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Full quantum-mechanical description of electrons moving in 3D structures with unidirectional
periodic modulation subject to tilted magnetic fields requires an extensive numerical calculation.
To understand magneto-oscillations in such systems it is in many cases sufficient to use the quasi-
-classical approach, in which the zero-magnetic-field Fermi surface is considered as a magnetic-field-

independent rigid body in ~k-space and periods of oscillations are related to extremal cross-sections
of the Fermi surface cut by planes perpendicular to the magnetic-field direction. We point out
cases where the quasi-classical treatment fails and propose a simple tight-binding fully-quantum-
-mechanical model of the superlattice electronic structure.

PACS numbers: 73.21.Cd, 73.20.At, 03.65.Sq, 03.65.-w

I. INTRODUCTION

Esaki and Tsu predicted Bloch oscillations in semi-
conductor superlattices in 19701 and since then exten-
sive studies of electron dynamics in these structures have
been carried out. The review of research till 1987 was
given by Mann2, who also discussed the quantization of
band-structure by a magnetic field parallel to the layers.

Presently, various aspects of the superlattice electronic
properties are investigated.

In quasi-two-dimensional (2D) layered organic conduc-
tors two distinct fundamental concepts of electron in-
terlayer transport are considered, the coherent and the
incoherent. The comparison of both approaches was pre-
sented by McKenzie and Moses3,4. It has been demon-
strated that the dependence of the interlayer magnetore-
sistance in aforementioned natural structures on the di-
rection of the magnetic field is identical for both models
except the case of a field almost parallel to the layers,
when Yamaji oscillations5 can occur. An explanation of
magnetoresistance angular effects (Yamaji oscillations)
observed in layered organic conductors has been given
in the framework of the incoherent model of interlayer
coupling in anisotropic multilayer systems6,7,8.

In the semiconductor superlattices, the band profile of
which is formed by a periodic sequence of quantum wells,
general belief is that the electron motion along the growth
direction is coherent and governed by the Bloch theorem.
As result, the electrons can move freely parallel to the
plane of wells and their motion in the growth direction
is described by minibands.

Here we consider short-period superlattices with only
the lowest electron miniband occupied. In such a case,
the superlattice electronic structure is close to the three-
-dimensional (3D) electron system when the Fermi en-
ergy, EF , lies below the top of the miniband and a
Fermi surface forms a closed oval in the first Brillouin
zone. When the Fermi energy coincides with the top of
the miniband, the Fermi surface consists of the chain of
stretched ovals “kissing” on Brillouin zone borders in the

repeated zone scheme. For Fermi energies lying above
the top, the Fermi surface is open and acquires the form
of a corrugated cylinder. In the limiting case of impene-
trable barriers the miniband width is reduced to zero and
the superlattice is converted into a multiple 2D electron
layers. We also limit ourselves to investigation of the
electron structure magneto-oscillations and will not de-
scribe a specific property as magnetization (de Haas-van
Alphen oscillations) or magnetoresistance (Shubnikov-de
Haas oscillations).

To distinguish between 2D and 3D electron systems in

superlattices, tilted magnetic fields, ~B, are used. In 3D
systems the magneto-oscillations are observed for an ar-
bitrary magnetic field orientation, whereas in 2D systems
the oscillations are determined only by a perpendicular
field component, B⊥, and disappear in the in-plane fields,
By. The tilted magnetic field configuration was used e.g.
to confirm the 3D nature of a semiconductor superlat-
tice on which the existence of quantum Hall effect in 3D
structures was proven9.

The quasi-classical approach to interpretation of mag-
netotransport experiments relies on the Onsager-Lifshitz
quantization rule10,11. The theory states that magneto-
oscillations are periodic in 1/B, the period of oscillations
is determined by the extremal cross-sections of the Fermi
surface perpendicular to the direction of the applied mag-
netic fields. A number of extremal cross-sections can
be examined and the shape of 3D Fermi surface recon-
structed by tilting the sample in the magnetic field. The
quasi-classical approach is also employed in studies of
chaos associated with instability of electron orbits in the
presence of a tilted magnetic field12,13,14,15.

