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FIG. 2. (a) Magnetoresistance data from the ring in Fig. I
at several temperatures. (b) The Fourier transform of the
data in (a). The data at 0.199 and 0.698 K have been offset
for clarity of display. The markers at the top of the figure
indicate the bounds for the flux periods h/e and h/2e based
on the measured inside and outside diameters of the loop.
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FIG. 1. (a) Magnetoresistance of the ring measured at
T=0.01 K. (b) Fourier power spectrum in arbitrary units
containing peaks at h/e and h/2e. The inset is a photograph
of the larger ring. The inside diameter of the loop is 784
nm, and the width of the wires is 41 nm.

rings (average diameters 825 and 245 nm) and a lone
wire (length 300 nm). The samples were cooled in the
mixing chamber of a dilution refrigerator, and the
resistance was measured with a four-probe bridge
operated at 205 Hz and 200 nA (rms).
Typical magnetoresistance data from the larger-

diameter ring are displayed in Fig. 1(a). Periodic oscil-
lations are clearly visible superimposed on a more
slowly varying background. The period of the high-
frequency oscillations is AH = 0.007 59 T. This period
corresponds to the addition of the flux 4p = h/e to the
area of the hole. From the average area (one half of
the sum of the area from the inside diameter and that
from the outside diameter) measured with the STEM,
4p =0.007 80 T. The area measurement is accurate to
within = 10'/o. As a result of the large aspect ratio, we
can say unequivocally that the periodic oscillations are
not consistent with h/2e. They are certainly the
single-electron process predicted recently. 2 4 In the
Fourier power spectrum [Fig. 1(b)] of these data, two
peaks are visible at I/AH=131 and 260 T ' corre-
sponding respectively to h/e and h/2e. (Since the h/e
oscillations are not strictly sinusoidal, we cannot be
certain whether the h/2e peak is the self-interference
process or harmonic content in the 4&p oscillations. )
That the h/2e period is less significant than the h/e
period is consistent with the theory for rings which are
moderately resistive. We note that the amplitude of
the h/e oscillations at the lowest temperatures is about
0.1% of the resistance at H= 0, at least a factor of 10

larger than the oscillations observed in normal-metal
cylinders and networks of loops. s'p "
Figure 2(a) contains resistance data for three tem-

peratures over a larger range of magnetic field.
Surprisingly, the oscillations persist to rather higher
magnetic field [H ) 8 T (our largest available field) or
over 1000 periods] than expected from estimates
which assumed that the phase difference between the
inside edge of the ring and the outside edge should
completely destroy the periodic effects. The argument
that the flux in the metal should destroy the oscilla-
tions relies on the simple assumption that the wire
consists of parallel but noninteracting conduction
paths. If instead the electron path in the wire is suffi-
ciently erratic to "cover" the whole area of the wire,
then no phase difference exists between the inside di-
ameter and the outside diameter. '
Figure 2(b) contains the Fourier spectra of the data

in Fig. 2(a). Again, the fundamental h/e period ap-
pears as the large peak at I/b, H=131 T ', and near
I/AH=260 T ' there is a small feature in the spec-
trum. There is also a peak near 5 T ' which is the
average field scale of the aperiodic fluctuations. '4 The
detailed structure of the h/e peak in the power spec-
trum is probably the results of mixing of the field
scales corresponding to the area of the hole in the ring
and the area of the arms of the ring. ts (The simple
difference between inside and outside area implies a
splitting of more than 20 T ', whereas the observed
splitting in the peak structure has never been more
than 7 T '.) A simple extension of the multichannel
Landauer formula for a ring with flux piercing the
arms implies that the Arharonov-Bohm oscillations
will be modulated by an aperiodic function. ' Roughly
speaking, the field scale in which the aperiodic func-
tion fluctuates is that for the addition of another flux
quantum to the arms of the ring. The field scale of the
modulating function mixes with the Aharonov-Bohm
period to give structure to the peak. As seen in Fig.
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FIG. 1. (a) Magnetoresistance of the ring measured at
T=0.01 K. (b) Fourier power spectrum in arbitrary units
containing peaks at h/e and h/2e. The inset is a photograph
of the larger ring. The inside diameter of the loop is 784
nm, and the width of the wires is 41 nm.
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temperature [4]. Following this work, it has been argued
that the observed saturation is indeed universal and
intrinsic, and due to electron–electron interactions in the
ground state of the Fermi liquid [5,6]. More recent studies
of the phase coherence time in metallic silver quantum
wires [7], on the other hand, show a relatively good
agreement with the standard theory [2,3]. In these
measurements, only small deviations of tf compared with
the standard theory have been observed at the lowest
temperatures, which have been argued to be due to the
presence of a very small amount of magnetic impurities.

In order to attribute the saturation of tf in very clean
metallic quantum wires to the presence of such a small
amount of magnetic impurities, it is important to have an
adequate theory which describes the underlying physics
and enables a quantitative comparison with the experi-
mental data. Quite recently, there has been tremendous
progress in the understanding of the influence of magnetic
impurities on the phase coherence time, both experimen-
tally [8–11] and theoretically [12,13]. This new under-
standing raises the question: is it possible to reanalyse the
temperature dependence of tf in very clean metallic wires
to determine whether the experimentally observed devia-
tions from the standard theory can be explained within this
picture of magnetic impurities.

The main purpose of this article is to review various
experiments which have addressed the influence of mag-
netic scattering on electron coherence in metallic quantum
wires. In the first part, we briefly review the pioneering
experiments which studied electron coherence determined
by magnetic scattering [14–17].

We then review recent measurements of electron
coherence under high-magnetic fields ðmBbkBTÞ where
the magnetic impurities are polarised and therefore should
not contribute to dephasing [16–19].

In the last section, we present new data for the phase
coherence time in ultra-clean gold and silver quantum
wires, and compare them to presently existing data on
equally clean samples from other groups. We then analyse
the saturation observed in these samples assuming that the
apparent saturation of tf is due to magnetic impurities.

Our conclusion of this analysis is that, based on all
presently available measurements of the phase coherence
time in very clean metallic wires, it is hard to conceive that
the apparent saturation of tf is solely due to the presence
of an extremely small amount of magnetic impurities.

2. Review of earlier experiments on magnetic impurities

As mentioned above, recent experiments invoke the
presence of a small amount of magnetic impurities as a
possible source of the frequently observed low-temperature
saturation of the phase coherence time [7]. It is well known
that the coupling of magnetic impurities to the conduction
electrons gives rise to the well-known Kondo effect [20,21].
At temperatures above the Kondo temperature TK, the
magnetic scattering due to Kondo impurities leads to a

very slow and an almost temperature-independent con-
tribution to the dephasing time [22]. The magnetic
contribution is maximal around the Kondo temperature
[14,15] and decreases rapidly at lower temperatures [8,9].
Consequently, if a metallic sample contains a small amount
of magnetic impurities with a very low Kondo temperature,
the observed temperature dependence of tf would show
saturation at temperatures above TK.
Already in the early days of weak localization, many

experimentalists have observed a systematic saturation of
the electron phase coherence at low temperatures, when
extracted from low-field magnetoresistance [23,24]. This
saturation has often been attributed to the presence of
some residual magnetic impurities [25], however, without
any experimental verification.
To the best of our knowledge, the first experiment which

clearly demonstrated the strong influence of magnetic
impurities on electron coherence on the level of a few parts-
per-million (ppm) in very clean metallic samples has been
carried out by Pannetier and coworkers in 1985 [26]. The
need for very long phase coherence times in order to
measure AAS oscillations in two-dimensional networks
[27,28] pushed the authors to seek extremely clean metals
to obtain very large values for the phase coherence length.
The solution to the problem was to thermally anneal the
samples. The annealing process oxidizes magnetic impu-
rities, suppressing decoherence due to the Kondo effect,
and therefore leads to an increase of the phase coherence
length Lf. The phase coherence length of two gold samples
(before and after annealing) is shown in Fig. 1. One clearly
sees the enhancement of the phase coherence length due to
the annealing process [29].
These experiments therefore clearly show that the

presence of an extremely small amount of magnetic

ARTICLE IN PRESS

Fig. 1. Phase coherence length as a function of temperature for an ultra-
pure gold sample before ð#Þ and after ð$Þ annealing. The solid line
corresponds to the theoretical expectation within the AAK picture [30].
Data are taken from Ref. [26].

L. Saminadayar et al. / Physica E 40 (2007) 12–24 13

Coherence length 

Physica E 40, 12 and Phys Scr T 13, 245.

Coherence length



26 MAGNETORESISTANCE IN Si MOSFET's: EVIDENCE OF WEAK. . . 775

4800—

0

E 4700—
O

4600—

I

200 10
H {KG)

FIG. 1. Magnetoresistance of a Si(111)MOSFET in
a perpendicular magnetic field at 0.1 K. Electron densi-
ty is 1.2&10' cm

the two samples with the extreme mobilities
( & 1000 and & 25 000). A preliminary report on
some of these measurements has been reported else-
where. ' Earlier measurements in the low-field re-
gime have also been reported by Kawaguchi and
Kawaji, ' Wheeler, ' and by Davies et al' . Our
measurements were performed in a He- He dilu-
tion refrigerator on four terminal Si MOSFET de-
vices. These were similar devices to those studied
earlier in which the logarithmic temperature
dependence of the conductivity was demonstrated.
Magnetic fields were applied via a superconducting
solenoid capable of 50 ko. The resistances were
measured using an ac resistance bridge operating at
500 Hz. The amplitude of the voltage modulation
used to measure the resistance was always less than
2 mV/cm with substantially lower fields used at
the lower temperatures. This was done in an effort
to keep electron heating effects to a minimum.
The devices were 1.0-mm long and 0.25-mm wide
with potential probes separated by 0.25 mm.
A trace of the magnetoresistance in perpendicu-

lar field at 0.10 K is shown in Fig. 1 for a low-
mobility (111)sample. As a function of H, the
resistivity is seen to first decrease rather sharply
and then at higher fields increase again. The de-
crease at low fields is due to the suppression of lo-
calization effects [the third term in (5)], while the
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FIG. 2. Low-field magnetoresistance of a Si(111)
MOSFET in a perpendicular field for various tempera-
tures. Electron density is 4.52&& 10' cm

increase is due to the Zeeman term [the last term
in (5)]. This rise has a logarithmic dependence on
H as predicted in (5) in the limit pgH ~~kT. This
negative magnetoresistance in low fields was first
observed by Eisele and Dorda. ' A more detailed
measurement in the low-field region yields the set
of data shown in Fig. 2 for an electron density of
4.52& 10' cm . Here we show the temperature
and magnetic field dependence of the resistance
due to localization effects. It can be seen that for
this low-mobility device (p = 1000), these effects
persist out to a few kilogauss. If we adopt the in-
terpretation that localization effects should begin
to "turn off" when the first Landau orbit becomes
comparable in size to the inelastic scattering length
we obtain a critical field II, given by

AcH, =
2el;l,

For the data at T =0.1 K shown in Fig. 2 and the
estimate of l; described below, this corresponds to
a magnetic field of -30 G. Thus as the various
Landau orbits become smaller than the inelastic
length there is a rapid drop in R beginning at rath-
er low fields. A detailed fit to (5) can be made and
in the low-field region only the orbital term contri-
butes. From this fit the parameters a and the in-
elastic scattering time ~; can be extracted. The
quality of the low-field fit for different values of a
is shown in Fig. 3. The curves are fit at 0=0 and
2.0 kG and ~; determined. It can be seen clearly
that +=1.0+0.05 yields the best fit resulting in an
inelastic scattering time for this temperature and
electron density of 3.75& 10 "sec. Similar quali-
ty fits have been made for the data set in Fig. 2
and for various other electron densities on this par-
ticular device and it is found that the best fit oc-
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counter-propagating waves is the same, 
the interference is constructive, and the 
probability of backscattering is doubled by 
the interference contribution. This increases 
the localization of the carriers and, therefore, 
the resistivity of the sample.

