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Chapter 1IntrodutionReent experiments performed on a two{dimensional modulated eletron gas(or a system of oupled quantum wires) showed huge magnetoresistane os-illations [4℄. In this work we would like to present a theoretial modeldesribing this phenomenon, i.e. we will �nd out how does the system on-dutivity depend on magneti �eld applied perpendiular to the plane of thesystem. We will use a full quantum mehanial alulation rather than thestandardly used semilassial theory. Heading for this aim we will �nd outthat the system an undergo substantial hanges when the magneti �eld isinreased. This is a phenomenon whih annot be desribed by a semilassi-al model.Further we will fous on three{dimensional superlatties or in other wordsoupled two{dimensional eletron systems (2DES). Compared to the previ-ous ase the system has now another degree of freedom, namely the �elddiretion. If the �eld is perpendiular to the planes of the 2DES the probleman be solved analytially, we mean the density of states in the tight{bindingapproximation now. The semilassial predition is in a full agreement withthe quantum mehanial predition. However if the �eld is tilted the quan-tum mehanial problem to solve leads to a two{dimensional Shr�odingerequation and we lose the analytial solution. If the in{plane omponent ofthe magneti �eld is strong enough we will show that the dimensionality ofthe system hanges. This is again a feature of the full quantum desriptiononly and it is not predited by the semilassial theory.Modulated two dimensional systems have already been a point of interestof theoretial studies (Zhang et al. [16℄ or reently Manolesu et al. [11℄).Both mentioned works use the one{eletron approximation (as we do in this4



CHAPTER 1. INTRODUCTION 5work) and inlude advaned models of the eletron sattering on impurities(whih are redued to the simplest possible model in this work).Let us �nish the introdution with a quik review of the struture of thiswork. Both Chapters 2 and 3 ontain a brief omment on the semilassi-al approah to the superlattie systems followed by a quantum mehanialderivation of an equation whih yields the spetrum (and density of states)of the system. There is a disussion of the possible form of the results inChapter 2 before the numerial results are presented.As the results of two{dimensional SLs alulations ould be ompared toan experiment, the Chapter 2 does not stop at this point. There follows a se-tion about the linear response theory and a setion onerning the proeduresneessary to link the theory and experimental data inluding also a disus-sion on the level of density of states (whih is muh more straightforwardthan the Kubo formula). Finally the omparison of theory and experimentsis presented.



Chapter 2Two{Dimensional Superlatties
2.1 Introdution2.1.1 Desription of the SystemWe are going to speak about a planar struture referred to as a lattie ofquantum wires. We suppose that eletrons an move only in the x; y-planeand that they are on�ned by a periodi (or quasiperiodi) potential V =V (y), i.e. the motion in the x diretion (along the stripes) is free. The
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yFigure 2.1: Quantum wires.potential V (y) an be either periodi from minus in�nity to plus in�nity orit an be omposed of N (�nite number of) periods (and be enlosed in an6



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 7in�nitely deep well). We examine the e�et of magneti �eld applied in thediretion perpendiular to the lattie plane (i.e. z).2.1.2 Semilassial ApproahThe semilassial (SC) model desribing the motion of an eletron in mag-neti �eld B is based on onstruting the Fermi surfae for the zero magneti�eld system (given the Fermi level EF ). The spetrum of suh a system anbe omputed analytially in the tight{binding approximationE(kx; ky) = ~22m�k2x � 2jtj os kyd :Here d is the superlattie period and t is the oupling onstant between twoneighbouring wells in the superlattie (see setion 2.2.1 and Eq. 2.11 foromments on derivation of this spetrum).The Fermi surfae EF = E(kx; ky) an be one of three topologially di�er-ent types, see Fig. 2.2. It onsists of disonneted losed ovals (EF < 2jtj),it an be a pair of rippled lines (EF > 2jtj) or it an be a set of just touhinglens{like �gures for EF = 2jtj.The SC theory states that the real spae trajetories of the eletron inmagneti �eld an be obtained by rotating the Fermi ontours by 90 degrees(around the magneti �eld diretion) and saling them by ~=jejB [1℄.Furthermore the SC theory laims that only those losed trajetories arepermitted whih enlose an integer multiple of magneti ux quanta jejB=h,[1℄. This is an ad ho quantization ondition similar to the one in Bohr'smodel of hydrogen atom. There is no quantization ondition for the opentrajetories1.Thus for EF < 2jtj the \permitted" energies (or Landau levels energies)are determined for eah magneti �eld. If we set EF onstant and hange B,these levels are passing through EF periodially2 in 1=B, whih gives rise tothe Shubnikov{de Haas osillations.1This onept is based on the idea that losed trajetories should orrespond to boundstates and these are known to have disrete spetra unlike the unbound states. This ishowever no proof of orretness but rather an indiation why an the SC theory give somerelevant results at all.2The values of 1=B at whih there will be a state at the Fermi level will be 1=B =(ne=h) � 1=A(EF ), n = 1; 2; : : :, where A(EF ) is the area enlosed by the Fermi ontour forthe given EF .



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 8The predition for EF < 2jtj is therefore that eletrons move along losedorbits whih are almost oval unless EF is very near to 2jtj (then the orbitsapproah the ritial shape, see Fig. 2.2). The system is in a two dimensionalmode. If we study the magneti �eld dependent ondutivity of the systemwe �nd Shubnikov{de Haas osillations. On the other hand for EF > 2jtj theeletrons move almost freely in the x diretion and the ondutivity shouldexhibit no osillations when e.g. inreasing magneti �eld.
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Figure 2.2: Semilassial trajetories in magneti �eld. 0 { losed (EF < 2jtj),1 { ritial (EF = 2jtj), 2 { open (EF > 2jtj).This onept however fails to explain the following situation. ConsiderEF > 2jtj and \weak" magneti �eld. Eletrons then move on yloidal(open) trajetories along an edge of one of the superlattie wells in the x{



