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A full quantum-mechanical description of electrons moving in three-dimensional structures with unidirec-
tional periodic modulation subject to tilted magnetic fields requires an extensive numerical calculation. To
understand magneto-oscillations in such systems it is in many cases sufficient to use the quasiclassical ap-
proach, in which the zero-magnetic-field Fermi surface is considered as a magnetic-field-independent rigid
body in kW space and periods of oscillations are related to extremal cross sections of the Fermi surface cut by
planes perpendicular to the magnetic-field direction. We point out cases where the quasiclassical treatment fails
and propose a simple tight-binding fully-quantum-mechanical model of the superlattice electronic structure.
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I. INTRODUCTION

Esaki and Tsu predicted Bloch oscillations in semiconduc-
tor superlattices in 1970,1 and since then extensive studies of
electron dynamics in these structures have been carried out.
A review of research before 1987 was given by Mann,2 who
also discussed the quantization of band structure by a mag-
netic field parallel to the layers.

Presently, various aspects of the superlattice electronic
properties are being investigated.

In quasi-two-dimensionalsquasi-2Dd layered organic con-
ductors two distinct fundamental concepts of electron inter-
layer transport are considered: the coherent and incoherent.
A comparison of both approaches was presented by McKen-
zie and Moses.3,4 It has been demonstrated that the depen-
dence of the interlayer magnetoresistance in the aforemen-
tioned natural structures on the direction of the magnetic
field is identical for both models except for the case of a field
almost parallel to the layers, when Yamaji oscillations5 can
occur. An explanation of magnetoresistance angular effects
sYamaji oscillationsd observed in layered organic conductors
has been given in the framework of the incoherent model of
interlayer coupling in anisotropic multilayer systems.6–8

In semiconductor superlattices, the band profile of which
is formed by a periodic sequence of quantum wells, the gen-
eral belief is that electron motion along the growth direction
is coherent and governed by the Bloch theorem. As a result,
the electrons can move freely parallel to the plane of wells
and their motion in the growth direction is described by
minibands.

Here we consider short-period superlattices with only the
lowest electron miniband occupied. In such a case, the su-
perlattice electronic structure is close to a 3D electron system
when the Fermi energyEF lies below the top of the miniband
and a Fermi surface forms a closed oval in the first Brillouin
zone. When the Fermi energy coincides with the top of the
miniband, the Fermi surface consists of a chain of stretched
ovals “kissing” on Brillouin zone borders in the repeated
zone scheme. For Fermi energies lying above the top, the
Fermi surface is open and acquires the form of a corrugated
cylinder. In the limiting case of impenetrable barriers the
miniband width is reduced to zero and the superlattice is

converted into multiple 2D electron layers. We also limit
ourselves to investigation of electron structure magneto-
oscillations and will not describe a specific property as mag-
netizationsde Haas–van Alphen oscillationsd or magnetore-
sistancesShubnikov–de Haas oscillationsd.

To distinguish between 2D and 3D electron systems in

superlattices, tilted magnetic fieldsBW are used. In 3D systems
the magneto-oscillations are observed for an arbitrary
magnetic-field orientation, whereas in 2D systems the oscil-
lations are determined only by a perpendicular field compo-
nent Bz and disappear in the in-plane fieldsBy. The tilted-
magnetic-field configuration was used, e.g., to confirm the
3D nature of a semiconductor superlattice on which the ex-
istence of the quantum Hall effect in 3D structures was
proved.9

The quasiclassical approach to the interpretation of mag-
netotransport experiments relies on the Onsager-Lifshitz
quantization rule.10,11 The theory states that magneto-
oscillations are periodic in 1/B and the period of oscillations
is determined by the extremal cross sections of the Fermi
surface perpendicular to the direction of the applied mag-
netic fields. A number of extremal cross sections can be ex-
amined and the shape of the 3D Fermi surface reconstructed
by tilting the sample in the magnetic field. The quasiclassical
approach is also employed in studies of chaos associated
with instability of electron orbits in the presence of a tilted
magnetic field.12–15

The theory of magnetic breakdown16–18 goes beyond the
quasiclassical approximation by taking into account tunnel-
ing between eigenstates evaluated quasiclassicallysby the
WKB methodd; i.e., it is implicitly assumed that the states
with high quantum numbers are involved.