In early studies of weak localization, 
physicists were already intrigued by the role 
of spin and spin–orbit coupling on coherent 
transport1. The spin–orbit interaction can be 
viewed as a momentum-dependent Zeeman 
coupling of an effective magnetic field Beff 
to the electron spin. During each scattering 
event, Beff changes its direction, causing the 
spin to precess. The constructive interference 
(and weak localization) persists only for 
weak spin–orbit coupling; in that case, the 
spin–orbit coupling time, τso ~1/Beff, is much 
larger than the spin dephasing time, τi, due 
to inelastic scattering. Naively, for a strong 
spin–orbit coupling for which τso << τi, you 
might expect that the random rotation angles 
of the carrier spin would add a random phase 
factor that destroys the interference effect. 
However, the spin–orbit coupling does not 
break time-reversal symmetry. Therefore, 
independent of the details of disorder, the 
time-reversed paths have the same sequence 
of momentum changes but with the opposite 
sign, implying precisely opposite spin 
rotations. When averaging over all spin 
rotation angles for an arbitrary closed path 
in two dimensions, a destructive interference 
contribution prevails1. Strong spin–orbit 
coupling does not cause a complete 
dephasing of time-reversed backscattered 
waves, but changes the net interference 
contribution from weak localization to 
weak anti-localization (Fig. 1b), that is, it 
suppresses the resistivity of the conductor.

An external magnetic field Bp applied 
perpendicular to the plane of the conductor 
couples to the orbital part of the electron’s 
wavefunction. Because the magnetic field 
breaks time-reversal symmetry, it diminishes 
the interference of the time-reversed paths 
beyond its characteristic timescale τB ~1/Bp. 
Spin–orbit coupling then plays a negligible 
role when τso >> τB. With decreasing Bp, 
the constructive interference contribution 
strengthens, resulting in an increase of 
the measured resistance. When, however, 
τB >> τso at small Bp, weak anti-localization 
takes over and the resistance drops. The 
resulting maximum in the resistance at 
τB ≈ τso, marking the crossover from weak 
localization to weak anti-localization, 
has traditionally provided the means for 
inferring the approximate strength of the 
spin–orbit coupling1.

Nitta and colleagues carried out an 
experiment in which the interference 
contribution to electron transport can 
provide not just an approximate scale of the 

spin–orbit coupling, but also an accurate 
measurement of its momentum-dependent 
direction in different semiconductor 
quantum structures. Unexpectedly, weak 
anti-localization plays no role in these 
experiments. Indeed, in structures with 
strong spin–orbit coupling, the researchers 
could rely solely on weak localization, and 
on tuning its contribution to transport 
by controlling the dephasing, following a 
concept previously proposed by the group3.

The researchers studied transport in a 
two-dimensional (2D) electron gas in an 
InGaAs-based heterostructure by patterning 
microwires with widths smaller than the 
characteristic spin-precession length in the 
spin–orbit field. This quasi-1D character 
of transport implies that the carrier spins 
experience only the spin–orbit-field 
component given by the momentum 
component along the wire. Backscattering 
in this geometry changes the sign of the 
spin–orbit field, but does not rotate its 
spin-precession axis. The randomization of 

spin rotations is suppressed in the quasi-1D 
wire and the interference contribution 
to transport has the weak localization 
form, despite the strong spin–orbit 
coupling (Fig. 1c).

The researchers applied an in-plane 
magnetic field Bin, which couples to the 
carrier spin. Because this momentum-
independent Zeeman coupling breaks 
time-reversal symmetry, the spin-precession 
axis given by Beff + Bin rotates when the 
carrier is scattered in the quasi-1D channel, 
and the resulting dephasing suppresses 
weak localization (Fig. 1d). The dephasing is 
maximized when Bin is orthogonal to Beff and 
minimized when the two fields are parallel.

The researchers studied a semiconductor 
heterostructure in which the momentum-
dependent spin–orbit field has two types of 
spin–orbit coupling with different symmetry, 
called Rashba and Dresselhaus. The direction 
of the total Rashba–Dresselhaus field is 
determined by the ratio of their respective 
strengths, α and β. These can be tuned 
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Figure 1 | Interference transport effects in 2D and 1D spin–orbit-coupled systems. a, Constructive 
interference of backscattered electron waves (ψ+ and ψ-) passing along time-reversed 2D paths leads to 
weak localization (WL) in the absence of spin–orbit coupling. Red and blue arrows represent scattering 
events of the two waves. The inset is a zoom-in of the interference occurring at the scattering site. b, Left: 
Spins randomly precess when scattered in the presence of the momentum-dependent spin–orbit field 
Beff. The spin–orbit coupling leads to a prevailing destructive interference of backscattered electron waves 
passing along a time-reversed 2D path and to the weak anti-localization (WAL). Right: The electron 
spin (light blue arrow) precesses around the effective field Beff. The direction of Beff in momentum space 
kx–ky is also shown. c, The variation of the direction of Beff is quenched in 1D wires (the direction of Beff in 
momentum space depends only on ky; right) restoring the constructive interference and weak localization 
despite the presence of spin–orbit coupling. d, Right: Adding a Zeeman coupling of an in-plane magnetic 
field Bin breaks time-reversal and introduces a change in the direction of the net spin-precession axis 
Beff + Bin when the carrier scatters. Left: The resulting dephasing (Deph.) of backscattered waves 
suppresses weak localization.
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inset of Fig. 1. The 2DES density in the patterned
sample can be tuned , in situ, from !0:3" 1011 to 2:3"
1011 cm#2 by a low temperature red light-emitting diode
illumination.

In Fig. 1(a), we show the diagonal resistance Rxx and
Hall resistance Rxy traces for this sample over a wide range
of B. Well developed IQHE states are observed at
! ¼ 1; 2; 3; . . . Fig. 1(b) focuses on the Rxx data around
B ¼ 0. Several features are worth emphasizing. First, there
is a positive magnetoresistance around B ¼ 0 and a local
maximum at B! 0:1 T. They have been observed in pre-
vious experiments on quantum antidot array samples, and
can be attributed to magnetic breakdown in the presence of
modulation [23]. Using the value of the magnetic field (Bp)
at the local Rxx maximum and following the standard
analysis [23,24], we estimate a potential modulation
strength of !V ! 1:5 meV in our antidot array sample.
Second, commensurability oscillations (COs) [25] occur at

low magnetic fields, marked by the upward triangles. From
their period in 1=B [Fig. 1(c)] an antidot periodicity of
!380 nm is deduced, which is consistent with the design
value of 350 nm. Third, Shubnikov–de Haas (SdH) oscil-
lations occur at higher B field, marked by the downward
triangles, from which the 2DES density is determined.
Figure 2(a) shows the temperature (T) dependence of

Rxx in high B fields. Over the whole temperature range, the
! ¼ 2 QH state remains strong and its resistance minimum
vanishingly small. On the other hand, the ! ¼ 1 state
shows a very strong temperature dependence, with Rxx

rising from a vanishingly small value at T ¼ 1:2 K to
Rxx ! 2700 " at 2.3 K. Figure 2(b) shows the activation
plot for the Rxx minimum at ! ¼ 1 and an energy gap of
!19 K is deduced from the linear fit to the data points.
We have carried out a systematic density dependent

study of the ! ¼ 1 energy gap. The electron density was
continuously tuned by applying different doses of light-
emitting diode illumination. Figure 3(a) shows the energy
gap as a function of the ED. The effective disorder is

FIG. 2 (color online). (a) Temperature dependence of Rxx.
(b) Activation plot for the Rxx minimum at ! ¼ 1. The line is
a linear fit to the data points.

FIG. 1 (color online). (a) Rxx and Rxy in a quantum antidot
array sample. The IQHE states at ! ¼ 1, 2, 3 are marked. The
inset shows an SEM picture of the device. (b) Rxx around B ¼ 0.
The arrows mark the B field positions where Rxx reaches a local
maximum. The downward triangles mark the Shubnikov–
de Haas (SdH) oscillations, and the upward triangles the com-
mensurate oscillations (COs). (c) Fan diagram for the SdH
oscillations and COs. From the slope of their linear fits, the
electron density and the period of the electronic potential modu-
lation can be deduced. N denotes the Landau level filling factor
in the case of the SdH oscillations and an integer value assigned
to the Rxx minimum in the case of the COs.

FIG. 3 (color online). (a) The ! ¼ 1 energy gap as a function
of effective disorder, defined as Bp=n. (b) Illustration of the
strength of the effective disorder in a quantum antidot device.
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pressure s 6 T is equal to the sum of surface tension and 
gravitational forces (s is the density of the entropy of 
the helium). The temperature rise 6 T is established from 
the balance between the heat dissipated in the 2 D E G  
and that lost by evaporation of helium. Estimates show 
that temperature differences of the order of 10 ~tK lead 
to observable drop heights of 10 gm [8]. The minimum 
dissipated power which could be observed was of the 
order of 5 g Watts which caused a drop of about 50 gm 
in diameter, comparable to the optical resolution of our 
set-up. 

