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Chapter 1

Introduction

Recent experiments performed on a two-dimensional modulated electron gas
(or a system of coupled quantum wires) showed huge magnetoresistance os-
cillations [4]. In this work we would like to present a theoretical model
describing this phenomenon, i.e. we will find out how does the system con-
ductivity depend on magnetic field applied perpendicular to the plane of the
system. We will use a full quantum mechanical calculation rather than the
standardly used semiclassical theory. Heading for this aim we will find out
that the system can undergo substantial changes when the magnetic field is
increased. This is a phenomenon which cannot be described by a semiclassi-
cal model.

Further we will focus on three—dimensional superlattices or in other words
coupled two-dimensional electron systems (2DES). Compared to the previ-
ous case the system has now another degree of freedom, namely the field
direction. If the field is perpendicular to the planes of the 2DES the problem
can be solved analytically, we mean the density of states in the tight—binding
approximation now. The semiclassical prediction is in a full agreement with
the quantum mechanical prediction. However if the field is tilted the quan-
tum mechanical problem to solve leads to a two-dimensional Schrodinger
equation and we lose the analytical solution. If the in—plane component of
the magnetic field is strong enough we will show that the dimensionality of
the system changes. This is again a feature of the full quantum description
only and it is not predicted by the semiclassical theory.

Modulated two dimensional systems have already been a point of interest
of theoretical studies (Zhang et al. [16] or recently Manolescu et al. [11]).
Both mentioned works use the one—electron approximation (as we do in this
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work) and include advanced models of the electron scattering on impurities
(which are reduced to the simplest possible model in this work).

Let us finish the introduction with a quick review of the structure of this
work. Both Chapters 2 and 3 contain a brief comment on the semiclassi-
cal approach to the superlattice systems followed by a quantum mechanical
derivation of an equation which yields the spectrum (and density of states)
of the system. There is a discussion of the possible form of the results in
Chapter 2 before the numerical results are presented.

As the results of two—dimensional SLs calculations could be compared to
an experiment, the Chapter 2 does not stop at this point. There follows a sec-
tion about the linear response theory and a section concerning the procedures
necessary to link the theory and experimental data including also a discus-
sion on the level of density of states (which is much more straightforward
than the Kubo formula). Finally the comparison of theory and experiments
is presented.



Chapter 2

Two—Dimensional Superlattices

2.1 Introduction

2.1.1 Description of the System

We are going to speak about a planar structure referred to as a lattice of
quantum wires. We suppose that electrons can move only in the x, y-plane
and that they are confined by a periodic (or quasiperiodic) potential V' =
V(y), i.e. the motion in the x direction (along the stripes) is free. The

B

V()

Figure 2.1: Quantum wires.

potential V' (y) can be either periodic from minus infinity to plus infinity or
it can be composed of N (finite number of) periods (and be enclosed in an

6
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infinitely deep well). We examine the effect of magnetic field applied in the
direction perpendicular to the lattice plane (i.e. z).

2.1.2 Semiclassical Approach

The semiclassical (SC) model describing the motion of an electron in mag-
netic field B is based on constructing the Fermi surface for the zero magnetic
field system (given the Fermi level Ef). The spectrum of such a system can
be computed analytically in the tight—binding approximation
h2
E(ky, ky) = ﬁki — 2|t| cos kyd.

Here d is the superlattice period and ¢ is the coupling constant between two
neighbouring wells in the superlattice (see section 2.2.1 and Eq. 2.11 for
comments on derivation of this spectrum).

The Fermi surface Er = E(k,, k) can be one of three topologically differ-
ent types, see Fig. 2.2. It consists of disconnected closed ovals (Er < 2[t]),
it can be a pair of rippled lines (Er > 2|t|) or it can be a set of just touching
lens-like figures for Ep = 2|t|.

The SC theory states that the real space trajectories of the electron in
magnetic field can be obtained by rotating the Fermi contours by 90 degrees
(around the magnetic field direction) and scaling them by #%/|e|B [1].

Furthermore the SC theory claims that only those closed trajectories are
permitted which enclose an integer multiple of magnetic flux quanta |e|B/h,
[1]. This is an ad hoc quantization condition similar to the one in Bohr’s
model of hydrogen atom. There is no quantization condition for the open
trajectories!.

Thus for Ep < 2|t| the “permitted” energies (or Landau levels energies)
are determined for each magnetic field. If we set EFr constant and change B,
these levels are passing through Er periodically? in 1/B, which gives rise to
the Shubnikov—de Haas oscillations.

!This concept is based on the idea that closed trajectories should correspond to bound
states and these are known to have discrete spectra unlike the unbound states. This is
however no proof of correctness but rather an indication why can the SC theory give some
relevant results at all.

2The values of 1/B at which there will be a state at the Fermi level will be 1/B =
(ne/h)-1/A(Er),n =1,2,..., where A(EF) is the area enclosed by the Fermi contour for
the given Ep.
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The prediction for Er < 2|t| is therefore that electrons move along closed
orbits which are almost oval unless E is very near to 2|¢| (then the orbits
approach the critical shape, see Fig. 2.2). The system is in a two dimensional
mode. If we study the magnetic field dependent conductivity of the system
we find Shubnikov-de Haas oscillations. On the other hand for Er > 2|¢| the
electrons move almost freely in the x direction and the conductivity should
exhibit no oscillations when e.g. increasing magnetic field.

Fermi contour

K, [rvd]

Figure 2.2: Semiclassical trajectories in magnetic field. 0 - closed (Er < 2|t|),
1 — critical (Ep = 2[t|), 2 — open (Er > 2|t|).

This concept however fails to explain the following situation. Consider
Er > 2|t| and “weak” magnetic field. Electrons then move on cycloidal
(open) trajectories along an edge of one of the superlattice wells in the xz—
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direction®. When we increase the magnetic field so that the cyclotron radius
(m.v/|e| B, where v = \/2Er/m,) becomes much smaller than the superlat-
tice period d, only a minority of electrons located near to the edge of a well
will proceed on the open cycloidal trajectories and the rest will move along
circles inside wells. The system will turn into the 2D mode. The semiclassical
theory however still predicts the electron to move along an open orbit. This
effect is called the breakdown of the semiclassical theory®. An evidence of the
semiclassical theory failure is the presence of magnetoresistivity oscillations
even for Er > 2|t| which can be observed in an experiment.

So as to conclude: the disadvantage of the semiclassical theory is that
it cannot reflect the qualitative changes to the system which are induced
by magnetic field. On the other hand there is a separate Hamiltonian cor-
responding to each strength of magnetic field in the quantum mechanical
approach and thus the electron states at the same Fermi energy can substan-
tially differ at various magnetic fields.

2.2 Schrodinger Equation and
Density of States

2.2.1 Quantum Mechanical Calculation

Taking the calibration of the magnetic field as A = (B,y,0,0), the Hamilto-
nian of the system at Fig. 2.1 reads

]‘ 2
Viy).
o Pyt (y)

L peA) 1 V(y) =

H =
2m., 2m,

q 2

[—zh— + |6Bzy} +
dx

We denote the last two terms by H,. Exploiting the translational invariance

in the x direction we first make an ansatz W(x,y) = exp(tk,x)(y) for the

Schrodinger equation and get

2m.,

{ ! p;+2im[hkx+e|Bzy]2+v<y>}w(y>:Emw(y). (2.1

3 Assuming elastic rebounces at the well edge, this problem can be easily solved on the
classic level.

4This expression was first proposed by Stark and Falicov [14] in the context of physics
of metals.
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This is a 1D Schrédinger equation for a particle confined by parabolical
potential with periodic “ripples” superposed on it. However, we have no
exact information about the form of the periodic potential V' (y) apart from
its period d. Our idea about the potential is that it consists of a chain of
quantum wells (one well per period).

We are going to solve the equation (2.1) by means of the tight-binding
approximation [1]. We suppose that each well of V(y) is capable of accom-
modating one state which is then localised in this well. Denoting the state
localised in one well by |¢(y — jd)), assumption made by the tight—binding
approximation is

(o(y — jd)|Hy|p(y — kd)) = td5+1, (ply —jd)|e(y — kd)) = dj.

The interpretation is that only the states in two neighbouring wells overlap
considerably. Condition (p(y — jd)|H,|¢(y — jd)) = 0 sets only the position
of the origin of the energy scale. Remaining requirements only claim that
the states |p(y — jd)) are orthonormalised.