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 9diretion3. When we inrease the magneti �eld so that the ylotron radius(m�v=jejB, where v =p2EF=m�) beomes muh smaller than the superlat-tie period d, only a minority of eletrons loated near to the edge of a wellwill proeed on the open yloidal trajetories and the rest will move alongirles inside wells. The system will turn into the 2D mode. The semilassialtheory however still predits the eletron to move along an open orbit. Thise�et is alled the breakdown of the semilassial theory4. An evidene of thesemilassial theory failure is the presene of magnetoresistivity osillationseven for EF > 2jtj whih an be observed in an experiment.So as to onlude: the disadvantage of the semilassial theory is thatit annot reet the qualitative hanges to the system whih are induedby magneti �eld. On the other hand there is a separate Hamiltonian or-responding to eah strength of magneti �eld in the quantum mehanialapproah and thus the eletron states at the same Fermi energy an substan-tially di�er at various magneti �elds.2.2 Shr�odinger Equation andDensity of States2.2.1 Quantum Mehanial CalulationTaking the alibration of the magneti �eld as A = (Bzy; 0; 0), the Hamilto-nian of the system at Fig. 2.1 readsH = 12m� (p � eA)2 + V (y) = 12m� ��{~ ddx + jejBzy�2 + 12m�p2y + V (y) :We denote the last two terms by Hy. Exploiting the translational invarianein the x diretion we �rst make an ansatz 	(x; y) = exp({kxx) (y) for theShr�odinger equation and get� 12m�p2y + 12m� [~kx + jejBzy℄2 + V (y)� (y) = E(kx) (y) : (2.1)3Assuming elasti rebounes at the well edge, this problem an be easily solved on thelassi level.4This expression was �rst proposed by Stark and Faliov [14℄ in the ontext of physisof metals.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 10This is a 1D Shr�odinger equation for a partile on�ned by parabolialpotential with periodi \ripples" superposed on it. However, we have noexat information about the form of the periodi potential V (y) apart fromits period d. Our idea about the potential is that it onsists of a hain ofquantum wells (one well per period).We are going to solve the equation (2.1) by means of the tight-bindingapproximation [1℄. We suppose that eah well of V (y) is apable of aom-modating one state whih is then loalised in this well. Denoting the stateloalised in one well by j'(y � jd)i, assumption made by the tight{bindingapproximation ish'(y � jd)jHyj'(y � kd)i = tÆjk�1; h'(y � jd)j'(y � kd)i = Æjk:The interpretation is that only the states in two neighbouring wells overlaponsiderably. Condition h'(y� jd)jHyj'(y� jd)i = 0 sets only the positionof the origin of the energy sale. Remaining requirements only laim thatthe states j'(y � jd)i are orthonormalised.We an be thus looking for the solution to Eq. (2.1) having the form (y) = NXj=1 ai'(y � jd) : (2.2)Followingly we arrive to a �nite set of linear equations for ai (or a matrixeigenvalue problem) NXj=1 Hjl(kx)aj = E(kx)al; where (2.3)Hjj = ~22m� � jejBz~ jd+ kx�2 ; Hjj�1 = t:If we imagine N to be in�nity (or large), the system desribed by (2.3)has to behave periodially in kx with the period K = djejBz=~ (or quasi{periodially). We are thus interested only in solving the eigenvalue problem(2.3) within the \�rst Brillouin zone5" (�12K; 12K), see Fig. 2.3.In other words: we get in�nite number of (Landau) bands Ei(kx) whihare K{periodi in kx as a solution to the problem (2.3) in the limit N !1.5This has, however, no interpretation in terms of the geometrial periodiity of thelattie.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 11If we perform numerial alulations with �nite N we obtain N bands whihare not exatly periodi in kx, but they are nearly periodi on the interval(�12NK; 12NK), the more we approah the limits of this interval the bigger isthe deviation from the periodial behaviour. This fat is learly demonstratedon Fig. 2.4 where we display Ei(kx) on the �rst twenty \Brillouin zones" forN = 10.Setting jdjejBz=~ = jK = kj we �nd Eq. 2.3 formally similar to a matrixform of the Shr�odinger equation in the basis of plane waves (again in thelimit N !1, see [1℄, Chapter \Nearly free eletrons approximation")� ~22m� (kx � kj)2 � E� aj + 1Xl=�1Vl�jal = 0; with Vn = KZ d0 e�{nKxV (x) dx ;Vn are the Fourier omponents of the potential V in the x diretion. Com-paring the Fourier series with Eq. 2.3 we an see that Vl�j = tÆlj�1, i.e.V�1 = t and V�n = 0 for n = 0; 2; 3; 4; : : :. That means that V (x) =t[exp({Kx) + exp(�{Kx)℄ = 2t osKx and onsequently if N were in�nitythen the Eq. 2.3 is equivalent to the Mathieu equation [7℄:�� ~22m� d 2dx2 + 2jtj osKx� eikxxu(x) = Eeikxxu(x) : (2.4)This an also be understood as a 1D Shr�odinger equation H� = E� (for�(x) = exp({kxx)u(x)) for a �tive partile in a osine potential. Althoughwe do not see a straightforward relation between � and  (from Eq. 2.1) weknow that the spetra have Eq. 2.4 and Eq. 2.1 have to be the same.
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Figure 2.3: One of the results of the matrix diagonalization problem (Eq.2.3): �rst 20 eigenvalues are displayed (N = 40) for kx running through the�rst Brillouin zone (�12K; 12K).
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Figure 2.4: Demonstration of the kx-quasi{periodiity of the spetrum. Thepotential V (y) onsists of N = 10 periods and we plot �rst 20 Brillouinzones (aording to the saling of the horizontal axis, the nth Brillouin zoneis loated at (�n; n) n (�n + 1; n � 1)). It is however well visible that thebands are almost periodi up to the 10th Brillouin zone.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 14Density of StatesThe standard de�nition of density of states (DOS) at a given energy levelEF for any dimensionality n isg(EF ) = 1(2�)n ZE(k)=EF dk = 1(2�)n Z
 dk Æ�E � E(k)� (2.5)whereas 
 denotes the omplete k{spae. In our ase, the k{spae is onedimensional and thus the seond expression an be rewritten asg(EF ) = 1(2�) Xk;Ei(k)=EF ����dEdk �����1 : (2.6)However, this formula auses serious inauraies for at bands (i.e. whendE= dk � 0 for all k 2 (�12K; 12K)) in numerial alulations. It is muhmore suitable to use the relationg(EF ) = d � �N�E (EF ); N(EF ) = 1d Z EF�1dE g(E) : (2.7)N is the total number of states having energy under the Fermi level EF . Thisquantity an be determined with a good auray employing the fat thatthe total number of states per Landau band is jejB=h (see Appendix B).2.2.2 Struture of the Energy BandsThe equation easiest to solve numerially is (2.3), however the struture ofthe spetrum is best to see from Eq. 2.4. We will now try to get a betterinsight into the problem whih will help us to understand the numerialresults better.Let us investigate the eigenfuntions of Eq. 2.4; we will denote the osinepotential in Eq. 2.4 by W (x). If E > 2jtj the eigenstates of Eq. 2.4 shouldorrespond to almost free partiles, whih perept W (x) only as a weakperturbation.Aording to the results of the almost{free{eletrons approximation [1℄ wesuppose that E(kx) are near to parabolas, whih are deformed in the viinityof the �rst Brillouin zone boundaries kx = �12K (gaps open here).Next we fous on the states orresponding to energies near to a minimumof W (x). Imagine there is an in�nitely high barrier between two minima of



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 15the osine potential, i.e. no tunnelling between two neighbouring wells ofW (x) is possible (note that this has nothing to do with the value of t). Thenthere would appear bound states in eah well of W (x) the energy of whihwould be independent on kx; thus the spetrum would onsist of at bands.Although this is not our ase, the states with energies near to the bottomof a well in W (x) are suÆiently separated from the neighbouring wells andthe kx dependene of their energies will thus be weak. We expet almost atbands in this range of energies. Furthermore, these energies an be omputedapproximatelly as the ones of bound states in a single well of W (x) (whihis not surrounded by other wells).Thus when E � 2jtj, we an suppose that the wavefuntion is loalisedat jxj � �=K. Expanding the potential in Eq. (2.4) around its minimum6(suppose that t < 0)2t osKx = �2jtj+ jtjd2e2B2z~2 x2 +O(x4)and omparing it to the linear harmoni osillator problem with the potential12m�!2x2 we �nd ! =s2jtjm� � djejBz~and �nally the energy spetrumE = �2jtj+ ~!�� + 12� = �2jtj+s2jtjm� � djejBz �� + 12� �� �2jtj+p2jtjdBz(2� + 1)� 0:0256 meV (2.8)where Bz is to be taken in T, t in meV and d in nm. The requirementE � 2jtj reads Bz � p2jtjd � 78:12� + 1or introduing a new dimensionless parameter �� � �� + 12� = 12 � djejBzp2jtjm� ��� + 12� . 1: (2.9)6This is the e�etive{mass{approximation for the y diretion.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 16The last equation suggests that the qualitative behaviour of the bands (i.e.whether they are at or paraboli{like) depends only on the single dimension-less parameter � � �� + 12�. This an be veri�ed by rearranging the equationsystem (2.3) in the following way:jtj NXj=1 bHjl(kx)aj = E(kx)al; where (2.10)bHjj = �2 �j + kxK �2 ; bHjj�1 = �1:If we investigate only the \�rst Brillouin zone" for kx, the term kx=K rangesfrom �12 to 12 and even the whole system of equations depends only on �(t in front of the sum is only a saling fator for the energy). The bands(indexed by �) should be almost at if � < 1=�� 12 and almost paraboli if� > 1=�� 12 .2.2.3 Numerial ResultsPossible Types of the SpetraIn this part we will display the density of states rather than the dispersionrelations Ei(kx) that are the output after solving Eq. 2.3 or 2.10. Therelations Ei(kx) are proessed into the density of states by means of Eq.2.6 or 2.7. For the sake of larity we also display (see Fig. 2.6) the DOSorresponding to the spetrum shown on Fig. 2.3.As it follows from Eq. 2.10, the band struture displayed in units E=2jtjdepends only on a single parameter �.Let us onsider a sample whih is haraterized by a �eld{independentonstant �=Bz � 1 (see the de�ning Eq. 2.9). Suh a sample is suited forShubnikov{de Haas measurements (in low magneti �elds) sine as � remainssmaller than 1 even for Bz � 1 T. A way how to obtain samples with small�=Bz is to derease the period of the superlattie (d); inreasing the ouplingonstant t leads to a ollapse of the simple tight{binding model.The lowest bands should now be at and those beginning from index �maxsuh that �(�max+ 12) � 1 should be paraboli. In order to demonstrate thatwe hose a sample with jtj = 0:95 meV and d = 15 nm, i.e. �=Bz � 0:279T�1 and set N = 30. In the Fig. 2.5 we deal with the ase 1=� � 11, what
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Figure 2.5: Density of states in a weak �eld (�� 1).means �max � 11, i.e. 12 bands. We an distinguish 13 at bands in the�gure.Inreasing the parameter � (by means of inreasing the magneti �eld)we �rst get a spetrum like on Fig. 2.6 as we approah � � 1 where thesharp peaks an still be reognized. At last (for � > 1) we make the �rstLandau band to span up to energies omparable to 2jtj (see Fig. 2.7). Thereis no observable periodi struture for E < 2jtj, gaps shift to high energiesand beome very narrow exept for the �rst one.
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Figure 2.6: Density of states for intermediate �elds (� � 1). See the orre-sponding band struture at Fig. 2.3.
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Figure 2.7: Density of states for strong �elds.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 19Relation between the Low{Field Spetra and Zero{Field SpetraAs it was already mentioned in the Semilassial approah paragraph, theproblem desribed at the very beginning of the paragraph 2.2.1 an be solvedanalytially if A = 0 (and N ! 1). We start with Eq. 2.1, use the tightbinding model and obtain the spetrumE(kx; ky) = ~22m�k2x � 2jt0j os kyd : (2.11)The density of states an be alulated analytially out of this spetrum, too(see Appendix A). It exhibits a logaritmial singularity at E = 2jtj and itdeays as 1=pE for E !1, see Fig. 2.8.This plot seems to be very di�erent from the (numerially alulated)density of states of a system in a weak �eld (i.e. �� 1), see for instane Fig.2.5. However, the spetra at Fig. 2.5 refer to zero temperature. To omputethe non{zero spetrum we use the standard relationg(EF ; T ) = � Z 1�1 dEdfFD(E)dE g(E) ;where fFD(E) denotes the Fermi{Dira distribution at temperature T andwith hemial potential � = EF . The e�et of this proedure (for T � 1 K)is shown at Fig. 2.8. The ontinuity of the DOS behaviour for B ! 0 is thusreovered.
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CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 21Yet we would like to point out another feature of (espeially) low{�eldspetra. Aording to the disussion following the Eq. 2.10 (and as it wasalso shown e.g. at Fig. 2.5) the bands are at and almost equidistant in Efor E < 2jtj (the lower is E the better these two properties apply) and thebands are almost paraboli for E > 2jtj. It implies that the gaps (betweenthe bands) will be approximatelly periodi in E2 for E > 2jtj beause thegaps an only appear either in the entre or at the edge of the Brillouin zone(see Fig. 2.3).Followingly if we put the total number of states7 N under the Fermi levelin zero �eld onto the horizontal axis instead of the Fermi level itself, theripples (or the gaps) seen on the low{�eld DOS plots at Figs 2.5,2.8 will benearly periodi in N both for E < 2jtj and E > 2jtj. There will still be someirregularities near to E � 2jt0j though. The reason is that N is an almostlinear funtion of E for E deep under 2jtj (as the onstant term in DOS islarge ompared to the linear and next terms) and it is (up to an additionalonstant) proportional to pE high above 2jtj (as DOS is proportional to1=pE, see also Fig. 2.9).We will see later that the gaps play a fundamental role in understandingthe magnetoresistane measurements.