The theory of magnetic breakdown16,17,18 goes beyond
the quasi-classical approximation by taking into account
tunneling between eigenstates evaluated quasi-classically
(by the WKB method), i.e. it is implicitly assumed that
the states with high quantum numbers are involved.

The experimental evidence of deviations from the
quasi-classical interpretation of data measured in tilted
magnetic fields on semiconductor superlattices has been
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reported in19,20 and21,22. The reason is attributed to the
in-plane component which is supposed to reduce the tun-
neling of electrons between wells when their separation
is comparable with the in-plane magnetic field length,
ly =

√

h̄/|e|By, as first proposed by Dingle23 in 1978.
We will study this problem theoretically using a sim-

ple tight-binding, fully-quantum-mechanical model of the
superlattice electronic structure in which the generally
three-dimensional Schrödinger equation reduces to an
one-dimensional differential equation.

Our approach is an extension of the model developed
in 1992 by Hu and MacDonald24 for electron bilayers sub-
ject to tilted magnetic fields, which was since then many
times successfully applied to semi-quantitative interpre-
tation of the experimental data. Two basic approxima-
tions are employed: (i) The electron layers confined in
quantum wells are strictly two-dimensional, i.e. there is
no influence of the magnetic-field-in-plane component on
the individual layer. (ii) The barrier width and the bar-
rier height are represented by a single coupling parameter
t. Thus the problem is characterized by two parameters,
the hopping integral t and the interlayer distance dz .

In Sec. II we briefly summarize the textbook results
(obtained with the aid of the above model) for the elec-
tronic structure of short-period superlattices in zero mag-
netic field. The discussion of the electronic structure in
tilted magnetic fields is opened in Sec. III A by presenta-
tion of the quasi-classical results in the form appropriate
for comparison with the subsequent quantum-mechanical
treatment in III B, which represents the central part of
this paper. Sec. IV is devoted to the case of strictly
in-plane magnetic fields not covered by the previous dis-
cussion. Numerical results are offered in Sec. V, followed
by concluding remarks in Sec. VI.

II. A TIGHT-BINDING MINIBAND

A tight-binding model of minibands in 3D superlat-
tices can be found e.g. in25. In this model, a superlattice
is formed by a periodic sequence of quantum wells sepa-
rated by barriers, with the potential energy V (z) written
as a sum of potential energies Vb(z) of individual wells,

V (z) =
∑

j

Vb(z − Zj). (1)

Here Zj = jdz, j is an integer and dz is a period of the
superlattice. Then the z-dependent part of the Hamilto-
nian, Hz, reads

Hz =
p2

z

2m
+ V (z). (2)

For the narrow wells we considered only the lowest elec-
tron miniband of the superlattice. Only the ground states
|χb(z − Zj)〉 of individual wells enter our model. Their
eigenenergies are taken as an origin of the energy scale.
The eigenenergies of excited states are assumed to lie well
above them and their presence is neglected.

-3 -2 -1 0 1 2 3
kz dz /π
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FIG. 1: Fermi surfaces of a superlattice plotted for Fermi
energies lying 5 meV, 7.5 meV, 10 meV, 15 meV, and 20 meV
above the miniband bottom. The tilt angle ϕ is 65◦.

In such structures the plane wave exp(ikxx+ ikyy) de-
scribes electrons moving in the xy-plane, the electron mo-
tion in the z-direction is mediated by tunneling through
the barriers between wells. A wavefunction χkz

(z) de-
scribing the miniband is the Bloch sum

χkz
(z) =

∑

j

eikzZj χb(z − Zj). (3)

The diagonal matrix elements of Hz are equal to
zero in the basis of ground states |χb,j〉 ≡ |χb(z −
Zj)〉, 〈χb,j |Hz|χb,j〉 = 0. Only the hopping integrals
〈χb,i|V (z)|χb,j〉 = −t δj,i±1 are nonzero if we assume
the nearest-neighbor interaction between the individual
wells. As the hopping integrals are negative, t is a posi-
tive constant, i.e. in our notation t = |t|.

The matrix equation which determines the z-
dependent part of the eigenenergies reads

〈χb(z − Zj)|E − Hz|χkz
(z)〉 = 0. (4)

The resulting dispersion relation E(kz) of a miniband has
a simple cosine form,

E(kz) = −2t cos(kzdz), (5)

which depends on two parameters, t and dz. Note that
the eigenfunctions χkz

(z), described by equation (3), are
fully determined by the superlattice translation symme-
try.