The experimental evidence of deviations from the quasi-
classical interpretation of data measured in tilted magnetic
fields on semiconductor superlattices has been reported in
Refs. 19–22. The reason is attributed to the in-plane compo-
nent which is supposed to reduce the tunneling of electrons
between wells when their separation is comparable with the
in-plane magnetic-field lengthly=Î" / ueuBy, as first proposed
by Dingle23 in 1978.

We will study this problem theoretically using a simple
tight-binding, fully-quantum-mechanical model of the super-
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lattice electronic structure in which the generally three-
dimensional Schrödinger equation reduces to a one-
dimensional differential equation.

Our approach is an extension of the model developed in
1992 by Hu and MacDonald24 for electron bilayers subject to
tilted magnetic fields, which has been many times success-
fully applied to a semiquantitative interpretation of the ex-
perimental data since then. Two basic approximations are
employed:sid The electron layers confined in quantum wells
are strictly two-dimensional; i.e., there is no influence of the
magnetic-field in-plane component on the individual layer.
sii d The barrier width and barrier height are represented by a
single coupling parametert. The problem is thus character-
ized by two parameters: the hopping integralt and the inter-
layer distancedz.

In Sec. II we briefly summarize the textbook resultssob-
tained with the aid of the above modeld for the electronic
structure of short-period superlattices in zero magnetic field.
The discussion of the electronic structure in tilted magnetic
fields is opened in Sec. III A by a presentation of the quasi-
classical results in a form appropriate for comparison with
the subsequent quantum-mechanical treatment in Sec. III B,
which represents the central part of this paper. Section IV is
devoted to the case of strictly in-plane magnetic fields not
covered by the previous discussion. Numerical results are
offered in Sec. V followed by concluding remarks in Sec. VI.

II. TIGHT-BINDING MINIBAND

A tight-binding model of minibands in 3D superlattices
can be found, e.g., in Ref. 25. In this model, a superlattice is
formed by a periodic sequence of quantum wells separated
by barriers, with the potential energyVszd written as a sum
of potential energiesVbszd of individual wells,

Vszd = o
j

Vbsz− Zjd. s1d

HereZj = jdz, j is an integer, anddz is a period of the super-
lattice. Thez-dependent part of the Hamiltonian,Hz, then
reads

Hz =
pz

2

2m
+ Vszd. s2d

For narrow wells we considered only the lowest electron
miniband of the superlattice. Only the ground states
uxbsz−Zjdl of individual wells enter our model. Their
eigenenergies are taken as an origin of the energy scale. The
eigenenergies of excited states are assumed to lie well above
them and their presence is neglected.

In such structures the plane wave expsikxx+ ikyyd de-
scribes electrons moving in thexy plane; the electron motion
in the z direction is mediated by tunneling through the bar-
riers between wells. A wave functionxkz

szd describing the
miniband is the Bloch sum

xkz
szd = o

j

eikzZjxbsz− Zjd. s3d

The diagonal matrix elements ofHz are equal to zero
in the basis of the ground statesuxb,jl;uxbsz−Zjdl,

kxb,juHzuxb,jl=0. Only the hopping integralskxb,iuVszduxb,jl=
−td j ,i±1 are nonzero if we assume the nearest-neighbor inter-
action between the individual wells. As the hopping integrals
are negative,t is a positive constant; i.e., in our notation
t= utu.

The matrix equation which determines thez-dependent
part of the eigenenergies reads

kxbsz− ZjduE − Hzuxkz
szdl = 0. s4d

The resulting dispersion relationEskzd of a miniband has a
simple cosine form

Eskzd = − 2t cosskzdzd, s5d

which depends on two parameterst and dz. Note that the
eigenfunctionsxkz

szd, described by Eq.s3d, are fully deter-
mined by the superlattice translation symmetry.