7See Eq. 2.7.
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Figure 2.9: Zero temperature density of states g(E) (line with peaks) andnumber of states N(E) with energy less than E (dashed: zero �eld, full line:low �eld).



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 232.2.4 Physial InterpretationLet us make some omments on Fig. 2.8. The singularity in the zero �eldDOS at EF = E = 2jtj divides two substantially di�erent regions from eahother.For EF deep under 2jtj and in weak �elds the system behaves like analmost free 2D gas in magneti �eld. Sharp and nearly equidistant Landaulevels (or at bands) appear, their mutual distane is proportional to B aspredited by Eq. 2.8. This means that if we keep EF onstant (deep under2jtj) and hange B, the Landau levels are passing through EF periodiallyin 1=B. Although there is not a straightforward relation between DOS andondutivity of the sample, this reminds us of the Shubnikov{de Haas os-illations. We stress that this is the behaviour of a free 2D eletron gas,too.However, the Landau levels remain sharp for the free 2D eletron gas evenfor strong �elds. On ontrary we an see at Figs. 2.6,2.7 that for suÆientlystrong �elds the Landau levels broaden even for E deep under 2jtj.We now return to the Fig. 2.8. The singularity in the zero �eld DOS atEF = 2jtj orresponds to ritial semilassial trajetories as it was alreadydisussed in the paragraph 2.1.2.In the ase of EF > 2jtj the system approahes the one{dimensional zeromagneti �eld behaviour. The density of states is (exept for the narrowgaps) / 1=pE, the same as the DOS of a free 1D eletron gas. It mightbe more instrutive to see the band struture plot at Fig. 2.4 instead of theDOS: we an see that the spetrum is nearly paraboli (as the one of a free1D eletron gas) for EF > 2jtj.On the other hand, if EF > 2jtj is not very far from 2jtj we will be ableto perept the gaps whih will be passing through EF when we hange B.Due to this we will observe ondutivity osillations again. The higher EFwill be, the harder will be the pereption of gaps and the weaker will be theondutivity osillations beause the gaps get narrower. The free 1D eletrongas however has no gaps in DOS.So as to understand the quantum mehanial results better we will alsodisuss the mean values of the veloity x omponent. These are given by�vx � h	(kx; n)jvxj	(kx; n)i = 1~ dEndkx :For the free 2D eletron gas it is thus �vx = 0 while this veloity is non{zero(as the bands are not ompletely at) for eletrons on�ned by a superlattie



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 24potential. This an be understood as a non{zero probability of jumping ofan eletron between two losed trajetories (see Fig. 2.10) whih results intoa net motion in one diretion for eletrons with kx � �14K and in anotherdiretion for those with kx � 14K.Similarly, ompared to the free 1D gas the eletrons moving in one dire-tion in a superlattie have a non{zero probability of hanging the diretion ofmotion (or jumping between two open trajetories in inverse diretions, seealso Fig. 2.10). This is a onsequene of the fat that there are suh valuesof kx (near to the end of the Brillouin zone) where �vx = 0.These fats are an indiation of the breakdown behaviour.

−3 −2 −1 0 1 2 3
ky [π/d]

0k x

Semiclassical model of the breakdown

Figure 2.10: The semilassial explanation of the di�erene between the freeeletrons and eletrons in a superlattie. Unlike the free 1D system theeletrons in a superlattie an make some kind of yles for E > 2jtj or inother words jump between two open orbits.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 252.3 Condutivity of a ModulatedTwo{Dimensional Eletron GasSo far we have shown how to ompute the dispersion relations Ei = Ei(kx)in an approximative way (see Eq. 2.3). We were also able to ompute theorresponding eigenfuntions at this point even though we haven't madeany use of them yet. The aim of the following setion is to establish ageneral relation between the quantum mehanial solutions of a partiulartwo{dimensional eletron gas problem and the omponents of the eletriondutivity tensor.We are going to use the linear response theory for omputing the on-dutivity tensor omponents. The starting point will be the formulae for theondutivity tensor diagonal and o�{diagonal elements derived by Kubo etal. [10℄ and Bastin et al. [2℄, respetively:�ii(EF ) = �~e2 Tr hv iÆ�(EF �H)v iÆ�(EF �H)i (2.12)�ij(E) = ei~ Z EF�1dE Tr hv idG+dE vjÆ�(E �H)� v iÆ�(E �H)v j dG�dE i :(2.13)The indies i and j stand for x or y, v i denotes the veloity omponentoperator. We employ the ommon de�nition of Green funtions whih allowsus to express delta funtions in terms of G�:G�(E) = 1E �H � i� ; Æ�(E �H) = � 12�i(G+ �G�) :We stress that the original formulae (2.12,2.13) are derived with � ! 0+.However, in this ase the ondutivities (e.g. for a free eletron gas) wouldbe in�nite as no sattering mehanism was onsidered. The e�et of elastisattering on randomly loated impurities an be modelled by inserting theomplex self{energy term into the Green funtion (i.e. replaing [E �H℄�1by [E�H��(E)℄�1), [9℄. If the self{energy has a non{zero imaginary part,the ondutivities remain �nite. As a model we will further put �(E) = i�,� > 0, we will keep � as a parameter and we are going to examine the �! 0asymptoti behaviour. A more detailed treatment of the self{energy method(based on seond order Born approximation alulations) is disussed in [9℄.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 26The Equations 2.12, 2.13 are a presription for omputing the ondutiv-ity tensor omponents at zero temperature, the Fermi level being EF . To gettheir non{zero temperature values we use�ij(T ) = � Z 1�1 dEdfFD(E)dE �ij(E) ; (2.14)where fFD(E) is the equilibrium Fermi{Dira distribution normed (by meansof EF ) to the partiular number (areal onentration) of partilesN in systemfFD(E) = 1exp(E�EFkT ) + 1 ; N = Z 1�1 dEg(E)fFD(E) ;g(E) stands for DOS of the partiular eletron system.Let us make a brief omment on the derivation of Equations 2.12, 2.13.These relations an be obtained by integrating the Liouville equation (f isthe density matrix operator)dfdt + 1i~ [f ;H +H 0℄ = 0and taking into aount only the terms linear in the perturbation HamiltonianH 0. In our ase the perturbation is a homogeneous eletri �eld E and wealulate the urrent response j , i.e. Tr(evf). Finally, we determine �ij usingthe relation ji = Pj �ijEj. This proedure is explained in [9℄ in a nie andunderstandable way.The form of Equation 2.13 is inonvenient from the omputational point ofview beause it fores us to integrate over energies even at zero temperature.A way how to partially avoid this was suggested by St�reda in [15℄�ij(E) = �Iij(E) + �IIij (E)�Iij(E) = Tr hv iG+(E)vjÆ�(E �H)� v iÆ�(E �H)v jG�(E)i�IIxy(E) = ��IIyx(E) = e�N(E)�B : (2.15)The integration over energies remained inN(E) (the total number of partileswith energies less than E)N(E) = Z E�1 dEg(E) = Z E�1 dE Tr Æ(E �H):