The energy spectrum of the 3D electron motion is com-
posed of E(kz) and the energy of the free motion in the
xy-plane:

E(~k) =
h̄2

2m
(k2

x + k2
y) − 2t cos(kzdz). (6)

The period of the superlattice dz determines the size
of the Brillouin zone, defined by −π/dz < kz < π/dz.
For the Fermi energy in the range of miniband energies,
−2t < EF < 2t, the Fermi surface has a closed semi-
elliptic shape, for EF > 2t it is an open corrugated cylin-
der. Examples of constant energy surfaces are shown in
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Fig. 1 for a superlattice with the period dz = 24 nm, the
miniband width 4t = 10 meV and the electron effective
mass m = 0.067. (These parameter values will be main-
tained through the whole paper unless stated otherwise.)
With vanishing t, the system is transformed into a se-
quence of independent 2D electron layers and the Fermi
surface becomes a smooth cylinder for any EF .

III. TILTED MAGNETIC FIELDS

A. Quasi-classical approach

The standard quasi-classical approach to the electronic
structure of superlattices in tilted magnetic fields and to
the interpretation of related experiments is based on the
Onsager-Lifshitz quantization rule,

Ak =
2π|e|B

h̄
(n + 1

2
), (7)

where Ak is an area of the extremal cross-section of the
Fermi surface, perpendicular to the direction of the ap-

plied magnetic field ~B. The plane perpendicular to ~B,
which cuts the kz-axes at kz = kz0, is described by

kz =
By

Bz

ky − kz0. (8)

There are two extremal cross-sections, kz0 = π/dz cor-
responds to the “neck” orbit and kz0 = 0 to the “belly”
orbit. In the real space, the electrons move along the
orbits which have the same shapes as the contours of the
cross-sections, but are rotated by 90◦ and scaled by a
factor h̄/|e|B.

It follows from (7) that e.g. the magneto-oscillations
are periodic in 1/B with the periods determined by Ak.

Here we rewrite the Onsager-Lifshitz rule in a form
which employs projections Ak,z of extremal cross-
sections. The reason is that this form (of course equiva-
lent to (7)) is more appropriate for comparison with the
quantum-mechanical treatment described in the next sec-
tion.

Let us denote by ϕ the angle between the growth
direction and the direction of the magnetic field, then
~B ≡ (0, B sin ϕ, B cosϕ). Multiplication of equation (7)
by cosϕ leads to the expression

Ak,z =
2π|e|Bz

h̄
(n + 1

2
), (9)

in which the total field B was replaced by the component
Bz and the cross-section area Ak of a Fermi surface by
its projection to the plane kz = 0, denoted by Ak,z . Sim-
ilarly, multiplication of equation (7) by sinϕ leads to the
relation between the component By and the projection
Ak,y of Ak to the plane ky = 0.

With the energy spectrum given by (6), the projec-
tion Ak,z of the cross-sections to the plane z = 0 can be

written as

Ak,z =

√
2m

h̄
2

∫

√

E −
h̄2k2

y

2m
+ 2t cos(kydy − kz0dz) dky,

(10)
where dy = (By/Bz)dz.

Examples of projections Ak,y corresponding to a
“belly” and a “neck” cross-sections of the corrugated
cylinder are shown in Fig. 2. In that case two periods
of magneto-oscillations exist. The contribution of orbits
corresponding to kz0 between −π/dz and π/dz to the os-
cillation amplitude is in general weaker, except for special
cases of “extended” orbits for certain shapes of the Fermi
surfaces and tilt angles. Note that a sudden step of the
cross-section area, shown in Fig. 2 for a general kz0, can
occur also for the extremal “belly” position, if the field
is slightly tilted from 65◦ towards the perpendicular field
configuration, as obvious from an inspection of Fig. 1.