We can be thus looking for the solution to Eq. (2.1) having the form

vly) = Y aiely ). (2.2

Followingly we arrive to a finite set of linear equations for a; (or a matrix
eigenvalue problem)

N
Z Hj(ky)a; = E(ky)a, where (2.3)
j=1
n [lelB. . ?
Hjj: o T]d—FkI , Hjjilzt-

If we imagine N to be infinity (or large), the system described by (2.3)
has to behave periodically in k, with the period K = d|e|B,/h (or quasi-
periodically). We are thus interested only in solving the eigenvalue problem
(2.3) within the “first Brillouin zone®” (—3K, 3K), see Fig. 2.3.

In other words: we get infinite number of (Landau) bands E;(k,) which
are K—periodic in &, as a solution to the problem (2.3) in the limit N' — oc.

®This has, however, no interpretation in terms of the geometrical periodicity of the
lattice.
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If we perform numerical calculations with finite N we obtain N bands which
are not exactly periodic in k., but they are nearly periodic on the interval
(—%NK, %NK), the more we approach the limits of this interval the bigger is
the deviation from the periodical behaviour. This fact is clearly demonstrated
on Fig. 2.4 where we display E;(k,) on the first twenty “Brillouin zones” for
N = 10.

Setting jdle|B,/h = jK = k; we find Eq. 2.3 formally similar to a matrix
form of the Schrodinger equation in the basis of plane waves (again in the
limit N — oo, see [1], Chapter “Nearly free electrons approximation”)

hQ

o0 d
%(kx —k;)? — E] a; + Z Vi—jap =0, with V,, = K/ eV () da
x 0

l=—00

V,, are the Fourier components of the potential V' in the x direction. Com-
paring the Fourier series with Eq. 2.3 we can see that Vi_; = #4411, i.e.
Viig = tand Vi, = 0 for n = 0,2,3,4,.... That means that V(z) =
tlexp(1Kx) + exp(—1Kz)] = 2t cos Kz and consequently if N were infinity
then the Eq. 2.3 is equivalent to the Mathieu equation [7]:

R d? 4 ~
{_Zm o7 + 2|t| cos Kx} eh=ty(z) = Be®y(x). (2.4)

This can also be understood as a 1D Schrddinger equation Hy = Ey (for
x(x) = exp(tkyz)u(x)) for a fictive particle in a cosine potential. Although
we do not see a straightforward relation between x and ¢ (from Eq. 2.1) we
know that the spectra have Eq. 2.4 and Eq. 2.1 have to be the same.
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Band Structure
d=15 nm, B=1 T, t=0.95 meV

30 :

20 | P

E [meV]

o | / 1
— ]

k, [rdle[B/h]

Figure 2.3: One of the results of the matrix diagonalization problem (Eq.
2.3): first 20 eigenvalues are displayed (N = 40) for k, running through the
first Brillouin zone (—3 K, 1 K).
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Band Structure - repeated zone scheme
d=15 nm, t=0.95 meV, N=10

SISO 990009;

13

Figure 2.4: Demonstration of the k,-quasi—periodicity of the spectrum. The
potential V(y) consists of N = 10 periods and we plot first 20 Brillouin
zones (according to the scaling of the horizontal axis, the n'" Brillouin zone
is located at (—n,n) \ (—mn + 1,n — 1)). It is however well visible that the

bands are almost periodic up to the 10" Brillouin zone.
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Density of States

The standard definition of density of states (DOS) at a given energy level
Er for any dimensionality n is

g(Ep) = ﬁ /E(k):EF dk = ﬁ/ﬁdké(l@ - E(k)) (2.5)

whereas ) denotes the complete k—space. In our case, the k—space is one
dimensional and thus the second expression can be rewritten as

9(Er) = ﬁ >

i(k)=FEp

-1

a

. (2.6)

However, this formula causes serious inaccuracies for flat bands (i.e. when
dE/dk ~ 0 for all k € (3K, $K)) in numerical calculations. It is much
more suitable to use the relation

o) =d-SLE), NE) = [ apgm). e

N is the total number of states having energy under the Fermi level Er. This
quantity can be determined with a good accuracy employing the fact that
the total number of states per Landau band is |e|B/h (see Appendix B).

2.2.2 Structure of the Energy Bands

The equation easiest to solve numerically is (2.3), however the structure of
the spectrum is best to see from Eq. 2.4. We will now try to get a better
insight into the problem which will help us to understand the numerical
results better.

Let us investigate the eigenfunctions of Eq. 2.4; we will denote the cosine
potential in Eq. 2.4 by W (z). If E > 2|t| the eigenstates of Eq. 2.4 should
correspond to almost free particles, which percept W (z) only as a weak
perturbation.

According to the results of the almost—free—electrons approzimation [1] we
suppose that E(k,) are near to parabolas, which are deformed in the vicinity
of the first Brillouin zone boundaries k, = 3K (gaps open here).

Next we focus on the states corresponding to energies near to a minimum
of W(z). Imagine there is an infinitely high barrier between two minima of
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the cosine potential, i.e. no tunnelling between two neighbouring wells of
W (x) is possible (note that this has nothing to do with the value of ¢). Then
there would appear bound states in each well of W (z) the energy of which
would be independent on k;; thus the spectrum would consist of flat bands.

Although this is not our case, the states with energies near to the bottom
of a well in W (z) are sufficiently separated from the neighbouring wells and
the k, dependence of their energies will thus be weak. We expect almost flat
bands in this range of energies. Furthermore, these energies can be computed
approximatelly as the ones of bound states in a single well of W (x) (which
is not surrounded by other wells).

Thus when E < 2|t|, we can suppose that the wavefunction is localised
at |z| < /K. Expanding the potential in Eq. (2.4) around its minimum®
(suppose that ¢ < 0)

|t|d*e? B

2
2tcos Kz = —=2|t| + 72 222 + O(2")

and comparing it to the linear harmonic oscillator problem with the potential

im,w?z? we find
2/t| dle|B,
w= .
My h

and finally the energy spectrum

1 21t 1
E=22t+hw|v+= ) =-2t+ |‘-d\e|Bz v+ - | &
2 My 2

~ =2t + /2[t|dB.(2v + 1) x 0.0256 meV  (2.8)

where B, is to be taken in T, £ in meV and d in nm. The requirement
E < 2|t| reads

2|t|  78.1
B, :
< d 2v+1
or introducing a new dimensionless parameter «
1 1 dle|B, < 1)
a-lv+z)=z—-(v+-| S L 2.9
( 2) 2 2/tim, 2 (2:9)

6This is the effective-mass—approximation for the y direction.
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The last equation suggests that the qualitative behaviour of the bands (i.e.
whether they are flat or parabolic-like) depends only on the single dimension-
less parameter « - (V + %) This can be verified by rearranging the equation
system (2.3) in the following way:

N
1Y Hy(ks)a; = E(ky)a, where (2.10)
j=1

. 7 SN
Hg] = O£2 |:] + E:| y Hjj:l:l = —1.

If we investigate only the “first Brillouin zone” for k,, the term k,/K ranges
from —% to % and even the whole system of equations depends only on «
(t in front of the sum is only a scaling factor for the energy). The bands
(indexed by v) should be almost flat if v < 1/a — % and almost parabolic if

2
v>1/a—1.

2.2.3 Numerical Results
Possible Types of the Spectra

In this part we will display the density of states rather than the dispersion
relations Fj(k,) that are the output after solving Eq. 2.3 or 2.10. The
relations E;(k,) are processed into the density of states by means of Eq.
2.6 or 2.7. For the sake of clarity we also display (see Fig. 2.6) the DOS
corresponding to the spectrum shown on Fig. 2.3.

As it follows from Eq. 2.10, the band structure displayed in units E/2|t|
depends only on a single parameter a.

Let us consider a sample which is characterized by a field-independent
constant a/B, < 1 (see the defining Eq. 2.9). Such a sample is suited for
Shubnikov—de Haas measurements (in low magnetic fields) since as o remains
smaller than 1 even for B, ~ 1 T. A way how to obtain samples with small
a/ B, is to decrease the period of the superlattice (d); increasing the coupling
constant ¢ leads to a collapse of the simple tight-binding model.