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 27This is however a quantity muh simpler to ompute numerially.Before we proeed in applying Equations 2.12,2.15 to our partiular sys-tem we would like to point out one general feature of these equations intwo{dimensional systems. If the Fermi level lies in a gap (i.e. g(EF ) = 0), all�xx, �yy and �Ixy vanish whereas the seond term of �xy an be non{zero. Ifthe gap is situated between the l-th and (l+1)-st Landau bands the value ofthis term will be le2=h beause the areal onentration of states per one Lan-dau band is eB=h (see Appendix B). Thus, �xy will be onstant throughoutthe gap and equal to an integer multiple of e2=h whih is a quantum-Hall-phenomenon-like behaviour.2.3.1 Modulated Two{Dimensional Eletron GasWe turn now to the system desribed by the Hamiltonian (2.1), see also Fig.2.1. First of all this means the veloity omponent operator v i has the formvx = 1i~ [x ;H℄ = 1m(px � eBy)vy = 1i~ [y ;H℄ = 1mpy : (2.16)Further (see paragraph 2.2.1) we reall that the (orthonormalized) approxi-mate solutions to the Shr�odinger equation areHj	i = E(kx; n)j	i; j	i = jkxi NXj=1 aj(kx; n)jji def= jkxij i ;where the ket jji denotes the lowest eigenstate in the j-th well of the su-perlattie potential V (y) and it holds within our approximation hjjki = Æjk.The eigenstates take the following form in oordinate representation (see alsoparagraph 2.2.1)	(x; y) = 1p2� e�ikxx NXj=1 aj(kx; n)'(y � jd) :As soon as we determine the eigenstates 	(x; y) we an ompute the traesin Eqs. 2.12 and 2.15.We have not obtained any reliable results so far beause of problems onthe numerial level. The expeted form of results is however disussed insubsetion 2.5.3.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 282.4 The Way from Theory to Experiment2.4.1 The Experimental SetupThe samples were fabriated and measured by R. A. Deutshmann at theWalter Shottky Institute in M�unhen. The geometry of the samples mea-sured is shown at Fig. 2.11 and an be obtained using the leaved edgeovergrowth method [4℄,[5℄. The basis of the sample is a 3D GaAs/GaAlAssuperlattie (i.e. alternating layers of the two materials) with the period of15 nm and number of periods 100. The �rst and the last layer is ontated(soure and drain): �rst there's an undoped GaAs layer (100 nm) and then1 �m of n+ GaAs. This struture is leaved in situ perpendiular to thelayers and a n+ GaAs gate (with 15 nm undoped GaAs spaer) is grown onthe fresh surfae.

Figure 2.11: The sample. Reprinted with kind permission ofR. A. Deutshmann.By applying positive voltage to the gate Ug eletrons are drawn from thevolume of the superlattie to a thin layer at the gate spaer. Thus a 2Deletron gas is reated whih is subjet to the superlattie potential. Theonentration of eletrons in the 2D gas (or onsequently hemial potential)is gate{voltage{dependent. If we apply magneti �eld perpendiular to the



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 29leavage plane we arrive at the situation with the geometry shown at Fig.2.1.The quantity mesured on this sample is the resistane depending on mag-neti �eld and gate voltage. There are separated voltage and urrent ontatson both soure and drain. However, this setup has to be treated just as atwo{point measurement from the point of view of the 2D system (see Fig.2.12). The reason why this is an important issue is that there are two meh-anisms of eletron transport in the y diretion: the bulk states ondutivityand the edge states ondutivity8. Using the two{point measurement geom-etry (Fig. 2.12a) we measure a result of a mixture of the two phenomena(see below) while in the four{point sheme (Fig. 2.12b) both longitudinaland transversal voltages an be measured allowing thus to separate the twoondutivity ontributions. This topi is naturally disussed in some papersonerning the quantum Hall e�et.
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Figure 2.12: 2D superlatties: (a) two{point measurement, (b) four{pointmeasurement.Four{Point MeasurementLet us now sketh how to use the advantage of a four{point measurement.Due to the presene of the magneti �eld the 2D gas will be strongly anisotropi8We stress that this is only one of theories explaining the quantum Hall e�et whih isstill not proven to be the only orret one.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 30and the total urrent passing through the 2D superlattie (in the y diretion)will be given by the ondutivity � or resistivity % tensorsjy = �xyUxy + �yyUyy; or (2.17)Uxy = %xyjy and Uyy = %yyjy ;beause jx (transversal density of urrent) vanishes. There are some sym-metries of �: �rst �xy(B) = �yx(�B) (Onsager relation [1℄) ombined with�xy(B) = ��xy(�B) and �yx(B) = ��yx(�B) (Hall urrent hanges dire-tion when B ! �B) yields �xy(B) = ��yx(B).The tensors � and % are inverse to eah other whih gives (with respetto the symmetries of �)%yx = �%xy = � �yx�xx�yy + �2yx ; %xx = �yy�xx�yy + �2yx ; %yy = �xx�xx�yy + �2yx :(2.18)The voltages Uxy and Uyy an be measured in the four{point sheme andthus �xy and �yy an be alulated as a funtion of jB j.Two{Point MeasurementWe will now sketh the way how to estimate the experimentally measuredresistane assuming that we have done only the DOS alulation.Let us think of the sample as of a ondutive slab (see Fig. 2.12,a)haraterized by two ondutivity omponents � = �xx = �yy and �H = �xy;the thikness T (in the y diretion) of the slab is substantially less than itslength L (in the x diretion). A two-terminal resistane R an be found outfrom the voltage di�erene U measured aross the soure and drain ontatsand is given by R = U=I, provided the urrent passing through the samplebeing I.A two-terminal resistane of retangular slabs subjet to perpendiularmagneti �elds was studied both theoretially and experimentally e.g. byRikken et al. [12℄, but their results hardly apply in our ase (T � L), whihis far away from the standard Hall bar geometry.For small Hall angles 'H def= artan(�H=�), i.e if 'H � artan(T=L), oursample reminds the Corbino dis (see Fig. 2.13) in some aspets. Far awayfrom the edges, the eletri �eld is perpendiular to the soure and drainontats and E = U=T . The urrent ow deviates from this diretion by the
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voltage contacts current contacts

Figure 2.13: Corbino dis geometry.Hall angle and only a very small part of eletrons near the edges does notobey the rule. In this ase R � 1� TL; (2.19)similarly as for the Corbino dis. In the quantum Hall regime � ! 0 and Rshould diverge for a true Corbino dis.In our sample, the limit � ! 0 means that 'H ! �=2 and onsequently'H beomes larger than artan(T=L). Then, in spite of its thikness to lengthratio, our sample behaves like a standard Hall bar for whih the two{terminalresistane is known [12℄ to be very lose to the quantized Hall plateau re-sistane, R � h=(e2 � i), where i is a positive integer number. Thus, in ourase R does not diverge as the singularity is ut o� by the resistane of theorresponding Hall plateau.Both � and �H are ompliated funtions of magneti �eld and onen-tration of arriers. If the Hall angle never beomes small for a given onen-tration (but deviates from �=2 substantially), the Eq. 2.19 does not applyfor any �eld. It is known [12℄ that in this ase R is given by a ombinationof � and �H whih are related to � and �H by� � �=�2H ; �H � 1=�H : (2.20)This %'s to �'s orrespondene is given by relation 2.18 provided that � � �H .



