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Electronic structure of three-dimensional superlattices subject to tilted magnetic fields

N. A. Goncharuk, L. Smitka, J. Kwera, and K. Vyborny
Institute of Physics, Academy of Science of the Czech Republic, Cukrovarnicka 10, 162 53 Praha 6, Czech Republic
(Received 10 September 2004; published 20 May 2005

A full quantum-mechanical description of electrons moving in three-dimensional structures with unidirec-
tional periodic modulation subject to tilted magnetic fields requires an extensive numerical calculation. To
understand magneto-oscillations in such systems it is in many cases sufficient to use the quasiclassical ap-
proach, in which the zero-magnetic-field Fermi surface is considered as a magnetic-field-independent rigid
body ink space and periods of oscillations are related to extremal cross sections of the Fermi surface cut by
planes perpendicular to the magnetic-field direction. We point out cases where the quasiclassical treatment fails
and propose a simple tight-binding fully-quantum-mechanical model of the superlattice electronic structure.
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[. INTRODUCTION converted into multiple 2D electron layers. We also limit
ourselves to investigation of electron structure magneto-
Esaki and Tsu predicted Bloch oscillations in semiconducoscillations and will not describe a specific property as mag-
tor superlattices in 197band since then extensive studies of netization(de Haas—van Alphen oscillationsr magnetore-
electron dynamics in these structures have been carried oistance(Shubnikov—de Haas oscillations _
A review of research before 1987 was given by Mamwho To distinguish between 2D apd 3D electron systems in
also discussed the quantization of band structure by a maguperlattices, tilted magnetic fiel@sare used. In 3D systems
netic field parallel to the layers. the magneto-oscillations are observed for an arbitrary
Presently, various aspects of the superlattice electronimagnetic-field orientation, whereas in 2D systems the oscil-
properties are being investigated. lations are determined only by a perpendicular field compo-
In quasi-two-dimensiondljuasi-2D layered organic con- nentB, and disappear in the in-plane fielé. The tilted-
ductors two distinct fundamental concepts of electron intermagnetic-field configuration was used, e.g., to confirm the
layer transport are considered: the coherent and incoherer8D nature of a semiconductor superlattice on which the ex-
A comparison of both approaches was presented by McKeristence of the quantum Hall effect in 3D structures was
zie and Moseé? It has been demonstrated that the depenproved?
dence of the interlayer magnetoresistance in the aforemen- The quasiclassical approach to the interpretation of mag-
tioned natural structures on the direction of the magnetimetotransport experiments relies on the Onsager-Lifshitz
field is identical for both models except for the case of a fieldquantization ruld®!! The theory states that magneto-
almost parallel to the layers, when Yamaji oscillatioean  oscillations are periodic in B and the period of oscillations
occur. An explanation of magnetoresistance angular effectis determined by the extremal cross sections of the Fermi
(Yamaji oscillation$ observed in layered organic conductors surface perpendicular to the direction of the applied mag-
has been given in the framework of the incoherent model ohetic fields. A number of extremal cross sections can be ex-
interlayer coupling in anisotropic multilayer systefn8. amined and the shape of the 3D Fermi surface reconstructed
In semiconductor superlattices, the band profile of whichby tilting the sample in the magnetic field. The quasiclassical
is formed by a periodic sequence of quantum wells, the genapproach is also employed in studies of chaos associated
eral belief is that electron motion along the growth directionwith instability of electron orbits in the presence of a tilted
is coherent and governed by the Bloch theorem. As a resultmagnetic field:?-1°
the electrons can move freely parallel to the plane of wells The theory of magnetic breakdoWn'® goes beyond the
and their motion in the growth direction is described byquasiclassical approximation by taking into account tunnel-
minibands. ing between eigenstates evaluated quasiclassi¢hilythe
Here we consider short-period superlattices with only theVNKB method; i.e., it is implicitly assumed that the states
lowest electron miniband occupied. In such a case, the swith high quantum numbers are involved.
perlattice electronic structure is close to a 3D electron system The experimental evidence of deviations from the quasi-
when the Fermi energlyr lies below the top of the miniband classical interpretation of data measured in tilted magnetic
and a Fermi surface forms a closed oval in the first Brillouinfields on semiconductor superlattices has been reported in
zone. When the Fermi energy coincides with the top of theRefs. 19-22. The reason is attributed to the in-plane compo-
miniband, the Fermi surface consists of a chain of stretchedent which is supposed to reduce the tunneling of electrons
ovals “kissing” on Brillouin zone borders in the repeatedbetween wells when their separation is comparable with the
zone scheme. For Fermi energies lying above the top, thim-plane magnetic-field Iengﬂ;;:\s’ﬁ/|e|By, as first proposed
Fermi surface is open and acquires the form of a corrugatedy Dingle*® in 1978.
cylinder. In the limiting case of impenetrable barriers the We will study this problem theoretically using a simple
miniband width is reduced to zero and the superlattice igight-binding, fully-quantum-mechanical model of the super-
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lattice electronic structure in which the generally three-
dimensional Schrédinger equation reduces to a one-
dimensional differential equation.