The energy spectrum of the 3D electron motion is com-
posed ofEskzd and the energy of the free motion in thexy
plane:

EskWd =
"2

2m
skx

2 + ky
2d − 2t cosskzdzd. s6d

The period of the superlatticedz determines the size of the
Brillouin zone, defined by −p /dz,kz,p /dz. For the Fermi
energy in the range of miniband energies, −2t,EF,2t, the
Fermi surface has a closed semielliptic shape; forEF.2t, it
is an open corrugated cylinder. Examples of constant energy
surfaces are shown in Fig. 1 for a superlattice with the period
dz=24 nm, miniband width 4t=10 meV, and electron effec-
tive mass m=0.067m0. sThese parameter values will be
maintained through out the whole paper unless stated other-
wise.d With vanishing t, the system is transformed into a
sequence of independent 2D electron layers and the Fermi
surface becomes a smooth cylinder for anyEF.

III. TILTED MAGNETIC FIELDS

A. Quasiclassical approach

The standard quasiclassical approach to the electronic
structure of superlattices in tilted magnetic fields and to the
interpretation of related experiments is based on the
Onsager-Lifshitz quantization rule

FIG. 1. Fermi surfaces of a superlattice plotted for Fermi ener-
gies lying 5 meV, 7.5 meV, 10 meV, 15 meV, and 20 meV above
the miniband bottom. The tilt anglew is 65°.
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Ak =
2pueuB

"
Sn +

1

2
D , s7d

whereAk is an area of the extremal cross section of the Fermi
surface, perpendicular to the direction of the applied mag-

netic fieldBW . The plane perpendicular toBW , which cuts thekz
axes atkz=kz0, is described by

kz =
By

Bz
ky − kz0. s8d

There are two extremal cross sections:kz0=p /dz corresponds
to the “neck” orbit andkz0=0 to the “belly” orbit. In real
space, the electrons move along the orbits which have the
same shapes as the contours of the cross sections, but are
rotated by 90° and scaled by a factor" / ueuB.

It follows from Eq.s7d that, e.g., the magneto-oscillations
are periodic in 1/B with the periods determined byAk.

Here we rewrite the Onsager-Lifshitz rule in a form which
employs projectionsAk,z of extremal cross sections. The rea-
son is that this formfof course equivalent to Eq.s7dg is more
appropriate for a comparison with the quantum-mechanical
treatment described in the next section.

Let us denote byw the angle between the growth direction

and the direction of the magnetic field; then,BW

;s0,B sinw ,B coswd. Multiplication of Eq. s7d by cosw
leads to the expression

Ak,z =
2pueuBz

"
Sn +

1

2
D , s9d

in which the total fieldB was replaced by the componentBz
and the cross-section areaAk of a Fermi surface by its pro-
jection to the planekz=0, denoted byAk,z. Similarly, multi-
plication of Eq.s7d by sinw leads to the relation between the
componentBy and the projectionAk,y of Ak to the plane
ky=0.

With the energy spectrum given by Eq.s6d, the projection
Ak,z of the cross sections to the planez=0 can be written as

Ak,z =
Î2m

"
2EÎE −

"2ky
2

2m
+ 2t cosskydy − kz0dzddky,

s10d

wheredy=sBy/Bzddz.
Examples of projectionsAk,y corresponding to “belly” and

“neck” cross sections of the corrugated cylinder are shown in
Fig. 2. In that case two periods of magneto-oscillations exist.
The contribution of orbits corresponding tokz0 between
−p /dz and p /dz to the oscillation amplitude is in general
weaker, except for special cases of “extended” orbits for cer-
tain shapes of the Fermi surfaces and tilt angles. Note that a
sudden step of the cross-section area, shown in Fig. 2 for a
generalkz0, can occur also for the extremal “belly” position,
if the field is slightly tilted from 65° towards the perpendicu-
lar field configuration, as obvious from an inspection of
Fig. 1.