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 32The weak point of this approah is that the slab (2DEG) is stronglyanisotropi (�xx 6= �yy). Even though we an estimate that �yy � �xx weare not able to predit whether �xx�yy is smaller or greater �2xy in a Landaulevel. In the latter ase the Eq. 2.19 desribing the measured resistane issubstituted by relations (2.20).A onsequene is that knowing DOS only we have no indiation on thevalue of � (for EF in a Landau level) ompared to the known �H in the gaps| even for small Hall angles. It is thus impossible to predit whether theHall plateaus of the measured resistane will be maxima or minima.Conluded, we an only say that in the two{point sheme there shouldappear the Hall plateaus if the Fermi level lies in a gap. We will makeseveral omments on the general relation between DOS and �, �H in thenext paragraph.2.4.2 Relation between Condutivity and Density ofStates: A Simple ModelIt is a rather omplex problem to �nd a good approximation whih wouldlead us from the alulated spetrum and eigenstates up to the ondutivity.Later we will show the results of Kubo formula (linear response theory)whih is however not very easy to follow (see setion 2.3). We will disussthe possible shape of the relation now in a very rough way whih will give usbetter insight into the matter. We fous at the two{point sheme now.One of the ontemporary theories attempting to explain the QuantumHall phenomenon onerns the edge states [3℄. We will sketh the idea briey:Landau levels in a �nite 2D free eletron gas rise in the viinity of edges |from the semilassial point of view the eletrons move on irular orbits nolonger and take yloidal trajetories. The energy of these states is higherthan the one of the orresponding bulk (irular orbit) states and (assumingthat the 2DEG is on�ned to an in�nitely deep well) it grows to in�nityas these orbits approah the edge. Thus if the Fermi level lies in the gapbetween i-th and (i + 1)-th bulk Landau level it rosses the i lower Landaulevels in the edge region. These intersetions represent the edge states. Itan be derived [3℄ that eah edge state ontributes to the ondutivity bye2=h. The total ondutivity in this ase is thus ie2=h and it doesn't dependon where in the gap the Fermi level is.Further on we will thus assume that there are two parallel hannels of



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 33eletron transport in the sample | the bulk states ondutivity and the edgestates ondutivity. The relation (2.17) gives us a hint how the two hannelsould be related to the ondutivity tensor: the diagonal omponents (�xx,�yy) desribe the bulk ondutivity and the o�{diagonal omponent (�xy)reets the edge{states ondutivity9. We also reall that the transport on-erns eletrons near to the Fermi level only. The appropriate quantity willthus be the density of states (DOS) at the Fermi level, for non{zero temper-atures we will use the standard relation (2.14).We will estimate the ondutivity of the two hannels now. The simplestmodel is that the bulk ondutivity grows with inreasing density of states.In partiular, �ii = 0 if Fermi level lies in the gap and is non{zero in a Landaulevel.The edge states ondutivity is ie2=h if the Fermi level lies in a gap. Wehave however no estimate for it in the other ase. Note that there's alsoanother otribution to �H originating from the lassial Hall phenomenon.Conluded, the simplest DOS{based model of the magnetoresistane isthat we measure the resistane (1=i) � h=e2 in the gap and  � 1=g(EF ) in aLandau level (if the edge states ondutivity is negligible to the bulk statesone). The proportionality onstant  an be however a funtion of EF (andwe might only hope that it is varying slowly). We stress one again that weannot predit whether the Hall plateaus lie below or over the typial bulkstates resistane.2.4.3 The Relation Between Gate Voltage and FermiEnergyWe divide this problem into two steps. The �rst one is the relation betweenthe gate voltage Ug and onentration of eletrons N in the 2D gas. Weassume that this relation is a proportionality. This means that the gatestruture works as a apaitor whih seems to be a plausible model.The seond step is to �nd the relation between Fermi energy and N . Theusual relation is N(EF ) = Z EF�1 g(E) dE:Here, g(E) must be omputed from the zero{temperature DOS (as showne.g. on Fig. 2.6) to whih the thermal broadening relation is applied (2.14).9This is a naive model and it will be replaed by a better one in the subsetion 2.5.3.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 34Thus, for low �elds and non{zero temperatures the relation N = N(Ef ) anbe also roughly approximated by the zero �eld relation at zero temperatures(5.1), see Fig. 2.8 and the orresponding paragraph.Overlaying the experimental and theoretial 2D plots on eah other wean now determine the proportionality onstant between Ug and N . Theaim is that the gaps of DOS math the straight resistane minima lines(for weak �elds and high gate voltages). Typial value of this onstant is6� 1011 m�2V�1.Agreement between the theoretial and experimental graphs gives us thusa feedbak: the assumption N / Ug is now justi�ed.2.4.4 Coupling ConstantWe ould see that the parameter t whih desribes the strength of ouplingbetween two neighbouring wells plays an important role in the theoretialalulations. Up to now, our onept that we do not know anything about thesuperlattie potential V (y) exept for its period d and the oupling onstantt. However, in our spei� ase we an onsider V (y) to be retangular andwe also know the depth of the wells whih equals the GaAs/GaAlAs bando�set.Exploiting thus our knowledge about the sample struture we an employthe Kronig{Penney model and determine the spetrum of the system in zeromagneti �eld. The result is10 E(kx; ky) � ~2k2x=2m� � �=2 � os kyd wherethe width of the �rst miniband is � � 3:8 meV (see [5℄). Comparing thisto the tight{binding approximation zero �eld spetrum (2.11) we obtain t �0:95 meV.Let us also make a short omment on the assumption that only the groundstate in eah well is oupied whih was a basis for the ansatz (2.2). It wasomputed by [5℄ within the Kronig{Penney model that the seond minibandlies 60 meV above the �rst one whih is suÆiently more than the Fermienergies at relevant arriers onentrations (e.g. for N = 5:9� 1011 m�2 itis EF � 8:9 meV).10The band part of this spetrum has not an exat osine form.



EXPERIMENTS AND COMPARISON TO THE THEORY 352.5 Experimental Results and Comparison tothe TheoryAll the experimental results were obtained by R. A. Deutshmann at theWalter Shottky Institute in M�unhen and are reprinted with his kind per-mission.2.5.1 Experimental ResultsAs it was mentioned above, both magneti �eld and gate voltage an behanged during the experiment. The measured quantity is the voltage dropon the sample at a given urrent (I = 10 nA for the data displayed). The ur-rent voltage harateristis was found to be linear for low urrents and thusthe measurements were presented as sample resistane measurements for dif-ferent gate voltages and magneti �eld strengths. The measurement outomean be displayed as a 2D plot (see Fig. 2.14). However, the measured re-sistane ranges within more orders of magnitude while important struturesare in some regions quite weak. We used two methods of displaying the dataso as to emphasize these features. We employed logaritmial sale for resis-tane and subtrated linear bakground (�tted by the least square method)at Fig. 2.14 (top) and plotted the resistane R transformed using formulaR 7! (�2R=�U2g )=j�R=�Ugj at Fig. 2.14 (bottom). The latter method showsthe �ne struture better but it rather shows the steepness of the extremathan the value of the plotted funtion (i.e. does not distinguish deep andshallow extremes). The former method gives a better global overview.
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Figure 2.14: Experimental data: �eld{ and gate{voltage{dependent resis-tane (in arbitrary units) of the sample. The same data proessed by twodi�erent methods: logarithmial sale (top) and derivatives method (bot-tom). Reprinted with kind permission of Rainer Deutshmann.