Our approach is an extension of the model developed in
1992 by Hu and MacDonatifor electron bilayers subject to
tited magnetic fields, which has been many times success-
fully applied to a semiquantitative interpretation of the ex-
perimental data since then. Two basic approximations are
employed:(i) The electron layers confined in quantum wells
are strictly two-dimensional; i.e., there is no influence of the
magnetic-field in-plane component on the individual layer.
(ii) The barrier width and barrier height are represented by a FIG. 1. Fermi surfaces of a superlattice plotted for Fermi ener-
single coupling parametdr The problem is thus character- gies lying 5 meV, 7.5 meV, 10 meV, 15 meV, and 20 meV above
ized by two parameters: the hopping integrahd the inter-  the miniband bottom. The tilt angle is 65°.
layer distanced,.

In Sec. Il we briefly summarize the textbook reSL(tbb_- (Xb,[H2X6,j)=0. Only the hopping integraky,|V(2)|xs,)=
tained with the aid of the above modgdbr the electronic ~t5,+; are nonzero if we assume the nearest-neighbor inter-

structure of short-period superlattices in zero magnetic fieldycion petween the individual wells. As the hopping integrals
The discussion of the electronic structure in tilted magnetic; o negativet is a positive constant; i.e., in our notation

fields is opened in Sec. Il A by a presentation of the quasiy=|;|.

classical results in a form appropriate for comparison with  The matrix equation which determines taalependent
the subsequent quantum-mechanical treatment in Sec. Il Epart of the eigenenergies reads

which represents the central part of this paper. Section IV is

devoted to the case of strictly in-plane magnetic fields not <Xb(z—Zj)|E— HZ|sz(z)> =0. (4)
covered by the previous discussion. Numerical results are

offered in Sec. V followed by concluding remarks in Sec. V1. The resulting dispersion relatida(k,) of a miniband has a
simple cosine form

E(k) = - 2t codk,d,), (5
A tight-binding model of minibands in 3D superlattices .
can be found, e.g., in Ref. 25. In this model, a superlattice i¥Nich depends on two parametarand d,. Note that the

formed by a periodic sequence of quantum wells separate@igenfunctionsy, (z), described by Eq(3), are fully deter-
by barriers, with the potential energy(z) written as a sum Mined by the superlattice translation symmetry.