A single period corresponds to the Fermi surface formed
by disconnected ovals. For independent electron layerssa
smooth Fermi cylinderd, Eq. s7d yields the energy spectrum

En="vzsn+ 1
2

d, wherevz= ueuBz/m, for any tilt angle. In that
case the “belly” and “neck” areas are identical and only one
oscillation period exists.

B. Quantum-mechanical approach

The simple tight-binding model described in Sec. II can
be generalized for the case of magnetic fields of arbitrary
magnitude and orientation.

Let us consider the superlattice subjected to a tilted mag-

netic field BW ;s0,By,Bzd given by the vector potential

AW =sByz−Bzy,0 ,0d. The 3D HamiltonianH of such a system,

H =
1

2m
spW − eAW d2 + Vszd, s11d

depends on the variablex only through the momentum com-
ponent px and, consequently, the corresponding 3D wave
function can be written in the form expsikxxdFsy,zd. The
function Fsy,zd is the solution to the 2D Schrödinger equa-
tion with the Hamiltonian

Hy,z =
py

2 + pz
2

2m
+

1
2m

f"kx + ueusByz− Bzydg2 + Vszd. s12d

This expression describes a linear array of quantum dots with
the minima of their potential energy at cross sections of the
lines

"kx + ueusByz− Bzyd = 0,

z= Zj , s13d

as shown in Fig. 3. The coordinates of minima are given by

RW j = jdW, where vectordW ;sdy,dzd anddy=sBy/Bzddz. The dis-
tance between the two minima isd=Îdy

2+dz
2.

The eigenenergies of the corresponding Schrödinger
equation are degenerated inkx; the resultingkx degeneracy is
ueuBz/h. The choice ofkx means only an unessential shift of
the origin of the coordinatey or z, and we can setkx=0
without lost of generality.

We further assume, in agreement with Hu and
MacDonald,24 that the electron in an isolated well is still
described byxbsz−Zjd, as in the zero-magnetic-field case.

FIG. 2. ProjectionsAk,y of three cross sections of the corrugated
cylinder corresponding toEF=15 meVssee Fig. 1d. Except for the
“belly” and “neck” positions a generalkz0 is considered, close to the
critical value for which the sudden drop of the area occurs.
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The main effect caused by the application ofBW is the restric-
tion of the in-plane motion of electrons in they direction by
the parabolic “magnetic” potential with the center aty=Yj.
Thus, the zero-field plane wave expsikyyd should be replaced
by a localized wave function which we denotefsy−Yjd.

Since the Hamiltonians12d is periodic with the periodd,
we can write the approximate wave functionFsy,zd in the
form of a Bloch sum

Fsy,zd = o
j

eikWRW jxbsz− Zjdfsy − Yjd, s14d

wherekW ;sky,kzd is a wave vector oriented in thedW direction.
The magnitude of the wave vector,k=Îky

2+kz
2, varies be-

tween −p /d andp /d, the borders of the 1D Brillouin zone.
The matrix equation

kxbsz− ZjduE − Hy,zuFsy,zdl = 0 s15d

yields a 1D Schrödinger equation from which the eigenfunc-
tions f j =fsy−Yjd and the corresponding eigenenergies are
to be determined. Using

fsy + dyd = expSi
py

"
dyDfsyd, s16d

we obtain for eachj

F py
2

2m
+

mvz
2

2
sy − Yjd2 − 2t cosSpy

"
dy − kWdWDGf j = Ef j .

s17d

As these equations are independent and equivalent for all
values ofj , we can limit ourselves to a single equation with,
e.g., j =0. Employing thep representation, Eq.s17d can be
written as

F−
m"2vz

2

2
]2

]py
2

+
py

2

2m
− 2t cosSpy

"
dy − kWdWDGf0 = Ef0,

s18d

where f0 is a function of py, f0=f0spyd. Thus the 3D
Schrödinger equation is reduced to 1D, with the energy spec-
trum formed by 1D Landau subbandsEnskWd. This is the cen-
tral result of this paper.