A single period corresponds to the Fermi surface
formed by disconnected ovals. For independent elec-
tron layers (a smooth Fermi cylinder) the equation (7)
yields the energy spectrum En = h̄ωz(n + 1

2
),where

ωz = |e|Bz/m, for any tilt angle. In that case the “belly”
and “neck” areas are identical and only one oscillation
period exists.
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FIG. 2: Projections Ak,y of three cross-sections of the cor-
rugated cylinder corresponding to EF = 15 meV (see Fig. 1).
Except of the “belly” and “neck” positions a general kz0 is
considered, close to the critical value for which the sudden
drop of the area occurs.

B. Quantum-mechanical approach

The simple tight-binding model described in Sec. II
can be generalized for the case of magnetic fields of arbi-
trary magnitude and orientation.

Let us consider the superlattice subjected to a tilted

magnetic field ~B ≡ (0, By, Bz) given by the vector po-

tential ~A = (Byz −Bzy, 0, 0). The 3D Hamiltonian H of
such a system,

H =
1

2m

(

~p − e ~A
)2

+ V (z), (11)
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depends on the variable x only through the momen-
tum component px and, consequently, the correspond-
ing 3D wave function can be written in the form
exp(ikxx)Φ(y, z). The function Φ(y, z) is the solution
to the 2D Schrödinger equation with the Hamiltonian

Hy,z =
p2

y + p2
z

2m
+

1

2m
(h̄kx + |e|(Byz − Bzy))2 + V (z).

(12)
This expression describes a linear array of quantum
dots with the minima of their potential energy at cross-
sections of the lines

h̄kx + |e|(Byz − Bzy) = 0, (13)

z = Zj,

as shown in Fig. 3. The coordinates of minima are

given by ~Rj = j ~d, where vector ~d ≡ (dy, dz) and
dy = By/Bzdz. The distance between two minima is

d =
√

d2
y + d2

z.

y 
 

dZ

dy=Bydz/BzB

(a)

(b)

z  

V
(z

) 

FIG. 3: (a) The schematic view of the superlattice poten-
tial. (b) The coordinates of minima of the “electro-magnetic”
confining potential. An electron is bound by Vb(z − Zj)
in the z-direction and by the magnetic harmonic potential
e2(ByZj − Bzy)2/2m in the y-direction.

The eigenenergies of the corresponding Schrödinger
equation are degenerated in kx, the resulting kx-
degeneracy is |e|Bz/h. The choice of kx means only an
unessential shift of the origin of coordinates y or z, and
we can set kx = 0 without lost of generality.

We further assume, in agreement with Hu an
MacDonald24, that the electron in an isolated well is still
described by χb(z − Zj), as in the zero-magnetic-field

case. The main effect caused by the application of ~B is
the restriction of the in-plane motion of electrons in the
y-direction by the parabolic “magnetic” potential with
the center at y = Yj . Thus, the zero-field plane wave
exp(ikyy) should be replaced by a localized wave func-
tion which we denote φ(y − Yj). Since the Hamiltonian
(12) is periodic with the period d, we can write the ap-
proximate wave function Φ(y, z) in the form of a Bloch
sum

Φ(y, z) =
∑

j

ei~k ~Rj χb(z − Zj)φ(y − Yj), (14)

where ~k ≡ (ky , kz) is a wave vector oriented in the
~d-direction. The magnitude of the wave vector, k =
√

k2
y + k2

z , varies between −π/d and π/d, the borders

of the 1D Brillouin zone.
The matrix equation

〈χb(z − Zj)|E − Hy,z|Φ(y, z)〉 = 0 (15)

yields the 1D Schrödinger equations from which the
eigenfunctions φj = φ(y − Yj) and the corresponding
eigenenergies are to be determined. Using

φ(y + dy) = exp(i
py

h̄
dy)φ(y), (16)

we obtain for each j
[

p2
y

2m
+

mω2
z

2
(y − Yj)

2 − 2t cos
(py

h̄
dy − ~k~d

)

]

φj = Eφj .

