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Chapter 1Introdu
tionRe
ent experiments performed on a two{dimensional modulated ele
tron gas(or a system of 
oupled quantum wires) showed huge magnetoresistan
e os-
illations [4℄. In this work we would like to present a theoreti
al modeldes
ribing this phenomenon, i.e. we will �nd out how does the system 
on-du
tivity depend on magneti
 �eld applied perpendi
ular to the plane of thesystem. We will use a full quantum me
hani
al 
al
ulation rather than thestandardly used semi
lassi
al theory. Heading for this aim we will �nd outthat the system 
an undergo substantial 
hanges when the magneti
 �eld isin
reased. This is a phenomenon whi
h 
annot be des
ribed by a semi
lassi-
al model.Further we will fo
us on three{dimensional superlatti
es or in other words
oupled two{dimensional ele
tron systems (2DES). Compared to the previ-ous 
ase the system has now another degree of freedom, namely the �elddire
tion. If the �eld is perpendi
ular to the planes of the 2DES the problem
an be solved analyti
ally, we mean the density of states in the tight{bindingapproximation now. The semi
lassi
al predi
tion is in a full agreement withthe quantum me
hani
al predi
tion. However if the �eld is tilted the quan-tum me
hani
al problem to solve leads to a two{dimensional S
hr�odingerequation and we lose the analyti
al solution. If the in{plane 
omponent ofthe magneti
 �eld is strong enough we will show that the dimensionality ofthe system 
hanges. This is again a feature of the full quantum des
riptiononly and it is not predi
ted by the semi
lassi
al theory.Modulated two dimensional systems have already been a point of interestof theoreti
al studies (Zhang et al. [16℄ or re
ently Manoles
u et al. [11℄).Both mentioned works use the one{ele
tron approximation (as we do in this4



CHAPTER 1. INTRODUCTION 5work) and in
lude advan
ed models of the ele
tron s
attering on impurities(whi
h are redu
ed to the simplest possible model in this work).Let us �nish the introdu
tion with a qui
k review of the stru
ture of thiswork. Both Chapters 2 and 3 
ontain a brief 
omment on the semi
lassi-
al approa
h to the superlatti
e systems followed by a quantum me
hani
alderivation of an equation whi
h yields the spe
trum (and density of states)of the system. There is a dis
ussion of the possible form of the results inChapter 2 before the numeri
al results are presented.As the results of two{dimensional SLs 
al
ulations 
ould be 
ompared toan experiment, the Chapter 2 does not stop at this point. There follows a se
-tion about the linear response theory and a se
tion 
on
erning the pro
eduresne
essary to link the theory and experimental data in
luding also a dis
us-sion on the level of density of states (whi
h is mu
h more straightforwardthan the Kubo formula). Finally the 
omparison of theory and experimentsis presented.



Chapter 2Two{Dimensional Superlatti
es
2.1 Introdu
tion2.1.1 Des
ription of the SystemWe are going to speak about a planar stru
ture referred to as a latti
e ofquantum wires. We suppose that ele
trons 
an move only in the x; y-planeand that they are 
on�ned by a periodi
 (or quasiperiodi
) potential V =V (y), i.e. the motion in the x dire
tion (along the stripes) is free. The

y
xz

B

V(y)

yFigure 2.1: Quantum wires.potential V (y) 
an be either periodi
 from minus in�nity to plus in�nity orit 
an be 
omposed of N (�nite number of) periods (and be en
losed in an6



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 7in�nitely deep well). We examine the e�e
t of magneti
 �eld applied in thedire
tion perpendi
ular to the latti
e plane (i.e. z).2.1.2 Semi
lassi
al Approa
hThe semi
lassi
al (SC) model des
ribing the motion of an ele
tron in mag-neti
 �eld B is based on 
onstru
ting the Fermi surfa
e for the zero magneti
�eld system (given the Fermi level EF ). The spe
trum of su
h a system 
anbe 
omputed analyti
ally in the tight{binding approximationE(kx; ky) = ~22m�k2x � 2jtj 
os kyd :Here d is the superlatti
e period and t is the 
oupling 
onstant between twoneighbouring wells in the superlatti
e (see se
tion 2.2.1 and Eq. 2.11 for
omments on derivation of this spe
trum).The Fermi surfa
e EF = E(kx; ky) 
an be one of three topologi
ally di�er-ent types, see Fig. 2.2. It 
onsists of dis
onne
ted 
losed ovals (EF < 2jtj),it 
an be a pair of rippled lines (EF > 2jtj) or it 
an be a set of just tou
hinglens{like �gures for EF = 2jtj.The SC theory states that the real spa
e traje
tories of the ele
tron inmagneti
 �eld 
an be obtained by rotating the Fermi 
ontours by 90 degrees(around the magneti
 �eld dire
tion) and s
aling them by ~=jejB [1℄.Furthermore the SC theory 
laims that only those 
losed traje
tories arepermitted whi
h en
lose an integer multiple of magneti
 
ux quanta jejB=h,[1℄. This is an ad ho
 quantization 
ondition similar to the one in Bohr'smodel of hydrogen atom. There is no quantization 
ondition for the opentraje
tories1.Thus for EF < 2jtj the \permitted" energies (or Landau levels energies)are determined for ea
h magneti
 �eld. If we set EF 
onstant and 
hange B,these levels are passing through EF periodi
ally2 in 1=B, whi
h gives rise tothe Shubnikov{de Haas os
illations.1This 
on
ept is based on the idea that 
losed traje
tories should 
orrespond to boundstates and these are known to have dis
rete spe
tra unlike the unbound states. This ishowever no proof of 
orre
tness but rather an indi
ation why 
an the SC theory give somerelevant results at all.2The values of 1=B at whi
h there will be a state at the Fermi level will be 1=B =(ne=h) � 1=A(EF ), n = 1; 2; : : :, where A(EF ) is the area en
losed by the Fermi 
ontour forthe given EF .



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 8The predi
tion for EF < 2jtj is therefore that ele
trons move along 
losedorbits whi
h are almost oval unless EF is very near to 2jtj (then the orbitsapproa
h the 
riti
al shape, see Fig. 2.2). The system is in a two dimensionalmode. If we study the magneti
 �eld dependent 
ondu
tivity of the systemwe �nd Shubnikov{de Haas os
illations. On the other hand for EF > 2jtj theele
trons move almost freely in the x dire
tion and the 
ondu
tivity shouldexhibit no os
illations when e.g. in
reasing magneti
 �eld.

−3 −2 −1 0 1 2 3
ky [π/d]

0k x

Fermi contour

0

1

2

Figure 2.2: Semi
lassi
al traje
tories in magneti
 �eld. 0 { 
losed (EF < 2jtj),1 { 
riti
al (EF = 2jtj), 2 { open (EF > 2jtj).This 
on
ept however fails to explain the following situation. ConsiderEF > 2jtj and \weak" magneti
 �eld. Ele
trons then move on 
y
loidal(open) traje
tories along an edge of one of the superlatti
e wells in the x{



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 9dire
tion3. When we in
rease the magneti
 �eld so that the 
y
lotron radius(m�v=jejB, where v =p2EF=m�) be
omes mu
h smaller than the superlat-ti
e period d, only a minority of ele
trons lo
ated near to the edge of a wellwill pro
eed on the open 
y
loidal traje
tories and the rest will move along
ir
les inside wells. The system will turn into the 2D mode. The semi
lassi
altheory however still predi
ts the ele
tron to move along an open orbit. Thise�e
t is 
alled the breakdown of the semi
lassi
al theory4. An eviden
e of thesemi
lassi
al theory failure is the presen
e of magnetoresistivity os
illationseven for EF > 2jtj whi
h 
an be observed in an experiment.So as to 
on
lude: the disadvantage of the semi
lassi
al theory is thatit 
annot re
e
t the qualitative 
hanges to the system whi
h are indu
edby magneti
 �eld. On the other hand there is a separate Hamiltonian 
or-responding to ea
h strength of magneti
 �eld in the quantum me
hani
alapproa
h and thus the ele
tron states at the same Fermi energy 
an substan-tially di�er at various magneti
 �elds.2.2 S
hr�odinger Equation andDensity of States2.2.1 Quantum Me
hani
al Cal
ulationTaking the 
alibration of the magneti
 �eld as A = (Bzy; 0; 0), the Hamilto-nian of the system at Fig. 2.1 readsH = 12m� (p � eA)2 + V (y) = 12m� ��{~ ddx + jejBzy�2 + 12m�p2y + V (y) :We denote the last two terms by Hy. Exploiting the translational invarian
ein the x dire
tion we �rst make an ansatz 	(x; y) = exp({kxx) (y) for theS
hr�odinger equation and get� 12m�p2y + 12m� [~kx + jejBzy℄2 + V (y)� (y) = E(kx) (y) : (2.1)3Assuming elasti
 reboun
es at the well edge, this problem 
an be easily solved on the
lassi
 level.4This expression was �rst proposed by Stark and Fali
ov [14℄ in the 
ontext of physi
sof metals.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 10This is a 1D S
hr�odinger equation for a parti
le 
on�ned by paraboli
alpotential with periodi
 \ripples" superposed on it. However, we have noexa
t information about the form of the periodi
 potential V (y) apart fromits period d. Our idea about the potential is that it 
onsists of a 
hain ofquantum wells (one well per period).We are going to solve the equation (2.1) by means of the tight-bindingapproximation [1℄. We suppose that ea
h well of V (y) is 
apable of a