The parabolic well inp space modulated by the cosine
potential is shown in Fig. 4 for two values of the phase

factor, 0 andp. The choicekW ·dW =0 corresponds to the “belly”

orbit andkW ·dW =p to the “neck” orbit in quasiclassical termi-
nology.

In principle, Eq.s18d can be solved quasiclassicallysby
the WKB methodd or quantum mechanically. The choice of
the method depends on the system parameters.

As anticipated, the quasiclassical solution leads to the ex-

pressions10d. Note that the phase factorkW ·dW can be replaced
by kz0dz. fThe projectionkz0 of kW onto thekz axis satisfies
kz0P s−p /dz, +p /dzd.g Generally, the WKB method is appli-
cable if "vz!4t and many states below the Fermi level are
occupied.

The gray lines shown in Fig. 4 denote tops of the “poten-
tial” barriers which separate the classically inaccessible re-
gions of py. The magnetic breakdown theory describes tun-
neling between twoquasiclassicalorbits from neighboring
regions.

In semiconductor superlattices"vz becomes comparable
to 4t in relatively weak magnetic fields. Two lowest eigen-
states calculated quantum mechanically are shown in Fig. 4.
The wave functions extend over several local minima of the
“potential,” just in opposition to requirements of the quasi-
classical approximation and the magnetic breakdown theory,
which clearly cannot be applied in this case.

IV. IN-PLANE MAGNETIC FIELD

The above approach fails for the caseBz→0. In an in-

plane magnetic fieldBW =s0,By,0d the vector potential takes

the form AW =sByz,0 ,0d and the one-electron Hamiltonian
s12d reduces to

FIG. 3. sad The schematic view of the superlattice potential.sbd
The coordinates of minima of the “electromagnetic” confining po-
tential. An electron is bound byVbsz−Zjd in the z direction and by
the magnetic harmonic potentiale2sByZj −Bzyd2/2m in the y
direction.

FIG. 4. The modulated parabolic well inp space forsad the
“belly” position and sbd the “neck” position ofkz0. Two lowest
eigenstates and eigenenergies are calculated forBz=3 T. The gray
lines correspond to the critical parameters of quasiclassical orbits, at
which the area calculated using Eq.s10d changes abruptly. The
dimensionless variablek is determined by "k=,zpy, where
,z=Î" / ueuBz.
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Hy =
py

2 + pz
2

2m
+

1
2m

s"kx + ueuByzd2 + Vszd. s19d

Treating the interwell hopping in a tight-binding approxima-
tion as in Sec. III B, the Hamiltonians19d transforms to a
three-diagonal matrix with diagonal and off-diagonal ele-
ments given by

Hj ,j =
"2

2m
skx + kjd2 +

"2ky
2

2m
, Hj ,j±1 = − t, s20d

where kj = jK0 is the magnetic-field-dependent wave vector
with K0= ueuBydz/"=dz/,y

2. This is a matrix form of the
Mathieu equationssee, e.g., Ref. 26d.

Solving the eigenvalue problem we get a number of Lan-
dau subbbandsEnskxd which areK0 periodic inkx. Then the
full energy spectrum is given by

Enskx,kyd = Enskxd +
"2ky

2

2m
. s21d

The lowest subbandsEnskxd are shown in Fig. 5. The
states from neighboring layers, described by dotted parabo-
las, are mixed at the border of Brillouin zones where the
free-electron parabolas cross. The electrons tunnel between
wells near the cross points and energy gaps open there.

This is reflected in the shape of equienergetic lines
EF=Enskx,kyd. For large enoughBy the separation of centers,
K0, becomes larger than the diameter of the free-electron
Fermi circles 2kF. The contours do not cross and electrons
cannot tunnel at all. Note that this condition is equivalent to
dz.2,ykF, proposed by Dingle23 as mentioned in the Intro-
duction.

With lowering the fieldsand smallerK0d the Fermi con-
tours first “kiss” on borders of Brillouin zones whenEF
touches the top of the lowest Landau subband. Then they
merge into an open contour and a new Fermi oval, belonging
to the second subband, appears whenEF reaches its bottom,
etc.