The lowest bands should now be flat and those beginning from index v,
such that a(Vmee + %) ~ 1 should be parabolic. In order to demonstrate that
we chose a sample with |t| = 0.95 meV and d = 15 nm, i.e. /B, ~ 0.279
T~" and set N = 30. In the Fig. 2.5 we deal with the case 1/a ~ 11, what
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DOS - QM calculation
nd=30, d=15 nm, t=0.95 meV, Bz=0.325 T

0.4

0.3

0.2 |

1.

g(E) [meV ‘nm™] per one stripe

b

-1 0 1 2 3 4
E/2lt]

Figure 2.5: Density of states in a weak field (o < 1).

means Vpg, ~ 11, i.e. 12 bands. We can distinguish 13 flat bands in the
figure.

Increasing the parameter o (by means of increasing the magnetic field)
we first get a spectrum like on Fig. 2.6 as we approach a =~ 1 where the
sharp peaks can still be recognized. At last (for @ > 1) we make the first
Landau band to span up to energies comparable to 2|t| (see Fig. 2.7). There
is no observable periodic structure for £ < 2|t|, gaps shift to high energies
and become very narrow except for the first one.
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DOS - QM calculation

nd=30, t=15 meV, d=15nm, B=1T
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Figure 2.6: Density of states for intermediate fields (v ~ 1). See the corre-
sponding band structure at Fig. 2.3.

DOS - QM calculation

nd=30, t=15 meV, d=15 nm
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Figure 2.7: Density of states for strong fields.
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Relation between the Low—Field Spectra and Zero—Field Spectra

As it was already mentioned in the Semiclassical approach paragraph, the
problem described at the very beginning of the paragraph 2.2.1 can be solved
analytically if A = 0 (and N — oc). We start with Eq. 2.1, use the tight
binding model and obtain the spectrum

hQ
2m.,

E(ky, ky) = k2 — 2|to| cos k,d . (2.11)
The density of states can be calculated analytically out of this spectrum, too
(see Appendix A). It exhibits a logaritmical singularity at F = 2|¢| and it
decays as 1/v/E for E — oo, see Fig. 2.8.

This plot seems to be very different from the (numerically calculated)
density of states of a system in a weak field (i.e. a < 1), see for instance Fig.
2.5. However, the spectra at Fig. 2.5 refer to zero temperature. To compute
the non—zero spectrum we use the standard relation

g(Ep,T) = — /_OO dEdf%%(E)g(E),

oo

where frp(E) denotes the Fermi-Dirac distribution at temperature 7' and
with chemical potential ;4 = Eg. The effect of this procedure (for 7'~ 1 K)
is shown at Fig. 2.8. The continuity of the DOS behaviour for B — 0 is thus
recovered.
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Thermally broadened DOS - QM calculation
N=30, d=15 nm, t=0.95 meV, Bz=0.325 T

0.03 T T
—— Thermally smeared QM calculation at B=0.325 T
— — Analytical SC result (i.e. B=0)
0.025 I .
I
o) I

2
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S 002
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£
£

S 0.015
3]
E
o
(=]

0.01

0.005

-1 0 1 2 3 4
E/2Jt|

Figure 2.8: The density of states for B = 0 (dashed) and thermally broadened
(T ~ 1 K) density of states for low field (v < 1, full line).
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Yet we would like to point out another feature of (especially) low—field
spectra. According to the discussion following the Eq. 2.10 (and as it was
also shown e.g. at Fig. 2.5) the bands are flat and almost equidistant in F
for E < 2|t| (the lower is E the better these two properties apply) and the
bands are almost parabolic for E > 2|t|. It implies that the gaps (between
the bands) will be approximatelly periodic in E? for E > 2|t| because the
gaps can only appear either in the centre or at the edge of the Brillouin zone
(see Fig. 2.3).

Followingly if we put the total number of states” N under the Fermi level
in zero field onto the horizontal axis instead of the Fermi level itself, the
ripples (or the gaps) seen on the low—field DOS plots at Figs 2.5,2.8 will be
nearly periodic in N both for E < 2|t| and E > 2|t|. There will still be some
irregularities near to E ~ 2|tq| though. The reason is that N is an almost
linear function of E for E deep under 2/¢| (as the constant term in DOS is
large compared to the linear and next terms) and it is (up to an additional
constant) proportional to v/E high above 2|t| (as DOS is proportional to
1/VE, see also Fig. 2.9).

We will see later that the gaps play a fundamental role in understanding
the magnetoresistance measurements.

"See Eq. 2.7.
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DOS - QM calculation

nd=30, d=15 nm, t=0.95 meV, Bz=0.325 T
0.8 T T T T T T T T T 0.06
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Figure 2.9: Zero temperature density of states g(F) (line with peaks) and
number of states N(FE) with energy less than E (dashed: zero field, full line:
low field).
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2.2.4 Physical Interpretation

Let us make some comments on Fig. 2.8. The singularity in the zero field
DOS at Er = E = 2|t| divides two substantially different regions from each
other.

For Er deep under 2|t| and in weak fields the system behaves like an
almost free 2D gas in magnetic field. Sharp and nearly equidistant Landau
levels (or flat bands) appear, their mutual distance is proportional to B as
predicted by Eq. 2.8. This means that if we keep Ep constant (deep under
2|t|) and change B, the Landau levels are passing through Fr periodically
in 1/B. Although there is not a straightforward relation between DOS and
conductivity of the sample, this reminds us of the Shubnikov-de Haas os-
cillations. We stress that this is the behaviour of a free 2D electron gas,
too.

However, the Landau levels remain sharp for the free 2D electron gas even
for strong fields. On contrary we can see at Figs. 2.6,2.7 that for sufficiently
strong fields the Landau levels broaden even for E deep under 2|¢|.

We now return to the Fig. 2.8. The singularity in the zero field DOS at
Er = 2|t| corresponds to critical semiclassical trajectories as it was already
discussed in the paragraph 2.1.2.

In the case of Er > 2|t| the system approaches the one-dimensional zero
magnetic field behaviour. The density of states is (except for the narrow
gaps) o« 1/VE, the same as the DOS of a free 1D electron gas. It might
be more instructive to see the band structure plot at Fig. 2.4 instead of the
DOS: we can see that the spectrum is nearly parabolic (as the one of a free
1D electron gas) for Ep > 2[t|.

On the other hand, if Er > 2|t| is not very far from 2|t| we will be able
to percept the gaps which will be passing through Er when we change B.
Due to this we will observe conductivity oscillations again. The higher Er
will be, the harder will be the perception of gaps and the weaker will be the
conductivity oscillations because the gaps get narrower. The free 1D electron
gas however has no gaps in DOS.

So as to understand the quantum mechanical results better we will also
discuss the mean values of the velocity x component. These are given by

1dE
Uy = (W (kg |V (ke =z -
0 = (W k) |V Ok ) = 557
For the free 2D electron gas it is thus @, = 0 while this velocity is non—zero
(as the bands are not completely flat) for electrons confined by a superlattice
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potential. This can be understood as a non-zero probability of jumping of
an electron between two closed trajectories (see Fig. 2.10) which results into
a net motion in one direction for electrons with k, =~ —iK and in another
direction for those with k, ~ 1 K.

Similarly, compared to the free 1D gas the electrons moving in one direc-
tion in a superlattice have a non-zero probability of changing the direction of
motion (or jumping between two open trajectories in inverse directions, see
also Fig. 2.10). This is a consequence of the fact that there are such values
of k; (near to the end of the Brillouin zone) where 9, = 0.

These facts are an indication of the breakdown behaviour.

Semiclassical model of the breakdown

K, [rvd]

Figure 2.10: The semiclassical explanation of the difference between the free
electrons and electrons in a superlattice. Unlike the free 1D system the
electrons in a superlattice can make some kind of cycles for E > 2|t| or in
other words jump between two open orbits.
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2.3 Conductivity of a Modulated
Two—Dimensional Electron Gas

So far we have shown how to compute the dispersion relations E; = E;(k,)
in an approximative way (see Eq. 2.3). We were also able to compute the
corresponding eigenfunctions at this point even though we haven’t made
any use of them yet. The aim of the following section is to establish a
general relation between the quantum mechanical solutions of a particular
two-dimensional electron gas problem and the components of the electric
conductivity tensor.

We are going to use the linear response theory for computing the con-
ductivity tensor components. The starting point will be the formulae for the
conductivity tensor diagonal and off-diagonal elements derived by Kubo et
al. [10] and Bastin et al. [2], respectively:

ou(Er) = The? Tr [vi(sF(EF — H)vior(Er — H) (2.12)
r dG™ 1G-
(2.13)

The indices 7 and j stand for = or y, v; denotes the velocity component
operator. We employ the common definition of Green functions which allows
us to express delta functions in terms of G*:

! Se(E—H) = ———(G* — G ).