II. TIGHT-BINDING MINIBAND

of potential energie¥,(2) of individual wells, The energy spectrum of the 3D electron m.otioln is com-
posed ofE(k,) and the energy of the free motion in thg
V(2) = X Vi(z-Z)). (1)  plane:
j
I
HereZ;=jd,, j is an integer, and, is a period of the super- E(k) = %(ki +K) — 2t codk,d,). (6)
lattice. Thez-dependent part of the Hamiltoniahi,, then
reads The period of the superlatticg, determines the size of the
) Brillouin zone, defined by 7/d,<k,<w/d,. For the Fermi
H. = Pz +V(2) 2) energy in the range of miniband energiest <E. <2t, the
Z 2m ' Fermi surface has a closed semielliptic shape Ber 2t, it

For narrow wells we considered only the lowest electroniS @ open corrugated cylinder. Examples of constant energy
miniband of the superlattice. Only the ground statesSurfaces are shown in Fig. 1 for a superlattice with the period
xo(z-Z)) of individual wells enter our model. Their d:=24 nm, miniband width #=10 meV, and electron effec-
eigenenergies are taken as an origin of the energy scale. TH¥€ Massm=0.067m,. (These parameter values will be

eigenenergies of excited states are assumed to lie well abot@intained through out the whole paper unless stated other-
them and their presence is neglected. wise) With vanishingt, the system is transformed into a

In such structures the plane wave Gkpx+iky) de-  Seduence of independent 2D electron layers and the Fermi
y .
scribes electrons moving in the plane; the electron motion surface becomes a smooth cylinder for afy
in the z direction is mediated by tunneling through the bar-
riers betw'een wells. A wave functiog (2) describing the IIl. TILTED MAGNETIC FIELDS
miniband is the Bloch sum
A. Quasiclassical approach
_ ik,Z: _7 . . :
sz(z)‘z_el “xo(2=Zj). ©) The standard quasiclassical approach to the electronic
' structure of superlattices in tilted magnetic fields and to the
The diagonal matrix elements dfl, are equal to zero interpretation of related experiments is based on the
in the basis of the ground stately,;)=|x,(z-Z)),  Onsager-Lifshitz quantization rule
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_27T|6|B( l)
k — % n+2 ’ (7)

whereA, is an area of the extremal cross section of the Fermi
surface, perpendicular to the direction of the applied mag-

netic fieldB. The plane perpendicular @, which cuts thek,
axes atk,=k,y, is described by

B
k,= —ka = ky. (8)
B,
There are two extremal cross sectiokg=7/d, corresponds FIG. 2. Projectiong , of three cross sections of the corrugated

to the “neck” orbit andk,,=0 to the “belly” orbit. In real cylinder corresponding t&-=15 meV (see Fig. 1 Except for the
space, the electrons move along the orbits which have thelly” and “neck” positions a generdly is considered, close to the
same shapes as the contours of the cross sections, but &réical value for which the sudden drop of the area occurs.
rotated by 90° and scaled by a facfof|e|B.

It follows from Eq.(7) that, e.g., the magneto-oscillations g =7 w,(n+3), wherew,=|e|B,/m, for any tilt angle. In that

are periodic in 1B with the periods determined .. case the “belly and “neck” areas are identical and only one
Here we rewrite the Onsager-Lifshitz rule in a form which gscillation period exists.

employs projectiongy , of extremal cross sections. The rea-
son is that this forniof course equivalent to Eq7)] is more
appropriate for a comparison with the quantum-mechanical B. Quantum-mechanical approach
treatment described in the next section. . . - . .
Let us denote by the angle between the growth direction The S|mple tight-binding model descqbed in Sec. ||.can
R _ _ . be generalized for the case of magnetic fields of arbitrary
and the direction of the magnetic field; therB  magnitude and orientation.

=(0,Bsing,B cosg). Multiplication of Eq. (7) by cose Let us consider the superlattice subjected to a tilted mag-
leads to the expression netic field B=(0,B,,B, given by the vector potential
_ 277|e|Bz<n . }) ) A=(Byz-B,y,0,0. The 3D HamiltoniarH of such a system,
K,z ~ ]
' h 2
_ 1 )2
in which the total fieldB was replaced by the componedy H= %(p —eA+V(2), (11)

and the cross-section aréq of a Fermi surface by its pro-

jection to the plané,=0, denoted byA,. Similarly, multi- depends on the variableonly through the momentum com-

plication of Eq.(7) by sine leads to the relation between the Ponentp, and, consequently, the corresponding 3D wave

componentB, and the projectiond,, of A, to the plane function can be written in the form ekx)®(y,2). The

k,=0. function ®(y, z) is the solution to the 2D Schrédinger equa-

With the energy spectrum given by E@), the projection  tion with the Hamiltonian

A, of the cross sections to the plare0 can be written as D2+ p?

