 4: Theoretical modeling of the measured angular dependencies of the SOT fields.

Microscopic model calculation for the measured (Ga,Mn)As samples assuming Rashba (εxy =

−0.15%) and Dresselhaus (εxx = −0.3%) strain. Solid blue lines correspond to the calculations

with the centro-symmetric HKL term included in the (Ga,Mn)As Hamiltonian. Dashed blue lines

correspond to replacing HKL with the parabolic model. Both calculations are done with a disorder

broadening Γ = 25 meV. Black points are experimental data whose fitting coefficients of the

cos θM−E and sin θM−E first harmonics correspond to blue points in Fig. 3.
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Supplementary Information

1. FMR linewidth analysis and sample parameters

We use the phenomenological Landau-Lifshitz-Gilbert (LLG) equation to describe the

spin-orbit-induced magnetisation dynamics in our (Ga,Mn)As micro-bars:

∂M

∂t
= −γM×Htot +

α

Ms

(
M× ∂M

∂t

)
− γM× hso (10)

Here, γ and α, Ms are the gyromagnetic ratio, the dimensionless Gilbert damping con-

stant and the saturation magnetisation respectively. The first term describes precession

of the magnetisation M around the total static magnetic field Htot, which includes both

magneto-crystalline anisotropy fields and the externally-applied field. Relaxation towards

the equilibrium direction is expressed by the second term. When M is resonantly driven,

in our case by the SO-torques included as the third term in the equation, it undergoes

steady-state precession around the Htot direction. We assume a small precession angle, such

that the magnetisation dynamics is within the linear excitation regime, hence we can write

M = (Ms,mbe
iωt,mce

iωt) within the right-hand coordinate system defined by the equilib-

rium orientation of M (shown in Fig. 5). In this coordinate system hso can be given by the

following, where θM−E is the angle between M and the current direction.

hso =


hx cos θM−E + hy sin θM−E

−hx sin θM−E + hy cos θM−E

hz

 eiωt, (11)

FIG. 5: The co-ordinate systems used. These are either defined with respect to the current

direction (in the case of the spin orbit field) or with respect to the magnetisation (in the

derivation of the rectification voltage).
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Solving the LLG equation to first order, the expression for mb can be found as:

mb = − [i(ω/γ)hz + (H0 +H1 + i∆H)(−hx sin θM−E + hy cos θM−E)]Ms

(ω/γ)2 − (H0 +H1 + i∆H)(H0 +H2 + i∆H)
(12)

where ∆H = αω/γ and H1 and H2 contain magnetic anisotropy terms:

H1 = Ms −H2⊥ +H2‖ cos2
(
ϕ+

π

4

)
+

1

4
H4‖(3 + cos 4ϕ) (13)

H2 = H4‖ cos 4ϕ−H2‖ sin 2ϕ, (14)

H2⊥, H2‖ and H4‖ represent the out-of-plane uniaxial, in-plane uniaxial and in-plane biaxial

anisotropy respectively, and ϕ is the angle between the magnetisation vector M and the

[100] crystallographic axis. For in-plane equilibrium orientation of M, only the alternating

in-plane angle (∼mb(t)/Ms) will lead to a rectification voltage, and we can neglect the out-

of-plane component of the precession. The magnetisation precession causes a time-varying

resistance change originating in the anisotropic magnetoresistance (AMR): R(t) = R0 −
∆R cos2(θM−E+mb(t)/Ms). This, together with a microwave current at the same frequency,

produces a voltage, V (t) = I cos(ωt) · R(t), and we measured the dc component which is

given by Vdc = (I∆Rmb/2Ms) sin 2θM−E. Using Eq. (12) with the above approximation and

focusing on the real components, we can find the dc component as:

Re{Vdc} = Vsym
∆H2

(H0 −Hres)2 + ∆H2
+ Vasy

∆H(H0 −Hres)

(H0 −Hres)2 + ∆H2
(15)

Vsym(θM−E) =
I∆Rω

2γ∆H(2Hres +H1 +H2)
sin(2θM−E)hz (16)

Vasy(θM−E) =
I∆R(Hres +H1)

2∆H(2Hres +H1 +H2)
sin(2θM−E)(−hx sin θM−E + hy cos θM−E) (17)

We used these equations to quantify hx, hy and hz from the in-plane angle dependence

of Vdc. Each FMR trace was first fit by a function with symmetric and anti-symmetric

Lorentzians and both components are analysed by Vsym(θM−E) and Vasy(θM−E). In table I

we list experimental measurements of the magnetisation independent in-plane and magneti-

sation dependent out-of-plane spin-orbit fields for our set of 8 samples.