+
B)=—
GCE) =g i

We stress that the original formulae (2.12,2.13) are derived with T' — 0+.
However, in this case the conductivities (e.g. for a free electron gas) would
be infinite as no scattering mechanism was considered. The effect of elastic
scattering on randomly located impurities can be modelled by inserting the
complex self-energy term into the Green function (i.e. replacing [F — H| !
by [E—H—-3(E)| 1), [9]. If the self-energy has a non—zero imaginary part,
the conductivities remain finite. As a model we will further put £ (E) =i,
I' > 0, we will keep I" as a parameter and we are going to examine the I' — 0
asymptotic behaviour. A more detailed treatment of the self-energy method
(based on second order Born approximation calculations) is discussed in [9].
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The Equations 2.12, 2.13 are a prescription for computing the conductiv-
ity tensor components at zero temperature, the Fermi level being Er. To get
their non—zero temperature values we use

O'ij(T) == —[ dEdf%%()O'U(E) y (214)

where frp(F) is the equilibrium Fermi-Dirac distribution normed (by means
of E) to the particular number (areal concentration) of particles N in system

1 oo
o) = g V= [ BB ra(B),

g(E) stands for DOS of the particular electron system.

Let us make a brief comment on the derivation of Equations 2.12, 2.13.
These relations can be obtained by integrating the Liouville equation (f is
the density matrix operator)

df

1
—[f,H+H']=0
3 T b HTH]=

and taking into account only the terms linear in the perturbation Hamiltonian
H'. In our case the perturbation is a homogeneous electric field E and we
calculate the current response j, i.e. Tr(evf). Finally, we determine o;; using
the relation j; = >, 0;;E;. This procedure is explained in [9] in a nice and
understandable way.

The form of Equation 2.13 is inconvenient from the computational point of
view because it forces us to integrate over energies even at zero temperature.
A way how to partially avoid this was suggested by Stieda in [15]

0i;(E) = ol(E) + ol (E)
ol (F) =Tr |:ViG+(E)Vj6F(E — H) — vior(E - H)v;G™(E)| (2.15)

ON(E)
oll(E) = —0)(E) = g -
The integration over energies remained in N (F) (the total number of particles
with energies less than F)

N(E) :/E dEg(E) :/E AETr8(E — H).

o o0
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This is however a quantity much simpler to compute numerically.

Before we proceed in applying Equations 2.12,2.15 to our particular sys-
tem we would like to point out one general feature of these equations in
two—dimensional systems. If the Fermi level lies in a gap (i.e. g(Er) = 0), all
Oy Oyy and aéy vanish whereas the second term of o,, can be non-zero. If
the gap is situated between the [-th and (I + 1)-st Landau bands the value of
this term will be le? /h because the areal concentration of states per one Lan-
dau band is eB/h (see Appendix B). Thus, o, will be constant throughout
the gap and equal to an integer multiple of ¢?/h which is a quantum-Hall-
phenomenon-like behaviour.

2.3.1 Modulated Two—Dimensional Electron Gas

We turn now to the system described by the Hamiltonian (2.1), see also Fig.
2.1. First of all this means the velocity component operator v; has the form

1 1
X 1 (2.16)

Vy = E[.}GH]:Epy

Further (see paragraph 2.2.1) we recall that the (orthonormalized) approxi-
mate solutions to the Schrodinger equation are

HW) = E(kp |0, 10) = k) Y ay(kam) ) < ko)]0)

Jj=1

where the ket |j) denotes the lowest eigenstate in the j-th well of the su-
perlattice potential V'(y) and it holds within our approximation (j|k) = d;.
The eigenstates take the following form in coordinate representation (see also
paragraph 2.2.1)

N
1 )
U(2,y) = ——e He? Z aj(ky,n)e(y — jd).
V2T =y

As soon as we determine the eigenstates ¥ (x,y) we can compute the traces
in Egs. 2.12 and 2.15.

We have not obtained any reliable results so far because of problems on
the numerical level. The expected form of results is however discussed in
subsection 2.5.3.
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2.4 The Way from Theory to Experiment

2.4.1 The Experimental Setup

The samples were fabricated and measured by R. A. Deutschmann at the
Walter Schottky Institute in Miinchen. The geometry of the samples mea-
sured is shown at Fig. 2.11 and can be obtained using the cleaved edge
overgrowth method [4],[5]. The basis of the sample is a 3D GaAs/GaAlAs
superlattice (i.e. alternating layers of the two materials) with the period of
15 nm and number of periods 100. The first and the last layer is contacted
(source and drain): first there’s an undoped GaAs layer (100 nm) and then
1 pum of n+ GaAs. This structure is cleaved in situ perpendicular to the
layers and a n+ GaAs gate (with 15 nm undoped GaAs spacer) is grown on
the fresh surface.

200 nm n+ GaAs
2DES
100 nm AlAs

super-
lattice
(il
n+ GaAs
T

ohmic contacts

N\

[(110) J
substrate 12 nm GaAs
M 3 nm AlGaAs
Figure 2.11:  The sample. Reprinted with kind permission of

R. A. Deutschmann.

By applying positive voltage to the gate U, electrons are drawn from the
volume of the superlattice to a thin layer at the gate spacer. Thus a 2D
electron gas is created which is subject to the superlattice potential. The
concentration of electrons in the 2D gas (or consequently chemical potential)
is gate-voltage-dependent. If we apply magnetic field perpendicular to the
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cleavage plane we arrive at the situation with the geometry shown at Fig.
2.1.

The quantity mesured on this sample is the resistance depending on mag-
netic field and gate voltage. There are separated voltage and current contacts
on both source and drain. However, this setup has to be treated just as a
two-point measurement from the point of view of the 2D system (see Fig.
2.12). The reason why this is an important issue is that there are two mech-
anisms of electron transport in the y direction: the bulk states conductivity
and the edge states conductivity®. Using the two—point measurement geom-
etry (Fig. 2.12a) we measure a result of a mixture of the two phenomena
(see below) while in the four—point scheme (Fig. 2.12b) both longitudinal
and transversal voltages can be measured allowing thus to separate the two
conductivity contributions. This topic is naturally discussed in some papers
concerning the quantum Hall effect.

Il current contacts B voltage contacts

3) i h b)

Xy

Figure 2.12: 2D superlattices: (a) two-point measurement, (b) four—point
measurement.

Four—Point Measurement

Let us now sketch how to use the advantage of a four-point measurement.
Due to the presence of the magnetic field the 2D gas will be strongly anisotropic

8We stress that this is only one of theories explaining the quantum Hall effect which is
still not proven to be the only correct one.
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and the total current passing through the 2D superlattice (in the y direction)
will be given by the conductivity o or resistivity o tensors

Jy = OgyUsy + 0y Uyy,  oOr (2.17)

Uacy = Qacyjy and Uyy = nyjy’

because j, (transversal density of current) vanishes. There are some sym-
metries of o: first 0,,(B) = 0,,(—B) (Onsager relation [1]) combined with
Ouy(B) = —04y(—B) and 0,,(B) = —0,,(—B) (Hall current changes direc-
tion when B — —B) yields 0,,(B) = —0y,(B).

The tensors o and p are inverse to each other which gives (with respect
to the symmetries of o)

Ty - %w _ e
OuaOyy + 02, Gaa = OpeOyy + 02, OuaOyy + 02,

(2.18)
The voltages U,, and Uy, can be measured in the four-point scheme and
thus o,, and o,, can be calculated as a function of |B].

Oz = —Oxy = — Oyy =

Two—Point Measurement

We will now sketch the way how to estimate the experimentally measured
resistance assuming that we have done only the DOS calculation.

Let us think of the sample as of a conductive slab (see Fig. 2.12a)
characterized by two conductivity components o = 0,, = 0y, and o = 0yy;
the thickness T' (in the y direction) of the slab is substantially less than its
length L (in the z direction). A two-terminal resistance R can be found out
from the voltage difference U measured across the source and drain contacts
and is given by R = U/I, provided the current passing through the sample
being I.

A two-terminal resistance of rectangular slabs subject to perpendicular
magnetic fields was studied both theoretically and experimentally e.g. by
Rikken et al. [12], but their results hardly apply in our case (T' < L), which
is far away from the standard Hall bar geometry.

