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Abstract

We demonstrate a scalable new ferromagnetic resonance (FMR) technique based on the spin-

orbit interaction. An alternating current drives FMR in uniform ferromagnetic structures patterned

from the dilute magnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P). This allows the direct

measurement of magnetic anisotropy coefficients and damping parameters for individual nano-

bars. By analysing the ferromagnetic resonance lineshape, we perform vector magnetometry on

the current-induced driving field, observing contributions with symmetries of both the Dresselhaus

and Rashba spin-orbit interactions.
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Ferromagnetic resonance (FMR) is the most common technique for exploring spin-

dynamics phenomena and for the magnetic characterisation of ferromagnets.1 However,

previously developed FMR techniques, based on exciting the magnetic system by an ex-

ternal alternating magnetic field from a resonant cavity2–4 or a micro-waveguide,5–8 struggle

to simultaneously achieve scalability of the technique to nano-size objects, uniformity of the

excitation field, and the range of available excitation frequencies. We introduce an FMR

technique applicable to individual nanomagnets in which the FMR driving field is generated

in the probed magnet itself. The excitation is driven by the effective field generated by

an alternating electrical current passing through the ferromagnet, which results from the

combined effect of the spin-orbit (SO) coupling and exchange interaction.9–11 Our SO-FMR

can be operated at tuneable frequencies and we demonstrate its sensitivity and scalabil-

ity by measuring the variation of micromagnetic parameters of lithographically patterned

(Ga,Mn)As and (Ga,Mn)(As,P) nano-bars.

FMR induced by driving an alternating current directly through the probed sample has

been previously demonstrated for specific non-uniform magnetic nano-devices such as spin-

valves.12,13 The experiments utilised the spin-transfer torque in which spin-polarised electri-

cal current acts on spatially varying magnetisation14 and can be viewed as a macroscopic

angular momentum transfer effect. Our SO-FMR (Figure 1a) does not require the specific

samples with a non-collinear magnetisation profile. The method can be applied to a broad

range of systems including uniformly polarised nanomagnets. This is because the effective

field utilised in the SO-FMR does not rely on the spatial variation of the magnetisation vec-

tor but on a microscopic non-collinearity of individual electron spins due to their relativistic,

SO-coupled band structure. Specifically, when an electrical current traverses through the

uniformly magnetised material, the resulting non-equilibrium distribution of occupied states

in the SO-coupled carrier bands yields a non-equilibrium spin polarisation.15–17 The polari-

sation produces a transverse component of the internal exchange field (can be viewed as an

effective magnetic field) and a torque is applied to the magnetisation vector.9,18 This current-

induced effective field is generic to ferromagnets with SO-coupling and inversion asymmetry

in their band structure. Previously it has been utilised for magnetisation switching in the

ferromagnetic semiconductor (Ga,Mn)As10 and for domain nucleation in a Pt/Co/AlOx

stack.11

The micro and nano-bars employed in our SO-FMR study are patterned by electron beam
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lithography on 25 nm-thick films of (Ga0.94,Mn0.06)As and (Ga0.94,Mn0.06)(As0.9,P0.1), grown

by low-temperature molecular beam epitaxy. The (III,Mn)V ferromagnetic semiconductors

used in our study are particularly favourable systems for observing and exploring SO-FMR

because of the compatibility of the material with advanced semiconductor nanofabrication

techniques, because the carrier bands have strong SO-coupling, and the (III,Mn)V nanos-

tructures have a rich phenomenology in their micromagnetic parameters. In the following

text we demonstrate our scalable SO-FMR technique in lithographically patterned bars of

width ranging from several µm’s to 80 nm (Figure 1b).

In order to drive SO-FMR we pass a microwave-frequency current through the nano-bar.

This is achieved by wire-bonding the sample between an open-circuit coplanar transmis-

sion line and a low-frequency connection which also provides a microwave ground (Fig-

ure 1c). Since the microwave excitation field originates from the material properties, only

a 2-terminal nano-bar (a resistor) is required in our experiment, enabling simple and rapid

sample fabrication. For detection of FMR we utilise a frequency mixing effect based on

the anisotropic magnetoresistance (AMR).2–7 When the magnetisation precession is driven,

a time-dependent change ∆R(t) in the longitudinal resistance from the equilibrium value

R occurs (due to the AMR). The resistance oscillates with the same frequency as the mi-

crowave current, therefore causing frequency mixing and a directly measurable dc voltage

Vdc is generated across the nano-bar. This voltage is our observable providing a direct probe

of the amplitude and phase of the magnetisation precession with respect to the microwave

current.

