Aharonov-Bohm effect in a metallic ring

FIG. 1. (a) Magnetoresistance of the ring measured at T = 0.01 K. (b) Fourier power spectrum in arbitrary units containing peaks at h/e and h/2e. The inset is a photograph of the larger ring. The inside diameter of the loop is 784 nm, and the width of the wires is 41 nm.

Coherence length

Fig. 1. Phase coherence length as a function of temperature for an ultrapure gold sample before (\bullet) and after (\circ) annealing. The solid line corresponds to the theoretical expectation within the AAK picture [30]. Data are taken from Ref. [26].

Weak localisation in magnetic field

FIG. 2. Low-field magnetoresistance of a Si(111) MOSFET in a perpendicular field for various temperatures. Electron density is 4.52×10^{12} cm⁻².

Magnetoresistance measurements - Hall bar

Integer Quantum Hall Effect

 $\mu \mathrm{m}$.

Activated transport (IQHE)

- in quantum Hall regime, $\sigma\propto\rho$
- conductivity proportional to number of carriers

$$\propto \exp(-E_g/2kT)$$

Dissipation of energy in a Hall bar (IQHE)

current off

current on

IQHE in 2DEG and in graphene

$$E = \pm \sqrt{2e\hbar v_F B(|n|+0)}$$

... information on Berry phase upon completing cyclotron orbit

Topological insulator - HgTe/CdTe heterostructure

Topological invariants

- g related to Gauss curvature
- c related to Berry curvature

HgTe and CdTe

 $k (2\pi/a_0)$

<001>

Quantum Hall Effect (fractional)

VOLUME 48, NUMBER 22

PHYSICAL REVIEW LETTERS

31 May 1982

Two-Dimensional Magnetotransport in the Extreme Quantum Limit

D. C. Tsui,^{(a), (b)} H. L. Stormer,^(a) and A. C. Gossard Bell Laboratories, Murray Hill, New Jersey 07974

(Received 5 March 1982)

Ga_{0.7}As sample with $n = 1.23 \times 10^{11}/\text{cm}^2$, $\mu = 90\,000 \text{ cm}^2/\text{V}$ sec, using $I = 1 \,\mu\text{A}$. The Landau level filling factor is defined by $\nu = nh/eB$.

Excitation spectrum in the 1/3 Laughlin state

$$H = \frac{1}{2m} \sum_{i=1}^{N_e} \left(\vec{p}_i - q\vec{A}(\vec{r}_i) \right)^2 + \frac{e^2}{4\pi\varepsilon} \sum_{i< j} \frac{1}{|\vec{r}_i - \vec{r}_j|}$$

FIG. 5. (Color online) The spin wave (SW) and the magnetoroton branch (MR) seen in the ED spectra of ideal $\nu = 1/3$ systems of different sizes and geometries. In the legend, *t* stands for torus, *s* for sphere, and the number indicates the number of electrons. The lines (solid and dotted) were obtained from the $1/N \rightarrow 0$ extrapolation of the data (MR and SW) on the sphere.

Shot noise in the 1/3 FQHE state

FIG. 1 (color online). Schematic of the noise measurement setup (see text for details).