om-modating one state whi
h is then lo
alised in this well. Denoting the statelo
alised in one well by j'(y � jd)i, assumption made by the tight{bindingapproximation ish'(y � jd)jHyj'(y � kd)i = tÆjk�1; h'(y � jd)j'(y � kd)i = Æjk:The interpretation is that only the states in two neighbouring wells overlap
onsiderably. Condition h'(y� jd)jHyj'(y� jd)i = 0 sets only the positionof the origin of the energy s
ale. Remaining requirements only 
laim thatthe states j'(y � jd)i are orthonormalised.We 
an be thus looking for the solution to Eq. (2.1) having the form (y) = NXj=1 ai'(y � jd) : (2.2)Followingly we arrive to a �nite set of linear equations for ai (or a matrixeigenvalue problem) NXj=1 Hjl(kx)aj = E(kx)al; where (2.3)Hjj = ~22m� � jejBz~ jd+ kx�2 ; Hjj�1 = t:If we imagine N to be in�nity (or large), the system des
ribed by (2.3)has to behave periodi
ally in kx with the period K = djejBz=~ (or quasi{periodi
ally). We are thus interested only in solving the eigenvalue problem(2.3) within the \�rst Brillouin zone5" (�12K; 12K), see Fig. 2.3.In other words: we get in�nite number of (Landau) bands Ei(kx) whi
hare K{periodi
 in kx as a solution to the problem (2.3) in the limit N !1.5This has, however, no interpretation in terms of the geometri
al periodi
ity of thelatti
e.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 11If we perform numeri
al 
al
ulations with �nite N we obtain N bands whi
hare not exa
tly periodi
 in kx, but they are nearly periodi
 on the interval(�12NK; 12NK), the more we approa
h the limits of this interval the bigger isthe deviation from the periodi
al behaviour. This fa
t is 
learly demonstratedon Fig. 2.4 where we display Ei(kx) on the �rst twenty \Brillouin zones" forN = 10.Setting jdjejBz=~ = jK = kj we �nd Eq. 2.3 formally similar to a matrixform of the S
hr�odinger equation in the basis of plane waves (again in thelimit N !1, see [1℄, Chapter \Nearly free ele
trons approximation")� ~22m� (kx � kj)2 � E� aj + 1Xl=�1Vl�jal = 0; with Vn = KZ d0 e�{nKxV (x) dx ;Vn are the Fourier 
omponents of the potential V in the x dire
tion. Com-paring the Fourier series with Eq. 2.3 we 
an see that Vl�j = tÆlj�1, i.e.V�1 = t and V�n = 0 for n = 0; 2; 3; 4; : : :. That means that V (x) =t[exp({Kx) + exp(�{Kx)℄ = 2t 
osKx and 
onsequently if N were in�nitythen the Eq. 2.3 is equivalent to the Mathieu equation [7℄:�� ~22m� d 2dx2 + 2jtj 
osKx� eikxxu(x) = Eeikxxu(x) : (2.4)This 
an also be understood as a 1D S
hr�odinger equation H� = E� (for�(x) = exp({kxx)u(x)) for a �
tive parti
le in a 
osine potential. Althoughwe do not see a straightforward relation between � and  (from Eq. 2.1) weknow that the spe
tra have Eq. 2.4 and Eq. 2.1 have to be the same.
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Figure 2.3: One of the results of the matrix diagonalization problem (Eq.2.3): �rst 20 eigenvalues are displayed (N = 40) for kx running through the�rst Brillouin zone (�12K; 12K).
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Figure 2.4: Demonstration of the kx-quasi{periodi
ity of the spe
trum. Thepotential V (y) 
onsists of N = 10 periods and we plot �rst 20 Brillouinzones (a

ording to the s
aling of the horizontal axis, the nth Brillouin zoneis lo
ated at (�n; n) n (�n + 1; n � 1)). It is however well visible that thebands are almost periodi
 up to the 10th Brillouin zone.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 14Density of StatesThe standard de�nition of density of states (DOS) at a given energy levelEF for any dimensionality n isg(EF ) = 1(2�)n ZE(k)=EF dk = 1(2�)n Z
 dk Æ�E � E(k)� (2.5)whereas 
 denotes the 
omplete k{spa
e. In our 
ase, the k{spa
e is onedimensional and thus the se
ond expression 
an be rewritten asg(EF ) = 1(2�) Xk;Ei(k)=EF ����dEdk �����1 : (2.6)However, this formula 
auses serious ina

ura
ies for 
at bands (i.e. whendE= dk � 0 for all k 2 (�12K; 12K)) in numeri
al 
al
ulations. It is mu
hmore suitable to use the relationg(EF ) = d � �N�E (EF ); N(EF ) = 1d Z EF�1dE g(E) : (2.7)N is the total number of states having energy under the Fermi level EF . Thisquantity 
an be determined with a good a

ura
y employing the fa
t thatthe total number of states per Landau band is jejB=h (see Appendix B).2.2.2 Stru
ture of the Energy BandsThe equation easiest to solve numeri
ally is (2.3), however the stru
ture ofthe spe
trum is best to see from Eq. 2.4. We will now try to get a betterinsight into the problem whi
h will help us to understand the numeri
alresults better.Let us investigate the eigenfun
tions of Eq. 2.4; we will denote the 
osinepotential in Eq. 2.4 by W (x). If E > 2jtj the eigenstates of Eq. 2.4 should
orrespond to almost free parti
les, whi
h per
ept W (x) only as a weakperturbation.A

ording to the results of the almost{free{ele
trons approximation [1℄ wesuppose that E(kx) are near to parabolas, whi
h are deformed in the vi
inityof the �rst Brillouin zone boundaries kx = �12K (gaps open here).Next we fo
us on the states 
orresponding to energies near to a minimumof W (x). Imagine there is an in�nitely high barrier between two minima of



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 15the 
osine potential, i.e. no tunnelling between two neighbouring wells ofW (x) is possible (note that this has nothing to do with the value of t). Thenthere would appear bound states in ea
h well of W (x) the energy of whi
hwould be independent on kx; thus the spe
trum would 
onsist of 
at bands.Although this is not our 
ase, the states with energies near to the bottomof a well in W (x) are suÆ
iently separated from the neighbouring wells andthe kx dependen
e of their energies will thus be weak. We expe
t almost 
atbands in this range of energies. Furthermore, these energies 
an be 
omputedapproximatelly as the ones of bound states in a single well of W (x) (whi
his not surrounded by other wells).Thus when E � 2jtj, we 
an suppose that the wavefun
tion is lo
alisedat jxj � �=K. Expanding the potential in Eq. (2.4) around its minimum6(suppose that t < 0)2t 
osKx = �2jtj+ jtjd2e2B2z~2 x2 +O(x4)and 
omparing it to the linear harmoni
 os
illator problem with the potential12m�!2x2 we �nd ! =s2jtjm� � djejBz~and �nally the energy spe
trumE = �2jtj+ ~!�� + 12� = �2jtj+s2jtjm� � djejBz �� + 12� �� �2jtj+p2jtjdBz(2� + 1)� 0:0256 meV (2.8)where Bz is to be taken in T, t in meV and d in nm. The requirementE � 2jtj reads Bz � p2jtjd � 78:12� + 1or introdu
ing a new dimensionless parameter �� � �� + 12� = 12 � djejBzp2jtjm� ��� + 12� . 1: (2.9)6This is the e�e
tive{mass{approximation for the y dire
tion.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 16The last equation suggests that the qualitative behaviour of the bands (i.e.whether they are 
at or paraboli
{like) depends only on the single dimension-less parameter � � �� + 12�. This 
an be veri�ed by rearranging the equationsystem (2.3) in the following way:jtj NXj=1 bHjl(kx)aj = E(kx)al; where (2.10)bHjj = �2 �j + kxK �2 ; bHjj�1 = �1:If we investigate only the \�rst Brillouin zone" for kx, the term kx=K rangesfrom �12 to 12 and even the whole system of equations depends only on �(t in front of the sum is only a s
aling fa
tor for the energy). The bands(indexed by �) should be almost 
at if � < 1=�� 12 and almost paraboli
 if� > 1=�� 12 .2.2.3 Numeri
al ResultsPossible Types of the Spe
traIn this part we will display the density of states rather than the dispersionrelations Ei(kx) that are the output after solving Eq. 2.3 or 2.10. Therelations Ei(kx) are pro
essed into the density of states by means of Eq.2.6 or 2.7. For the sake of 
larity we also display (see Fig. 2.6) the DOS
orresponding to the spe
trum shown on Fig. 2.3.As it follows from Eq. 2.10, the band stru
ture displayed in units E=2jtjdepends only on a single parameter �.Let us 
onsider a sample whi
h is 
hara
terized by a �eld{independent
onstant �=Bz � 1 (see the de�ning Eq. 2.9). Su
h a sample is suited forShubnikov{de Haas measurements (in low magneti
 �elds) sin
e as � remainssmaller than 1 even for Bz � 1 T. A way how to obtain samples with small�=Bz is to de
rease the period of the superlatti
e (d); in
reasing the 
oupling
onstant t leads to a 
ollapse of the simple tight{binding model.The lowest bands should now be 
at and those beginning from index �maxsu
h that �(�max+ 12) � 1 should be paraboli
. In order to demonstrate thatwe 
hose a sample with jtj = 0:95 meV and d = 15 nm, i.e. �=Bz � 0:279T�1 and set N = 30. In the Fig. 2.5 we deal with the 
ase 1=� � 11, what
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Figure 2.5: Density of states in a weak �eld (�� 1).means �max � 11, i.e. 12 bands. We 
an distinguish 13 
at bands in the�gure.In
reasing the parameter � (by means of in
reasing the magneti
 �eld)we �rst get a spe
trum like on Fig. 2.6 as we approa
h � � 1 where thesharp peaks 
an still be re
ognized. At last (for � > 1) we make the �rstLandau band to span up to energies 
omparable to 2jtj (see Fig. 2.7). Thereis no observable periodi
 stru
ture for E < 2jtj, gaps shift to high energiesand be
ome very narrow ex
ept for the �rst one.
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Figure 2.6: Density of states for intermediate �elds (� � 1). See the 
orre-sponding band stru
ture at Fig. 2.3.
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Figure 2.7: Density of states for strong �elds.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 19Relation between the Low{Field Spe
tra and Zero{Field Spe
traAs it was already mentioned in the Semi
lassi
al approa
h paragraph, theproblem des
ribed at the very beginning of the paragraph 2.2.1 
an be solvedanalyti
ally if A = 0 (and N ! 1). We start with Eq. 2.1, use the tightbinding model and obtain the spe
trumE(kx; ky) = ~22m�k2x � 2jt0j 
os kyd : (2.11)The density of states 
an be 
al
ulated analyti
ally out of this spe
trum, too(see Appendix A). It exhibits a logaritmi
al singularity at E = 2jtj and itde
ays as 1=pE for E !1, see Fig. 2.8.This plot seems to be very di�erent from the (numeri
ally 
al
ulated)density of states of a system in a weak �eld (i.e. �� 1), see for instan
e Fig.2.5. However, the spe
tra at Fig. 2.5 refer to zero temperature. To 
omputethe non{zero spe
trum we use the standard relationg(EF ; T ) = � Z 1�1 dEdfFD(E)dE g(E) ;where fFD(E) denotes the Fermi{Dira
 distribution at temperature T andwith 
hemi
al potential � = EF . The e�e
t of this pro
edure (for T � 1 K)is shown at Fig. 2.8. The 
ontinuity of the DOS behaviour for B ! 0 is thusre
overed.
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CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 21Yet we would like to point out another feature of (espe
ially) low{�eldspe
tra. A