(17)
As these equations are independent and equivalent for
all values of j, we can limit ourselves to a single equation
with e.g. j = 0. Employing the p-representation, the
equation (17) can be written as
[

−mh̄2ω2
z

2

∂2

∂p2
y

+
p2

y

2m
− 2t cos

(py

h̄
dy − ~k~d

)

]

φ0 = Eφ0,

(18)

-4 -3 -2 -1 0 1 2 3 4
κ

0
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V
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FIG. 4: The modulated parabolic well in p-space for (a)
the “neck” position and (b) the “belly” position of kz0. Two
lowest eigenstates and eigenenergies are calculated for Bz = 3
T. The grey lines correspond to the critical parameters of
quasi-classical orbits, at which the area calculated using (10)
changes abruptly. The dimensionless variable κ is determined

by h̄κ = ℓzpy, where ℓz =
√

h̄/|e|Bz .
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where φ0 is a function of py, φ0 = φ0(py). Thus the 3D
Schrödinger equation is reduced to 1D, with the energy

spectrum formed by 1D Landau subbands En(~k). This
is the central result of this paper.

The parabolic well in p-space modulated by the cosine
potential is shown in Fig. 4 for two values of the phase

factor, 0 and π. The choice ~k~d = 0 corresponds to the

“belly” orbit and ~k~d = π to the “neck” orbit in the quasi-
-classical terminology.

In principle, the equation (18) can be solved
quasi-classically (by the WKB method) or quantum-
-mechanically. The choice of the method depends on the
system parameters.

As anticipated, the quasi-classical solution leads to the

expression (10). Note that the phase factor ~k~d can be

replaced by kz0dz. (The projection kz0 of ~k to the kz-axis
satisfies kz0 ∈ (−π/dz, +π/dz).) Generally, the WKB
method is applicable if h̄ωz ≪ 4t and many states below
the Fermi level are occupied.

The grey lines shown in Fig. 4 denote tops of “po-
tential” barriers which separate the classicaly inaccesible
regions of py. The magnetic breakdown theory describes
tunneling between two quasi-classical orbits from neigh-
boring regions.

In semiconductor superlattices h̄ωz becomes compara-
ble to 4t in relatively weak magnetic fields. Two lowest
eigenstates calculated quantum-mechanically are shown
in Fig. 4. The wave functions extend over several local
minima of the “potential”, just in opposition to require-
ments of quasi-classical approximation and the magnetic
breakdown theory, which clearly cannot be applied in this
case.

IV. IN-PLANE MAGNETIC FIELD

The above approach fails for the case Bz → 0. In an

in-plane magnetic field ~B = (0, By, 0) the vector poten-

tial takes the form ~A = (Byz, 0, 0) and the one-electron
Hamiltonian (12) reduces to

Hy =
p2

y + p2
z

2m
+

1

2m
(h̄kx + |e|Byz)2 + V (z). (19)

Treating the inter-well hopping in a tight-binding approx-
imation as in Sec. III B, the Hamiltonian (19) transforms
to a three-diagonal matrix with diagonal and off-diagonal
elements given by

Hj,j =
h̄2

2m
(kx + kj)

2
+

h̄2k2
y

2m
, Hj,j±1 = −t, (20)

where kj = jK0 is the magnetic-field-dependent wave-
vector with K0 = |e|Bydz/h̄ = dz/ℓ2

y. This is a matrix

form of the Mathieu equation (see e.g.26).
Solving the eigenvalue problem we get a number of

Landau subbbands En(kx) which are K0–periodic in kx.

kx

E

E1(kx)

E2(kx)

E3(kx)

EF Bc2

Bc2

Bc1

Bc1

K0

FIG. 5: The energy dispersion curves En(kx). The dotted
lines correspond to independent 2D electron layers, t = 0.
The dashed lines denote subband boundaries.

Then the full energy spectrum is given by

En(kx, ky) = En(kx) +
h̄2k2

y

2m
. (21)

The lowest subbands En(kx) are shown in Fig. 5.
The states from neighboring layers, described by dot-
ted parabolas, are mixed at the border of Brillouin zones
where the free-electron parabolas cross. The electrons
tunnel between wells near the cross-points and energy
gaps are opened there.

This is reflected in the shape of equi-energetic lines
EF = En(kx, ky). For large enough By the separation of
centers, K0, becomes larger than the diameter of the free-
electro Fermi circles 2kF . The contours do not cross and
electrons cannot tunnel at all. Note that this condition
is equivalent to dz > 2ℓykF , proposed by Dingle23 as
mentioned in the introduction.