We first show measurements on a 80 nm-wide nano-bar patterned in the [11̄0] direction

from the (Ga,Mn)(As,P) epilayer. The magnetic field dependence of Vdc is measured at

different microwave frequencies and taken at a temperature of 6 K. The frequency of the

incident current is fixed while an external dc magnetic field H0 is swept and a well-defined

resonance peak appears (Figure 2a). The peak is well-fitted by the solution of the Landau-

Lifshitz-Gilbert (LLG) equation, which describes the dynamics of precessional motion of the

magnetisation:

Vdc = Vsym
∆H2

(H0 −Hres)2 +∆H2
+ Vasy

∆H(H0 −∆H)

(H0 −Hres)2 +∆H2
(1)

Here Hres is the field at which resonance occurs and ∆H is the linewidth (half width at

half maximum) of the FMR peak. The resonance lineshape is a combination of symmetric
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and anti-symmetric Lorentzian functions with amplitudes Vsym and Vasy, respectively. Their

relative contributions are determined by the phase of the driving field with respect to the

current, and the direction of the driving field (see Equation 3 & 4).

Figure 2b plots the frequency-dependence of the resonance field Hres. It is described by

the equation for ferromagnetic resonance:19

(

ω

γ

)2

= µ2
0(Hres +H

′

ani)(Hres +H
′′

ani) (2)

where H
′

ani and H
′′

ani are terms containing the demagnetisation and anisotropy energies of

the ferromagnet (see Methods). A gyromagnetic constant γ characteristic for Mn2+ spins

of 176 GHz/T (g-factor 2) is used for the fitting. This, together with the good agreement

between the observed peaks and the fitted results from the LLG equation, confirms that we

observe the coherent precession of Mn spins.

The FMR linewidth (∆H = ∆Hinhomo+αω/γ) describes the damping in the ferromagnetic

system. The broadband nature of our setup allows us to determine the inhomogeneous

(2.5 mT) and frequency-dependent contributions to the damping (Figure 2c) that correspond

to Gilbert-damping constant α = 0.023. Using a vector field cryostat we also perform the SO-

FMR measurements for different orientations of the external magnetic field. In Figure 2d we

present the data from an in-plane scan of the magnetic field showing that there is a strong

uniaxial anisotropy perpendicular to the bar direction. By analysing the peak positions

(Figure 2e) using Equation 2 we quantify the anisotropy fields and find µ0H2‖ = −180 mT

(uniaxial) and µ0H4‖ = 68 mT (biaxial).

We now demonstrate that SO-FMR can be applied to comparative investigations of nano-

bars where the anisotropies differ from bulk values. The effect of strain-relaxation, due to the

lithographic patterning, on the magnetic anisotropy of (Ga,Mn)As nano-bars has previously

been studied by electrical transport20–22 and optically-detected FMR.8 We first compare

the effect of strain-relaxation between 500 nm bars under compressive ((Ga,Mn)As) and

tensile ((Ga,Mn)(As,P)) growth strain. The in-plane anisotropies are studied; although

(Ga,Mn)(As,P) is out-of-plane magnetised23, the applied field H0 brings the magnetisation

into plane. In (Ga,Mn)As we observe an additional uniaxial contribution to the anisotropy

(µ0HU = 32 mT) along the bar (Figure 3a & c) with a similar magnitude to previous

reports.8,20,22 By contrast in the (Ga,Mn)(As,P) nano-bar (Figure 3b & c) the sign of the

uniaxial anisotropy (µ0HU = −50.1 mT) has reversed and the easy axis is now perpendicular
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to the bar. This can be understood in terms of the sign of the strain relaxation: these

materials become magnetically easier in the direction of most compressive (least tensile)

strain. So when the tensile strain of the (Ga,Mn)(As,P) nano-bar relaxes, it introduces an

easy axis perpendicular to the bar (Figure 3d). Furthermore we measure (Ga,Mn)(As,P)

bars of different widths and observe a decrease in the strain-relaxation induced anisotropy

from the 80 nm bar (µ0HU = −270 mT) to the 500 nm bar (µ0HU = −50.1 mT), and almost

no effect of strain-relaxation in the 4 µm bar (µ0HU = −10.5 mT).