Fig. 1. Top: Sample image with zero current. The large area is 
the 2 DEG structure with voltage-probe leads on both sides. At 
the top and bottom of each photograph one sees the boundaries 
of the AuGeNi current contacts and the silver paint (black) used 
to attach the wires. The voltage-probe leads also end in AuGeNi 
contact-pads. Bottom: Same as top but with the current 80 gA. 
Note the two helium drops which are visible in the upper right 
and lower left of the bottom panel (circles). They indicate that 
heat is dissipated in two corners of the sample. Landau-level filling 
factor was 2 and the ambient temperature was 1.0 K for both im- 
ages. Reversing the current direction did not change position and 
size of the drops 

As samples we used GaAs/A1GaAs heterostructures 
with a carrier density and a mobility of 3.9 x 1011 cm -z  
and 700,000 cm 2 V-  1 s-  1, respectively. Care was taken 
to choose sample material which did not, even under 
continuous illumination, show a measurable conduc- 
tance parallel to the 2 DEG. Hall-bar structures measur- 
ing 3 mm in length and 2.5 mm in width were then pre- 
pared by etching. There were two voltage-probe leads 
on each side with a width of 100 gm each. Photographs 
of the structure can be seen, e.g. in Fig. 1. Contacts to 
the 2 D E G  were made by diffusing AuGeNi  films into 
the GaAs. Electrical wires were connected to the Au- 
GeNi films by silver paint. 

The samples were mounted in a magnet cryostat ca- 
pable of reaching fields of 15 T. Temperatures down to 
1 K were accessible by pumping a helium bath. The sam- 
ple itself was contained in a vacuum-tight tube inserted 
into this bath. In this sample tube the helium level could 
be adjusted independently of the level of the pumped 
helium. The top of this tube was sealed with a window 
through which the sample could be viewed with a TV 
camera. The sample was illuminated through the same 
window with an expanded HeNe laser beam. Optical 
power density was 5 ~tW/cm 2 at the sample. 

In Fig. 1 we show two photographs corresponding 
to zero and 80 gA transport current, respectively. The 
magnetic field was 7.3 T. At this field a quantized Hall 
resistance was observed (filling factor i=  2). Two helium 
drops are visible in the bot tom photograph which are 
absent in the top one. The drops are located in the upper 
right and lower left corner of the sample, exactly where 
the edges of the 2 D E G  intersect the areas covered by 
the AuGeNi  film. The position of the drops is about 
where one would expect them from the simple Hall angle 
argument. The two drops in the figure have diameters 
of about  120 lain each. The smallest current at which 
drops just became visible was 30 gA. The drop diameter 
in that case was of the order of 50 gm. From the equilib- 
rium between surface tension and fountain pressure one 
can estimate the diameter of the area where heat is actu- 
ally dissipated to be 30 gm at most. The Hall-voltage 
was 0.39 V, thus the field in the corners was at least 
13 kV/m. The Hall field at breakdown of the QHE under 
similar condition was measured to be about 10 kV/m 
[3], in good agreement with the field in the corners. 
A thermalisation length of 30 ~tm is smaller than the 
equilibration length between different edge channels 
which were recently measured at lower temperatures and 
smaller current using "nonideal"  current sources and 
voltage probes [9]. 

It is noteworthy that nearly all electrical power is 
dissipated in the corners. We make this conclusion from 
the observation that the power dissipated in them is 
about  the same as the one necessary to form two similar 
drops in a test experiment using a standard heater. 

Reversing the magnetic field caused the drops to ap- 
pear in the other two corners. On varying the magnetic 
field strength from 0.1 to 15 T it was found that the 
overall shape and location of the helium drops remained 
unchanged. Their diameter, however, depended on the 
filling factor. In Fig. 2 the power necessary to form a 
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resistance was observed (filling factor i=  2). Two helium 
drops are visible in the bot tom photograph which are 
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where one would expect them from the simple Hall angle 
argument. The two drops in the figure have diameters 
of about  120 lain each. The smallest current at which 
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in that case was of the order of 50 gm. From the equilib- 
rium between surface tension and fountain pressure one 
can estimate the diameter of the area where heat is actu- 
ally dissipated to be 30 gm at most. The Hall-voltage 
was 0.39 V, thus the field in the corners was at least 
13 kV/m. The Hall field at breakdown of the QHE under 
similar condition was measured to be about 10 kV/m 
[3], in good agreement with the field in the corners. 
A thermalisation length of 30 ~tm is smaller than the 
equilibration length between different edge channels 
which were recently measured at lower temperatures and 
smaller current using "nonideal"  current sources and 
voltage probes [9]. 

It is noteworthy that nearly all electrical power is 
dissipated in the corners. We make this conclusion from 
the observation that the power dissipated in them is 
about  the same as the one necessary to form two similar 
drops in a test experiment using a standard heater. 

Reversing the magnetic field caused the drops to ap- 
pear in the other two corners. On varying the magnetic 
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unchanged. Their diameter, however, depended on the 
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IQHE in 2DEG and in graphene

holding for a graphene stripe with a zigzag !z=1" and
armchair !z=−1" edges oriented along the x direction.
Fourier transforming along the x direction gives

H = − t #
k,n,!

$ei"!#/#0"n$!1+z"/2%a!
†!k,n"b!!k,n"

+ e−i"!#/#0"neikaa!
†!k,n"b!„k,n − !1 − z"/2…

+ ei"!#/#0"n$!z−1"/2%a!
†!k,n"b!!k,n − z" + H.c.% .

We now consider the case of zigzag edges. The eigen-
problem can be rewritten in terms of Harper’s equations
!Harper, 1955", and for zigzag edges we obtain !Rammal,
1985"

E$,k%!k,n" = − t&eika/22 cos'"
#

#0
n −

ka
2
(&!k,n"

+ &!k,n − 1") , !114"

E$,k&!k,n" = − t&e−ika/22 cos'"
#

#0
n −

ka
2
(%!k,n"

+ %!k,n + 1") , !115"

where the coefficients %!k ,n" and &!k ,n" show up in
Hamiltonian’s eigenfunction *'!k"+ written in terms of
lattice-position-state states as

*'!k"+ = #
n,!

$%!k,n"*a ;k,n,!+ + &!k,n"*b ;k,n,!+% .

!116"

Equations !114" and !115" hold in the bulk. Considering
that the zigzag ribbon has N unit cells along its width,
from n=0 to n=N−1, the boundary conditions at the
edges are obtained from Eqs. !114" and !115", and read

E$,k%!k,0" = − teika/22 cos'ka
2
(&!k,0" , !117"

E$,k&!k,N − 1" = − 2te−ika/2 cos&"
#

#0
!N − 1" −

ka
2 )

(%!k,N − 1" . !118"

Similar equations hold for a graphene ribbon with arm-
chair edges.

In Fig. 21, we show 14 energy levels, around zero en-
ergy, for both the zigzag and armchair cases. The forma-
tion of the Landau levels is signaled by the presence of
flat energy bands, following the bulk energy spectrum.
From Fig. 21, it is straightforward to obtain the value of
the Hall conductivity in the quantum Hall effect regime.
We assume that the chemical potential is in between two
Landau levels at positive energies, shown by the dashed
line in Fig. 21. The Landau level structure shows two
zero-energy modes; one of them is electronlike !hole-
like", since close to the edge of the sample its energy is
shifted upwards !downwards". The other Landau levels
are doubly degenerate. The determination of the values
for the Hall conductivity is done by counting how many
energy levels !of electronlike nature" are below the
chemical potential. This counting produces the value
2N+1, with N=0,1 ,2 , . . . !for the case of Fig. 21 one has

FIG. 20. !Color online" Quantum Hall effect in graphene as a
function of charge-carrier concentration. The peak at n=0
shows that in high magnetic fields there appears a Landau level
at zero energy where no states exist in zero field. The field
draws electronic states for this level from both conduction and
valence bands. The dashed lines indicate plateaus in !xy de-
scribed by Eq. !111". Adapted from Novoselov, Geim, Moro-
zov, et al., 2005.

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

en
er

gy
/t

zigzag: N=200, φ/φ0=1/701

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1
armchair: N=200, φ/φ0=1/701

2 3 4 5 6
momentum ka

-0.4

-0.2

0

0.2

0.4

en
er

gy
/t

0.5 1 1.5 2
momentum ka

-0.4

-0.2

0

0.2

0.4

µ

µ

FIG. 21. !Color online" Fourteen energy levels of tight-binding
electrons in graphene in the presence of a magnetic flux #
=#0 /701, for a finite stripe with N=200 unit cells. The bottom
panels are zoom-in images of the top ones. The dashed line
represents the chemical potential $.

129Castro Neto et al.: The electronic properties of graphene

Rev. Mod. Phys., Vol. 81, No. 1, January–March 2009

B [kG]

E =
~eB
m

(n+
1

2
)

E = ~2k2/2m E = ±~vF k

E = ±
p

2e~vFB(|n|+ 0)

… information on Berry phase upon completing cyclotron orbit



with dQW < dc and a normal band structure, the sample
shows trivial insulating behavior (see Fig. 13). A resistance
of several megaohms is measured when the Fermi level lies
within the bulk insulating gap. This value can be attributed to
the noise level of the measurement setup, and the intrinsic
conductance is practically zero. For a thicker device with
dQW > dc and an inverted band structure, however, the re-
sistance does not exceed 100 k!. This behavior is repro-
duced for various Hall bars with a QW width in the range
from 4.5 to 12.0 nm. While devices with a normal band
structure, i.e., dQW < dc ! 6:3 nm, show trivial insulating
behavior, a finite conductance in the insulating regime is
observed for samples with an inverted band structure.

The obtained finite resistance R ! 100 k! is significantly
higher than the four-terminal resistance h=ð2e2Þ ! 12:9 k!
one anticipates for the geometry used in the experiments. The
enhanced resistance in these samples with a length of L ¼
20 !m can be understood as a consequence of inelastic
scattering. While, as discussed above, the helical edge states
are robust against single-particle elastic backscattering, in-
elastic mechanisms can cause backscattering. For n-doped
HgTe quantum wells, the typical mobility of the order of
105 cm2=ðV sÞ implies an elastic mean free path of the order
of 1 !m (Daumer et al., 2003). Lower mobilities can be
anticipated for the QSH regime. The inelastic mean free path,
which determines the length scale of undisturbed transport by
the QSH edge states, can be estimated to be several times
larger due to the suppression of phonons and the reduced
electron-electron scattering at low temperatures. Thus, the
inelastic scattering length is of the order of a few microns.