This is illustrated by dashed lines in Fig. 5. For simplicity
we use fixedBy and variableEF, instead of the fixed Fermi
energy and sweepingBy.

Two types of critical magnetic fieldssenergiesd can be
distinguished:Bc1 and Bc2. When the Fermi energy touches
the bottom of a Landau subband atBc1, there is a minimum
in Enskx,kyd and the steplike van Hove singularity appears in
the density of states. The second possibility is the Fermi
energy coinciding with the maximum of anEnskxd at Bc2. It
corresponds to the saddle point inEnskx,kyd and the logarith-
mic van Hove singularity results in the density of states.

V. NUMERICAL EXAMPLE

It is clearly illustrated in Fig. 4 that the quantum-
mechanical regime, when only a few Landau subbands are
occupied and the quasiclassical approach is not valid, can be
reached in relatively weak magnetic fields for realistic pa-
rameters of superlattices. In the quasiclassical approach the
electron motion in the effective “potential” should be limited
by local side maxima, due to the cosine modulation. In quan-
tum mechanics electrons can tunnel through the local barri-
ers even if their energy is below the maxima. In principle, it
is possible to describe tunneling through the barriers quasi-
classically as the “magnetic breakdown,” but it seems not
very appropriate for states with lowest quantum numbers.

In experiments, usually the concentration of carriers is
kept fixed and the magnetic field is varied. In most cases
experimental data reflect the field-induced singularities of the
density of states. Therefore, we concentrate in our numerical
example on the evaluation of the density-of-states field de-
pendence for a series of tilt angles. The results of both ap-
proaches will be compared.

For simplicity, we start with the analytically solvable case
of perpendicular magnetic fields.

A. Perpendicular magnetic field

In the quasiclassical approximation, two extremal circular
orbits, a “belly” and a “neck,” can be found on the corru-
gated cylinder with the cross sections

Ak,belly = p
2m

"2 sEF + 2td, Ak,neck= p
2m

"2 sEF − 2td. s22d

For these orbits, the quantization conditions7d can be rewrit-
ten as

EF ± 2t = "vzSn +
1

2
D , s23d

which yields two periods of oscillations

DS 1

Bz
Dbelly

neck

=
"ueu

msEF ± 2td
. s24d

It follows from Eq. s24d that for the Fermi energy close to
the miniband top the period of a “neck” orbit increases and
reaches infinity atEF=2t. For EF within the miniband the
Fermi surface consists of disconnected ovals and only one
oscillation period exists, corresponding to the “belly” orbits.

The energy spectrum obtained by a full-quantum-
mechanical solution of the Schrödinger equation profits from

FIG. 5. The energy dispersion curvesEnskxd. The dotted lines
correspond to independent 2D electron layers,t=0. The dashed
lines denote subband boundaries.
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the fact that in perpendicular magnetic fieldsdy=0. Conse-
quently, Eq.s18d is reduced to the standard equation of free-
electron motion in perpendicular magnetic fields. Landau
subbands are formed by a sum of Landau energy levels and
the 1D miniband, like in the zero-field case:

EnskWd = "vzSn +
1

2
D − 2t cosskzdzd. s25d

Due to the periodic potential, the Landau levels are broad-
ened into Landau subbands.

The corresponding density of states per layer,gsEd, can be
evaluated analytically and reads

gsEd =
ueuBz

h
1
po

n

1

Î4t2 − fE − "vzsn +
1
2dg2

. s26d

Two van Hove singularitiessof the type 1/ÎEd are due to the
maximum and minimum of the Landau subband at the bor-
ders of the Brillouin zone. Their positions on the energy axis
are given by Eq.s23d; i.e., they correspond to the extremal
“belly” and “neck” orbits obtained quasiclassically. At fixed
Fermi energy, these extrema define two oscillation periods in
the Bz dependence of the density of states.

B. Tilted magnetic fields

To stress the difference between the quasiclassical and
quantum-mechanical solutions, we shall consider a superlat-
tice with the closed semielliptic Fermi surface, presented in
Fig. 1.