ording to the dis
ussion following the Eq. 2.10 (and as it wasalso shown e.g. at Fig. 2.5) the bands are 
at and almost equidistant in Efor E < 2jtj (the lower is E the better these two properties apply) and thebands are almost paraboli
 for E > 2jtj. It implies that the gaps (betweenthe bands) will be approximatelly periodi
 in E2 for E > 2jtj be
ause thegaps 
an only appear either in the 
entre or at the edge of the Brillouin zone(see Fig. 2.3).Followingly if we put the total number of states7 N under the Fermi levelin zero �eld onto the horizontal axis instead of the Fermi level itself, theripples (or the gaps) seen on the low{�eld DOS plots at Figs 2.5,2.8 will benearly periodi
 in N both for E < 2jtj and E > 2jtj. There will still be someirregularities near to E � 2jt0j though. The reason is that N is an almostlinear fun
tion of E for E deep under 2jtj (as the 
onstant term in DOS islarge 
ompared to the linear and next terms) and it is (up to an additional
onstant) proportional to pE high above 2jtj (as DOS is proportional to1=pE, see also Fig. 2.9).We will see later that the gaps play a fundamental role in understandingthe magnetoresistan
e measurements.

7See Eq. 2.7.
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Figure 2.9: Zero temperature density of states g(E) (line with peaks) andnumber of states N(E) with energy less than E (dashed: zero �eld, full line:low �eld).
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al InterpretationLet us make some 
omments on Fig. 2.8. The singularity in the zero �eldDOS at EF = E = 2jtj divides two substantially di�erent regions from ea
hother.For EF deep under 2jtj and in weak �elds the system behaves like analmost free 2D gas in magneti
 �eld. Sharp and nearly equidistant Landaulevels (or 
at bands) appear, their mutual distan
e is proportional to B aspredi
ted by Eq. 2.8. This means that if we keep EF 
onstant (deep under2jtj) and 
hange B, the Landau levels are passing through EF periodi
allyin 1=B. Although there is not a straightforward relation between DOS and
ondu
tivity of the sample, this reminds us of the Shubnikov{de Haas os-
illations. We stress that this is the behaviour of a free 2D ele
tron gas,too.However, the Landau levels remain sharp for the free 2D ele
tron gas evenfor strong �elds. On 
ontrary we 
an see at Figs. 2.6,2.7 that for suÆ
ientlystrong �elds the Landau levels broaden even for E deep under 2jtj.We now return to the Fig. 2.8. The singularity in the zero �eld DOS atEF = 2jtj 
orresponds to 
riti
al semi
lassi
al traje
tories as it was alreadydis
ussed in the paragraph 2.1.2.In the 
ase of EF > 2jtj the system approa
hes the one{dimensional zeromagneti
 �eld behaviour. The density of states is (ex
ept for the narrowgaps) / 1=pE, the same as the DOS of a free 1D ele
tron gas. It mightbe more instru
tive to see the band stru
ture plot at Fig. 2.4 instead of theDOS: we 
an see that the spe
trum is nearly paraboli
 (as the one of a free1D ele
tron gas) for EF > 2jtj.On the other hand, if EF > 2jtj is not very far from 2jtj we will be ableto per
ept the gaps whi
h will be passing through EF when we 
hange B.Due to this we will observe 
ondu
tivity os
illations again. The higher EFwill be, the harder will be the per
eption of gaps and the weaker will be the
ondu
tivity os
illations be
ause the gaps get narrower. The free 1D ele
trongas however has no gaps in DOS.So as to understand the quantum me
hani
al results better we will alsodis
uss the mean values of the velo
ity x 
omponent. These are given by�vx � h	(kx; n)jvxj	(kx; n)i = 1~ dEndkx :For the free 2D ele
tron gas it is thus �vx = 0 while this velo
ity is non{zero(as the bands are not 
ompletely 
at) for ele
trons 
on�ned by a superlatti
e
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an be understood as a non{zero probability of jumping ofan ele
tron between two 
losed traje
tories (see Fig. 2.10) whi
h results intoa net motion in one dire
tion for ele
trons with kx � �14K and in anotherdire
tion for those with kx � 14K.Similarly, 
ompared to the free 1D gas the ele
trons moving in one dire
-tion in a superlatti
e have a non{zero probability of 
hanging the dire
tion ofmotion (or jumping between two open traje
tories in inverse dire
tions, seealso Fig. 2.10). This is a 
onsequen
e of the fa
t that there are su
h valuesof kx (near to the end of the Brillouin zone) where �vx = 0.These fa
ts are an indi
ation of the breakdown behaviour.

−3 −2 −1 0 1 2 3
ky [π/d]

0k x

Semiclassical model of the breakdown

Figure 2.10: The semi
lassi
al explanation of the di�eren
e between the freeele
trons and ele
trons in a superlatti
e. Unlike the free 1D system theele
trons in a superlatti
e 
an make some kind of 
y
les for E > 2jtj or inother words jump between two open orbits.
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tivity of a ModulatedTwo{Dimensional Ele
tron GasSo far we have shown how to 
ompute the dispersion relations Ei = Ei(kx)in an approximative way (see Eq. 2.3). We were also able to 
ompute the
orresponding eigenfun
tions at this point even though we haven't madeany use of them yet. The aim of the following se
tion is to establish ageneral relation between the quantum me
hani
al solutions of a parti
ulartwo{dimensional ele
tron gas problem and the 
omponents of the ele
tri

ondu
tivity tensor.We are going to use the linear response theory for 
omputing the 
on-du
tivity tensor 
omponents. The starting point will be the formulae for the
ondu
tivity tensor diagonal and o�{diagonal elements derived by Kubo etal. [10℄ and Bastin et al. [2℄, respe
tively:�ii(EF ) = �~e2 Tr hv iÆ�(EF �H)v iÆ�(EF �H)i (2.12)�ij(E) = ei~ Z EF�1dE Tr hv idG+dE vjÆ�(E �H)� v iÆ�(E �H)v j dG�dE i :(2.13)The indi
es i and j stand for x or y, v i denotes the velo
ity 
omponentoperator. We employ the 
ommon de�nition of Green fun
tions whi
h allowsus to express delta fun
tions in terms of G�:G�(E) = 1E �H � i� ; Æ�(E �H) = � 12�i(G+ �G�) :We stress that the original formulae (2.12,2.13) are derived with � ! 0+.However, in this 
ase the 
ondu
tivities (e.g. for a free ele
tron gas) wouldbe in�nite as no s
attering me
hanism was 
onsidered. The e�e
t of elasti
s
attering on randomly lo
ated impurities 
an be modelled by inserting the
omplex self{energy term into the Green fun
tion (i.e. repla
ing [E �H℄�1by [E�H��(E)℄�1), [9℄. If the self{energy has a non{zero imaginary part,the 
ondu
tivities remain �nite. As a model we will further put �(E) = i�,� > 0, we will keep � as a parameter and we are going to examine the �! 0asymptoti
 behaviour. A more detailed treatment of the self{energy method(based on se
ond order Born approximation 
al
ulations) is dis
ussed in [9℄.
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ription for 
omputing the 
ondu
tiv-ity tensor 
omponents at zero temperature, the Fermi level being EF . To gettheir non{zero temperature values we use�ij(T ) = � Z 1�1 dEdfFD(E)dE �ij(E) ; (2.14)where fFD(E) is the equilibrium Fermi{Dira
 distribution normed (by meansof EF ) to the parti
ular number (areal 
on
entration) of parti
lesN in systemfFD(E) = 1exp(E�EFkT ) + 1 ; N = Z 1�1 dEg(E)fFD(E) ;g(E) stands for DOS of the parti
ular ele
tron system.Let us make a brief 
omment on the derivation of Equations 2.12, 2.13.These relations 
an be obtained by integrating the Liouville equation (f isthe density matrix operator)dfdt + 1i~ [f ;H +H 0℄ = 0and taking into a