For the observation of the QSH conductance, the sample
dimensions were reduced below the estimated inelastic mean
free path. When Hall bars with a length L ¼ 1 !m are
studied, a four-terminal resistance close to h=ð2e2Þ is ob-
served. The threshold voltage Vth is defined such that the
QSH regime is in the vicinity of Vg ¼ Vth. The slight devia-
tion of R from the quantized value h=ð2e2Þ can be attributed
to some residual scattering. This is an indication that the
length of the edge states still exceeds the inelastic mean free
path. The results presented in Fig. 14 provide evidence that
transport in the QSH regime indeed occurs due to edge states.
The two devices with W ¼ 1:0 and 0:5 !m were fabricated

from the same QW structure. The resistance of the two
devices differs significantly in the n-conducting regime,
where transport is determined by bulk properties. In the
QSH regime, however, both devices exhibit the same resist-
ance, even though the width of the devices differs by a factor
of 2. This fact clearly shows that the conductance is due to the
edge states, which are independent of the sample width.

3. Magnetoconductance in the quantum spin Hall state

Another indication that the observed nontrivial insulating
state is caused by the QSH effect is obtained by measure-
ments in a magnetic field. The following experimental results
were obtained on a Hall bar with dimensions ðL%WÞ ¼
ð20:0% 13:3Þ !m2 in a vector magnet system at a tempera-
ture of 1.4 K (König, 2007; König et al., 2007). When a
magnetic field is applied perpendicular to the QW layer, the
QSH conductance decreases significantly already for small
fields. A cusplike magnetoconductance peak is observed with
a full width at half maximum BFWHM of 28 mT. Additional
measurements show that the width of the magnetoconduc-
tance peak decreases with decreasing temperature. For ex-
ample, BFWHM ¼ 10 mT is observed at 30 mK. For various
devices of different sizes, a qualitatively similar behavior in
magnetic field is observed.

When the magnetic field is tilted toward the plane of the
QW, the magnetoconductance peak around B ¼ 0 widens
steadily (see Fig. 15). For a tilt angle " ¼ 90&, i.e., when
the magnetic field is in the QW plane, only a very small
decrease in the conductance is observed. The decrease of the
conductance for an in-plane field can be described by
BFWHM ! 0:7 T for any in-plane orientation. From the re-
sults shown in Fig. 15, it is evident that a perpendicular field
has a much larger influence on the QSH state than an in-plane
field. The magnetoresistance in the QSH regime has been
investigated theoretically (König et al., 2008; Chu et al.,
2009; Tkachov and Hankiewicz, 2010; Maciejko, Qi, and
Zhang, 2010). The large anisotropy can be understood by a

FIG. 13 (color). Longitudinal resistance of a 4.5 nm QW [dashed
(black) line] and a 8.0 nm QW [solid (red) line] as a function of gate
voltage. From König et al., 2008.

FIG. 14 (color). Longitudinal resistance as a function of gate
voltage for two devices with L ¼ 1 !m. The width W is 1 !m
[solid (black) and dotted (blue) lines] and 0:5 !m [dashed (red)
line]. The solid and dashed traces were obtained at a temperature of
1.8 K, and the dotted one at 4.2 K. From König et al., 2008.
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with dQW < dc and a normal band structure, the sample
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of several megaohms is measured when the Fermi level lies
within the bulk insulating gap. This value can be attributed to
the noise level of the measurement setup, and the intrinsic
conductance is practically zero. For a thicker device with
dQW > dc and an inverted band structure, however, the re-
sistance does not exceed 100 k!. This behavior is repro-
duced for various Hall bars with a QW width in the range
from 4.5 to 12.0 nm. While devices with a normal band
structure, i.e., dQW < dc ! 6:3 nm, show trivial insulating
behavior, a finite conductance in the insulating regime is
observed for samples with an inverted band structure.

The obtained finite resistance R ! 100 k! is significantly
higher than the four-terminal resistance h=ð2e2Þ ! 12:9 k!
one anticipates for the geometry used in the experiments. The
enhanced resistance in these samples with a length of L ¼
20 !m can be understood as a consequence of inelastic
scattering. While, as discussed above, the helical edge states
are robust against single-particle elastic backscattering, in-
elastic mechanisms can cause backscattering. For n-doped
HgTe quantum wells, the typical mobility of the order of
105 cm2=ðV sÞ implies an elastic mean free path of the order
of 1 !m (Daumer et al., 2003). Lower mobilities can be
anticipated for the QSH regime. The inelastic mean free path,
which determines the length scale of undisturbed transport by
the QSH edge states, can be estimated to be several times
larger due to the suppression of phonons and the reduced
electron-electron scattering at low temperatures. Thus, the
inelastic scattering length is of the order of a few microns.

For the observation of the QSH conductance, the sample
dimensions were reduced below the estimated inelastic mean
free path. When Hall bars with a length L ¼ 1 !m are
studied, a four-terminal resistance close to h=ð2e2Þ is ob-
served. The threshold voltage Vth is defined such that the
QSH regime is in the vicinity of Vg ¼ Vth. The slight devia-
tion of R from the quantized value h=ð2e2Þ can be attributed
to some residual scattering. This is an indication that the
length of the edge states still exceeds the inelastic mean free
path. The results presented in Fig. 14 provide evidence that
transport in the QSH regime indeed occurs due to edge states.
The two devices with W ¼ 1:0 and 0:5 !m were fabricated

from the same QW structure. The resistance of the two
devices differs significantly in the n-conducting regime,
where transport is determined by bulk properties. In the
QSH regime, however, both devices exhibit the same resist-
ance, even though the width of the devices differs by a factor
of 2. This fact clearly shows that the conductance is due to the
edge states, which are independent of the sample width.

3. Magnetoconductance in the quantum spin Hall state

Another indication that the observed nontrivial insulating
state is caused by the QSH effect is obtained by measure-
ments in a magnetic field. The following experimental results
were obtained on a Hall bar with dimensions ðL%WÞ ¼
ð20:0% 13:3Þ !m2 in a vector magnet system at a tempera-
ture of 1.4 K (König, 2007; König et al., 2007). When a
magnetic field is applied perpendicular to the QW layer, the
QSH conductance decreases significantly already for small
fields. A cusplike magnetoconductance peak is observed with
a full width at half maximum BFWHM of 28 mT. Additional
measurements show that the width of the magnetoconduc-
tance peak decreases with decreasing temperature. For ex-
ample, BFWHM ¼ 10 mT is observed at 30 mK. For various
devices of different sizes, a qualitatively similar behavior in
magnetic field is observed.

When the magnetic field is tilted toward the plane of the
QW, the magnetoconductance peak around B ¼ 0 widens
steadily (see Fig. 15). For a tilt angle " ¼ 90&, i.e., when
the magnetic field is in the QW plane, only a very small
decrease in the conductance is observed. The decrease of the
conductance for an in-plane field can be described by
BFWHM ! 0:7 T for any in-plane orientation. From the re-
sults shown in Fig. 15, it is evident that a perpendicular field
has a much larger influence on the QSH state than an in-plane
field. The magnetoresistance in the QSH regime has been
investigated theoretically (König et al., 2008; Chu et al.,
2009; Tkachov and Hankiewicz, 2010; Maciejko, Qi, and
Zhang, 2010). The large anisotropy can be understood by a

FIG. 13 (color). Longitudinal resistance of a 4.5 nm QW [dashed
(black) line] and a 8.0 nm QW [solid (red) line] as a function of gate
voltage. From König et al., 2008.

FIG. 14 (color). Longitudinal resistance as a function of gate
voltage for two devices with L ¼ 1 !m. The width W is 1 !m
[solid (black) and dotted (blue) lines] and 0:5 !m [dashed (red)
line]. The solid and dashed traces were obtained at a temperature of
1.8 K, and the dotted one at 4.2 K. From König et al., 2008.
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Topological insulator - HgTe/CdTe heterostructure

long device short device

c 0ðxÞ ¼
!aðe!1x $ e!2xÞ"$; A=B < 0;

cðe$!1x $ e$!2xÞ"þ; A=B > 0:
(16)

The sign of A=B determines the spin polarization of the edge
states, which is key in determining the helicity of the Dirac
Hamiltonian for the topological edge states.Another important
quantity characterizing the edge states is their decay length,
which is defined as lc ¼ maxfjRe!1;2j$1g.

The effective edge model can be obtained by projecting
the bulk Hamiltonian onto the edge states !" and !# defined
in Eq. (11). This procedure leads to a 2& 2 effective

Hamiltonian defined by H#$
edgeðkyÞ ¼ h!#jð ~H0 þ ~H1Þj!$i.

To leading order in ky, we arrive at the effective
Hamiltonian for the helical edge states:

Hedge ¼ Aky%
z: (17)

For HgTe QWs, we have A ’ 3:6 eV "A (König et al., 2008),
and the Dirac velocity of the edge states is given by
v ¼ A=ℏ ’ 5:5& 105 m=s.

The analytical calculation above can be confirmed by exact
numerical diagonalization of the Hamiltonian (2) on a strip of
finite width, which can also include the contribution of the
&ðkÞ term (Fig. 4). The finite decay length of the helical edge
states into the bulk determines the amplitude for interedge
tunneling (Zhou et al., 2008; Hou et al., 2009; Ström and
Johannesson, 2009; Tanaka and Nagaosa, 2009; Teo and
Kane, 2009; Zyuzin and Fiete, 2010).

C. Physical properties of the helical edge states

1. Topological protection of the helical edge states

From the explicit analytical solution of the BHZ model,
there is a pair of helical edge states exponentially localized at
the edge, and described by the effective helical edge theory
(17). In this context, the concept of ‘‘helical’’ edge state (Wu
et al., 2006) refers to the fact that states with opposite spin
counterpropagate at a given edge, as we see from the edge
state dispersion relation shown in Fig. 4(b), or the real-space
picture shown in Fig. 1(b). This is in sharp contrast to the
‘‘chiral’’ edge states in the QH state, where the edge states
propagate in one direction only, as shown in Fig. 1(a).

In the QH effect, the chiral edge states cannot be back-
scattered for sample widths larger than the decay length of the
edge states. In the QSH effect, one may naturally ask whether
backscattering of the helical edge states is possible. It turns
out that TR symmetry prevents the helical edge states from
backscattering. The absence of backscattering relies on the
destructive interference between all possible backscattering
paths taken by the edge electrons.