In table II, we give the uniaxial (Hu) (along [1-10]) and cubic (Hc) anisotropies; µ0Meff

and the linewidth (at a frequency of 11 GHz) for each of our 8 samples, extracted from

the angle-dependent FMR measurements. In addition, we show the sample resistances and

AMRs.
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Sample 1 2 3 4 5 6 7 8

Direction [100] [100] [010] [010] [110] [110] [1-10] [1-10]

µ0hx (µT) -49 -91 132 96 2 2 <1 <1

µ0hy (µT) -17 -15 -49 -30 127 120 -201 -145

µ0hz − sin θM−E (µT) 51 95 -122 -107 4 6 8 5

µ0hz − cos θM−E (µT) 20 41 19 42 161 203 -127 -86

µ0hz - const. (µT) -10 13 -23 25 27 <1 27 2

TABLE I: Amplitudes of the spin-orbit effective fields for different directions and symmetries.

Sample 1 2 3 4 5 6 7 8

Direction [100] [100] [010] [010] [110] [110] [1-10] [1-10]

µ0Hc (mT) 59 66 61 65 62 62 60 58

µ0Hu (mT) 59 43 45 68 40 38 51 65

µ0Meff (mT) 429 411 437 360 404 402 350 368

µ0∆H (mT) 7.1 7.4 8.2 6.8 9.4 8.8 7.5 6.9

AMR (Ω) 45 44 44 45 151 154 140 129

R (kΩ) 11.3 11.3 11.3 11.3 11.4 11.4 11.5 10.7

TABLE II: Magnetic anisotropy and transport parameters in the studied devices.

2. Theory of Intrinsic Spin-Orbit Torque

The dynamical interaction of the magnetization originating from localized moments aris-

ing from the d-electrons and the delocalized hole carriers in (Ga,Mn)As gives rise to an

effective current-induced field δH. The magnetization dynamics is then described by the

Landau-Lifshitz-Gilbert equation

dM̂

dt
= −γM̂× (H + δH) + α

dM̂

dt
× M̂ (18)
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where H is the external and internal equilibrium effective magnetic field, α is the Gilbert

damping parameter and γ = ge/2m0 is the gyromagnetic factor with e the elementary charge

and m0 the electron mass. The current induced field is given by

δH = − Jex

gµB

δs, (19)

where µB is the Bohr magneton, g = 2 corresponds to the localized d-electrons in (Ga,Mn)As,

and Jex = 55 meV nm3 is the antiferromagnetic kinetic-exchange coupling between the

localized d-electrons and the valence band holes, termed Jpd. δs is the current induced

non-equilibrium spin densities. We model the carriers in these systems are modeled by

a Hamiltonian with a kinetic exchange coupling term H = HGaAs + Hex, where Hex =

JexcMnSMnM̂ · s, HGaAs refers to the 4-band strained Kohn-Luttinger Hamiltonian for the

hole systems of GaAs (see below), s is the 4 × 4 spin operator for the holes described by

the four-band Kohn-Luttinger model, SMn = 5/2, and cMn corresponds to the Mn local

spin-density.

The current-induced spin density has two contributions, δs = δsext + δsint. The extrin-

sic contribution, δsext,1,2 arises from the non-equilibrium steady state distribution function

of the carriers due to the interaction of the applied electric field and the spin-orbit cou-

pling(SOC) carriers, i.e. predominantly independent of the magnetization and therefore of

field-like form. However, there is another contribution not discussed theoretically before

which is the focus of our study. This contribution arises from the electric-field induced po-

larization of the spins as they accelerate between scattering events, i.e. of purely intrinsic

origin arising from the band structure of the system, which has the form, δsint ∝ M̂ × a(E),

where a(E) is an in-plane function linear in the electric field that depends on the symmetry

of the SOC responsible for the effect, Rashba or Dresselhaus, as discussed in the main text.

This gives rise to an anti-damping torque, τanti−damp ∝ M̂ × (M̂ × a(E)) and it is, in the

case of (Ga,Mn)As, of the same order of magnitude as the extrinsic field-like SOT.