_ Py

1
T Z 4 Selikc+ el(Byz BY)P+V(2). (12

This expression describes a linear array of quantum dots with
(10)  the minima of their potential energy at cross sections of the

\2m

= f\/E——+2tCOE(kd — kpdy)dk,

lines
whered,=(B,/B,)d,.
Examples of projectiond , corresponding to “belly” and hik+ |el(B,z—By) =0,
“neck” cross sections of the corrugated cylinder are shown in
Fig. 2. In that case two periods of magneto-oscillations exist. z=1, (13

The contribution of orbits corresponding tg, between
—w/d, and 7/d, to the oscillation amplitude is in general @S Shown in Fig. 3. The coordinates of minima are given by
weaker, except for special cases of “extended” orbits for CerR jd, where vectod= (dy,d,) andd,=(B,/B,)d;. The dis-
tain shapes of the Fermi surfaces and tilt angles. Note that ance between the two mlnlma<[i=s=\d)2/+d2
sudden step of the cross-section area, shown in Fig. 2 for a The eigenenergies of the corresponding Schrddinger
generalk,, can occur also for the extremal “belly” position, equation are degeneratedky the resulting, degeneracy is
if the field is slightly tilted from 65° towards the perpendicu- |e|B,/h. The choice ok, means only an unessential shift of
lar field configuration, as obvious from an inspection ofthe origin of the coordinatg or z, and we can sek,=0
Fig. 1. without lost of generality.

A single period corresponds to the Fermi surface formed We further assume, in agreement with Hu and
by disconnected ovals. For independent electron lay@rs MacDonald?* that the electron in an isolated well is still
smooth Fermi cylinder Eq. (7) yields the energy spectrum described byy,(z-Z;), as in the zero-magnetic-field case.
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FIG. 3. (a) The schematic view of the superlattice potentih).
The coordinates of minima of the “electromagnetic” confining po-
tential. An electron is bound byy(z-Z2;) in the z direction and by
the magnetic harmonic potentia*(B,Z;-B,y)?/2m in the y
direction.

The main effect caused by the applicatiorﬁni[s the restric-

tion of the m-plane mo_tlon of elgctror_ls in tyedirection by “belly” position and (b) the “neck” position ofk,. Two lowest

the parabolic “magnetic” potential with the centeryatY;.  gjjanstates and eigenenergies are calculate®foB T. The gray

Thus, the zero-field plane wave digy) should be replaced  jines correspond to the critical parameters of quasiclassical orbits, at

by a localized wave fl{nCtlon.thh we d?nﬁﬁéy‘Yj)_- which the area calculated using E(L0) changes abruptly. The
Since the Hamiltoniart12) is periodic with the periodi,  dimensionless variablex is determined by#x=¢,p,, where

we can write the approximate wave functidiy,z) in the  ¢,=+#/|eB,.

form of a Bloch sum

FIG. 4. The modulated parabolic well ip space for(a) the

The parabolic well inp space modulated by the cosine
— kR — 7. -VY.
qj(y'z)_zel ixo(Z=Z)dly-Y)), (14 potential is shown in Fig. 4 for two values of the phase

i -
R . factor, 0 andr. The choice&k-d=0 corresponds to the “belly”
wherek= (ky, k) is a wave vector oriented in tfeedirection.  orhit andk-d=1 to the “neck” orbit in quasiclassical termi-