ount only the terms linear in the perturbation HamiltonianH 0. In our 
ase the perturbation is a homogeneous ele
tri
 �eld E and we
al
ulate the 
urrent response j , i.e. Tr(evf). Finally, we determine �ij usingthe relation ji = Pj �ijEj. This pro
edure is explained in [9℄ in a ni
e andunderstandable way.The form of Equation 2.13 is in
onvenient from the 
omputational point ofview be
ause it for
es us to integrate over energies even at zero temperature.A way how to partially avoid this was suggested by St�reda in [15℄�ij(E) = �Iij(E) + �IIij (E)�Iij(E) = Tr hv iG+(E)vjÆ�(E �H)� v iÆ�(E �H)v jG�(E)i�IIxy(E) = ��IIyx(E) = e�N(E)�B : (2.15)The integration over energies remained inN(E) (the total number of parti
leswith energies less than E)N(E) = Z E�1 dEg(E) = Z E�1 dE Tr Æ(E �H):
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h simpler to 
ompute numeri
ally.Before we pro
eed in applying Equations 2.12,2.15 to our parti
ular sys-tem we would like to point out one general feature of these equations intwo{dimensional systems. If the Fermi level lies in a gap (i.e. g(EF ) = 0), all�xx, �yy and �Ixy vanish whereas the se
ond term of �xy 
an be non{zero. Ifthe gap is situated between the l-th and (l+1)-st Landau bands the value ofthis term will be le2=h be
ause the areal 
on
entration of states per one Lan-dau band is eB=h (see Appendix B). Thus, �xy will be 
onstant throughoutthe gap and equal to an integer multiple of e2=h whi
h is a quantum-Hall-phenomenon-like behaviour.2.3.1 Modulated Two{Dimensional Ele
tron GasWe turn now to the system des
ribed by the Hamiltonian (2.1), see also Fig.2.1. First of all this means the velo
ity 
omponent operator v i has the formvx = 1i~ [x ;H℄ = 1m(px � eBy)vy = 1i~ [y ;H℄ = 1mpy : (2.16)Further (see paragraph 2.2.1) we re
all that the (orthonormalized) approxi-mate solutions to the S
hr�odinger equation areHj	i = E(kx; n)j	i; j	i = jkxi NXj=1 aj(kx; n)jji def= jkxij i ;where the ket jji denotes the lowest eigenstate in the j-th well of the su-perlatti
e potential V (y) and it holds within our approximation hjjki = Æjk.The eigenstates take the following form in 
oordinate representation (see alsoparagraph 2.2.1)	(x; y) = 1p2� e�ikxx NXj=1 aj(kx; n)'(y � jd) :As soon as we determine the eigenstates 	(x; y) we 
an 
ompute the tra
esin Eqs. 2.12 and 2.15.We have not obtained any reliable results so far be
ause of problems onthe numeri
al level. The expe
ted form of results is however dis
ussed insubse
tion 2.5.3.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 282.4 The Way from Theory to Experiment2.4.1 The Experimental SetupThe samples were fabri
ated and measured by R. A. Deuts
hmann at theWalter S
hottky Institute in M�un
hen. The geometry of the samples mea-sured is shown at Fig. 2.11 and 
an be obtained using the 
leaved edgeovergrowth method [4℄,[5℄. The basis of the sample is a 3D GaAs/GaAlAssuperlatti
e (i.e. alternating layers of the two materials) with the period of15 nm and number of periods 100. The �rst and the last layer is 
onta
ted(sour
e and drain): �rst there's an undoped GaAs layer (100 nm) and then1 �m of n+ GaAs. This stru
ture is 
leaved in situ perpendi
ular to thelayers and a n+ GaAs gate (with 15 nm undoped GaAs spa
er) is grown onthe fresh surfa
e.

Figure 2.11: The sample. Reprinted with kind permission ofR. A. Deuts
hmann.By applying positive voltage to the gate Ug ele
trons are drawn from thevolume of the superlatti
e to a thin layer at the gate spa
er. Thus a 2Dele
tron gas is 
reated whi
h is subje
t to the superlatti
e potential. The
on
entration of ele
trons in the 2D gas (or 
onsequently 
hemi
al potential)is gate{voltage{dependent. If we apply magneti
 �eld perpendi
ular to the
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leavage plane we arrive at the situation with the geometry shown at Fig.2.1.The quantity mesured on this sample is the resistan
e depending on mag-neti
 �eld and gate voltage. There are separated voltage and 
urrent 
onta
tson both sour
e and drain. However, this setup has to be treated just as atwo{point measurement from the point of view of the 2D system (see Fig.2.12). The reason why this is an important issue is that there are two me
h-anisms of ele
tron transport in the y dire
tion: the bulk states 
ondu
tivityand the edge states 
ondu
tivity8. Using the two{point measurement geom-etry (Fig. 2.12a) we measure a result of a mixture of the two phenomena(see below) while in the four{point s
heme (Fig. 2.12b) both longitudinaland transversal voltages 
an be measured allowing thus to separate the two
ondu
tivity 
ontributions. This topi
 is naturally dis
ussed in some papers
on
erning the quantum Hall e�e
t.

y

x

current contacts voltage contacts

a) b)

U

U

yy

xy

T

L

Figure 2.12: 2D superlatti
es: (a) two{point measurement, (b) four{pointmeasurement.Four{Point MeasurementLet us now sket
h how to use the advantage of a four{point measurement.Due to the presen
e of the magneti
 �eld the 2D gas will be strongly anisotropi
8We stress that this is only one of theories explaining the quantum Hall e�e
t whi
h isstill not proven to be the only 
orre
t one.
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urrent passing through the 2D superlatti
e (in the y dire
tion)will be given by the 
ondu
tivity � or resistivity % tensorsjy = �xyUxy + �yyUyy; or (2.17)Uxy = %xyjy and Uyy = %yyjy ;be
ause jx (transversal density of 
urrent) vanishes. There are some sym-metries of �: �rst �xy(B) = �yx(�B) (Onsager relation [1℄) 
ombined with�xy(B) = ��xy(�B) and �yx(B) = ��yx(�B) (Hall 
urrent 
hanges dire
-tion when B ! �B) yields �xy(B) = ��yx(B).The tensors � and % are inverse to ea
h other whi
h gives (with respe
tto the symmetries of �)%yx = �%xy = � �yx�xx�yy + �2yx ; %xx = �yy�xx�yy + �2yx ; %yy = �xx�xx�yy + �2yx :(2.18)The voltages Uxy and Uyy 
an be measured in the four{point s
heme andthus �xy and �yy 
an be 
al
ulated as a fun
tion of jB j.Two{Point MeasurementWe will now sket
h the way how to estimate the experimentally measuredresistan
e assuming that we have done only the DOS 
al
ulation.Let us think of the sample as of a 
ondu
tive slab (see Fig. 2.12,a)
hara
terized by two 
ondu
tivity 
omponents � = �xx = �yy and �H = �xy;the thi
kness T (in the y dire
tion) of the slab is substantially less than itslength L (in the x dire
tion). A two-terminal resistan
e R 
an be found outfrom the voltage di�eren
e U measured a
ross the sour
e and drain 
onta
tsand is given by R = U=I, provided the 
urrent passing through the samplebeing I.A two-terminal resistan
e of re
tangular slabs subje
t to perpendi
ularmagneti
 �elds was studied both theoreti
ally and experimentally e.g. byRikken et al. [12℄, but their results hardly apply in our 
ase (T � L), whi
his far away from the standard Hall bar geometry.For small Hall angles 'H def= ar
tan(�H=�), i.e if 'H � ar
tan(T=L), oursample reminds the Corbino dis
 (see Fig. 2.13) in some aspe
ts. Far awayfrom the edges, the ele
tri
 �eld is perpendi
ular to the sour
e and drain
onta
ts and E = U=T . The 
urrent 
ow deviates from this dire
tion by the
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voltage contacts current contacts

Figure 2.13: Corbino dis
 geometry.Hall angle and only a very small part of ele
trons near the edges does notobey the rule. In this 
ase R � 1� TL; (2.19)similarly as for the Corbino dis
. In the quantum Hall regime � ! 0 and Rshould diverge for a true Corbino dis
.In our sample, the limit � ! 0 means that 'H ! �=2 and 
onsequently'H be
omes larger than ar
tan(T=L). Then, in spite of its thi
kness to lengthratio, our sample behaves like a standard Hall bar for whi
h the two{terminalresistan
e is known [12℄ to be very 
lose to the quantized Hall plateau re-sistan
e, R � h=(e2 � i), where i is a positive integer number. Thus, in our
ase R does not diverge as the singularity is 
ut o� by the resistan
e of the
orresponding Hall plateau.Both � and �H are 
ompli
ated fun
tions of magneti
 �eld and 
on
en-tration of 
arriers. If the Hall angle never be
omes small for a given 
on
en-tration (but deviates from �=2 substantially), the Eq. 2.19 does not applyfor any �eld. It is known [12℄ that in this 
ase R is given by a 
ombinationof � and �H whi
h are related to � and �H by� � �=�2H ; �H � 1=�H : (2.20)This %'s to �'s 
orresponden
e is given by relation 2.18 provided that � � �H .