Before giving a semiclassical argument why this is so, we
first consider an analogy from daily experience. Most eye-
glasses and camera lenses have an antireflective coating
[Fig. 5(a)], where light reflected from the top and bottom
surfaces interferes destructively, leading to no net reflection
and thus perfect transmission. However, this effect is not
robust, as it depends on a precise matching between the
wavelength of light and the thickness of the coating. Now
we turn to the helical edge states. If a nonmagnetic impurity is
present near the edge, it can in principle cause backscattering
of the helical edge states due to SOC. However, just as for the
reflection of photons by a surface, an electron can be reflected
by a nonmagnetic impurity, and different reflection paths
interfere quantum mechanically. A forward-moving electron
with spin up on the QSH edge can make either a clockwise or

ba

FIG. 5 (color). (a) On a lens with antireflective coating, light
reflected by top (blue line) and bottom (red line) surfaces interferes
destructively, leading to suppressed reflection. (b) Two possible
paths taken by an electron on a QSH edge when scattered by a
nonmagnetic impurity. The electron spin rotates by 180' clockwise
along the blue curve and counterclockwise along the red curve. A
geometrical phase factor associated with this rotation of the spin
leads to destructive interference between the two paths. In other
words, electron backscattering on the QSH edge is suppressed in a
way similar to the way in which the reflection of photons is
suppressed by an antireflective coating. Adapted from Qi and
Zhang, 2010.
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FIG. 4 (color). Energy spectrum of the effective Hamiltonian (2)
in a cylinder geometry. In a thin QW, (a) there is a gap between
conduction band and valence band. In a thick QW, (b) there are
gapless edge states on the left and right edge (red and blue lines,
respectively). Adapted from Qi and Zhang, 2010.
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c 0ðxÞ ¼
!aðe!1x $ e!2xÞ"$; A=B < 0;

cðe$!1x $ e$!2xÞ"þ; A=B > 0:
(16)

The sign of A=B determines the spin polarization of the edge
states, which is key in determining the helicity of the Dirac
Hamiltonian for the topological edge states.Another important
quantity characterizing the edge states is their decay length,
which is defined as lc ¼ maxfjRe!1;2j$1g.

The effective edge model can be obtained by projecting
the bulk Hamiltonian onto the edge states !" and !# defined
in Eq. (11). This procedure leads to a 2& 2 effective

Hamiltonian defined by H#$
edgeðkyÞ ¼ h!#jð ~H0 þ ~H1Þj!$i.

To leading order in ky, we arrive at the effective
Hamiltonian for the helical edge states:

Hedge ¼ Aky%
z: (17)

For HgTe QWs, we have A ’ 3:6 eV "A (König et al., 2008),
and the Dirac velocity of the edge states is given by
v ¼ A=ℏ ’ 5:5& 105 m=s.

The analytical calculation above can be confirmed by exact
numerical diagonalization of the Hamiltonian (2) on a strip of
finite width, which can also include the contribution of the
&ðkÞ term (Fig. 4). The finite decay length of the helical edge
states into the bulk determines the amplitude for interedge
tunneling (Zhou et al., 2008; Hou et al., 2009; Ström and
Johannesson, 2009; Tanaka and Nagaosa, 2009; Teo and
Kane, 2009; Zyuzin and Fiete, 2010).

C. Physical properties of the helical edge states

1. Topological protection of the helical edge states

From the explicit analytical solution of the BHZ model,
there is a pair of helical edge states exponentially localized at
the edge, and described by the effective helical edge theory
(17). In this context, the concept of ‘‘helical’’ edge state (Wu
et al., 2006) refers to the fact that states with opposite spin
counterpropagate at a given edge, as we see from the edge
state dispersion relation shown in Fig. 4(b), or the real-space
picture shown in Fig. 1(b). This is in sharp contrast to the
‘‘chiral’’ edge states in the QH state, where the edge states
propagate in one direction only, as shown in Fig. 1(a).

In the QH effect, the chiral edge states cannot be back-
scattered for sample widths larger than the decay length of the
edge states. In the QSH effect, one may naturally ask whether
backscattering of the helical edge states is possible. It turns
out that TR symmetry prevents the helical edge states from
backscattering. The absence of backscattering relies on the
destructive interference between all possible backscattering
paths taken by the edge electrons.

Before giving a semiclassical argument why this is so, we
first consider an analogy from daily experience. Most eye-
glasses and camera lenses have an antireflective coating
[Fig. 5(a)], where light reflected from the top and bottom
surfaces interferes destructively, leading to no net reflection
and thus perfect transmission. However, this effect is not
robust, as it depends on a precise matching between the
wavelength of light and the thickness of the coating. Now
we turn to the helical edge states. If a nonmagnetic impurity is
present near the edge, it can in principle cause backscattering
of the helical edge states due to SOC. However, just as for the
reflection of photons by a surface, an electron can be reflected
by a nonmagnetic impurity, and different reflection paths
interfere quantum mechanically. A forward-moving electron
with spin up on the QSH edge can make either a clockwise or

ba

FIG. 5 (color). (a) On a lens with antireflective coating, light
reflected by top (blue line) and bottom (red line) surfaces interferes
destructively, leading to suppressed reflection. (b) Two possible
paths taken by an electron on a QSH edge when scattered by a
nonmagnetic impurity. The electron spin rotates by 180' clockwise
along the blue curve and counterclockwise along the red curve. A
geometrical phase factor associated with this rotation of the spin
leads to destructive interference between the two paths. In other
words, electron backscattering on the QSH edge is suppressed in a
way similar to the way in which the reflection of photons is
suppressed by an antireflective coating. Adapted from Qi and
Zhang, 2010.

−0.02 −0.01 0 0.01 0.02
−0.05

0

0.05

k (A−1)

E
(k

) 
(e

V
)

−0.02 −0.01 0 0.01 0.02
−0.05

0

0.05

k (A−1)

E
(k

) 
(e

V
)

(a)

(b)

FIG. 4 (color). Energy spectrum of the effective Hamiltonian (2)
in a cylinder geometry. In a thin QW, (a) there is a gap between
conduction band and valence band. In a thick QW, (b) there are
gapless edge states on the left and right edge (red and blue lines,
respectively). Adapted from Qi and Zhang, 2010.
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geben. Diese Korrespondenz zwischen von Null ver-
schiedenen topologischen Invarianten und lückenlosen 
Oberflächenzuständen existiert in allen topologischen 
Materialien.

Klassifizierung von topologischen Isolatoren 
und Supraleitern

Systeme mit Symmetrien lassen sich in topologische 
Äquivalenzklassen unterteilen, mit Hilfe eines zehn-
fachen Klassifikationssystems, das nicht nur für to-
pologische Isolatoren, sondern auch für Supraleiter 
gilt [8–10]. Dies liegt daran, dass die Quasiteilchen-
Anregungen im Inneren eines Supraleiters (oder 
einer Supraflüssigkeit) eine Energielücke haben. Um 
in einem Supraleiter ein Quasiteilchen zu erzeugen, 
muss nämlich ein Cooper-Paar aufgebrochen werden, 
was Ener gie kostet. Das zehnfache Klassifikationsver-
fahren beruht auf globalen Symmetrieeigenschaften, 
d. h. nicht-räumlichen Symmetrien, die lokal im Orts-
raum operieren. Insgesamt gibt es 
drei solche Symmetrien, nämlich 
Zeitumkehr invarianz, Teilchen-
Loch-Symmetrie und die chirale 
Symmetrie.

Betrachten wir als erstes die Zeit-
umkehrsymmetrie. In der Quan-
tenmechanik wird sie durch einen 
anti-unitären Operator T = K UT 
beschrieben, wobei UT eine uni-
täre Matrix ist und K die komplexe 
Konjugation. Für den Ein-Teilchen-
Hamiltonian H(k) gilt bei Transfor-
mation durch T: 

T–1 H(–k) T  =  + H(k).  (1)

Ebenso gilt für die Teilchen-Loch-
Symmetrie und den zugehörigen 
anti-unitären Operator C = K UC

C–1 H(–k) C  =  – H(k).  (2)

Die chirale Symmetrie wird dagegen 
durch einen unitären Operator de-
finiert, der mit dem Ein-Teilchen-
Hamiltonian anti-kommutiert,

S–1 H(k) S  =  – H(k).        (3)
In vielen Fällen entspricht die chirale Symmetrie S 
 einer Kombination aus Zeitumkehr- und Teilchen-
Loch-Symmetrie, d. h. S  !  T C.

Der Hamiltonian H(k) kann bezüglich der Zeit-
umkehr- und Teilchen-Loch-Symmetrie auf drei 
verschiedene Weisen transformieren: (i) H(k) ist nicht 
symmetrisch bezüglich T (oder C); (ii) H(k) ist invari-
ant unter T (oder C) mit T2 = +1 (oder C2 = +1); (iii) H(k) 
ist symmetrisch bezüglich T (oder C) mit T2 = –1 (oder 
C2 = –1). Daher gibt es 3 × 3 =  9 Fälle, wie H(k) durch 
T und C transformieren kann. Für acht dieser Fälle 
ist die An- oder Abwesenheit der chiralen Symmetrie 
S vollständig durch die Symmetriebedingungen von 
T und C bestimmt. Wenn jedoch Zeitumkehr- und 
Teilchen-Loch-Symmetrie gebrochen sind, gibt es die 
zusätzliche Möglichkeit, dass S  !  TC noch vorhanden 
ist. Insgesamt existieren also zehn Fälle, wie H(k) durch 
T, C und S transformieren kann – diese definieren die 
zehn Altland-Zirnbauer-Symmetrieklassen (AZ, erste 
vier Spalten der Tabelle) [11–13].

Periodensystem topologischer Phasen

AZ-Klasse \ d  T C  S 1 2 3 4 5 6 7 8

A 0 0 0 0 ! 0 ! 0 ! 0 !

AIII 0 0 1 ! 0 ! 0 ! 0 ! 0

AI + 0 0 0 0 0 ! 0 !2 !2 !

BDI + + 1 ! 0 0 0 ! 0 !2 !2

D 0 + 0 !2 ! 0 0 0 ! 0 !2

DIII – + 1 !2 !2 ! 0 0 0 ! 0

AII – 0 0 0 !2 !2 ! 0 0 0 !