With lowering the field (and smaller K0) the Fermi
contours first “kiss” on borders of Brillouin zones when
EF touches the top of the lowest Landau subband. Then
they merge into an open contour and a new Fermi oval,
belonging to the second subband, appears when EF

reaches its bottom, etc.

This is illustrated by dashed lines in Fig. 5. For sim-
plicity we use fixed By and variable EF , instead of the
fixed Fermi energy and sweeping By.

Two types of critical magnetic fields (energies) can
be distinguished, Bc1 and Bc2. When the Fermi energy
touches the bottom of a Landau subband at Bc1 , there is
the minimum in En(kx, ky) and the step van Hove singu-
larity appears in the density of states. The second possi-
bility is the Fermi energy coinciding with the maximum
of an En(kx) at Bc2. It corresponds to the saddle point
in En(kx, ky) and the logarithmic van Hove singularity
in the density of states.
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V. NUMERICAL EXAMPLE

It is clearly illustrated in Fig. 4 that the quantum-
-mechanical regime, when only a few Landau subbands
are occupied and the quasi-classical approach is not valid,
can be reached in relatively week magnetic fields for re-
alistic parameters of superlattices. In the quasi-classical
approach the electron motion in the effective “potential”
should be limited by local side-maxima, due to the cosine
modulation. In quantum mechanics electrons can tunnel
through the local barriers even if their energy is below the
maxima. In principle, it is possible to describe tunneling
through the barriers quasi-classically as the “magnetic
breakdown”, but it seems not very appropriate for states
with lowest quantum numbers.

In experiments, usually the concentration of carriers is
kept fixed and the magnetic field is varied. In most cases
experimental data reflect the field-induced singularities
of the density of states. Therefore, we concentrate in our
numerical example on the evaluation of the density-of-
states field dependence for a series of tilt angles. The
results of both approaches will be compared.

For simplicity, we start with the analytically solvable
case of perpendicular magnetic fields.

A. Perpendicular magnetic field

In the quasi-classical approximation, two extremal cir-
cular orbits, a “belly” and a “neck”, can be found on the
corrugated cyllinder with the cross-sections

Ak,belly = π
2m

h̄2
(EF + 2t), Ak,neck = π

2m

h̄2
(EF − 2t).

(22)
For these orbits, the quantization condition (7) can be
rewritten as

EF ± 2t = h̄ωz(n + 1
2
) (23)

which yields two periods of oscillations

∆

(

1

Bz

)

belly

neck

=
h̄|e|

m(EF ± 2t)
. (24)

It follows from (24) that for the Fermi energy close to the
miniband top the period of a “neck” orbit increases and
reaches infinity at EF = 2t. For EF within the miniband
the Fermi surface consists of disconnected ovals and only
one oscillation period exists, corresponding to the “belly”
orbits.

The energy spectrum obtained by full quantum-
-mechanical solution of the Schrödinger equation prof-
its from the fact that in perpendicular magnetic fields
dy = 0. Consequently, the equation (18) is reduced to
the standard equation of free electron motion in perpen-
dicular magnetic fields. Landau subbands are formed by
a sum of Landau energy levels and the 1D miniband, like
in the zero-field case:

En(~k) = h̄ωz(n + 1
2
) − 2t cos(kzdz). (25)

Due to the periodic potential, the Landau levels are
broadened into Landau subbands.

The corresponding density of states per layer, g(E),
can be evaluated analytically and reads

g(E) =
|e|Bz

h

1

π

∑

n

1
√

4t2 − (E − h̄ωz(n + 1
2
))2

. (26)

Two van Hove singularities (of the type 1/
√

E) are due to
the maximum and minimum of the Landau subband at
the borders of the Brillouin zone, their positions on the
energy axis are given by the equation (23), i.e. they corre-
spond to the extremal “belly” and “neck” orbits obtained
quasi-classically. At fixed Fermi energy, these extrema
define two oscillation periods in the Bz-dependency of
the density of states.

B. Tilted magnetic fields

To stress the difference between the quasi-classical and
quantum-mechanical solutions, we shall consider a super-
lattice with the closed semi-elliptic Fermi surface, pre-
sented in Fig. 1.