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 32The weak point of this approa
h is that the slab (2DEG) is stronglyanisotropi
 (�xx 6= �yy). Even though we 
an estimate that �yy � �xx weare not able to predi
t whether �xx�yy is smaller or greater �2xy in a Landaulevel. In the latter 
ase the Eq. 2.19 des
ribing the measured resistan
e issubstituted by relations (2.20).A 
onsequen
e is that knowing DOS only we have no indi
ation on thevalue of � (for EF in a Landau level) 
ompared to the known �H in the gaps| even for small Hall angles. It is thus impossible to predi
t whether theHall plateaus of the measured resistan
e will be maxima or minima.Con
luded, we 
an only say that in the two{point s
heme there shouldappear the Hall plateaus if the Fermi level lies in a gap. We will makeseveral 
omments on the general relation between DOS and �, �H in thenext paragraph.2.4.2 Relation between Condu
tivity and Density ofStates: A Simple ModelIt is a rather 
omplex problem to �nd a good approximation whi
h wouldlead us from the 
al
ulated spe
trum and eigenstates up to the 
ondu
tivity.Later we will show the results of Kubo formula (linear response theory)whi
h is however not very easy to follow (see se
tion 2.3). We will dis
ussthe possible shape of the relation now in a very rough way whi
h will give usbetter insight into the matter. We fo
us at the two{point s
heme now.One of the 
ontemporary theories attempting to explain the QuantumHall phenomenon 
on
erns the edge states [3℄. We will sket
h the idea brie
y:Landau levels in a �nite 2D free ele
tron gas rise in the vi
inity of edges |from the semi
lassi
al point of view the ele
trons move on 
ir
ular orbits nolonger and take 
y
loidal traje
tories. The energy of these states is higherthan the one of the 
orresponding bulk (
ir
ular orbit) states and (assumingthat the 2DEG is 
on�ned to an in�nitely deep well) it grows to in�nityas these orbits approa
h the edge. Thus if the Fermi level lies in the gapbetween i-th and (i + 1)-th bulk Landau level it 
rosses the i lower Landaulevels in the edge region. These interse
tions represent the edge states. It
an be derived [3℄ that ea
h edge state 
ontributes to the 
ondu
tivity bye2=h. The total 
ondu
tivity in this 
ase is thus ie2=h and it doesn't dependon where in the gap the Fermi level is.Further on we will thus assume that there are two parallel 
hannels of
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tron transport in the sample | the bulk states 
ondu
tivity and the edgestates 
ondu
tivity. The relation (2.17) gives us a hint how the two 
hannels
ould be related to the 
ondu
tivity tensor: the diagonal 
omponents (�xx,�yy) des
ribe the bulk 
ondu
tivity and the o�{diagonal 
omponent (�xy)re
e
ts the edge{states 
ondu
tivity9. We also re
all that the transport 
on-
erns ele
trons near to the Fermi level only. The appropriate quantity willthus be the density of states (DOS) at the Fermi level, for non{zero temper-atures we will use the standard relation (2.14).We will estimate the 
ondu
tivity of the two 
hannels now. The simplestmodel is that the bulk 
ondu
tivity grows with in
reasing density of states.In parti
ular, �ii = 0 if Fermi level lies in the gap and is non{zero in a Landaulevel.The edge states 
ondu
tivity is ie2=h if the Fermi level lies in a gap. Wehave however no estimate for it in the other 
ase. Note that there's alsoanother 
otribution to �H originating from the 
lassi
al Hall phenomenon.Con
luded, the simplest DOS{based model of the magnetoresistan
e isthat we measure the resistan
e (1=i) � h=e2 in the gap and 
 � 1=g(EF ) in aLandau level (if the edge states 
ondu
tivity is negligible to the bulk statesone). The proportionality 
onstant 
 
an be however a fun
tion of EF (andwe might only hope that it is varying slowly). We stress on
e again that we
annot predi
t whether the Hall plateaus lie below or over the typi
al bulkstates resistan
e.2.4.3 The Relation Between Gate Voltage and FermiEnergyWe divide this problem into two steps. The �rst one is the relation betweenthe gate voltage Ug and 
on
entration of ele
trons N in the 2D gas. Weassume that this relation is a proportionality. This means that the gatestru
ture works as a 
apa
itor whi
h seems to be a plausible model.The se
ond step is to �nd the relation between Fermi energy and N . Theusual relation is N(EF ) = Z EF�1 g(E) dE:Here, g(E) must be 
omputed from the zero{temperature DOS (as showne.g. on Fig. 2.6) to whi
h the thermal broadening relation is applied (2.14).9This is a naive model and it will be repla
ed by a better one in the subse
tion 2.5.3.



CHAPTER 2. TWO{DIMENSIONAL SUPERLATTICES 34Thus, for low �elds and non{zero temperatures the relation N = N(Ef ) 
anbe also roughly approximated by the zero �eld relation at zero temperatures(5.1), see Fig. 2.8 and the 
orresponding paragraph.Overlaying the experimental and theoreti
al 2D plots on ea
h other we
an now determine the proportionality 
onstant between Ug and N . Theaim is that the gaps of DOS mat
h the straight resistan
e minima lines(for weak �elds and high gate voltages). Typi
al value of this 
onstant is6� 1011 
m�2V�1.Agreement between the theoreti
al and experimental graphs gives us thusa feedba
k: the assumption N / Ug is now justi�ed.2.4.4 Coupling ConstantWe 
ould see that the parameter t whi
h des
ribes the strength of 
ouplingbetween two neighbouring wells plays an important role in the theoreti
al
al
ulations. Up to now, our 
on
ept that we do not know anything about thesuperlatti
e potential V (y) ex
ept for its period d and the 
oupling 
onstantt. However, in our spe
i�
 
ase we 
an 
onsider V (y) to be re
tangular andwe also know the depth of the wells whi
h equals the GaAs/GaAlAs bando�set.Exploiting thus our knowledge about the sample stru
ture we 
an employthe Kronig{Penney model and determine the spe
trum of the system in zeromagneti
 �eld. The result is10 E(kx; ky) � ~2k2x=2m� � �=2 � 
os kyd wherethe width of the �rst miniband is � � 3:8 meV (see [5℄). Comparing thisto the tight{binding approximation zero �eld spe
trum (2.11) we obtain t �0:95 meV.Let us also make a short 
omment on the assumption that only the groundstate in ea
h well is o

upied whi
h was a basis for the ansatz (2.2). It was
omputed by [5℄ within the Kronig{Penney model that the se
ond minibandlies 60 meV above the �rst one whi
h is suÆ
iently more than the Fermienergies at relevant 
arriers 
on
entrations (e.g. for N = 5:9� 1011 
m�2 itis EF � 8:9 meV).10The band part of this spe
trum has not an exa
t 
osine form.



EXPERIMENTS AND COMPARISON TO THE THEORY 352.5 Experimental Results and Comparison tothe TheoryAll the experimental results were obtained by R. A. Deuts
hmann at theWalter S
hottky Institute in M�un
hen and are reprinted with his kind per-mission.2.5.1 Experimental ResultsAs it was mentioned above, both magneti
 �eld and gate voltage 
an be
hanged during the experiment. The measured quantity is the voltage dropon the sample at a given 
urrent (I = 10 nA for the data displayed). The 
ur-rent voltage 
hara
teristi
s was found to be linear for low 
urrents and thusthe measurements were presented as sample resistan
e measurements for dif-ferent gate voltages and magneti
 �eld strengths. The measurement out
ome
an be displayed as a 2D plot (see Fig. 2.14). However, the measured re-sistan
e ranges within more orders of magnitude while important stru
turesare in some regions quite weak. We used two methods of displaying the dataso as to emphasize these features. We employed logaritmi
al s
ale for resis-tan
e and subtra
ted linear ba
kground (�tted by the least square method)at Fig. 2.14 (top) and plotted the resistan
e R transformed using formulaR 7! (�2R=�U2g )=j�R=�Ugj at Fig. 2.14 (bottom). The latter method showsthe �ne stru
ture better but it rather shows the steepness of the extremathan the value of the plotted fun
tion (i.e. does not distinguish deep andshallow extremes). The former method gives a better global overview.
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Figure 2.14: Experimental data: �eld{ and gate{voltage{dependent resis-tan
e (in arbitrary units) of the sample. The same data pro
essed by twodi�erent methods: logarithmi
al s
ale (top) and derivatives method (bot-tom). Reprinted with kind permission of Rainer Deuts
hmann.
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ulationsWe have already shown how to 
ompute the density of states as a fun
tionof energy E for di�erent magneti
 �eld strengths. By merging these plots(as e.g. the one at Fig. 2.5) into one 2D plot and transforming E (Fermienergy) into N on the verti
al axis, the zero �eld number of states under E(using Eq. 5.1) we obtain Fig. 2.15 (left plot). The dark regions 
orrespondto the Landau bands, the light regions are the gaps.As it was already mentioned before we further assume that N is propor-tional to the gate voltage Ug. We determine the proportionality 
onstantso that the theoreti
al plot would mat
h the experimental plots (at Fig.2.14), namely that the lines 
orresponding to gaps and the lines of resistan
eminima have the same position. In our 
ase we found out its value to be7:0� 10�11 
m�2V�1 and obtained the right plot on Fig. 2.15.We 
an see that the stru
tures of the theoreti
al and experimental plotsare in a good agreement ex
ept for the resistan
e minimum starting at B �8 T and Ug � 0:4 V whi
h has no 
ounterpart in the theoreti
al plot. Itshows that our model is not valid in this region. This 
an be due to thefa
t that the ansatz (2.2) has no justi�
ation if the ele
tron 
y
lotron radiusbe
omes very small 
ompared to the superlatti
e period d and the state isthus strongly lo
alized in a single well (or in other words the tunnellingbetween two adja
ent superlatti
e wells is negligible due to the magneti
�eld).Despite this mismat
h we 
an see that the used model gives a good de-s
ription of the system in all other regions.
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Figure 2.15: DOS 
al
ulation: B is on the horizontal axis on both plots. Onthe verti
al axis there is the zero �eld number of states (left) and the gatevoltage (right).