CII – – 1 ! 0 !2 !2 ! 0 0 0

C 0 – 0 0 ! 0 !2 !2 ! 0 0

CI +  – 1 0 0 ! 0 !2 !2 ! 0

Tab. 1 In diesem „Periodensystem“ gibt 
die Kopfzeile die Raumdimension d des 
Isolators bzw.  Supraleiters an. Die zehn 
Altland-Zirnbauer-Symmetrieklassen A, 
AIII, …, CI (linke Spalte) unterscheiden 
sich durch die Anwesenheit (+,–) oder 
Abwesenheit (0) von Zeitumkehrinvari-
anz (T), Teilchen-Loch-Symmetrie (C) 
und chiraler Symmetrie (S). Die verschie-
denen topologischen Phasen innerhalb 
einer AZ-Symmetrieklasse lassen sich 
durch eine ganzzahlige (!) oder binäre 
Invariante (!2) unterscheiden. „0“ bedeu-
tet, dass es nur eine topologisch triviale 
Phase gibt.

T O P O L O G I S C H E  Ä Q U I V A L E N Z K L A S S E N  U N D  T O P O L O G I S C H E  I N V A R I A N T E N
Geschlossene orientierbare Flächen sind 
durch ihr Geschlecht g klassifiziert, d. h. 
durch die Anzahl der „Löcher“ (oder „Hen-
kel“). Das Geschlecht g ist eine topolo-
gische Invariante. Für die Oberfläche einer 
Kugel oder Schüssel gilt g = 0, für einen 
 Torus oder eine Tasse g = 1 (Abb. a). Das 
Gauss-Bonnet-Theorem besagt, dass das 
Integral der Gaussschen Krümmung κ 
über eine geschlossene Fläche (1–g) 
ergibt, da g = 1 – 1/4π ∫S κ dA [7].

In Analogie dazu lassen sich Materi-
alien, die im Volumeninneren isolierend 
sind (Bandstrukturen mit einer Band-
lücke), topologisch klassifizieren. Verschie-
dene Äquivalenzklassen unterscheiden 
sich durch eine topologische Invariante, 
z. B. die Chern-Zahl C. Ähnlich wie das Ge-
schlecht g einer Oberfläche lässt sich C als 
ein Integral der Berry-Krümmung Fn über 
die Brillouin-Zone (BZ) schreiben C = 
1/(2π) ∑n  ∫BZFn d2k. Phasen mit von Null ver-
schiedenen Chern-Zahlen sind durch lü-
ckenlose Oberflächen zustände charakteri-
siert (rote Linie in der Bandstruktur, Abb. b). 

g = O C = 0

g = 1 C = 1
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the !8 bands contribute to the valence subbands. On the
other hand, as dQW is increased, we expect the material to
behave more like HgTe which has inverted bands. As dQW
increases, we expect to reach a critical thickness where the
!8 and !6 subbands cross and become inverted, with the !8

bands becoming conduction subbands and the !6 bands
becoming valence subbands [Fig. 2(b)] (Novik et al.,
2005; Bernevig, Hughes, and Zhang, 2006). The shift of
energy levels with dQW is depicted in Fig. 3. The QW states
derived from the heavy-hole !8 band are denoted by Hn,
where the subscript n ¼ 1; 2; 3; . . . describes well states with
an increasing number of nodes in the z direction. Similarly,
the QW states derived from the electron !6 band are
denoted by En. The inversion between E1 and H1 bands
occurs at a critical thickness dQW ¼ dc " 6:3 nm (Fig. 3).
In the following, we develop a simple model and discuss
why we expect QWs with dQW > dc to form TR invariant
2D topological insulators with protected edge states.

Under our assumption of inversion symmetry, the relevant
subbands, E1 and H1, must be doubly degenerate since TR
symmetry is present. We express states in the basis
fjE1þi; jH1þi; jE1$i; jH1$ig, where jE1%i and jH1%i are
two sets of Kramers partners. The states jE1%i and jH1%i
have opposite parity; hence a Hamiltonian matrix element
that connects them must be odd under parity. Thus, to lowest
order in k, ðjE1þi; jH1þiÞ and ðjE1$i; jH1$iÞ will each be
coupled generically via a term linear in k. The jH1þi heavy-
hole state is formed from the spin-orbit coupled p orbitals
jpx þ ipy; "i, while the jH1$i heavy-hole state is formed

from the spin-orbit coupled p orbitals j$ ðpx $ ipyÞ; #i.
Therefore, to preserve rotation symmetry around the growth
axis z, the matrix elements must by proportional to k% ¼
kx % iky. The only terms allowed in the diagonal elements are

terms that have even powers of k including k-independent
terms. The subbands must come in degenerate pairs at each k,
so there can be no matrix elements between the þ state and
the $ state of the same band. Finally, if there were nonzero
matrix elements between jE1þi; jH1$i and jE1$i; jH1þi,
this would induce a higher-order process coupling the %
states of the same band and splitting the degeneracy.
Therefore, these matrix elements are forbidden as well.
These simple arguments lead to the following model:

H ¼
hðkÞ 0

0 h(ð$kÞ

 !
; (1)

hðkÞ ¼ !ðkÞI2)2 þ daðkÞ"a; (2)

where I2)2 is the 2) 2 identity matrix, and

!ðkÞ ¼ C$Dðk2x þ k2yÞ; daðkÞ ¼ ½Akx;$Aky;MðkÞ+;
MðkÞ ¼M$Bðk2x þ k2yÞ; (3)

where A, B, C, D, andM are material parameters that depend
on the QW geometry, and we choose the zero of energy to be
the valence band edge of HgTe at k ¼ 0 (Fig. 2).

The bulk energy spectrum of the BHZ model is given by

E% ¼ !ðkÞ %
ffiffiffiffiffiffiffiffiffiffi
dada

p
(4)

¼ !ðkÞ %
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ðk2x þ k2yÞ þM2ðkÞ

q
: (5)

For B ¼ 0, the model reduces to two copies of the massive
Dirac Hamiltonian in ð2þ 1ÞD. The mass M corresponds to
the energy difference between the E1 and H1 levels at the !
point. The mass M changes sign at the critical thickness dc,
where E1 and H1 become degenerate. At the critical point,
the system is described by two copies of the massless Dirac
Hamiltonian, one for each spin, and at a single valley k ¼ 0.
This situation is similar to graphene (Castro Neto et al.,
2009), which is also described by the massless Dirac
Hamiltonian in ð2þ 1ÞD. However, the crucial difference
lies in the fact that graphene has four Dirac cones, consisting
of two valleys and two spins, whereas we have two Dirac
cones, one for each spin, and at a single valley. For dQW > dc,
the E1 level falls below the H1 level at the ! point, and the
mass M becomes negative. A pure massive Dirac model does
not differentiate between a positive and negative mass M.
Since we are dealing with a nonrelativistic system, the B term
is generally allowed. In order to make the distinction clear,
we call M the Dirac mass, and B the Newtonian mass,
because it describes the usual nonrelativistic mass term
with quadratic dispersion relation. We show later that the
relative sign between the Dirac mass M and the Newtonian
mass B is crucial to determine whether the model describes a
topological insulator state with protected edge states or not.

HgTe has a crystal structure of the zinc blende type which
lacks inversion symmetry, leading to a BIA term in the
Hamiltonian, given to leading order by (König et al., 2008)

HBIA ¼

0 0 0 $"z

0 0 "z 0

0 "z 0 0

$"z 0 0 0

0
BBBBB@

1
CCCCCA
: (6)

This term plays an important role in determining the spin
orientation of the helical edge state. The topological phase
transition in the presence of BIA has been investigated
recently (Murakami et al., 2007; König et al., 2008). In
addition, in an asymmetric QW structural inversion symmetry
can be broken by a built-in electric field, leading to a SOC
term of Rashba type in the effective Hamiltonian (Rothe
et al., 2010; Ström et al., 2010). For simplicity, we focus

FIG. 3 (color). Energy levels of the QW as a function of QW
width. From König et al., 2008.
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1D gapless edge states that lie inside the bulk insulating gap.
The edge states have a distinct helical property: Two states
with opposite spin polarization counterpropagate at a given
edge (Kane and Mele, 2005a; Wu et al., 2006; Xu and
Moore, 2006). For this reason they are also called helical
edge states, i.e., the spin is correlated with the direction of
motion (Wu et al., 2006). The edge states come in Kramers
doublets, and TR symmetry ensures the crossing of their
energy levels at special points in the Brillouin zone (BZ).
Because of this level crossing, the spectrum of a QSH insu-
lator cannot be adiabatically deformed into that of a topo-
logically trivial insulator without helical edge states.
Therefore, in this sense, the QSH insulator represents a new
topologically distinct state of matter. In the special case that
SOC preserves a Uð1Þs subgroup of the full SU(2) spin
rotation group, the topological properties of the QSH state
can be characterized by the spin Chern number (Sheng et al.,
2006). More generally, the topological properties of the QSH
state are mathematically characterized by a Z2 topological
invariant (Kane and Mele, 2005b). States with an even num-
ber of Kramers pairs of edge states at a given edge are
topologically trivial, while those with an odd number are
topologically nontrivial. The Z2 topological quantum number
can also be defined for generally interacting systems and
experimentally measured in terms of the fractional charge
and quantized current on the edge (Qi, Hughes, and Zhang,
2008a), and spin-charge separation in the bulk (Qi and Zhang,
2008; Ran et al., 2008).

In this section, we focus on the basic theory of the QSH
state in the HgTe/CdTe system because of its simplicity and
experimental relevance and provide an explicit and pedagog-
ical discussion of the helical edge states and their transport
properties. There are several other theoretical proposals for
the QSH state, including bilayer bismuth (Murakami, 2006),
and the ‘‘broken-gap’’ type-II AlSb/InAs/GaSb quantum
wells (Liu, Hughes et al., 2008). Initial experiments in the
AlSb/InAs/GaSb system already show encouraging signa-
tures (Knez et al., 2010). The QSH system has also been
proposed for the transition metal oxide Na2IrO3 (Shitade
et al., 2009). The concept of the fractional QSH state was
proposed at the same time as the QSH state (Bernevig and
Zhang, 2006) and has been recently investigated theoretically
in more detail (Young et al., 2008; Levin and Stern, 2009).

A. Effective model of the two-dimensional
time-reversal-invariant topological insulator
in HgTe/CdTe quantum wells

In this section we review the basic electronic structure of
bulk HgTe and CdTe and presented a simple model first
introduced by Bernevig, Hughes, and Zhang (2006) (BHZ)
to describe the physics of those subbands of HgTe/CdTe
quantum wells which are relevant for the QSH effect. HgTe
and CdTe crystallize in the zinc blende lattice structure. This
structure has the same geometry as the diamond lattice, i.e.,
two interpenetrating face-centered-cubic lattices shifted
along the body diagonal, but with a different atom on each
sublattice. The presence of two different atoms per lattice site
breaks inversion symmetry and thus reduces the point group
symmetry from Oh (cubic) to Td (tetrahedral). However, even

though inversion symmetry is explicitly broken, this has only
a small effect on the physics of the QSH effect. To simplify
the discussion, we first ignore this bulk inversion asymmetry
(BIA).