In such a case the quasiclassical solution leads to single-
period oscillations, with the period depending on the area of
the “belly” extremal cross sections, which vary with the tilt
angle. With the distance of nonextremal to extremal orbits
their contribution to the oscillation amplitude smoothly van-
ishes.

As the largest difference between the quasiclassical and
quantum-mechanical approaches is expected for lowest

eigenenergies, we present in Fig. 6 the density of states of
three lowest Landau subbands calculated for the fixedEF as
a function of 1/Bz. To study the increasing influence of the
in-plane field componentBy, the tilt angle is varied from the
perpendicular position,w=0, towards the in-plane field con-
figuration. In addition to the curves obtained from the
quantum-mechanical solution of Eq.s18d, the position of the
quasiclassical “belly” orbits is shown.

As mentioned above, both methods yield exactly the same
results in the perpendicular magnetic-field orientation,w=0,
and only small deviations of singularities corresponding to
the “belly” orbits are found for angles up to 45°. At 45°
marked deviations appear. The “neck” singularity returns to
the first Landau subband; i.e., its width becomes finite.
Moreover, an additional singularity occurs in the second
Landau subband.

Above 45° the two solutions are completely different.
While the period of quasiclassical oscillations monotonously
increases with the decreasing area of the “belly” cross sec-
tion, the quantum-mechanical solution exhibits new features.
Two singularities in the first Landau subband become closer
asw grows; the width of the subband shrinks and around 65°
it remains at a level.

In the second Landau subband, an additional singularity
shows up besides the “belly” and “neck” singularities which
vanishes above 65°. Then also the second subband shrinks in
a level.

Four singularities appear in the third subband; for higher
w their number is subsequently reduced to 3 and then 2 be-
fore the subband shrinks to a level. Obviously, the number of
singularities is related to the number of nodes of the corre-
sponding wave functions.

C. In-plane magnetic fields

For the semielliptic Fermi surface there is no difference
between the in-plane and tilted magnetic field in the quasi-
classical approximation. The single period of oscillations is

FIG. 6. The magnetic-field-dependent density of states calcu-
lated for Fermi energy 7.5 meV above the miniband bottom. First
three Landau subbands are shown. The gray lines correspond to
singularities calculated quasiclassically.

FIG. 7. The magnetic-field-dependent density of states calcu-
lated for Fermi energy 7.5 meV above the miniband bottom. The
gray line corresponds to the singularity calculated quasiclassically.
sOnly one singularity is depicted.d
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determined by the extremal cross section which is now in the
kxkz plane. The corresponding singularity is shown in Fig. 7
together with the density of states which results from pro-
cessing the numericaly obtained eigenenergiesEnskx,kyd.
Both results show a pronounced qualitative difference.

The quasiclasical approach does not distinguish between
the perpendicular and in-plane magnetic fields. It assumes
that the 1D subbands attached to the quasiclassicaly calcu-
lated Landau levels are emptied by increasing the magnetic
field. But this is correct only for the perpendicular field ori-
entation.

In the quantum-mechanical picture 2D Landau subbands
are emptied and instead of the van Hove singularities of
1/ÎE type, logarithmic and steplike singularities appear.

VI. CONCLUSIONS

In superlattices with perioddz, the in-plane magnetic-field
componentBy displaces the origins of the Fermi circles of

neighboring electron layers byueuBydz/". Above the critical
field By,c=2"kF / ueudz the Fermi circles with radiikF cannot
cross and tunneling is impossible.

The theoretical description is particularly simple for the
tight-binding model of the electronic structure; the general-
ized Landau eigenenergies in tilted magnetic fields can be
found as solutions to a one-dimensional Schrödinger equa-
tion.

The quasiclassical solution to this 1D problem yields the
standard Onsager-Lifshitz rule. The full-quantum-mechanical
solution is necessary to describe the 3D→2D transition—
i.e., the transition to a sequence of independent 2D electron
layers.
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