EXPERIMENTS AND COMPARISON TO THE THEORY 39Another type of insight give the se
tions of the 2D plot, i.e. graphsof �eld{dependent resistan
e at (di�erent) 
onstant gate voltages Ug. Very
lear pi
tures 
an be obtained by plotting more lines (i.e. at di�erent Ug)into one graph with B=Ug instead of just B on the horizontal axis, see Fig.2.16. So as to be able to 
ompare these plots with the theoreti
al results weagain assumed that the gate voltage is proportional to the total number of
arriers (see above). Note that under this assumption the horizontal axis isproportional to the re
ipro
al value of �lling fa
tor (i.e. one over number ofLandau levels o

upied).However, the mat
h of theory and measured data is only very rough atthe level of DOS. It has already been suggested above that we 
annot predi
twhether the resistivity will have a maximum or minimum for EF lying in gapfrom the semi
lassi
al point of view. On the other hand we 
an see that theresistivities (for various values of N) approa
h the same value 12:9 k
 aroundB=N � 2. This is the resistivity of the �rst Hall plateau (12h=e2, one half forthe spin) and that 
an be predi
ted without the Kubo theory.



EXPERIMENTS AND COMPARISON TO THE THEORY 40

0 1 2 3
B/N [T/10

11
 cm

−2
]

0

1

2
g(

E
F
) 

[1
011

 c
m

−
2 / m

eV
]

DOS at Fermi Level and Resistivity
t=0.95 meV, d=15 nm, N const. at each line

N=3.3
N=5.94

0 1 2 3
0

20

40

60

80

100

120

re
si

st
an

ce
 [k

Ω
]

t=0.95 meV, d=15 nm, N const. at each line

Ug=0.5
Ug=0.575
Ug=0.65
Ug=0.9

0 1 2 3
B/N [T/10

11
 cm

−2
]

0

1

2

g(
E

F
) 

[1
011

 c
m

−
2 / m

eV
]

DOS at Fermi Level and Resistivity
t=0.95 meV, d=15 nm, N const. at each line

N=3.3
N=4.29

0 1 2 3

0

10

20

re
si

st
an

ce
 [k

Ω
]

t=0.95 meV, d=15 nm, N const. at each line

Ug=0.5
Ug=0.575
Ug=0.65

Figure 2.16: Experimental data along with 
al
ulation results: �eld{dependent resistan
e of the sample for di�erent gate voltages. Smooth 
urvesare the experimental data (Ug in volts), 
urves with singularities are the 
al-
ulations of DOS (N in 1011 
m�2). Experimental and DOS 
urves of thesame 
olour 
orrespond to the same gate voltage (Ug = 6:6 � N). Reprintedwith kind permission of Rainer Deuts
hmann.
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ulationsWe have already presented a way how to 
ompute the 
ondu
tivity 
ompo-nents in the subse
tion 2.3.1. Subsequently we use the formulae (2.18) totransform them into the resistivity 
omponents. Due to numeri
al problemswhi
h o

ur when evaluating the tra
es (Eq. 2.15) we have not obtained any�nal results yet but we believe that the main features of the B{dependentresistivity to be measured are in
luded in our present Ryy plot11 (see Fig.2.17).First of all we found out that Ryy vanishes in the gaps. If the Fermi levellies in a gap then the only non{zero 
omponent of resistivity will be Rxy whi
his then equal to the quantized Hall resistan
e h=(2e2n), n = 1; 2; : : : We 
analso see on the plot (2.17) that the lower is the magneti
 �eld the thinner arethe gaps and the less pronoun
ed are thus the minima of Ryy at the positionsof gaps. Another important point is that the gaps get thinner also when
on
entration of ele
trons (N) in
reases and thus at higher 
on
entrationsless periods of os
illations 
an be distinguished (as it 
an also be seen in theexperimental data). It 
an also be re
ognized that the envelope fun
tion ofthe plotted Ryy is similar as the one of the experimental magnetoresistan
e:right from the �rst Hall plateau (R � 12:9 k
 in the �gure) it grows rapidlyand approa
hes zero between this plateau and zero �eld with a maximumapproximatelly in the 
entre.As it was already mentioned before we had to take into a

ount s
atteringof ele
trons on impurities in order to avoid in�nite 
ondu
tivities. This e�e
twas modelled by in
luding the imaginary part � of the self{energy into theGreen fun
tion whi
h was kept further on as an unspe
i�ed parameter. Wefound out that variation of its value 
auses only that Ryy is s
aled by 1=�.This gives us some justi�
ation to 
onsider the plot (2.17) as relevant.We empasize however that the self{energy (and thus also �) is EF{dependent (or 
on
entration{dependent), see [16℄ or [11℄.Let us now make a short 
omment to the relation between the resistan
e
omponents and the experimental data. We re
all the relations (2.17):Uxy = RxyIy and Uyy = RyyIy :As we use the two{point measurement s
heme (see Fig. 2.12a) we 
annotmeasure Uxy and Uyy separately; what we measure is a mixture (a weighted11We leave the 
urrent densities j and swit
h to the 
urrent I . Subsequently the resis-tivity % will be repla
ed by resistan
e R.



EXPERIMENTS AND COMPARISON TO THE THEORY 42mean) of these two values. However if the Fermi level lies in a gap, the Ryy
omponent vanishes and we thus measure Uxy only.In the other 
ases (DOS non{zero) we expe
t that Rxy does not devi-ate dramati
ally from the smooth transition between the two adja
ent Hallplateaus values (see [13℄) and thus the total voltage measured will be in
u-en
ed by Ryy. This seems to be the 
ase of the high 
on
entrations (see e.g.the plot for N = 5:94� 1011 
m�2 on the Fig. 2.16).Let us now summarize the arguments illustrating the agreement betweenthe experiment (Fig. 2.16) and theory (Fig. 2.17).1. The 
riti
al points (maxima or minima for di�erent 
on
etrations) whi
h
orrespond to the Fermi level positioned in a gap mat
h perfe
tly.2. The Hall plateaus in gaps are reprodu
ed by the theory (note that theplateaus have the resistan
es Ri = h=(2e2i), i = 1; 2; : : : ; the fa
tor oftwo 
orresponds to spin).3. The resistan
e rises rapidly right from the �rst Hall plateau (B=N >2� 10�11 T
m2).4. Envelope fun
tions of the resistan
es left from the �rst Hall plateauhave the same shape.5. The lower is the 
on
entration the more pronoun
ed are the resistan
e
riti
al points (minima).
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Figure 2.17: Kubo formula 
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ulations ofRyy for two di�erent 
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Chapter 3Three{DimensionalSuperlatti
es
3.1 Introdu
tion3.1.1 Des
ription of the SystemThe superlatti
es investigated in this part are 
onsidered to be des
ribed byone{dimensional potential V = V (z) having a period of dz, see Fig. 3.1. The

V(z)

z

y

x

z

B

B

z

y

α

B

dzFigure 3.1: A three dimensional superlatti
e.exa
t shape of the potential is not spe
i�ed, we only assume that there isone well in ea
h period and des
ribe the potential by means of the 
oupling
onstant assigned to ground states in two neighbouring wells (see below).The movement of ele
tron in planes perpendi
ular to z axis is free.44
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h a stru
ture 
an be fabri
ated using epitaxial methods. Magneto-transport measurements on InGaAs/InP stru
tures were performed for in-stan
e by Jas
hinski [8℄.Unlike the 
ase of the two{dimensional systems, magneti
 �eld will nowbe applied in an arbitrary dire
tion. By perpendi
ular �eld we mean �eldparallel to the z axis, otherwise we will speak of tilted �eld.3.1.2 Semi
lassi
al Approa
hThe 
on
ept of the semi
lassi
al (SC) des
ription of 3D systems is an exten-sion of the SC theory mentioned in the subse
tion 2.1.2. The tight{bindingzero{�eld spe
trum of the 3D system isE(kx; ky; kz) = ~22m�k2x + ~22m�k2y � 2jt0j 
os kzdz : (3.1)The Fermi surfa
es EF = E(kx; ky; kz) take three topologi
ally di�erent formswhi
h all posses rotational symmetry as the system is isotropi
 in the x; yplane. These surfa
es 
an be obtained by rotating the 
urves 0, 1 and 2 ofFig. 2.2 around the kx = 0 axis. The forms 
an thus be (a series of) deformed(rotational) ellipsoid for EF < 2jtj or a 
orrugated 
ylinder for EF > 2jtj; thetransition Fermi surfa
e between these two regions is a series of just tou
hingspindle{like bodies.In order to determine the semi
lassi
al traje
tories of an ele
tron if thesystem is subje
t to magneti
 �eld B we have to 
onstru
t a 
ross se
tion ofthe Fermi surfa
e by a plane perpendi
ular to the magneti
 �eld dire
tion. Byrotating these 
urves by 90 degrees around B and s
aling them by ~=(jejjB j)we get the real spa
e traje
tories. Note that there is a whole 
lass of su
htraje
tories for ea
h dire
tion of B (whi
h 
an be obtained by shifting these
tion plane along B).Compared to the 2D system there is now a larger variety of traje
toryshapes be
ause they depend both on Fermi level value and on the �eld di-re
tion. Nevertheless, all traje
tories are 
losed for EF < 2jtj even in the 3D
ase. For EF > 2jtj the traje
tory 
an be either open or 
losed, dependingon the �eld dire
tion.There is the quantization 
ondition again whi
h requires the 
losed tra-je
tories to en
lose area A(EF ) equal to an integer multiple of magneti
 