For small Hall angles ¢y def arctan(oy /o), i.e if oy < arctan(T'/L), our
sample reminds the Corbino disc (see Fig. 2.13) in some aspects. Far away
from the edges, the electric field is perpendicular to the source and drain
contacts and F' = U/T. The current flow deviates from this direction by the
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Bl voltage contacts El current contacts

Figure 2.13: Corbino disc geometry.

Hall angle and only a very small part of electrons near the edges does not
obey the rule. In this case

1T
oL’
similarly as for the Corbino disc. In the quantum Hall regime 0 — 0 and R
should diverge for a true Corbino disc.

In our sample, the limit ¢ — 0 means that ¢y — 7/2 and consequently
©p becomes larger than arctan(7'/L). Then, in spite of its thickness to length
ratio, our sample behaves like a standard Hall bar for which the two—terminal
resistance is known [12] to be very close to the quantized Hall plateau re-
sistance, R =~ h/(e? - i), where i is a positive integer number. Thus, in our
case R does not diverge as the singularity is cut off by the resistance of the
corresponding Hall plateau.

Both ¢ and oy are complicated functions of magnetic field and concen-
tration of carriers. If the Hall angle never becomes small for a given concen-
tration (but deviates from 7/2 substantially), the Eq. 2.19 does not apply
for any field. It is known [12] that in this case R is given by a combination
of p and py which are related to ¢ and oy by

~
~

(2.19)

pr ooy, o~ 1/oy. (2.20)

This p’s to o’s correspondence is given by relation 2.18 provided that 0 < oy.
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The weak point of this approach is that the slab (2DEG) is strongly
anisotropic (04, # 0y,). Even though we can estimate that o,, < 0., we
are not able to predict whether o,,0,, is smaller or greater a:%y in a Landau
level. In the latter case the Eq. 2.19 describing the measured resistance is
substituted by relations (2.20).

A consequence is that knowing DOS only we have no indication on the
value of o (for Er in a Landau level) compared to the known oy in the gaps
— even for small Hall angles. It is thus impossible to predict whether the
Hall plateaus of the measured resistance will be maxima or minima.

Concluded, we can only say that in the two—point scheme there should
appear the Hall plateaus if the Fermi level lies in a gap. We will make
several comments on the general relation between DOS and o, o in the
next paragraph.

2.4.2 Relation between Conductivity and Density of
States: A Simple Model

It is a rather complex problem to find a good approximation which would
lead us from the calculated spectrum and eigenstates up to the conductivity.
Later we will show the results of Kubo formula (linear response theory)
which is however not very easy to follow (see section 2.3). We will discuss
the possible shape of the relation now in a very rough way which will give us
better insight into the matter. We focus at the two—point scheme now.

One of the contemporary theories attempting to explain the Quantum
Hall phenomenon concerns the edge states [3]. We will sketch the idea briefly:
Landau levels in a finite 2D free electron gas rise in the vicinity of edges —
from the semiclassical point of view the electrons move on circular orbits no
longer and take cycloidal trajectories. The energy of these states is higher
than the one of the corresponding bulk (circular orbit) states and (assuming
that the 2DEG is confined to an infinitely deep well) it grows to infinity
as these orbits approach the edge. Thus if the Fermi level lies in the gap
between i-th and (i + 1)-th bulk Landau level it crosses the i lower Landau
levels in the edge region. These intersections represent the edge states. It
can be derived [3] that each edge state contributes to the conductivity by
e?/h. The total conductivity in this case is thus ie?/h and it doesn’t depend
on where in the gap the Fermi level is.

Further on we will thus assume that there are two parallel channels of
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electron transport in the sample — the bulk states conductivity and the edge
states conductivity. The relation (2.17) gives us a hint how the two channels
could be related to the conductivity tensor: the diagonal components (o,
oyy) describe the bulk conductivity and the off-diagonal component (o)
reflects the edge—states conductivity’. We also recall that the transport con-
cerns electrons near to the Fermi level only. The appropriate quantity will
thus be the density of states (DOS) at the Fermi level, for non—zero temper-
atures we will use the standard relation (2.14).

We will estimate the conductivity of the two channels now. The simplest
model is that the bulk conductivity grows with increasing density of states.
In particular, o;; = 0 if Fermi level lies in the gap and is non-zero in a Landau
level.

The edge states conductivity is ie?/h if the Fermi level lies in a gap. We
have however no estimate for it in the other case. Note that there’s also
another cotribution to oy originating from the classical Hall phenomenon.

Concluded, the simplest DOS-based model of the magnetoresistance is
that we measure the resistance (1/7) - h/e® in the gap and c¢- 1/g(FEr) in a
Landau level (if the edge states conductivity is negligible to the bulk states
one). The proportionality constant ¢ can be however a function of Er (and
we might only hope that it is varying slowly). We stress once again that we
cannot predict whether the Hall plateaus lie below or over the typical bulk
states resistance.

2.4.3 The Relation Between Gate Voltage and Fermi
Energy

We divide this problem into two steps. The first one is the relation between
the gate voltage U, and concentration of electrons N in the 2D gas. We
assume that this relation is a proportionality. This means that the gate
structure works as a capacitor which seems to be a plausible model.
The second step is to find the relation between Fermi energy and N. The

usual relation is

Er

N(ER) = [ glE)dE.

— 0o
Here, ¢g(E) must be computed from the zero-temperature DOS (as shown
e.g. on Fig. 2.6) to which the thermal broadening relation is applied (2.14).

9This is a naive model and it will be replaced by a better one in the subsection 2.5.3.
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Thus, for low fields and non—zero temperatures the relation N = N(Ey) can
be also roughly approximated by the zero field relation at zero temperatures
(5.1), see Fig. 2.8 and the corresponding paragraph.

Overlaying the experimental and theoretical 2D plots on each other we
can now determine the proportionality constant between U, and N. The
aim is that the gaps of DOS match the straight resistance minima lines
(for weak fields and high gate voltages). Typical value of this constant is
6 x 101t em 2V 1L,

Agreement between the theoretical and experimental graphs gives us thus
a feedback: the assumption N oc U, is now justified.

2.4.4 Coupling Constant

We could see that the parameter ¢ which describes the strength of coupling
between two neighbouring wells plays an important role in the theoretical
calculations. Up to now, our concept that we do not know anything about the
superlattice potential V' (y) except for its period d and the coupling constant
t. However, in our specific case we can consider V' (y) to be rectangular and
we also know the depth of the wells which equals the GaAs/GaAlAs band
offset.

Exploiting thus our knowledge about the sample structure we can employ
the Kronig-Penney model and determine the spectrum of the system in zero
magnetic field. The result is'® E(k,, k,) ~ h*k2/2m. — A/2 - cos k,d where
the width of the first miniband is A ~ 3.8 meV (see [5]). Comparing this
to the tight-binding approximation zero field spectrum (2.11) we obtain ¢ ~
0.95 meV.

Let us also make a short comment on the assumption that only the ground
state in each well is occupied which was a basis for the ansatz (2.2). It was
computed by [5] within the Kronig—Penney model that the second miniband
lies 60 meV above the first one which is sufficiently more than the Fermi
energies at relevant carriers concentrations (e.g. for N = 5.9 x 10" ¢cm™2 it
is Fr ~ 8.9 meV).

10The band part of this spectrum has not an exact cosine form.
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2.5 Experimental Results and Comparison to
the Theory

All the experimental results were obtained by R. A. Deutschmann at the
Walter Schottky Institute in Miinchen and are reprinted with his kind per-
mission.

2.5.1 Experimental Results

As it was mentioned above, both magnetic field and gate voltage can be
changed during the experiment. The measured quantity is the voltage drop
on the sample at a given current (I = 10 nA for the data displayed). The cur-
rent voltage characteristics was found to be linear for low currents and thus
the measurements were presented as sample resistance measurements for dif-
ferent gate voltages and magnetic field strengths. The measurement outcome
can be displayed as a 2D plot (see Fig. 2.14). However, the measured re-
sistance ranges within more orders of magnitude while important structures
are in some regions quite weak. We used two methods of displaying the data
so as to emphasize these features. We employed logaritmical scale for resis-
tance and subtracted linear background (fitted by the least square method)
at Fig. 2.14 (top) and plotted the resistance R transformed using formula
R (’R/0UZ)/|0R/0U,| at Fig. 2.14 (bottom). The latter method shows
the fine structure better but it rather shows the steepness of the extrema
than the value of the plotted function (i.e. does not distinguish deep and
shallow extremes). The former method gives a better global overview.
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Figure 2.14: Experimental data: field- and gate-voltage-dependent resis-
tance (in arbitrary units) of the sample. The same data processed by two
different methods: logarithmical scale (top) and derivatives method (bot-
tom). Reprinted with kind permission of Rainer Deutschmann.
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2.5.2 DOS Calculations

We have already shown how to compute the density of states as a function
of energy E for different magnetic field strengths. By merging these plots
(as e.g. the one at Fig. 2.5) into one 2D plot and transforming F (Fermi
energy) into N on the vertical axis, the zero field number of states under E
(using Eq. 5.1) we obtain Fig. 2.15 (left plot). The dark regions correspond
to the Landau bands, the light regions are the gaps.