EXPERIMENTS AND COMPARISON TO THE THEORY 372.5.2 DOS CalulationsWe have already shown how to ompute the density of states as a funtionof energy E for di�erent magneti �eld strengths. By merging these plots(as e.g. the one at Fig. 2.5) into one 2D plot and transforming E (Fermienergy) into N on the vertial axis, the zero �eld number of states under E(using Eq. 5.1) we obtain Fig. 2.15 (left plot). The dark regions orrespondto the Landau bands, the light regions are the gaps.As it was already mentioned before we further assume that N is propor-tional to the gate voltage Ug. We determine the proportionality onstantso that the theoretial plot would math the experimental plots (at Fig.2.14), namely that the lines orresponding to gaps and the lines of resistaneminima have the same position. In our ase we found out its value to be7:0� 10�11 m�2V�1 and obtained the right plot on Fig. 2.15.We an see that the strutures of the theoretial and experimental plotsare in a good agreement exept for the resistane minimum starting at B �8 T and Ug � 0:4 V whih has no ounterpart in the theoretial plot. Itshows that our model is not valid in this region. This an be due to thefat that the ansatz (2.2) has no justi�ation if the eletron ylotron radiusbeomes very small ompared to the superlattie period d and the state isthus strongly loalized in a single well (or in other words the tunnellingbetween two adjaent superlattie wells is negligible due to the magneti�eld).Despite this mismath we an see that the used model gives a good de-sription of the system in all other regions.
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Figure 2.15: DOS alulation: B is on the horizontal axis on both plots. Onthe vertial axis there is the zero �eld number of states (left) and the gatevoltage (right).



EXPERIMENTS AND COMPARISON TO THE THEORY 39Another type of insight give the setions of the 2D plot, i.e. graphsof �eld{dependent resistane at (di�erent) onstant gate voltages Ug. Verylear pitures an be obtained by plotting more lines (i.e. at di�erent Ug)into one graph with B=Ug instead of just B on the horizontal axis, see Fig.2.16. So as to be able to ompare these plots with the theoretial results weagain assumed that the gate voltage is proportional to the total number ofarriers (see above). Note that under this assumption the horizontal axis isproportional to the reiproal value of �lling fator (i.e. one over number ofLandau levels oupied).However, the math of theory and measured data is only very rough atthe level of DOS. It has already been suggested above that we annot preditwhether the resistivity will have a maximum or minimum for EF lying in gapfrom the semilassial point of view. On the other hand we an see that theresistivities (for various values of N) approah the same value 12:9 k
 aroundB=N � 2. This is the resistivity of the �rst Hall plateau (12h=e2, one half forthe spin) and that an be predited without the Kubo theory.
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Figure 2.16: Experimental data along with alulation results: �eld{dependent resistane of the sample for di�erent gate voltages. Smooth urvesare the experimental data (Ug in volts), urves with singularities are the al-ulations of DOS (N in 1011 m�2). Experimental and DOS urves of thesame olour orrespond to the same gate voltage (Ug = 6:6 � N). Reprintedwith kind permission of Rainer Deutshmann.



EXPERIMENTS AND COMPARISON TO THE THEORY 412.5.3 Kubo Formula CalulationsWe have already presented a way how to ompute the ondutivity ompo-nents in the subsetion 2.3.1. Subsequently we use the formulae (2.18) totransform them into the resistivity omponents. Due to numerial problemswhih our when evaluating the traes (Eq. 2.15) we have not obtained any�nal results yet but we believe that the main features of the B{dependentresistivity to be measured are inluded in our present Ryy plot11 (see Fig.2.17).First of all we found out that Ryy vanishes in the gaps. If the Fermi levellies in a gap then the only non{zero omponent of resistivity will be Rxy whihis then equal to the quantized Hall resistane h=(2e2n), n = 1; 2; : : : We analso see on the plot (2.17) that the lower is the magneti �eld the thinner arethe gaps and the less pronouned are thus the minima of Ryy at the positionsof gaps. Another important point is that the gaps get thinner also whenonentration of eletrons (N) inreases and thus at higher onentrationsless periods of osillations an be distinguished (as it an also be seen in theexperimental data). It an also be reognized that the envelope funtion ofthe plotted Ryy is similar as the one of the experimental magnetoresistane:right from the �rst Hall plateau (R � 12:9 k
 in the �gure) it grows rapidlyand approahes zero between this plateau and zero �eld with a maximumapproximatelly in the entre.As it was already mentioned before we had to take into aount satteringof eletrons on impurities in order to avoid in�nite ondutivities. This e�etwas modelled by inluding the imaginary part � of the self{energy into theGreen funtion whih was kept further on as an unspei�ed parameter. Wefound out that variation of its value auses only that Ryy is saled by 1=�.This gives us some justi�ation to onsider the plot (2.17) as relevant.We empasize however that the self{energy (and thus also �) is EF{dependent (or onentration{dependent), see [16℄ or [11℄.Let us now make a short omment to the relation between the resistaneomponents and the experimental data. We reall the relations (2.17):Uxy = RxyIy and Uyy = RyyIy :As we use the two{point measurement sheme (see Fig. 2.12a) we annotmeasure Uxy and Uyy separately; what we measure is a mixture (a weighted11We leave the urrent densities j and swith to the urrent I . Subsequently the resis-tivity % will be replaed by resistane R.



EXPERIMENTS AND COMPARISON TO THE THEORY 42mean) of these two values. However if the Fermi level lies in a gap, the Ryyomponent vanishes and we thus measure Uxy only.In the other ases (DOS non{zero) we expet that Rxy does not devi-ate dramatially from the smooth transition between the two adjaent Hallplateaus values (see [13℄) and thus the total voltage measured will be inu-ened by Ryy. This seems to be the ase of the high onentrations (see e.g.the plot for N = 5:94� 1011 m�2 on the Fig. 2.16).Let us now summarize the arguments illustrating the agreement betweenthe experiment (Fig. 2.16) and theory (Fig. 2.17).1. The ritial points (maxima or minima for di�erent onetrations) whihorrespond to the Fermi level positioned in a gap math perfetly.2. The Hall plateaus in gaps are reprodued by the theory (note that theplateaus have the resistanes Ri = h=(2e2i), i = 1; 2; : : : ; the fator oftwo orresponds to spin).3. The resistane rises rapidly right from the �rst Hall plateau (B=N >2� 10�11 Tm2).4. Envelope funtions of the resistanes left from the �rst Hall plateauhave the same shape.5. The lower is the onentration the more pronouned are the resistaneritial points (minima).
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Chapter 3Three{DimensionalSuperlatties
3.1 Introdution3.1.1 Desription of the SystemThe superlatties investigated in this part are onsidered to be desribed byone{dimensional potential V = V (z) having a period of dz, see Fig. 3.1. The
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dzFigure 3.1: A three dimensional superlattie.exat shape of the potential is not spei�ed, we only assume that there isone well in eah period and desribe the potential by means of the ouplingonstant assigned to ground states in two neighbouring wells (see below).The movement of eletron in planes perpendiular to z axis is free.44



CHAPTER 3. THREE{DIMENSIONAL SUPERLATTICES 45Suh a struture an be fabriated using epitaxial methods. Magneto-transport measurements on InGaAs/InP strutures were performed for in-stane by Jashinski [8℄.Unlike the ase of the two{dimensional systems, magneti �eld will nowbe applied in an arbitrary diretion. By perpendiular �eld we mean �eldparallel to the z axis, otherwise we will speak of tilted �eld.3.1.2 Semilassial ApproahThe onept of the semilassial (SC) desription of 3D systems is an exten-sion of the SC theory mentioned in the subsetion 2.1.2. The tight{bindingzero{�eld spetrum of the 3D system isE(kx; ky; kz) = ~22m�k2x + ~22m�k2y � 2jt0j os kzdz : (3.1)The Fermi surfaes EF = E(kx; ky; kz) take three topologially di�erent formswhih all posses rotational symmetry as the system is isotropi in the x; yplane. These surfaes an be obtained by rotating the urves 0, 1 and 2 ofFig. 2.2 around the kx = 0 axis. The forms an thus be (a series of) deformed(rotational) ellipsoid for EF < 2jtj or a orrugated ylinder for EF > 2jtj; thetransition Fermi surfae between these two regions is a series of just touhingspindle{like bodies.In order to determine the semilassial trajetories of an eletron if thesystem is subjet to magneti �eld B we have to onstrut a ross setion ofthe Fermi surfae by a plane perpendiular to the magneti �eld diretion. Byrotating these urves by 90 degrees around B and saling them by ~=(jejjB j)we get the real spae trajetories. Note that there is a whole lass of suhtrajetories for eah diretion of B (whih an be obtained by shifting thesetion plane along B).Compared to the 2D system there is now a larger variety of trajetoryshapes beause they depend both on Fermi level value and on the �eld di-retion. Nevertheless, all trajetories are losed for EF < 2jtj even in the 3Dase. For EF > 2jtj the trajetory an be either open or losed, dependingon the �eld diretion.There is the quantization ondition again whih requires the losed tra-jetories to enlose area A(EF ) equal to an integer multiple of magneti ux