ux



CHAPTER 3. THREE{DIMENSIONAL SUPERLATTICES 46quanta jejjB j=h (in the k{spa
e)A(EF ) = n � jejjB jh ; n = 1; 2; : : : : (3.2)Shubnikov{de Haas os
illationsLet the Fermi level EF and the magneti
 �eld dire
tion be �xed and 
on-sider the 
lass of the 
losed traje
tories indexed by a parameter � whi
h
orresponds to the se
tion plane shift in the dire
tion of B . Due to thequantization 
ondition (3.2) only some of the traje
tories are permitted. Ifwe vary the �eld strength jB j, one or more of the permitted traje
tories mayful�ll �A(EF )=�� = 0. It means that there are many other traje
tories nearto this one whi
h en
lose area near to A(EF ). The SC theory 
laims thatthis should 
orrespond to singularity of the density of states.Thus the SC theory suggests to �nd extremal 
ross{se
tions Amax, Aminof a Fermi surfa
e (for a given EF and B=jB j) and predi
ts that there willbe a singularity in magnetoresistan
e for the values of 1=B whi
h ful�ll1B = n � jejh � 1Amin ; 1B = n � jejh � 1Amax ; n = 1; 2; : : : :These two superposed (1=B){periodi
 stru
tures are 
alled Shubnikov{deHaas os
illations and 
an be observed in an experiment [1℄,[8℄.The Limitations of the SC Approa
hThe disadvantage of the SC theory is again that it shows no quantitativerelation for the 
ondu
tivity. It only suggests where the singularities of DOS
an be. As the superlatti
e is strongly anisotropi
 we have no reason tosuppose that the 
ondu
tivity tensor 
omponents will all depend on DOS inthe same way.Even from the (almost) 
lassi
al point of view we may expe
t that thein{plane 
omponent of magneti
 �eld will redu
e the tunnelling between twoadja
ent layers of the sample. Thus for a �xed Fermi level and dire
tionof tilted magneti
 �eld there should be a 
riti
al value B
 over whi
h thesystem will behave as a set of de
oupled 2D ele
tron systems. The SC theory
annot predi
t this transition be
ause regardless of the �eld strength theFermi surfa
e 
ross se
tions remain the same.
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an thus predi
t the SC approa
h failure for strong in{plane �eld
omponents. As for the experiments this failure (the 3D{ to 2D{mode tran-sition) will be indi
ated by o

uren
e of the Quantum Hall phenomenon (i.e.plateaus in the %xy 
omponent of magnetoresistan
e). We 
an also expe
tthat the resistan
e in perpendi
ular dire
tion (%zz) will rapidly rise.3.2 Quantum Me
hani
al Approa
hConsider the stru
ture shown at Fig. 3.1. We apply magneti
 �eld B =(0; By; Bz) to it and we denote the angle of B to xy{plane as �, i.e. 
otg� =By=Bz and we 
hoose A = (Byz � Bzy; 0; 0) for the ve
tor potential. TheHamiltonian for su
h a system H = 12m� (~p � e~A)2 + V (z), depends on xthus only via px. This hints us to make an ansatz 	(x; y; z) = e{kxx�(y; z)when solving the stationary{state S
hr�odinger equation Hj	i = Ej	i. The2D Hamiltonian is thenH = 12m� (p2y + p2z) + 12m� (~kx + jej(Byz � Bzy))2 + V (z) : (3.3)Note that E is independent on kx for Bz 6= 0, be
ause states with di�er-ent kx are degenerated and their wavefun
tions are only shifted (this 
an beeasily seen from the translational invarian
e of the kineti
 part of H). Con-sequently, it is reasonable to perform the 
al
ulation just for one value of kx,e.g. for kx = 0.Examining the H we �nd that it's invariant to translations of the type(y; z) 7! (y+jdy; z+jdz), j = 0; 1;�1; 2; : : : where (dy; dz) is a ve
tor havingthe same dire
tion as B , in other words dy=dz = By=Bz; lo
al minima ofthe total potential in H o

ur at interse
tion points of lines z = jdz, j =0; 1;�1; 2; : : : (
orresponding to minima of V (z)) and the line Byz�Bzy = 0(whi
h is the minimum of the paraboli
 \magneti
" potential). A

ording tothe Blo
h theorem we 
an �nd the eigenstates of H in the form�k (y; z) = 1pN N�1Xj=0 exp({(kzjdz + kyjdy)) (z � jdz; y � jdy) (3.4)where N is an integer whi
h would be afterwards formally limited to in�nity(number of periods of the potential V (z)) and k = (ky; kz) is a ve
tor of thesame dire
tion as B , i.e. ky=kz = dy=dz = By=Bz. We shall limit ourselves
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h is determined by kz 2 (��=dz; �=dz). Thefun
tion  (y; z) is a one{ele
tron state lo
alized in one period of the 2D{potential; note however that this fun
tion is also k{dependent.3.2.1 The ApproximationsBefore we 
ontinue with putting the ansatz (3.4) into the S
hr�odinger equa-tion with the Hamiltonian (3.3) we will make several approximations whi
hwill simplify the problem 
onsiderably.1. Separability.  (y; z) = �(z)'(y). For simpler notation we will use braand ket ve
tors hzj�ji = �(z � jdz) and hyj'ji = �(y � jdy).2. Orthogonality of j�ji. h�jj�ii = Æij.3. Tight{binding approximation. h�jjHzj�ii = tÆj;i�1. Here we use thenotationHz = p2z=2m+V (z), i.e. the non{trivial part ofH in absen
eof magneti
 �eld.4. Setting the zero level of energy (what was however in
luded in theprevious point, yet). h�ijHzj�ii = 0.5. Limit on the in{plane �eld strength. This has two parts: �rst Byz�Bzyvaries slowly on one period of V (z), or h�jjByz�Bzyj�ji = Byjdz�Bzy,6. and se
ond: h�jj e22m� (Byz � Bzy)2j�ii = 0 for i 6= j.7. Number of populated states. We assume that the energy spe
trumand the number of free ele
trons in the system is su
h that only statesj'(n)j ij�(0)j i, n = 0; 1; : : : are populated (i.e. only the ground state of thesuperlati
e in zero magneti
 �eld and an arbitrary state 
orrespondingto the presen
e of the magneti
 �eld).The value of the hopping term t follows naturally from the exa
t form of�(z). But on the other hand, having spe
i�ed its value and relying on thelisted assumptions we have no other reason why we should be interested inthe exa
t form of �(z).



CHAPTER 3. THREE{DIMENSIONAL SUPERLATTICES 493.2.2 Turning the 2D equation into a 1D equationWe now 
on
entrate on the equation Hj�ki = Ej�ki with Hamiltonian ofthe form (3.3) and the ansatz (3.4)j�ki = 1pN N�1Xj=0 exp({(kzjdz + kyjdy))j�jij'ji :We now multiply the S
hr�odinger equation from the left by1pN N�1Xj=0 exp({(kzjdz + kyjdy))h�jjhyj :By applying the assumptions listed in the previous subse
tion we arrive (seeAppendix C) at an equation whi
h is a sum of N equations (indexed by j)of the type� p2y2m� + 12m�!2?(y � jdy)2 + 2t 
os(pydy=~� kzdz � kydy)� j'ji = Ej'ji :(3.5)All these summed equations are however equivalent be
ause they 
an betransformed one to another by substituting by � j 0dy = y � jdy. Due to thiswe may limit ourselves only to one equation (3.5), let it be the one withj = 0. For solving su
h an equation we 
hoose py{representation; we re
allhpyjyjpyi = {~(d= dpy) and denote hpyj'0i = '(py). Last, using dy=dz =ky=kz = 
otg� we 
an write kydy + kzdz = kzdz(
otg2 � + 1) def= kzdz� andthe equation to solve is thus�12~2m�!2?'00(py) + � p2y2m� + 2t 
os�pydy=~� kzdz���'(py) = E(kz)'(py):(3.6)3.2.3 Numeri
al ResultsIn this se
tion we would like to show only the most important results obtainedby solving Eq. 3.6. We will make use of the spe
trum only.It is evident that for ea
h value of kz we obtain an in�nite number ofeigenvalues of Eq. 3.6 and thus for kz going through the �rst Brillouin zone