As it was already mentioned before we further assume that N is propor-
tional to the gate voltage U,. We determine the proportionality constant
so that the theoretical plot would match the experimental plots (at Fig.
2.14), namely that the lines corresponding to gaps and the lines of resistance
minima have the same position. In our case we found out its value to be
7.0 x 107 em 2V ! and obtained the right plot on Fig. 2.15.

We can see that the structures of the theoretical and experimental plots
are in a good agreement except for the resistance minimum starting at B ~
8 T and U, ~ 0.4 V which has no counterpart in the theoretical plot. It
shows that our model is not valid in this region. This can be due to the
fact that the ansatz (2.2) has no justification if the electron cyclotron radius
becomes very small compared to the superlattice period d and the state is
thus strongly localized in a single well (or in other words the tunnelling
between two adjacent superlattice wells is negligible due to the magnetic
field).

Despite this mismatch we can see that the used model gives a good de-
scription of the system in all other regions.
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Density of carriers [10°11 em*-2]
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Figure 2.15: DOS calculation: B is on the horizontal axis on both plots. On
the vertical axis there is the zero field number of states (left) and the gate
voltage (right).
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Another type of insight give the sections of the 2D plot, i.e. graphs
of field-dependent resistance at (different) constant gate voltages U,. Very
clear pictures can be obtained by plotting more lines (i.e. at different U,)
into one graph with B/U, instead of just B on the horizontal axis, see Fig.
2.16. So as to be able to compare these plots with the theoretical results we
again assumed that the gate voltage is proportional to the total number of
carriers (see above). Note that under this assumption the horizontal axis is
proportional to the reciprocal value of filling factor (i.e. one over number of
Landau levels occupied).

However, the match of theory and measured data is only very rough at
the level of DOS. Tt has already been suggested above that we cannot predict
whether the resistivity will have a maximum or minimum for Fr lying in gap
from the semiclassical point of view. On the other hand we can see that the
resistivities (for various values of N) approach the same value 12.9 k2 around
B/N = 2. This is the resistivity of the first Hall plateau (3//e?, one half for
the spin) and that can be predicted without the Kubo theory.
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DOS at Fermi Level and Resistivity
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Figure 2.16: FExperimental data along with calculation results: field—
dependent resistance of the sample for different gate voltages. Smooth curves
are the experimental data (U, in volts), curves with singularities are the cal-
culations of DOS (N in 10! ¢em~2). Experimental and DOS curves of the
same colour correspond to the same gate voltage (U, = 6.6 - N). Reprinted
with kind permission of Rainer Deutschmann.
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2.5.3 Kubo Formula Calculations

We have already presented a way how to compute the conductivity compo-
nents in the subsection 2.3.1. Subsequently we use the formulae (2.18) to
transform them into the resistivity components. Due to numerical problems
which occur when evaluating the traces (Eq. 2.15) we have not obtained any
final results yet but we believe that the main features of the B—dependent
resistivity to be measured are included in our present R,, plot'' (see Fig.
2.17).

First of all we found out that R,, vanishes in the gaps. If the Fermi level
lies in a gap then the only non-zero component of resistivity will be R, which
is then equal to the quantized Hall resistance h/(2¢?n), n = 1,2, ... We can
also see on the plot (2.17) that the lower is the magnetic field the thinner are
the gaps and the less pronounced are thus the minima of R, at the positions
of gaps. Another important point is that the gaps get thinner also when
concentration of electrons (V) increases and thus at higher concentrations
less periods of oscillations can be distinguished (as it can also be seen in the
experimental data). It can also be recognized that the envelope function of
the plotted R, is similar as the one of the experimental magnetoresistance:
right from the first Hall plateau (R ~ 12.9 kQ in the figure) it grows rapidly
and approaches zero between this plateau and zero field with a maximum
approximatelly in the centre.

As it was already mentioned before we had to take into account scattering
of electrons on impurities in order to avoid infinite conductivities. This effect
was modelled by including the imaginary part I' of the self-energy into the
Green function which was kept further on as an unspecified parameter. We
found out that variation of its value causes only that R, is scaled by 1/T.
This gives us some justification to consider the plot (2.17) as relevant.

We empasize however that the self-energy (and thus also I') is Ep—
dependent (or concentration—-dependent), see [16] or [11].

Let us now make a short comment to the relation between the resistance
components and the experimental data. We recall the relations (2.17):

Uy = Ryyl, and Uy, = Ry, 1, .

As we use the two—point measurement scheme (see Fig. 2.12a) we cannot
measure Uy, and U, separately; what we measure is a mixture (a weighted

1'We leave the current densities j and switch to the current I. Subsequently the resis-
tivity o will be replaced by resistance R.
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mean) of these two values. However if the Fermi level lies in a gap, the R,
component vanishes and we thus measure Uy, only.

In the other cases (DOS non-zero) we expect that R,, does not devi-
ate dramatically from the smooth transition between the two adjacent Hall
plateaus values (see [13]) and thus the total voltage measured will be influ-
enced by R,,. This seems to be the case of the high concentrations (see e.g.
the plot for N =5.94 x 10'"' em™2 on the Fig. 2.16).

Let us now summarize the arguments illustrating the agreement between
the experiment (Fig. 2.16) and theory (Fig. 2.17).

1. The critical points (maxima or minima for different concetrations) which
correspond to the Fermi level positioned in a gap match perfectly.

2. The Hall plateaus in gaps are reproduced by the theory (note that the
plateaus have the resistances R; = h/(2¢%i), i = 1,2,..., the factor of
two corresponds to spin).

3. The resistance rises rapidly right from the first Hall plateau (B/N >
2 x 1011 Tem?).

4. Envelope functions of the resistances left from the first Hall plateau
have the same shape.

5. The lower is the concentration the more pronounced are the resistance
critical points (minima).
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B-dependent resistance
t=0.95 meV, d=15 nm, N=3.3x10" cm, T=300 mK
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Chapter 3

Three—Dimensional
Superlattices

3.1 Introduction

3.1.1 Description of the System

The superlattices investigated in this part are considered to be described by
one—dimensional potential V' = V/(2) having a period of d,, see Fig. 3.1. The

V(2)

Figure 3.1: A three dimensional superlattice.

exact shape of the potential is not specified, we only assume that there is

one well in each period and describe the potential by means of the coupling

constant assigned to ground states in two neighbouring wells (see below).
The movement of electron in planes perpendicular to z axis is free.
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Such a structure can be fabricated using epitaxial methods. Magneto-
transport measurements on InGaAs/InP structures were performed for in-
stance by Jaschinski [8].

Unlike the case of the two-dimensional systems, magnetic field will now
be applied in an arbitrary direction. By perpendicular field we mean field
parallel to the z axis, otherwise we will speak of tilted field.

3.1.2 Semiclassical Approach

The concept of the semiclassical (SC) description of 3D systems is an exten-
sion of the SC theory mentioned in the subsection 2.1.2. The tight—binding
zero—field spectrum of the 3D system is

h? h?

k2 +
my © 2m,

E(ky, ky, k) = 5 k; — 2|to| cosk.d, . (3.1)
The Fermi surfaces Er = E(k,, ky, k) take three topologically different forms
which all posses rotational symmetry as the system is isotropic in the z,y
plane. These surfaces can be obtained by rotating the curves 0, 1 and 2 of
Fig. 2.2 around the &, = 0 axis. The forms can thus be (a series of ) deformed
(rotational) ellipsoid for Er < 2|t| or a corrugated cylinder for Er > 2|t|; the
transition Fermi surface between these two regions is a series of just touching
spindle—like bodies.