CHAPTER 3. THREE{DIMENSIONAL SUPERLATTICES 46quanta jejjB j=h (in the k{spae)A(EF ) = n � jejjB jh ; n = 1; 2; : : : : (3.2)Shubnikov{de Haas osillationsLet the Fermi level EF and the magneti �eld diretion be �xed and on-sider the lass of the losed trajetories indexed by a parameter � whihorresponds to the setion plane shift in the diretion of B . Due to thequantization ondition (3.2) only some of the trajetories are permitted. Ifwe vary the �eld strength jB j, one or more of the permitted trajetories mayful�ll �A(EF )=�� = 0. It means that there are many other trajetories nearto this one whih enlose area near to A(EF ). The SC theory laims thatthis should orrespond to singularity of the density of states.Thus the SC theory suggests to �nd extremal ross{setions Amax, Aminof a Fermi surfae (for a given EF and B=jB j) and predits that there willbe a singularity in magnetoresistane for the values of 1=B whih ful�ll1B = n � jejh � 1Amin ; 1B = n � jejh � 1Amax ; n = 1; 2; : : : :These two superposed (1=B){periodi strutures are alled Shubnikov{deHaas osillations and an be observed in an experiment [1℄,[8℄.The Limitations of the SC ApproahThe disadvantage of the SC theory is again that it shows no quantitativerelation for the ondutivity. It only suggests where the singularities of DOSan be. As the superlattie is strongly anisotropi we have no reason tosuppose that the ondutivity tensor omponents will all depend on DOS inthe same way.Even from the (almost) lassial point of view we may expet that thein{plane omponent of magneti �eld will redue the tunnelling between twoadjaent layers of the sample. Thus for a �xed Fermi level and diretionof tilted magneti �eld there should be a ritial value B over whih thesystem will behave as a set of deoupled 2D eletron systems. The SC theoryannot predit this transition beause regardless of the �eld strength theFermi surfae ross setions remain the same.



CHAPTER 3. THREE{DIMENSIONAL SUPERLATTICES 47We an thus predit the SC approah failure for strong in{plane �eldomponents. As for the experiments this failure (the 3D{ to 2D{mode tran-sition) will be indiated by ourene of the Quantum Hall phenomenon (i.e.plateaus in the %xy omponent of magnetoresistane). We an also expetthat the resistane in perpendiular diretion (%zz) will rapidly rise.3.2 Quantum Mehanial ApproahConsider the struture shown at Fig. 3.1. We apply magneti �eld B =(0; By; Bz) to it and we denote the angle of B to xy{plane as �, i.e. otg� =By=Bz and we hoose A = (Byz � Bzy; 0; 0) for the vetor potential. TheHamiltonian for suh a system H = 12m� (~p � e~A)2 + V (z), depends on xthus only via px. This hints us to make an ansatz 	(x; y; z) = e{kxx�(y; z)when solving the stationary{state Shr�odinger equation Hj	i = Ej	i. The2D Hamiltonian is thenH = 12m� (p2y + p2z) + 12m� (~kx + jej(Byz � Bzy))2 + V (z) : (3.3)Note that E is independent on kx for Bz 6= 0, beause states with di�er-ent kx are degenerated and their wavefuntions are only shifted (this an beeasily seen from the translational invariane of the kineti part of H). Con-sequently, it is reasonable to perform the alulation just for one value of kx,e.g. for kx = 0.Examining the H we �nd that it's invariant to translations of the type(y; z) 7! (y+jdy; z+jdz), j = 0; 1;�1; 2; : : : where (dy; dz) is a vetor havingthe same diretion as B , in other words dy=dz = By=Bz; loal minima ofthe total potential in H our at intersetion points of lines z = jdz, j =0; 1;�1; 2; : : : (orresponding to minima of V (z)) and the line Byz�Bzy = 0(whih is the minimum of the paraboli \magneti" potential). Aording tothe Bloh theorem we an �nd the eigenstates of H in the form�k (y; z) = 1pN N�1Xj=0 exp({(kzjdz + kyjdy)) (z � jdz; y � jdy) (3.4)where N is an integer whih would be afterwards formally limited to in�nity(number of periods of the potential V (z)) and k = (ky; kz) is a vetor of thesame diretion as B , i.e. ky=kz = dy=dz = By=Bz. We shall limit ourselves



CHAPTER 3. THREE{DIMENSIONAL SUPERLATTICES 48to the �rst Brillouin zone, whih is determined by kz 2 (��=dz; �=dz). Thefuntion  (y; z) is a one{eletron state loalized in one period of the 2D{potential; note however that this funtion is also k{dependent.3.2.1 The ApproximationsBefore we ontinue with putting the ansatz (3.4) into the Shr�odinger equa-tion with the Hamiltonian (3.3) we will make several approximations whihwill simplify the problem onsiderably.1. Separability.  (y; z) = �(z)'(y). For simpler notation we will use braand ket vetors hzj�ji = �(z � jdz) and hyj'ji = �(y � jdy).2. Orthogonality of j�ji. h�jj�ii = Æij.3. Tight{binding approximation. h�jjHzj�ii = tÆj;i�1. Here we use thenotationHz = p2z=2m+V (z), i.e. the non{trivial part ofH in abseneof magneti �eld.4. Setting the zero level of energy (what was however inluded in theprevious point, yet). h�ijHzj�ii = 0.5. Limit on the in{plane �eld strength. This has two parts: �rst Byz�Bzyvaries slowly on one period of V (z), or h�jjByz�Bzyj�ji = Byjdz�Bzy,6. and seond: h�jj e22m� (Byz � Bzy)2j�ii = 0 for i 6= j.7. Number of populated states. We assume that the energy spetrumand the number of free eletrons in the system is suh that only statesj'(n)j ij�(0)j i, n = 0; 1; : : : are populated (i.e. only the ground state of thesuperlatie in zero magneti �eld and an arbitrary state orrespondingto the presene of the magneti �eld).The value of the hopping term t follows naturally from the exat form of�(z). But on the other hand, having spei�ed its value and relying on thelisted assumptions we have no other reason why we should be interested inthe exat form of �(z).



CHAPTER 3. THREE{DIMENSIONAL SUPERLATTICES 493.2.2 Turning the 2D equation into a 1D equationWe now onentrate on the equation Hj�ki = Ej�ki with Hamiltonian ofthe form (3.3) and the ansatz (3.4)j�ki = 1pN N�1Xj=0 exp({(kzjdz + kyjdy))j�jij'ji :We now multiply the Shr�odinger equation from the left by1pN N�1Xj=0 exp({(kzjdz + kyjdy))h�jjhyj :By applying the assumptions listed in the previous subsetion we arrive (seeAppendix C) at an equation whih is a sum of N equations (indexed by j)of the type� p2y2m� + 12m�!2?(y � jdy)2 + 2t os(pydy=~� kzdz � kydy)� j'ji = Ej'ji :(3.5)All these summed equations are however equivalent beause they an betransformed one to another by substituting by � j 0dy = y � jdy. Due to thiswe may limit ourselves only to one equation (3.5), let it be the one withj = 0. For solving suh an equation we hoose py{representation; we reallhpyjyjpyi = {~(d= dpy) and denote hpyj'0i = '(py). Last, using dy=dz =ky=kz = otg� we an write kydy + kzdz = kzdz(otg2 � + 1) def= kzdz� andthe equation to solve is thus�12~2m�!2?'00(py) + � p2y2m� + 2t os�pydy=~� kzdz���'(py) = E(kz)'(py):(3.6)3.2.3 Numerial ResultsIn this setion we would like to show only the most important results obtainedby solving Eq. 3.6. We will make use of the spetrum only.It is evident that for eah value of kz we obtain an in�nite number ofeigenvalues of Eq. 3.6 and thus for kz going through the �rst Brillouin zone