This current-induced non-equilibrium spin densities, δs, can be calculated by the linear

Kubo response theory:3

δs =
~

2πV
Re
∑
k,a,b

(σ)ab(eE · v)ba[G
A
kaG

R
kb −GR

kaG
R
kb], (20)

where the Green’s functions GR
ka(E)|E=EF

≡ GR
ka = 1/(EF − Eka + iΓ), with the property

GA = (GR)∗. The carrier states are labeled by momentum k, band index a, and EF is the
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Fermi energy. Γ = ~/2τ is the spectral broadening corresponding to a relaxation time τ .

Here the matrix elements of an operator Ĉ are (Ĉ)ab ≡ 〈ka| Ĉ |kb〉 or (Ĉ)a ≡ 〈ka| Ĉ |ka〉.
The intra-band contributions in the above expressions correspond to the component already

discussed before which gives rise to the field-like torque,1–3 and the inter-band contribution

is the one that gives rise to the intrinsic anti-damping SOT in analogy to the intrinsic SHE.

The expression for δsint in the clean limit is given by

δsint =
~
V

∑
k,a 6=b

Im [(s)ab(eE · v)ba]

(Eka − Ekb)2
(fka − fkb). (21)

Here fka are the Fermi-Dirac distribution functions corresponding to band energies Eka.

In the presence of disorder, as it is the case for (Ga,Mn)As, the resulting expression are

approximated by

δsint = δs(1) + δs(2)

δs(1) = − 1

V

∑
k,a 6=b

2Re [(σ)ab(eE · v)ba]

× Γ(Eka − Ekb)

[(Eka − Ekb)2 + Γ2]2
(fka − fkb) (22)

δs(2) = − 1

V

∑
k,a 6=b

2Im [(σ)ab(eE · v)ba]

× Γ2 − (Eka − Ekb)
2

[(Eka − Ekb)2 + Γ2]2
fka.

Here we have ignored small numerical corrections due to the GR
kaG

R
kb terms which can be

shown to formally vanish in a weak disorder situation and whose rapid oscillations can lead

to numerical instabilities giving rise to systematic errors.

The hole-valence system is described by HGaAs = HKL + Hstrain, where the first term is

the Kohn-Luttinger Hamiltonian and the second contains the strain effects. The four-band

Kohn-Luttinger Hamiltonian in the hole-picture is

HKL =
~2k2

2m0

(
γ1 +

5

2
γ2

)
I4 −

~2

m0

γ3 (k · J)2 (23)

+
~2

m0

(γ3 − γ2)
(
k2
xJ

2
x + k2

yJ
2
y + k2

zJ
2
z

)
.

Here, k is the momentum of the holes, m0 is the electron mass, γ1 = 6.98, γ2 = 2.06, and

γ3 = 2.93 are the Luttinger parameters, I4 is the 4× 4 identity matrix and J = (Jx, Jy, Jz)

are the 4× 4 angular momentum matrices of the holes. Here the hole spin s = J/3, where

s are the spin matrices for holes.4
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The strain Hamiltonian in the hole-picture is

Hstrain = b

[(
J2
x −

J2

3

)
εxx + c.p.

]
−C4 [Jx (εyy − εzz) kx + c.p.] (24)

−C5 [εxy(kyJx − kxJy) + c.p.] ,

where εij is the strain tensor and b = −1.7 eV is the axial deformation potential. C4 is

the magnitude of the momentum-dependent Dresselhaus-symmetric strain term and C5 is

the magnitude of the Rashba-symmetric strain term. In our calculations, we use the value

C4 = 10 eVÅ calculated5,6 from first principles for holes in (Ga,Mn)As and C5 = C4. To the

best of our knowledge, there is no measurement or calculation for the C5 term in (Ga,Mn)As.

In our calculations we set γ2 = γ3 within the spherical approximation and for the parabolic

approximation we set γ2 = γ3 = 0 and take γ1 = 2. The external electric field magnitude is

set to E = 0.02 mV/nm (from the experimental values), the disorder broadening to Γ = 25

meV, and the strain to εxx = εyy = −1.1εzz = −0.3% and εxy = −0.15%. The first term

of the strain Hamiltonian is momentum independent. The other two terms are momentum-

dependent and they are essential for the generation of SOT because they break the space

inversion symmetry. The second term has a Dresselhaus symmetry and the third has a

Rashba symmetry. As described in the experimental results, these symmetries are shared

by the observed SOT. In this discussion we have neglected cubic Dresselhaus terms, allowed

by the GaAs symmetry, since the experimentally observed SOTs vary linearly with strain.2,7
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