In order to determine the semiclassical trajectories of an electron if the
system is subject to magnetic field B we have to construct a cross section of
the Fermi surface by a plane perpendicular to the magnetic field direction. By
rotating these curves by 90 degrees around B and scaling them by 7/ (|e||B|)
we get the real space trajectories. Note that there is a whole class of such
trajectories for each direction of B (which can be obtained by shifting the
section plane along B).

Compared to the 2D system there is now a larger variety of trajectory
shapes because they depend both on Fermi level value and on the field di-
rection. Nevertheless, all trajectories are closed for Er < 2|t| even in the 3D
case. For Er > 2|t| the trajectory can be either open or closed, depending
on the field direction.

There is the quantization condition again which requires the closed tra-
jectories to enclose area A(EF) equal to an integer multiple of magnetic flux
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quanta |e||B|/h (in the k-space)

e||B]

n=1,2.... (3.2)

Shubnikov—de Haas oscillations

Let the Fermi level Er and the magnetic field direction be fixed and con-
sider the class of the closed trajectories indexed by a parameter £ which
corresponds to the section plane shift in the direction of B. Due to the
quantization condition (3.2) only some of the trajectories are permitted. If
we vary the field strength |B|, one or more of the permitted trajectories may
fulfill 0A(Er)/0& = 0. It means that there are many other trajectories near
to this one which enclose area near to A(Eg). The SC theory claims that
this should correspond to singularity of the density of states.

Thus the SC theory suggests to find extremal cross—sections Apazys Amin
of a Fermi surface (for a given Er and B/|B|) and predicts that there will
be a singularity in magnetoresistance for the values of 1/B which fulfill

1 el 1 1 el 1
— =n-—- — =n

B h Amzn , B . f . Amaz ,

n=12,....

These two superposed (1/B)-periodic structures are called Shubnikov-de
Haas oscillations and can be observed in an experiment [1],[8].

The Limitations of the SC Approach

The disadvantage of the SC theory is again that it shows no quantitative
relation for the conductivity. It only suggests where the singularities of DOS
can be. As the superlattice is strongly anisotropic we have no reason to
suppose that the conductivity tensor components will all depend on DOS in
the same way.

Even from the (almost) classical point of view we may expect that the
in—plane component of magnetic field will reduce the tunnelling between two
adjacent layers of the sample. Thus for a fixed Fermi level and direction
of tilted magnetic field there should be a critical value B, over which the
system will behave as a set of decoupled 2D electron systems. The SC theory
cannot predict this transition because regardless of the field strength the
Fermi surface cross sections remain the same.
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We can thus predict the SC approach failure for strong in—plane field
components. As for the experiments this failure (the 3D- to 2D—mode tran-
sition) will be indicated by occurence of the Quantum Hall phenomenon (i.e.
plateaus in the g,, component of magnetoresistance). We can also expect
that the resistance in perpendicular direction (g,,) will rapidly rise.

3.2 Quantum Mechanical Approach

Consider the structure shown at Fig. 3.1. We apply magnetic field B =
(0, By, B,) to it and we denote the angle of B to xy—plane as a, i.e. cotga =

B,/B, and we choose A = (B,z — B,y,0,0) for the vector potential. The

Hamiltonian for such a system H = (B — eA)? 4+ V(z), depends on =

2me
thus only via p,. This hints us to make an ansatz U(z,y,2) = e**®(y, 2)
when solving the stationary—state Schrodinger equation H|W¥) = E|¥). The
2D Hamiltonian is then
1

1
H = 2 2

(hky + |e|(Byz — B.y))” + V(z). (3.3)

Note that F is independent on k, for B, # 0, because states with differ-
ent k, are degenerated and their wavefunctions are only shifted (this can be
easily seen from the translational invariance of the kinetic part of H). Con-
sequently, it is reasonable to perform the calculation just for one value of k,,
e.g. for k, = 0.

Examining the H we find that it’s invariant to translations of the type
(y,2) = (y+jdy, z+jd,), 7 =0,1,—1,2,... where (d,, d,) is a vector having
the same direction as B, in other words d,/d, = B,/B,; local minima of
the total potential in H occur at intersection points of lines z = jd,, j =
0,1,—1,2,... (corresponding to minima of V'(z)) and the line B,z — B,y = 0
(which is the minimum of the parabolic “magnetic” potential). According to
the Bloch theorem we can find the eigenstates of H in the form

1 N-1
Dy, 2) = N > " exp(ukejd. + kyjd,))e(z — jd..y — jd,) (3.4)
j=0

where N is an integer which would be afterwards formally limited to infinity
(number of periods of the potential V(2)) and k = (k,, k,) is a vector of the
same direction as B, i.e. k,/k, = d,/d, = B,/B,. We shall limit ourselves
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to the first Brillouin zone, which is determined by k, € (—7/d,,7/d,). The
function 1 (y, z) is a one—electron state localized in one period of the 2D-
potential; note however that this function is also k—dependent.

3.2.1 The Approximations

Before we continue with putting the ansatz (3.4) into the Schrédinger equa-
tion with the Hamiltonian (3.3) we will make several approximations which
will simplify the problem considerably.

1.

Separability. ¢(y, 2) = x(2)¢(y). For simpler notation we will use bra
and ket vectors (z|x;) = x(z — jd.) and (y|y;) = x(y — jd,).

. Orthogonality of |x;). (x;|xi) = dij-

Tight-binding approximation. (x;|H,|x;) = t0;,+1. Here we use the
notation H, = p?/2m+V (z), i.e. the non-trivial part of H in absence
of magnetic field.

. Setting the zero level of energy (what was however included in the

previous point, yet). (x;|H,|x;) = 0.

Limit on the in—plane field strength. This has two parts: first B,z— B,y
varies slowly on one period of V(z), or (x;|Byz—B.y|x;) = Byjd.—B.y,

and second: ()@-\%(Byz — B,y)?xi) =0 for i # j.

. Number of populated states. We assume that the energy spectrum

and the number of free electrons in the system is such that only states
(n)y,,(0) _ :

l; )x; '), n=10,1,... are populated (i.e. only the ground state of the

superlatice in zero magnetic field and an arbitrary state corresponding

to the presence of the magnetic field).

The value of the hopping term t follows naturally from the exact form of

X(2).

But on the other hand, having specified its value and relying on the

listed assumptions we have no other reason why we should be interested in
the exact form of x(z).
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3.2.2 Turning the 2D equation into a 1D equation

We now concentrate on the equation H|®x) = F|®) with Hamiltonian of
the form (3.3) and the ansatz (3.4)

N—-1

By) = % Z exp(u(k-ids + kyidy)) x5 0s) -

We now multiply the Schrodinger equation from the left by

N—-1
1 . .
T 2 bk + ) (il
j=0

By applying the assumptions listed in the previous subsection we arrive (see
Appendix C) at an equation which is a sum of N equations (indexed by j)
of the type

2
b 1 .
{ L+ —m*wf_(y - de)2 +2t Cos(pydy/ﬁ —k.d, — kydy)} |80j> = E“Pj> .

2m, 2
(3.5)
All these summed equations are however equivalent because they can be
transformed one to another by substituting y — j'd, = y — jd,. Due to this
we may limit ourselves only to one equation (3.5), let it be the one with
J = 0. For solving such an equation we choose p,—representation; we recall

(pylylpy) = @h(d/dp,) and denote (p,|vo) = ¢(p,). Last, using d,/d, =
ky/k, = cotg a we can write k,d, + k,d, = k,d,(cotg® a + 1) dlef k,d,m and
the equation to solve is thus

1 p?
—§h2m*wi<p”(py) + [%‘Z + 2t cos (pydy/h — kzdﬂ'):‘ ©(py) = B(k.)o(p,).
(3.6)

3.2.3 Numerical Results

In this section we would like to show only the most important results obtained
by solving Eq. 3.6. We will make use of the spectrum only.

It is evident that for each value of k, we obtain an infinite number of
eigenvalues of Eq. 3.6 and thus for k, going through the first Brillouin zone
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we will obtain (Landau) band structure E;(k,). As in the previous chapter
we will display rather DOS than the band structure itself (Eq. 2.7 shows
how to transform E;(k,) into DOS).

A typical DOS output for Er > 2|t| is shown at Fig. 3.2. We can see the
overlapping Landau band, each of them having two DOS singularities (at the
edges). Both types of singularities (those at the low field edge and and those
at the high field edge) are 1/B—periodic (the periods are not the same) and
the periods are in a good agreement with the SC prediction. However, we
can see a third DOS maximum at some Landau bands (encircled in the Fig.
3.2). These maxima have no SC analogy and are also 1/B-periodic.