For both HgTe and CdTe, the important bands near the
Fermi level are close to the ! point in the Brillouin zone
[Fig. 2(a)]. They are a s-type band (!6), and a p-type band
split by SOC into a J ¼ 3=2 band (!8) and a J ¼ 1=2 band
(!7). CdTe has a band ordering similar to GaAs with a s-type
(!6) conduction band, and p-type valence bands (!8, !7)
which are separated from the conduction band by a large
energy gap ($ 1:6 eV). Because of the large SOC present in
the heavy element Hg, the usual band ordering is inverted:
The negative energy gap of %300 meV indicates that the !8

band, which usually forms the valence band, is above the !6

band. The light-hole !8 band becomes the conduction band,
the heavy-hole band becomes the first valence band, and the
s-type band (!6) is pushed below the Fermi level to lie
between the heavy-hole band and the spin-orbit split-off
band (!7) [Fig. 2(a)]. Because of the degeneracy between
heavy-hole and light-hole bands at the ! point, HgTe is a
zero-gap semiconductor.

When HgTe-based quantum well structures are grown, the
peculiar properties of the well material can be utilized to
tune the electronic structure. For wide QW layers, quantum
confinement is weak and the band structure remains inverted.
However, the confinement energy increases when the well
width is reduced. Thus, the energy levels will be shifted and,
eventually, the energy bands will be aligned in a ‘‘normal’’
way, if the QW thickness dQW falls below a critical thickness
dc. We can understand this heuristically as follows: for thin
QWs the heterostructure should behave similarly to CdTe
and have a normal band ordering, i.e., the bands with
primarily !6 symmetry are the conduction subbands and

FIG. 2 (color). (a) Bulk band structure of HgTe and CdTe;
(b) schematic picture of quantum well geometry and lowest sub-
bands for two different thicknesses. From Bernevig et al., 2006.
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N!. A wurtzite crystal is characterized by two lattice con-
stants a lc and c lc. A major difference between zinc blende
and wurtzite structures is that the in-plane behavior of the
bands in a wurtzite crystal is different from the behavior
along the "0001# axis $the c axis!. The %1c conduction bands
are s like at the center of the BZ, while the valence bands
belong to the &%6v :&X ,Y '!%1v:&Z'' representations. The
nearest higher-order conduction bands belong to the %6c
states of &X,Y' symmetry and the %3c states transforming like
the &Z' representation.

Due to the anisotropy of the crystal, there are two dis-
tinct interband matrix elements arising from the %6v :&X ,Y '
and %1v :&Z' representations, defined by analogy with Eq.
$2.3!. These are in practice derived from the anisotropic ef-
fective mass using expressions similar to Eq. $2.15! $assum-

ing negligible crystal-field and spin-orbit splittings!. Al-
though the different conduction-band energy contributions
from the higher %6c"&X ,Y ' and %3c"&Z' intermediate
states lead to two distinct F parameters, no experiments that
would enable us to establish independent values for the latter
have been reported. The compilations in the following sec-
tions take the F parameters in the wurtzite nitrides to be zero.

The second-order valence-band terms in the Hamiltonian
are evaluated in a manner similar to the earlier discussion for
zinc blende structures. The procedure leads to six distinct A
parameters, which are to a large extent analogous to the Lut-
tinger parameters in zinc blende materials. The detailed defi-
nitions have appeared in the literature.34–38

In contrast to the zinc blende materials, the wurtzite
structure does not give a triply degenerate valence band

FIG. 1. Diagram of the band structure in the vicinity of the energy gap of
GaAs: $a! throughout the first Brillouin zone $reproduced with permission
from Ref. 81!, $b! a magnified view near the zone center.

FIG. 2. Direct %-valley energy gap as a function of lattice constant for the
zinc blende form of 12 III–V binary compound semiconductors $points! and
some of their random ternary alloys $curves! at zero temperature. The en-
ergy gaps for certain ternaries such as AlAsP, InAsN, GaAsN, InPN, and
GaPN are extended into regions where no experimental data have been
reported. For GaAsN and InPN, the arrows indicate the boundaries of the
regions where the gap dependence on composition may be predicted with
any accuracy.

FIG. 3. Lowest forbidden gap as a function of lattice constant for non-
nitride III–V compound semiconductors $points! and their random ternary
alloys $lines! at zero temperature. The materials with %-, X-, and L-valley
gaps are indicated by solid, dotted, and dashed lines, respectively.
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µ

FIG. 1. (Color online) Rxx and Rxy in the magnetic field range
of 5–14 T at T = 26 mK. Representative fractions are marked by
arrows.

due to the competition between a FQHE phase and a nearby
insulating phase [19].

To further confirm the FQHE states at 4/11 and other filling
factors, we compare in Fig. 2 Rxx and B × dRxy/dB. Here
dRxy/dB is the derivative of the Rxy data with respect to
B, obtained digitally from the Rxy trace in Fig. 1. Overall,
in the whole B-field range, Rxx and B × dRxy/dB look very
similar [20–22]. Strong minima are also seen in B × dRxy/dB
at ν = 5/13, 3/8, and 4/11. Moreover, the relative strength
of the minima in B × dRxy/dB also mimics that in Rxx .
These observations from the comparison between Rxx and
B × dRxy/dB, again, are consistent with the FQHE states at
ν = 4/11, 3/8, and 5/13.

Figure 3(a) shows Rxx traces at three selected temperatures
of 15, 22, and 30 mK. It is clearly seen that the 4/11 state
is activated. Its resistance increases with increasing tempera-
tures. Rxx at other filling factors ν = 5/13, 3/8, and 6/17, on
the other hand, deceases with increasing temperatures, as seen
in the past for fragile FQHE states (e.g., the 5/2 state [2])
when they were first observed. We believe that these states
will eventually become activated with further improvement in

µ

FIG. 2. (Color online) Rxx and B × dRxy/dB in the regime of
3/7 > ν > 1/3.

Ω

ν
∆

FIG. 3. (Color online) (a) T dependence of Rxx between 2/5 >

ν > 1/3. Three traces are shown at T = 15, 22, and 30 mK.
(b) Arrhenius plot for the Rxx minimum at ν = 4/11. The linear
fit to the data points yields an energy gap of ∼7 mK.

sample quality. In Fig. 3(b), we show the Rxx value at ν = 4/11
as a function of 1/T in a semilog plot. From the linear fit to
the data, though within a very limited range, an energy gap of
∼7 mK is obtained.

We notice that the measured activation energy gap is much
smaller than the numerical calculations, where the energy gap
for a (partially) spin polarized 4/11 state has been estimated
[14,17] to be (0.001) 0.002 × e2/εlB , or (0.18) 0.37 K. Here,
e is the electron charge, ε the dielectric constant of GaAs,
lB = (!/eB)1/2 the magnetic length, ! the reduced Planck
constant. This larger discrepancy is not unexpected and has
been observed at many fragile FQHE states, for example at ν =
5/2 [3]. The exact origin of this large discrepancy is still under
debate. Nevertheless, it is widely accepted that the sample
disorder plays an important role. In order to estimate disorder
broadening (#), we first use the so-called transport scattering
time of ∼440 ps, deduced from the zero-field mobility of
11.6 × 106 cm2/V s and effective mass of m∗ = 0.067me (me

is the free electron mass). The so obtained # is merely
∼10 mK, much smaller than the theoretical calculated vales.
On the other hand, if the quantum lifetime of ∼8 ps, obtained
from the onset of Shubnikov–de Haas oscillations, is used,
a disorder broadening # ∼ 0.5 K is obtained, which is larger
than the theoretically calculated ones. These two estimations
show that the energy gap reduction at 4/11 is probably not
related to either the transport scattering time or quantum
lifetime of electrons. In view of this, we note that in a recent
publication [23] the high-temperature resistance of the 5/2
state (at which the 5/2 state is supposed to be a Fermi sea
state) was used as a criterion for judging the FQHE features
in the second Landau level. Following this same line of
thought, we calculate the disorder broadening using the CF
transport scattering time, which was estimated to be ∼50 ps.
With this value, a disorder broadening of ∼80 mK is obtained.
This brings the theoretical values to (0.1) 0.25 K. The finite
thickness of the 2DES in our sample will further reduce the
energy gap to (0.05) 0.12 K. Further reduction of the theoretical
gap due to Landau level mixing [24–33] is expected to bring

041301-2

Quantum Hall Effect (fractional)



occur first at B as low as 1 T. These fields are far too low for
the FQHE to be observed, so the only spin-flip excitations
likely to be experimentally observed at !=1/3 are the QEr
and ASky!1".

Once a neutral pair of quasiparticles Sky!KS" and
ASky!KA" has been created, they behave similarly to a mag-
netoexciton. In a magnetic field, the magnetoexciton has a
constant linear momentum k which is proportional to the
mutual distance "x between the quasiparticles. We would
expect its energy to be E!"x"#1/"x with proportionality
constant determined by the charges of the two constituent
quasiparticles. Such modes can be calculated within the
single-mode approximation35 or starting with the Hamil-
tonian theory of composite fermions36 but they can also be
directly identified in the exact diagonalization spectra !Fig.
5". They are usually called the magnetoroton branch EMR!k"
for QE+QH and the spin wave !SW" ESW!k" for QEr+QH.
The limiting values for k→$ are the energies necessary to
create a QE+QH !QEr+QH" pair and to separate them far
from each other. These are the quantities commonly used for
comparison to the transport activation gaps, because the SW
!MR" is the lowest excitation !at k%1.0!−1" among all states
with total spin S=N /2−1 !S=N /2", i.e., with one !no" spin
flip.

It is remarkable how much EMR!k" calculated on a sphere
and on a torus differ, on a quantitative level !Fig. 5". Even
though the positions of the magnetoroton minimum match
well in both geometries !k!0#1.4", the sphere gives seem-
ingly a higher energy of the minimum by as much as 20%. A
careful extrapolation to infinite systems !solid line in Fig. 5",
however, matches excellently the results obtained on a torus.
This is not surprising, given the magnetoexcitonic character
of the MR. The MR of "x comparable to the radius of the
sphere will have the QE and the QH located near the oppo-
site poles. This situation is not compatible with a picture of a
plane wave of k="x /!0

2 propagating along the equator. On
the other hand, with increasing radius of the sphere R this
becomes a finite-size effect if R&"x. Based on Fig. 5, we
believe finite-system data from the torus are more suitable to
give quantitative estimates for magnetoroton and spin wave
energies.