CHAPTER 3. THREE{DIMENSIONAL SUPERLATTICES 50we will obtain (Landau) band struture Ei(kz). As in the previous hapterwe will display rather DOS than the band struture itself (Eq. 2.7 showshow to transform Ei(kz) into DOS).A typial DOS output for EF > 2jtj is shown at Fig. 3.2. We an see theoverlapping Landau band, eah of them having two DOS singularities (at theedges). Both types of singularities (those at the low �eld edge and and thoseat the high �eld edge) are 1=B{periodi (the periods are not the same) andthe periods are in a good agreement with the SC predition. However, wean see a third DOS maximum at some Landau bands (enirled in the Fig.3.2). These maxima have no SC analogy and are also 1=B{periodi.The onlusion regarding the Fig. 3.2 is that the in{plane omponent ofthe magneti �eld is not strong enough so that it would ause substantialhanges to the system (like the hange of dimensionality for instane).
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CHAPTER 3. THREE{DIMENSIONAL SUPERLATTICES 51A di�erent situation is shown at Fig. 3.3. We an learly see the sharpLandau levels for strong magneti �elds and ontinuous spetrum for low�elds. Sine sharp Landau levels are typial for 2D behaviour, we onludethat magneti �elds over B � 2 T redue the dimensionality of the system(i.e. 3D to 2D transition ours). The SC theory has no means of preditingthis phenomenon as it operates with the (extremal) Fermi surfae ross se-tions whih are the same for a given Fermi level and �eld diretion regardlessof the �eld strength.
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Chapter 4ConlusionWe studied the e�et of magneti �eld applied to two{ and three{dimensionalsuperlatties (SL) on the eletri ondutivity of the system.In the ase of the two{dimensional SLs we applied the standard semi-lassial theory �rst and showed that it annot explain Shubnikov{de Haasosillations measured experimentally in magnetoresistane for high onen-trations of eletrons (breakdown), [4℄. Next we performed a one eletronquantum mehanial alulation of the density of states whih was able toreprodue the struture (periodiity) in the experimental data. In the laststep we utilized the linear response theory (Kubo formula, [15℄) in order toompute diretly the ondutivity tensor omponents. These results were ina better agreement with the experiments and thus this diretion of improv-ing our model seems to be promising (the �rst step would be to use a betterdesription of the elasti sattering of eletrons on impurities).There were no suh striking experimental results available for the three{dimensional SLs whih would illustrate the failure of the semilassial theory.We have however shown by a quantum mehanial alulation of density ofstates that the dimensionality of the system an hange due to the preseneof strong in{plane magneti �eld. This is again a phenomenon whih annotbe predited by the semilassial theory.In general, we showed that the semilassial theory predits that thequalitative behaviour (dimensionality) of the system depends on the Fermilevel and not on the �eld strength whih turns out not to be true. Moreover,it laims that there is a sharp limit for the Fermi level and the qualitativebehaviour of the system hanges stepwise when this limit is rossed. This isalso not true and it is alled a breakdown of the semilassial theory.52



Chapter 5Appendies
5.1 Appendix A: Density of States in ZeroMagneti FieldIf the magneti �eld is not present the dispersion relation reads (see Eq. 2.11)E(kx; ky) = ~2k2x2m� � 2jtj os kyd:So as to alulate the density of states we employ (inluding spin) the relation(2.5) g(E) = 2(2�)2 Z Æ�E � E(kx; ky)� dkx dky:Integrating �rst by kx we ome to an ellipti integral whih an be ex-pressed by means of the full ellipti funtion [7℄ K(k) = F (�2 ; k) = R �=20 (1�k2 sin2 ')�1=2 d':g(E) = 8>>>><>>>>: 4(2�)2s 2m�~2jtjd2 � 1pK (1=p) for E > 2jtj or  > 1;4(2�)2s 2m�~2jtjd2 �K(p) for � 2jtj < E < 2jtj or 0 <  < 1:(5.1)1 + �2 = 1 + E=2jtj2 = inluding the spin degeneray. We reall that K(0) = �=2, K(1) = 1 andthat the funtion is monotonous. For � = 1 the DOS exhibits a logarithmial53



CHAPTER 5. APPENDICES 54singularity. The funtion plot an be seen at the Fig. 2.8.Numerially, the prefator (2=(2�)2) �(2m�=(~2jtjd2))1=2 is approximatelly0:164�1011 meV�1m�2 for 2jtj = 1:5 meV, d = 15 nm and m equal to 0.067times eletron vauum mass (e�etive mass for GaAs).5.2 Appendix B: Calulation of Number ofStates for a Landau BandIt is well known that spetrum of a 2D free eletron gas has the formEn(kx) = ~!(n + 12) with ! = jejB=m� and n = 0; 1; 2; : : : Eah of thelevels is degenerated so that it ontains jejB=h states per unit area.We will now show that this property is preserved even if the Landau bandsare not at (En(kx) depends on kx). We assume that the spetrum onsists ofontinuous bands and only for simpliity also that the bands do not overlap(there are no suh k1, k2 suh that En(k1) = Em(k2) for n 6= m) and thatEn(kx) is a monotonous funtion of kx on (0; 12K). We denote the extremesof En(kx) (or the values for kx = 0 and kx = 12K) by Emin, Emax and thenumber of states in this band per one stripe (one period of the superlattie)is then N = Z EmaxEmin g(E) dE = 12� � 2 Z 12K0 �k(E)�0 dE = K2� :We have used the inverse funtion derivative theorem and we have taken intoaount that En(�kx) = En(kx).It is easy to see that this idea an be used even if there are more extremesin a Landau band than those in for kx = 0 and kx = �12K or if the bandsoverlap.The onlusion is that there are K=(2�) = djejB=h states per one stripeper unit length in the x{diretion. The areal onentration of the states istherefore K=(2�d) = jejB=h.5.3 Appendix C: Derivation of Eq. 3.5We start with the Shr�odinger equation Hj�ki = Ej�ki withH = 12m� (p2y + p2z) + 12m� (~kx + jej(Byz � Bzy))2 + V (z) ;



CHAPTER 5. APPENDICES 55j�ki = 1pN N�1Xj=0 exp({(kzjdz + kyjdy))j�jij'ji ;and we will use the assumptions 1{7 listed in subsetion 3.2.1.We multiply the Shr�odinger equation from the left by1pN N�1Xj=0 exp({(kzjdz + kyjdy))h�jjhyjand examine the left side �rst. We are to examine the expression1N N�1Xj;j0=0 exp(�{(kzj 0dz + kyj 0dy))h�j0jhyjHj'jij�ji exp�{(kzjdz + kyjdy)� :First we fous on terms with j = j 0 of the result. Let us begin with evaluatingh�jjHj�ji. Due to h�jjHzj�ji = 0 (presumption 4) there remain only twoterms of H: the �rst of them ish�jj p2y2m� j�ji = h�jj�ji p2y2m� = p2y2m�and the seond an be simpli�ed using the loalisation presumption 5:h�jj e22m� (Bzy �Byz)2j�ji = e22m� (Bzy �Byjdz)2 = m�!2?2 (y � jdy)2 :At last we introdued the ylotron frequeny !? = eBz=m� orrespondingto the perpendiular omponent of B and realled the geometrial relationdy=dz = By=Bz. Now we add the j'ji vetor and we �nd out that the partof the double sum with j = j 0 is1N N�1Xj=0 m�!2?2 (y � jdy)2j'ji+ p2y2m� j'ji: (5.2)Next, we turn to the rest of the terms, i.e. j 6= j 0. Again, we shallevaluate the three terms of h�j0jHj�ji. Using the presumptions 3, 2 and 6,respetively we obtain h�j0jHzj�ji = tÆj;j0�1h�j0j p2y2m� j�ji = h�j0j�ji p2y2m� = 0h�j0j e22m� (Byz � Bzy)2j�ji = 0:



CHAPTER 5. APPENDICES 56Thus from all this terms there remain only1N N�1Xj=0 t exp(�{(kzdz + kydy))j'j�1i+ t exp({(kzdz + kydy))j'j+1i: (5.3)We now use the relation j'j�1i = exp({pydy=~)j'ji, [6℄, or equivalently in y-representation '(y+dy) = exp({pydy=~)'(y). We reall os x = 12(e{x+e�{x)and the expression (5.3) is transformed into1N N�1Xj=0 2t os(pydy=~� kzdz � kydy)j'ji: (5.4)Last, we take are of the right side of the equation. Again we have adouble sum through j; j 0 to deal with. However, simply using the presumption2., we realize, that the result isE � 1N N�1Xj=0 j'ji:By omparing this expression with the sum of (5.2) and (5.4) we have anequation that an be obtained as a sum of N equations of the type� p2y2m� + 12m�!2?(y � jdy)2 + 2t os(pydy=~� kzdz � kydy)� j'ji = Ej'ji(5.5)
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