As well as being able to determine the patterning-induced change in anisotropy, we also

compare the damping among the nano-bars of different sizes. The frequency-dependent

term (related to damping) increases for decreasing bar width: α = 0.004 (4 µm-wide), 0.006

(500 nm) and 0.023 (80 nm). The significantly higher value of Gilbert damping at 80 nm

compared with the 500 nm and 4 µm bars may be due to damage during the etching process.

The frequency-independent term is relevant in the case of strain relaxation as it indicates

the inhomogeneity of anisotropy fields within the bar itself. The intermediate case of 500 nm

shows greater inhomogeneity ∆Hinhomo = 9.9 mT than the 4 µm bar ∆Hinhomo = 5.4 mT,

explained by the increased variation in local anisotropy. By contrast, for 80 nm bar reduces

to ∆Hinhomo = 2.5 mT, indicative of a high degree of strain-relaxation.

To characterise SO-FMR we must understand the direction and amplitude of the effective

field heff that drives magnetisation precession. Similar to the experiments on STT-FMR in

spin-valves12,13 we are able to perform vector magnetometry on the driving field from the

angle dependence of the amplitude of the FMR peak. For a vector driving field heff(t) =

(hx, hy, hz)e
iωt in-phase with the microwave current I(t) = (Ix, 0, 0)e

iωt, the amplitudes of

the two components of the FMR peak are:

Vsym(θ) =
I∆R

2
Asym sin(2θ)hz (3)

Vasy(θ) =
I∆R

2
Aasy sin(2θ)(hx sin θ + hy cos θ) (4)

where ∆R is the AMR coefficient of the ferromagnetic sample, θ is the angle between the

applied field H0 and the current I, and Asym(asy) are constants determined by the magnetic

anisotropies. Hence by decomposing the resonance lineshape into Vsym and Vasy, and by

measurements of the AMR and magnetic anisotropies we are able to deduce the components

of heff.

No component of Vsym is seen to behave as sin(2θ), indicating that the driving field heff
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is predominantly in-plane. Figure 4a shows the angle-dependence of Vasy for a 500 nm-

wide (Ga,Mn)As bar patterned in the [11̄0] direction. We see that Vasy(θ) comprises a

− sin(2θ) cos(θ) term, indicating that the driving field is perpendicular to I. In a [110]

device (Figure 3a) the amplitude of Vasy has the opposite sign, indicating that the driving

field has reversed. For nano-bars along [100] and [010] (Figure 3b), the Vasy curve is a

superposition of sin(2θ) sin(θ) and sin(2θ) cos(θ) functions, showing that the driving field

consists of components both parallel and perpendicular to I.

These data are most clearly seen by plotting the dependence of the magnitude and di-

rection of the effective field on the current (nano-bar) orientation (Figure 3c). Two con-

tributions to the driving field are observed with different symmetry, heff = hR + hD. The

fields hR and hD have angular dependence on I reminiscent of the angular dependence of

Rashba and Dresselhaus SO fields in the momentum space, respectively.24,25 The field with

Dresselhaus symmetry, as previously observed in magnetisation switching experiments,10

is due to the diagonal elements in the strain tensor (due to the lattice mismatch between

GaAs substrate and (Ga,Mn)As). Therefore hD changes sign between the (Ga,Mn)As and

(Ga,Mn)(As,P) materials (comparing Figure 4c and 4d). The Rashba symmetry field hR

can be modelled by off-diagonal elements in the strain tensor. This strain is not physically

present in the crystal structure of (Ga,Mn)As epilayers. It has been introduced, however,

in previous studies to model the in-plane uniaxial anisotropy present in (Ga,Mn)As and the

fitted values of this effective off-diagonal strain are typically several times smaller than the

diagonal, growth-induced strain.26 This is consistent with the observed smaller magnitude

of hR = 6.5 µT than hD = 18 µT (values given at j = 105 Acm−2). Both hD and hR are

measured to be linear in current density (Figure 4e & f). We observe a larger magnitude

of hD at a given current density in the (Ga,Mn)(As,P) nano-bars. This is explained by

the larger magnitude of the growth strain and larger resistivity (larger E at given j) of