In such a case the quasi-classical solution leads to
single-period oscillations, with the period depending on
the area of the “belly” extremal cross-sections, which

ϕ = 0o

n = 0
n = 1
n = 2

45
o

D
O

S
  (

a.
u.

) 55
o

65
o

0 0.5 1 1.5

75
o

0 0.5 1 1.5 2

Bz
-1

 (T
-1

)

85
o

FIG. 6: The magnetic-field-dependent density of states calcu-
lated for Fermi energy 7.5 meV above the miniband bottom.
First three Landau subbands are shown. The grey lines cor-
respond to singularities calculated quasi-classically.
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vary with the tilt angle. With the distance of non-
extremal to the extremal orbits their contribution to the
oscillation amplitude smoothly vanishes.

As the largest difference between the quasi-classical
and quantum-mechanical approach is expected for lowest
eigenenergies, we present in Fig. 6 the density of states
of three lowest Landau subbands calculated for the fixed
EF as a function of 1/Bz. To study the increasing influ-
ence of the in-plane field component By, the tilt angle is
varied from the perpendicular position, ϕ = 0, towards
the in-plane field configuration. In addition to the curves
obtained from the quantum-mechanical solution of equa-
tion (18), the position of the quasi-classical “belly” orbits
is shown.

As mentioned above, both methods yield exactly the
same results in the perpendicular magnetic field orien-
tation, ϕ = 0, and only small deviations of singularities
corresponding to the “belly” orbits are found for angles
up to 45◦. At 45◦ marked deviations appear, the “neck”
singularity returns to the first Landau subband, i.e. its
width becomes finite. Moreover, an additional singular-
ity occurs in the second Landau subband. Above 45◦
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-1

 (T
-1
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)
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total DOS

FIG. 7: The magnetic-field-dependent density of states calcu-
lated for Fermi energy 7.5 meV above the miniband bottom.
The grey line corresponds to the singularity calculated quasi-
-classically. (Only one singularity is depicted.)

the two solutions are completely different. While the pe-
riod of quasi-classical oscillations monotonously increases
with the decreasing area of the “belly” cross-section, the
quantum mechanical solution exhibits new features. Two
singularities in the first Landau subband become closer
as ϕ grows, the width of the subband shrinks and around
65◦ it reminds a level.

In the second Landau subband, besides the “belly” and
“neck” singularities an additional singularity shows up
between them which vanishes above 65◦. Then also the
second subband shrinks in a level.

Four singularities appear in the third subband, for
higher ϕ their number is reduced to three and two before
the subband shrinks to a level. Obviously, the number
of singularities is related to the number of nodes of the
corresponding wave functions.

C. In-plane magnetic fields

For the semi-elliptic Fermi surface there is no differ-
ence between the in-plane and tilted magnetic field in the
quasi-classical approximation. The single period of oscil-
lations is determined by the extremal cross-section which
is now in the kxkz-plane. The correspoding singularity
is shown in Fig. 7 together with the density of states
which results from processing the numericaly obtained
eigenenergies En(kxky). Both results show a pronounced
qualitative difference.

The quasi-clasical approach does not distinguish be-
tween the perpendicular and in-plane magnetic fields. It
assumes that the 1D subbands attached to the quasi-
-classicaly calculated Landau levels are emptied by in-
creasing the magnetic field. But this is correct only for
the perpendicular field orientation.

In the quantum-mechanical picture 2D Landau sub-
bands are emptied and instead of the van Hove singular-
ities of 1/

√

(E) type logarithmic and step singularities
appear.

VI. CONCLUSIONS

In superlattices with the period dz , the in-plane mag-
netic field component By displaces the origins of the
Fermi circles of neighboring electron layers by |e|Bydz/h̄.
Above the critical field By,c = 2h̄kF /|e|dz the Fermi cir-
cles with the radii kF cannot cross and tunneling is im-
possible.

The theoretical description is particularly simple for
the tight-binding model of the electronic structure;
the generalized Landau eigenenergies in tilted magnetic
fields can be found as solutions to a one-dimensional
Schrödinger equation.

The quasi-classical solution to this 1D problem yields
the standard Onsager-Lifshitz rule. The full quantum-
-mechanical solution is necessary to describe the 3D→2D
transition, i.e. the transition to a sequence of indepen-
dent 2D electron layers.
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