The magnitude of the wave vectdi=k>+kZ, varies be-  nology.
tween -rr/d _and w/d! the borders of the 1D Brillouin zone. In principle, Eq.(18) can be solved quasiclassicallpy
The matrix equation the WKB methodl or quantum mechanically. The choice of

e _ the method depends on the system parameters.
(X6(2=Z)|E ~ Hy|®(y,2) =0 (15 As anticipated, the quasiclassical solution leads to the ex-
yields a 1D Schradinger equation from which the eigenfuncpression(10). Note that the phase factérd can be replaced
tions ¢;=¢(y-Y)) and the corresponding eigenenergies ar&,y | 4. [The projectionk, of K onto thek, axis satisfies

to be determined. Using k€ (—7/d,, +/d,).] Generally, the WKB method is appli-
p cable ifhw,<4t and many states below the Fermi level are
Py +dy) = exp(i %Ydy) (), (16)  occupied.
The gray lines shown in Fig. 4 denote tops of the “poten-
we obtain for each tial” barriers which separate the classically inaccessible re-
E— o giol_ns og py- The magneti_clbregkollovt\;_n tr;eory de_s<r:]rti)be_s tun-
Py 7 vy Py 5 _ neling between twauasiclassicalorbits from neighborin
om’ 2 (y=Y)~ -2 cos< # dy kd” ¢ =Ed;. regio%s. ™ ’ ’
(17) In semiconductor superlatticésn, becomes comparable

4t in relatively weak magnetic fields. Two lowest eigen-
ates calculated quantum mechanically are shown in Fig. 4.
' The wave functions extend over several local minima of the
“potential,” just in opposition to requirements of the quasi-
classical approximation and the magnetic breakdown theory,
which clearly cannot be applied in this case.

As these equations are independent and equivalent for
values ofj, we can limit ourselves to a single equation with
e.g.,j=0. Employing thep representation, Eq17) can be
written as

Py

mhzwg&z S(py ->")
{— 5 (9—p)2l+%—2t00 %dy—kd ¢o=Edq,

(18) IV. IN-PLANE MAGNETIC FIELD

where ¢, is a function of p,, ¢o=do(p,). Thus the 3D The above.ap_progch fails for the caBg— 0. In_an in-
Schrodinger equation is reduced to 1D, with the energy spedlane magnetic field=(0,B,,0) the vector potential takes

trum formed by 1D Landau subbanBs(k). This is the cen- the form ,&:(Byz,0,0) and the one-electron Hamiltonian
tral result of this paper. (12) reduces to
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Two types of critical magnetic fieldéenergiey can be
distinguishedB;; and B.,. When the Fermi energy touches
the bottom of a Landau subbandBy;, there is a minimum
in Eq(ky,ky) and the steplike van Hove singularity appears in
the density of states. The second possibility is the Fermi
energy coinciding with the maximum of &g, (k,) at B,. It
corresponds to the saddle pointiq(k,, k) and the logarith-
mic van Hove singularity results in the density of states.

V. NUMERICAL EXAMPLE

It is clearly illustrated in Fig. 4 that the quantum-
x mechanical regime, when only a few Landau subbands are
occupied and the quasiclassical approach is not valid, can be
reached in relatively weak magnetic fields for realistic pa-
rameters of superlattices. In the quasiclassical approach the
electron motion in the effective “potential” should be limited
by local side maxima, due to the cosine modulation. In quan-
tum mechanics electrons can tunnel through the local barri-
ers even if their energy is below the maxima. In principle, it
is possible to describe tunneling through the barriers quasi-
classically as the “magnetic breakdown,” but it seems not
very appropriate for states with lowest quantum numbers.
In experiments, usually the concentration of carriers is
kept fixed and the magnetic field is varied. In most cases
72 2,2 experimental data reflect the field-induced singularities of the
Hj;= 2—(kx + kj)2 + om Hjjz1=—1, (20 density of states. Therefore, we concentrate in our numerical
m m example on the evaluation of the density-of-states field de-

wherek;=jK, is the magnetic-field-dependent wave vectorPendence for a series of tilt angles. The results of both ap-

with Ko=|e[B,d,/=d,/¢2 This is a matrix form of the Proaches will be compared. .
Mathieu equatior(see, e.g., Ref. 26 For simplicity, we start with the analytically solvable case

Solving the eigenvalue problem we get a number of LanCf Perpendicular magnetic fields.
dau subbbandg,(k,) which areK, periodic ink,. Then the

FIG. 5. The energy dispersion curves(k,). The dotted lines
correspond to independent 2D electron layers). The dashed
lines denote subband boundaries.