(Ga,Mn)(As,P) as compared to the (Ga,Mn)As film.23

In conclusion, we perform variable-frequency FMR experiments on individual micro and

nano-bars of uniform ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P). The

FMR is driven by a torque at microwave frequencies whose origin lies in the internal effective

field (due to the SO-coupling and exchange interaction) of the probed ferromagnet. We have

demonstrated the utility of our SO-FMR technique by determining the rich characteristics of

magnetic anisotropy fields and damping coefficients in the studied nanoscale ferromagnetic
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semiconductor samples. In addition, we have performed vector magnetometry on the driving

field allowing us to measure a previously unobserved contribution to the current-induced

field in the studied ferromagnets with symmetry of the Rashba SO-interaction. Our work

demonstrates a new scalable FMR technique which provides an unprecedented method to

perform magnetic characterisation of uniform ferromagnetic nanostructures and to study

the nature of the current-induced effective magnetic field in SO-coupled ferromagnets.
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Figure 1, Principle of the experiment and its setup. a, Precession of the mag-

netisation vector M around the total magnetic field Htot. M is subject to a damping torque

τα due to energy dissipation, which causes the magnetic motion to relax towards Htot. The

driving torque τSO due to current-induced effective field counters the effect of damping, and

leads to steady-state motion ∂M/∂t = −γM ×Htot. b, SEM image of a 80 nm-wide bar,

patterned from the (Ga,Mn)(As,P) wafer. c, Schematic of the experimental setup.
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Figure 2, Spin-orbit driven ferromagnetic resonance. a, Vdc measured at 8, 10

and 12 GHz (circles) on the 80 nm-wide device. The resonance peaks are clearly observed

and can be well-described by Equation 1 (solid lines are the fitted results). The difference

in the signal level at different ω is caused by the frequency-dependent attenuation of the

microwave circuit. b, The resonance field Hres as a function of the microwave frequency

(black triangles). The red solid line is the fitted results to Equation 2. c, Frequency-

dependence of the FMR linewidth ∆H (black squares). The data are fitted to a straight line

to extract information on ∆Hinhomo and α. d, Vdc measured from in-plane rotational scans

of the external field H0. The colour scale represents the magnitude of the voltage. ϕ is the

angle between the magnetisation vector M and the [100] crystalline axis. e, Angle-plot of the

resonance field Hres, which is extracted by fitting to each FMR peak using Equation 1 (black

circles). The red line is a fitting curve to Equation 2 to calculate the magnetic anisotropy.
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Figure 3, SO-FMR on devices patterned from different materials and with

various sizes. a, Hres(ϕ) measured from an in-plane rotational scan on a 500 nm-wide

(Ga,Mn0.06)As bar (patterned along the [010] axis). The circles are measurement data, and

the solid line is the fitted results to Equation 2. The black arrow marks the long axis of the

nano-bar. b, Hres(ϕ) measured on a (Ga,Mn0.06)(As,P0.1) device with identical shape and

orientation. c, Comparison of the in-plane anisotropy fields Hi between the two samples.

d, Schematic of the strain relaxation in the compressively-strained (Ga,Mn)As and and

tensile-strained (Ga,Mn)(As,P) nanostructures. e, Comparison of the magnetic anisotropy

(in terms of the profiles of Hres) among 80, 500 and 4000 nm-wide (Ga,Mn)(As,P) bars. f,

The linewidth ∆H of the FMR signals measured on the three devices.
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Figure 4, Characterisation of the driving field in both (Ga,Mn)As and

(Ga,Mn)(As,P) devices. a–b, Amplitudes of the anti-symmetric part of the FMR sig-

nal Vasy, measured on a group of 500 nm-wide (Ga,Mn)As bars (circles), patterned along

different crystalline directions. The solid lines are fitted results to Equation 4. c, Plot

of the magnitude and direction of the current-induced effective field heff measured on the

(Ga,Mn)As nano-bars, scaled for a current density j = 105 A/cm2. d, Similar plot for heff

measured on the (Ga,Mn)(As,P) devices. e–f, Current density dependence of hD and hR in

both (Ga,Mn)As and (Ga,Mn)(As,P) nano-bars. A second horizontal scale is included for

the electric field, calculated from the device resistance (values given in Methods).
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