The conclusion regarding the Fig. 3.2 is that the in—plane component of
the magnetic field is not strong enough so that it would cause substantial
changes to the system (like the change of dimensionality for instance).

New Oscillations
t0=10 meV, Ef=40 meV, dz=150*0.283 nm, a=70 deg
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3 |
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Figure 3.2: DOS at the Fermi level, Er > 2|t|. Note the maxima in circles.
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A different situation is shown at Fig. 3.3. We can clearly see the sharp
Landau levels for strong magnetic fields and continuous spectrum for low
fields. Since sharp Landau levels are typical for 2D behaviour, we conclude
that magnetic fields over B, ~ 2 T reduce the dimensionality of the system
(i.e. 3D to 2D transition occurs). The SC theory has no means of predicting
this phenomenon as it operates with the (extremal) Fermi surface cross sec-
tions which are the same for a given Fermi level and field direction regardless
of the field strength.

2D to 3D Transition

t0=10 meV, Ef=40 meV ,dz=1200*0.283 nm, a=55 deg
0.6 ‘ ‘ : : : : ; ‘ ‘ ‘ ‘ : :

DOS [a.u.]

0.3 0.4
1/B [1/T]

Figure 3.3: DOS at the Fermi level, Er > 2|t|. The system is in the 2D mode
for fields over B, ~ 2 T.



Chapter 4

Conclusion

We studied the effect of magnetic field applied to two— and three-dimensional
superlattices (SL) on the electric conductivity of the system.

In the case of the two—dimensional SLs we applied the standard semi-
classical theory first and showed that it cannot explain Shubnikov-de Haas
oscillations measured experimentally in magnetoresistance for high concen-
trations of electrons (breakdown), [4]. Next we performed a one electron
quantum mechanical calculation of the density of states which was able to
reproduce the structure (periodicity) in the experimental data. In the last
step we utilized the linear response theory (Kubo formula, [15]) in order to
compute directly the conductivity tensor components. These results were in
a better agreement with the experiments and thus this direction of improv-
ing our model seems to be promising (the first step would be to use a better
description of the elastic scattering of electrons on impurities).

There were no such striking experimental results available for the three—
dimensional SLs which would illustrate the failure of the semiclassical theory.
We have however shown by a quantum mechanical calculation of density of
states that the dimensionality of the system can change due to the presence
of strong in—plane magnetic field. This is again a phenomenon which cannot
be predicted by the semiclassical theory.

In general, we showed that the semiclassical theory predicts that the
qualitative behaviour (dimensionality) of the system depends on the Fermi
level and not on the field strength which turns out not to be true. Moreover,
it claims that there is a sharp limit for the Fermi level and the qualitative
behaviour of the system changes stepwise when this limit is crossed. This is
also not true and it is called a breakdown of the semiclassical theory.
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Appendices

5.1 Appendix A: Density of States in Zero
Magnetic Field

If the magnetic field is not present the dispersion relation reads (see Eq. 2.11)

12k
Bksky) = o

— 2|t cos kyd.

*

So as to calculate the density of states we employ (including spin) the relation
(2.5)

g(E) = (227)2/6(52 — B(k,, ky)> dk, dk,.

Integrating first by k, we come to an elliptic integral which can be ex-
pressed by means of the full elliptic function [7] K(k) = F(Z,k) = W/Q(l —

27 0
k?sin? o) ~1/2 de:

4 2m, 1
—K (1 for £ > 2|t 1
G\ a5 V) for B> 2l ory > 1
9(B) = 65.1)
4 2m,

- K for — 2|t FE < 2|t 0 1.
o\ e (Vv7) or it < E<2tjor 0 <vy<

1+8 1+E/2lt|
5~ 2 7

including the spin degeneracy. We recall that K(0) = n/2, K(1) = oo and
that the function is monotonous. For # = 1 the DOS exhibits a logarithmical

23
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singularity. The function plot can be seen at the Fig. 2.8.

Numerically, the prefactor (2/(27)2) - (2m. /(h2[t|d?))"/* is approximatelly
0.164 x 10" meV~tem ™2 for 2[t| = 1.5 meV, d = 15 nm and m equal to 0.067
times electron vacuum mass (effective mass for GaAs).

5.2 Appendix B: Calculation of Number of
States for a Landau Band

It is well known that spectrum of a 2D free electron gas has the form
E,(k;) = hw(n + 3) with w = [e|B/m, and n = 0,1,2,... Bach of the
levels is degenerated so that it contains |e|B/h states per unit area.

We will now show that this property is preserved even if the Landau bands
are not flat (E, (k,) depends on k,). We assume that the spectrum consists of
continuous bands and only for simplicity also that the bands do not overlap
(there are no such ky, ko such that E, (k) = E,,(ky) for n # m) and that
E,(k;) is a monotonous function of k, on (0,3K). We denote the extremes
of E,(k;) (or the values for k, = 0 and k, = %K) by Emin, Emaer and the
number of states in this band per one stripe (one period of the superlattice)

is then
Ema:c 1
E 2m 0

min

K K

(k(E))'dE ==

(M

We have used the inverse function derivative theorem and we have taken into
account that F,(—k,) = E,(k,).

It is easy to see that this idea can be used even if there are more extremes
in a Landau band than those in for k, = 0 and &k, = i%K or if the bands
overlap.

The conclusion is that there are K/(27) = d|e|B/h states per one stripe
per unit length in the z—direction. The areal concentration of the states is
therefore K/(2nd) = |e|B/h.

5.3 Appendix C: Derivation of Eq. 3.5

We start with the Schrodinger equation H|®4) = E|®y) with

H = (hkx"' ‘6|(ByZ_Bz.Y))2+V(Z)’

1
2 2
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D) = Zexp kjds + kyidy))xi) ;)

and we will use the assumptlons 1-7 listed in subsection 3.2.1.
We multiply the Schrodinger equation from the left by

N-1
1 . .
7 2 explulkajd: + kyjdy)) 0 Ll
j=0

and examine the left side first. We are to examine the expression
N-

Z (ol by ) 0 |0 ) x5) exp (b + hyidy))

First we focus on terms with j = j' of the result. Let us begin with evaluating
(x;j|H|x;). Due to (x;/H,|x;) = 0 (presumption 4) there remain only two
terms of H: the first of them is

2 2
1Py p, _ P,
<X]‘2m* ‘XJ> <XJ|X]>2m* = o,
and the second can be simplified using the localisation presumption 5:
2 2 ' maw? '
Nilg (Bey = By2)’Ixi) = 5 —(Bay = Byjda)* = —5=(y = jd,)*.

At last we introduced the cyclotron frequency w, = eB,/m, corresponding
to the perpendicular component of B and recalled the geometrical relation
d,/d, = B,/B,. Now we add the |¢;) vector and we find out that the part
of the double sum with j = j' is

2

(v = id)le) + 5,21 (5.2

Next, we turn to the rest of the terms, i.e. j # j'. Again, we shall
evaluate the three terms of (x;/|H|y;). Using the presumptions 3, 2 and 6,
respectively we obtain

([ H:|xj) = 0441
2 2
p p
<Xj'\—2nf:* IX;) = <Xj'|Xj>—2nz* =0
2

e
<Xj"ﬁ(Byz — B.y)*|x;) = 0.
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Thus from all this terms there remain only

N-
Z texp(—u(k.d, + kydy))|@j—1) + texp(u(k.d, + kydy))|pjs1).  (5.3)
=0

1
N

We now use the relation |p; 1) = exp(1p,d,/h)|p;), [6], or equivalently in y-
representation ¢(y +dy) = exp(1p,dy/h)¢(y). We recall cosz = 3(e'" +e ")
and the expression (5.3) is transformed into

2

1
1

N 2t cos(p,dy/h — k.d, — kyd,)|¢;). (5.4)
j

1§
=)

Last, we take care of the right side of the equation. Again we have a
double sum through j, j' to deal with. However, simply using the presumption
2., we realize, that the result is

1 N-1
N |803
7=0

By comparing this expression with the sum of (5.2) and (5.4) we have an
equation that can be obtained as a sum of N equations of the type

p 1
{27:2* + Qm*wl( — Jd, ) + 2t cos(pydy/ﬁ — k.d, — kydy)} |80j> = E|80j>
(5.5)
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