Lot 1

Yo 2m  2m
Treating the interwell hopping in a tight-binding approxima-
tion as in Sec. Il B, the Hamiltonial9) transforms to a
three-diagonal matrix with diagonal and off-diagonal ele-
ments given by

(fike + [€[By2) + V(2). (19)

full energy spectrum is given by A. Perpendicular magnetic field
22 In the quasiclassical approximation, two extremal circular
En(koky) = En(ky) + 2—my (21)  orhits, a “belly” and a “neck,” can be found on the corru-

gated cylinder with the cross sections
The lowest subbandg,(k,) are shown in Fig. 5. The om om
states from neighboring layers, described by dotted parabo- _ < L
las, are mixed at the border of Brillouin zones where the Akelly = e Er*2), Acnea T2 Ee-2). (22
free-electron parabolas cross. The electrons tunnel betwe . o " .
wells near the cross points and energy gaps open there. T—zc;]r ;r;ese orbits, the quantization conditi@h can be rewrit-
This is reflected in the shape of equienergetic lines
Er=En(k«.ky). For large enougB, the separation of centers, 1
Ko, becomes larger than the diameter of the free-electron EF12t=ﬁwz<n+E): (23
Fermi circles R-. The contours do not cross and electrons
cannot tunnel at all. Note that this condition is equivalent towhich yields two periods of oscillations
d,>2¢ ke, proposed by Dingfé as mentioned in the Intro- 1 5
duction. A(—) :i_ (24)
With lowering the field(and smallerk,) the Fermi con- B,/ m(Er+2t)
tours first “kiss” on borders of Brillouin zones whef: neck
touches the top of the lowest Landau subband. Then thelg follows from Eq. (24) that for the Fermi energy close to
merge into an open contour and a new Fermi oval, belonginghe miniband top the period of a “neck” orbit increases and
to the second subband, appears whkgrreaches its bottom, reaches infinity aEg=2t. For Eg within the miniband the

etc. Fermi surface consists of disconnected ovals and only one
This is illustrated by dashed lines in Fig. 5. For simplicity oscillation period exists, corresponding to the “belly” orbits.

we use fixedB, and variableEg, instead of the fixed Fermi The energy spectrum obtained by a full-quantum-

energy and sweeping,. mechanical solution of the Schrédinger equation profits from
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FIG. 6. The magnetic-field-dependent density of states calcu- F|G. 7. The magnetic-field-dependent density of states calcu-
lated for Fermi energy 7.5 meV above the miniband bottom. Firsjated for Fermi energy 7.5 meV above the miniband bottom. The
three Lr?ujdau subbands are ShOV_V”~ The gray lines correspond {Ray |ine corresponds to the singularity calculated quasiclassically.
singularities calculated quasiclassically. (Only one singularity is depicted.

the fact that in perpendicular magnetic fields=0. Conse-  gjgenenergies, we present in Fig. 6 the density of states of
quently, Eq.(18) is reduced to the standard equation of free-three lowest Landau subbands calculated for the fieds
electron motion in perpendicular magnetic fields. Landaug function of 1B,. To study the increasing influence of the
subbands are formed by a sum of Landau energy levels ang.-plane field componer,, the tilt angle is varied from the

the 1D miniband, like in the zero-field case: perpendicular positionp=0, towards the in-plane field con-
R 1 figuration. In addition to the curves obtained from the
En(k) = hwz(n + 5) -2t cogk,d,). (25)  quantum-mechanical solution of E@.8), the position of the

quasiclassical “belly” orbits is shown.
Due to the periodic potential, the Landau levels are broad- As mentioned above, both methods yield exactly the same
ened into Landau subbands. results in the perpendicular magnetic-field orientatipr0,
The corresponding density of states per lagéE), can be ~ and only small deviations of singularities corresponding to
evaluated analytically and reads the “belly” orbits are found for angles up to 45°. At 45°
marked deviations appear. The “neck” singularity returns to