CHAPTER 3. THREE{DIMENSIONAL SUPERLATTICES 50we will obtain (Landau) band stru
ture Ei(kz). As in the previous 
hapterwe will display rather DOS than the band stru
ture itself (Eq. 2.7 showshow to transform Ei(kz) into DOS).A typi
al DOS output for EF > 2jtj is shown at Fig. 3.2. We 
an see theoverlapping Landau band, ea
h of them having two DOS singularities (at theedges). Both types of singularities (those at the low �eld edge and and thoseat the high �eld edge) are 1=B{periodi
 (the periods are not the same) andthe periods are in a good agreement with the SC predi
tion. However, we
an see a third DOS maximum at some Landau bands (en
ir
led in the Fig.3.2). These maxima have no SC analogy and are also 1=B{periodi
.The 
on
lusion regarding the Fig. 3.2 is that the in{plane 
omponent ofthe magneti
 �eld is not strong enough so that it would 
ause substantial
hanges to the system (like the 
hange of dimensionality for instan
e).
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CHAPTER 3. THREE{DIMENSIONAL SUPERLATTICES 51A di�erent situation is shown at Fig. 3.3. We 
an 
learly see the sharpLandau levels for strong magneti
 �elds and 
ontinuous spe
trum for low�elds. Sin
e sharp Landau levels are typi
al for 2D behaviour, we 
on
ludethat magneti
 �elds over B
 � 2 T redu
e the dimensionality of the system(i.e. 3D to 2D transition o

urs). The SC theory has no means of predi
tingthis phenomenon as it operates with the (extremal) Fermi surfa
e 
ross se
-tions whi
h are the same for a given Fermi level and �eld dire
tion regardlessof the �eld strength.
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Figure 3.3: DOS at the Fermi level, EF > 2jtj. The system is in the 2D modefor �elds over B
 � 2 T.



Chapter 4Con
lusionWe studied the e�e
t of magneti
 �eld applied to two{ and three{dimensionalsuperlatti
es (SL) on the ele
tri
 
ondu
tivity of the system.In the 
ase of the two{dimensional SLs we applied the standard semi-
lassi
al theory �rst and showed that it 
annot explain Shubnikov{de Haasos
illations measured experimentally in magnetoresistan
e for high 
on
en-trations of ele
trons (breakdown), [4℄. Next we performed a one ele
tronquantum me
hani
al 
al
ulation of the density of states whi
h was able toreprodu
e the stru
ture (periodi
ity) in the experimental data. In the laststep we utilized the linear response theory (Kubo formula, [15℄) in order to
ompute dire
tly the 
ondu
tivity tensor 
omponents. These results were ina better agreement with the experiments and thus this dire
tion of improv-ing our model seems to be promising (the �rst step would be to use a betterdes
ription of the elasti
 s
attering of ele
trons on impurities).There were no su
h striking experimental results available for the three{dimensional SLs whi
h would illustrate the failure of the semi
lassi
al theory.We have however shown by a quantum me
hani
al 
al
ulation of density ofstates that the dimensionality of the system 
an 
hange due to the presen
eof strong in{plane magneti
 �eld. This is again a phenomenon whi
h 
annotbe predi
ted by the semi
lassi
al theory.In general, we showed that the semi
lassi
al theory predi
ts that thequalitative behaviour (dimensionality) of the system depends on the Fermilevel and not on the �eld strength whi
h turns out not to be true. Moreover,it 
laims that there is a sharp limit for the Fermi level and the qualitativebehaviour of the system 
hanges stepwise when this limit is 
rossed. This isalso not true and it is 
alled a breakdown of the semi
lassi
al theory.52



Chapter 5Appendi
es
5.1 Appendix A: Density of States in ZeroMagneti
 FieldIf the magneti
 �eld is not present the dispersion relation reads (see Eq. 2.11)E(kx; ky) = ~2k2x2m� � 2jtj 
os kyd:So as to 
al
ulate the density of states we employ (in
luding spin) the relation(2.5) g(E) = 2(2�)2 Z Æ�E � E(kx; ky)� dkx dky:Integrating �rst by kx we 
ome to an ellipti
 integral whi
h 
an be ex-pressed by means of the full ellipti
 fun
tion [7℄ K(k) = F (�2 ; k) = R �=20 (1�k2 sin2 ')�1=2 d':g(E) = 8>>>><>>>>: 4(2�)2s 2m�~2jtjd2 � 1p
K (1=p
) for E > 2jtj or 
 > 1;4(2�)2s 2m�~2jtjd2 �K(p
) for � 2jtj < E < 2jtj or 0 < 
 < 1:(5.1)1 + �2 = 1 + E=2jtj2 = 
in
luding the spin degenera
y. We re
all that K(0) = �=2, K(1) = 1 andthat the fun
tion is monotonous. For � = 1 the DOS exhibits a logarithmi
al53



CHAPTER 5. APPENDICES 54singularity. The fun
tion plot 
an be seen at the Fig. 2.8.Numeri
ally, the prefa
tor (2=(2�)2) �(2m�=(~2jtjd2))1=2 is approximatelly0:164�1011 meV�1
m�2 for 2jtj = 1:5 meV, d = 15 nm and m equal to 0.067times ele
tron va
uum mass (e�e
tive mass for GaAs).5.2 Appendix B: Cal
ulation of Number ofStates for a Landau BandIt is well known that spe
trum of a 2D free ele
tron gas has the formEn(kx) = ~!(n + 12) with ! = jejB=m� and n = 0; 1; 2; : : : Ea
h of thelevels is degenerated so that it 
ontains jejB=h states per unit area.We will now show that this property is preserved even if the Landau bandsare not 
at (En(kx) depends on kx). We assume that the spe
trum 
onsists of
ontinuous bands and only for simpli
ity also that the bands do not overlap(there are no su
h k1, k2 su
h that En(k1) = Em(k2) for n 6= m) and thatEn(kx) is a monotonous fun
tion of kx on (0; 12K). We denote the extremesof En(kx) (or the values for kx = 0 and kx = 12K) by Emin, Emax and thenumber of states in this band per one stripe (one period of the superlatti
e)is then N = Z EmaxEmin g(E) dE = 12� � 2 Z 12K0 �k(E)�0 dE = K2� :We have used the inverse fun
tion derivative theorem and we have taken intoa

ount that En(�kx) = En(kx).It is easy to see that this idea 
an be used even if there are more extremesin a Landau band than those in for kx = 0 and kx = �12K or if the bandsoverlap.The 
on
lusion is that there are K=(2�) = djejB=h states per one stripeper unit length in the x{dire
tion. The areal 
on
entration of the states istherefore K=(2�d) = jejB=h.5.3 Appendix C: Derivation of Eq. 3.5We start with the S
hr�odinger equation Hj�ki = Ej�ki withH = 12m� (p2y + p2z) + 12m� (~kx + jej(Byz � Bzy))2 + V (z) ;



CHAPTER 5. APPENDICES 55j�ki = 1pN N�1Xj=0 exp({(kzjdz + kyjdy))j�jij'ji ;and we will use the assumptions 1{7 listed in subse
tion 3.2.1.We multiply the S
hr�odinger equation from the left by1pN N�1Xj=0 exp({(kzjdz + kyjdy))h�jjhyjand examine the left side �rst. We are to examine the expression1N N�1Xj;j0=0 exp(�{(kzj 0dz + kyj 0dy))h�j0jhyjHj'jij�ji exp�{(kzjdz + kyjdy)� :First we fo
us on terms with j = j 0 of the result. Let us begin with evaluatingh�jjHj�ji. Due to h�jjHzj�ji = 0 (presumption 4) there remain only twoterms of H: the �rst of them ish�jj p2y2m� j�ji = h�jj�ji p2y2m� = p2y2m�and the se
ond 
an be simpli�ed using the lo
alisation presumption 5:h�jj e22m� (Bzy �Byz)2j�ji = e22m� (Bzy �Byjdz)2 = m�!2?2 (y � jdy)2 :At last we introdu
ed the 
y
lotron frequen
y !? = eBz=m� 
orrespondingto the perpendi
ular 
omponent of B and re
alled the geometri
al relationdy=dz = By=Bz. Now we add the j'ji ve
tor and we �nd out that the partof the double sum with j = j 0 is1N N�1Xj=0 m�!2?2 (y � jdy)2j'ji+ p2y2m� j'ji: (5.2)Next, we turn to the rest of the terms, i.e. j 6= j 0. Again, we shallevaluate the three terms of h�j0jHj�ji. Using the presumptions 3, 2 and 6,respe
tively we obtain h�j0jHzj�ji = tÆj;j0�1h�j0j p2y2m� j�ji = h�j0j�ji p2y2m� = 0h�j0j e22m� (Byz � Bzy)2j�ji = 0:



CHAPTER 5. APPENDICES 56Thus from all this terms there remain only1N N�1Xj=0 t exp(�{(kzdz + kydy))j'j�1i+ t exp({(kzdz + kydy))j'j+1i: (5.3)We now use the relation j'j�1i = exp({pydy=~)j'ji, [6℄, or equivalently in y-representation '(y+dy) = exp({pydy=~)'(y). We re
all 
os x = 12(e{x+e�{x)and the expression (5.3) is transformed into1N N�1Xj=0 2t 
os(pydy=~� kzdz � kydy)j'ji: (5.4)Last, we take 
are of the right side of the equation. Again we have adouble sum through j; j 0 to deal with. However, simply using the presumption2., we realize, that the result isE � 1N N�1Xj=0 j'ji:By 
omparing this expression with the sum of (5.2) and (5.4) we have anequation that 
an be obtained as a sum of N equations of the type� p2y2m� + 12m�!2?(y � jdy)2 + 2t 
os(pydy=~� kzdz � kydy)� j'ji = Ej'ji(5.5)
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