(E) = |e|BZlE 1 (26) the first Landau subband; i.e., its width becomes finite.
9 h 745 \/ 5 1\12 Moreover, an additional singularity occurs in the second
M _[E_h“’Z(nJ' 5)] Landau subband.

. - = Above 45° the two solutions are completely different.
Two_van Hove smg_ulantleénf the type 14E) are due to the While the period of quasiclassical oscillations monotonously
maximum anq minimum of th(_a Lanq_au subband at the bo.rincreases with the decreasing area of the “belly” cross sec-
ders c.)f the Brillouin ?qne. Their positions on the energy aX'scion, the quantum-mechanical solution exhibits new features.
?re g!’ven b}/ Eq(”23), €., the_y correqund to the extre_zmal Two singularities in the first Landau subband become closer
belly” and “neck” orbits obtained quasiclassically. At fixed ase grows; the width of the subband shrinks and around 65°

Fermi energy, these extrema define two oscillation periods iri‘[ remains at a level
the B, dependence of the density of states. In the second Landau subband, an additional singularity
B. Tilted magnetic fields shoyvs up besides the “belly” and “neck” singularities which _
. . . vanishes above 65°. Then also the second subband shrinks in
To stress the difference between the quasiclassical anéﬁevel
quantl_Jm—mechanlcaI SOI.”“Q”?’ we shall consider a superlg " Four singularities appear in the third subband; for higher
Eclzge vlvlth the closed semielliptic Fermi surface, presented m(p their number is subsequently reducec_i to 3 and then 2 be-
C fore the subband shrinks to a level. Obviously, the number of

:In OSIUCh iﬁ (;iasr,]e ﬂ\:ﬁtﬁl:ﬁs'darsisgzl SOIﬁg?nn Ieﬁdt‘:’l to f'nglgfingularities is related to the number of nodes of the corre-
period oscifiations, € period depe g on the area o ponding wave functions.

the “belly” extremal cross sections, which vary with the tilt
angle. With the distance of nonextremal to extremal orbits
their contribution to the oscillation amplitude smoothly van-
ishes. For the semielliptic Fermi surface there is no difference
As the largest difference between the quasiclassical andetween the in-plane and tilted magnetic field in the quasi-
guantum-mechanical approaches is expected for lowestiassical approximation. The single period of oscillations is

C. In-plane magnetic fields
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determined by the extremal cross section which is now in the@eighboring electron layers dy|Bde/ﬁ. Above the critical
ki, plane. The corresponding singularity is shown in Fig. 7field B, .=2%ke/|€|d, the Fermi circles with radik: cannot
together with the density of states which results from pro-cross and tunneling is impossible.
cessing the numericaly obtained eigenenerdigék,,k,). The theoretical description is particularly simple for the
Both results show a pronounced qualitative difference. tight-binding model of the electronic structure; the general-
The quasiclasical approach does not distinguish betweeized Landau eigenenergies in tilted magnetic fields can be
the perpendicular and in-plane magnetic fields. It assumefound as solutions to a one-dimensional Schrddinger equa-
that the 1D subbands attached to the quasiclassicaly calction.
lated Landau levels are emptied by increasing the magnetic The quasiclassical solution to this 1D problem yields the
field. But this is correct only for the perpendicular field ori- standard Onsager-Lifshitz rule. The full-quantum-mechanical
entation. solution is necessary to describe the 32D transition—
In the quantum-mechanical picture 2D Landau subbandse., the transition to a sequence of independent 2D electron
are_emptied and instead of the van Hove singularities ofayers.

1/\E type, logarithmic and steplike singularities appear.
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