For a Sky!KS"−ASky!KA" pair, we take ESW!k" with k
→$ and add the creation energies of Sky!KS" and of
ASky!KA". Instead of one system, as was the case for study-
ing the QEr+QH pair, we thus have to exactly diagonalize
three different systems: one for the quasiparticle-separation
procedure, one for the Sky, and one for the ASky. This more
complicated procedure suffers possibly less from finite-size
effects, since skyrmions are rather extended objects, in par-
ticular more extended than a bare QH or QEr. Recall that the
sizes of the Sky and ASky need not be the same.

B. Finite thickness, LL mixing, disorder

Aiming at the description of experiments under realistic
conditions, three ever valid facts should not be left unno-
ticed: the sample is actually three dimensional !finite extent
of the wave function perpendicular to the 2DEG", the mag-
netic field is finite !mixing between Landau levels", and the
system is never perfectly homogeneous !disorder".

Nonzero thickness w of the 2DEG can be effectively in-
corporated into the Haldane pseudopotentials25 which com-
pletely determine the Hamiltonian of the lowest LL. Quali-
tatively, the larger the effective thickness w /!0, the more
softened becomes the effective electron-electron interaction
at the shortest distances.

Quantitative effects of the presence of the third dimension
have been studied since the early times of the FQHE, both
with the Laughlin state37 and the activation gap.38 In a het-
erostructure, electrons are confined to a nearly triangular po-
tential well. A standard choice for the wave function in the
growth direction is then the Fang-Howard trial wave
function,39 'FH!z"= !b3 /2"1/2ze−bz/2. We will mostly stay with
this choice, even though we are aware of other options for
'!z" which may lead to slightly lower subband energies !Sec.
V in Morf et al.40". Differences originating from these differ-
ent choices of '!z" should be smaller than the uncertainty in
the variational parameter b !or the thickness of the 2DEG"
relevant for our experiments. This has been checked with
'QW!z"=cos az, $z$() /2a, relevant for symmetric quantum
wells. Taking 'FH!z" instead of *!z" is equivalent38 to using a
nontrivial form factor F!q" in the 2D Fourier transforms V!q"
of the Coulomb interaction,

V!q" =
F!q"

q
, F!q" =

8 + 9!q/b" + 3!q/b"2

!2 + 2q/b"3 . !3"

The quantity V!q" then enters the Coulomb matrix elements
in !1" as given in standard references.23,41 These can be in
turn reexpressed in terms of the Haldane pseudopotentials42

Vm. For reasonable values of b, only V0 changes appreciably;
it decreases by 25% for b−1=0.3!0.

The spatial extent of the wave function along z defined as
the full width at half maximum !FWHM" is w#4.9/b for
'FH and w= 2

3 /a for 'QW. The wave function parameter b
depends on the form !steepness" of the triangular well poten-
tial and therefore it is not constant but it changes with the
applied gate voltage. This leads to38,39

FIG. 5. !Color online" The spin wave !SW" and the magnetoro-
ton branch !MR" seen in the ED spectra of ideal !=1/3 systems of
different sizes and geometries. In the legend, t stands for torus, s for
sphere, and the number indicates the number of electrons. The lines
!solid and dotted" were obtained from the 1/N→0 extrapolation of
the data !MR and SW" on the sphere.

TRANSPORT GAP IN A !=1/3 QUANTUM HALL SYSTEM:… PHYSICAL REVIEW B 74, 195324 !2006"

195324-5

3.4 Quantum Hall effects

Quantum Hall effects (QHE) are explained in PS’s notes. Here, only some additional remarks
follow.

When Fermi level lies in a gap (where it is pinned to localized states), we find ourselves in an
unusual situation where both (longitudinal) resistivity and conductivity are zero. Indeed,

σ = ...ρ = (0, B/ne;−B/ne, 0) (13)

Theoretically, the zero on diagonal of σ can be understood based on Eq. (12) and the off-diagonal
term using Kubo-Středa formula

where ∂n/∂B = νe/h as long as the Fermi level does not leave the gap between Landau levels. This
brings us to the issue of the origin of the gap: zero resistivity observed in experiments at integer
values of ν can be attributed to the energy gap between LLs which are found in the spectrum of
a single electron confined to a plane and subject to magnetic field. However, where can possibly
the gap come from at fractional fillings?

The answer (proposed probably by Robert B. Laughlin) is — from electron-electron interac-
tions. Full many-body Hamiltonian of Ne electrons in magnetic field reads

H =
1

2m

Ne
∑

i=1

(

p⃗i − qA⃗(r⃗i)
)2

+
e2

4πε

∑

i<j

1

|r⃗i − r⃗j |
(14)

where ε is the material permittivity (e.g. ≈ 12.7ε0 in GaAs). While the second term makes any
hope for exact solution of Schrödinger equation almost equal to zero (but not quite), we will argue
below that it is indeed responsible for the occurence of a gapped ground state at fractional filling
factor ν = 1/3.

Before we do that, let us first consider scaling of eigenvalues of this H with magnetic field.
Consider fixed filling factor ν. While the first term will be still varying ∝ B (just as individual
LLs), the second term will be proportional to

√
n and that is in turn ∝ ℓ0 ∝

√
B. We can therefore

expect that in very strong magnetic fields the basic structure of spectrum will be composed of
Landau levels whose macroscopic degeneracy will, however, be lifted. On the other hand, if the
first term of (14) is not much larger than the interactions (which occurs for weaker magnetic fields)
LLs will completely disappear and we obtain a complicated interaction-dominated spectrum. This
situation is called (strong) “LL mixing”.

Exact diagonalization (+condition B > 5 T).
Reasons that led Laughlin to guessing his WF.
Chern-Simons approach (that eventually evolved into Jain’s CF picture)
Quasiparticles with fractional charge.
Note about fractions beyond Jain series and the Pfaffian in particular.
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Finally, Johnson-Nyquist noise measurements for different
temperatures at fixed conductance in the fractional regime
provide an absolute calibration as in [24].
The results of a series of current noise power measure-

ments versus backscattering current IB at Q � 25 mK is
shown in Fig. 2. The noise measured in the 4 8 KHz fre-
quency range is white. The background noise �5.32 3
10228 A2⌅Hz is due to the circuit noise. The error bars
represent the statistical accuracy expected for 1500 s ac-
quisition time. IB can be varied by changing either the
dc bias Vds or the tunnel coupling with gate voltage. In
order to keep dI⌅dVds � Gdiff constant and follow the
path A shown in Figs. 1(b) and 1(c) both the bias (40
to 78 mV ) and the gate voltage (2170.5 to 2178.5 mV)
are varied. The backscattering current is obtained within
5% accuracy by measuring the dc voltage VB � V3,2 or
V5,6 across the QPC, using IB � ⇥2VB 2 Vds⇤e2⌅3h. The
“reflexion coefficient” R � IB3h⌅e2Vds is kept small for
weak backscattering. It increases with IB from 4% to
35%. The linear variation of the noise with IB tells us
that we do observe shot noise associated with backscat-
tering. We can compare the rate of noise variation with
that given by Eq. (1) (dashed line). The agreement with
the prediction of Laughlin quasiparticle tunneling is ex-
cellent. Electron tunneling would have given a very dif-
ferent result (dotted line). Electron shot noise is found for
similar conductance G � 0.32e2⌅h at a lower field in the
integer quantum Hall regime (nL � 4 in the leads), inset

FIG. 2. Tunneling noise at n � 1⌅3 (nL � 2⌅3) when fol-
lowing path A and plotted versus IB � ⇥e2⌅3h⇤Vds 2 I (filled
circles) and IB⇥1 2 R⇤ (open circles). The slopes for e⌅3
quasiparticles (dashed line) and electrons (dotted line) are
shown. Q � 25 mK. Inset: data in same units showing elec-
tron tunneling for similar G � 0.32e2⌅h but in the IQHE
regime (nL � 4). The expected slope for electrons 2eIB⇥1 2
R⇤ [R � 0.68, IB � ⇥e2⌅h⇤Vds 2 I] is shown. Q � 42 mK.

of Fig. 2. The data agree with the electron theory for a
lowest Landau level transmission 0.32 [26].
How is this remarkable result robust against parameter

changes? Figure 3(a) shows the current noise versus IB
for two different Gdiff (path B and C). The noise also
compares well with that expected for e⌅3 charges except
for the points at high bias where the backscattering is no
longer weak and less noise is found. A good agreement
is also found for a different tunneling regime obtained
by detuning a resonance [Fig. 1(d), path D: Vds � 78 to
175 mV and gate voltage 2161 to 2177 mV]. The result
is also robust against temperature change as shown by
the series E corresponding to the tunneling conditions of
Fig. 1(b) but at Q � 150 mK. Finally, room temperature
thermal cycling changes the resonance shape but not the
noise results.
How to take into account the deviations for large R? As

long as electron tunneling does not start to compete with
quasiparticle tunneling, we may expect a decrease of noise
when R increases. Indeed, the tunneling events are no
longer Poissonian as the exclusion statistics and the inter-
actions correlate the quasiparticles. If they were fermions
a noise reduction ⇥1 2 R⇤would occur [24,26,27]. It is not
legitimate [21], but nevertheless tempting to plot the noise
data as a function of IB⇥1 2 R⇤ (open circles of Figs. 2 and
3). Within experimental accuracy, the simple ⇥1 2 R⇤ re-
duction factor accounts well for the data but slightly over-
estimates ep. The least squares linear fit gives ep � 0.38,
0.36, 0.35, and 0.36 for A, B, C, and D.
The final check to confirm our observation of e⌅3

Laughlin quasiparticles is the crossover from Johnson-
Nyquist to shot noise at epVds⌅2 � kBQ. Figure 4 shows
measurements at Q � 134 mK and low bias. Here, the
bias voltage Vds varies from 13 to 140 mV and Gdiff �
0.26e2⌅h. The nearly linear noise variation at high bias,
consistent with Eq. (1), saturates at low bias. The arrow,
indicating when epVds � 2kBQ, is well in the crossover
region. Comparison with Eq. (2) (solid curves) shows

FIG. 3. Filled circles: Shot noise measured at 25 mK versus
IB corresponding to the paths B, C, and D of Fig. 1, and to
a series of measurements (E) at 150 mK. Open circles: same
data versus IB⇥1 2 R⇤.

2528

shot noise, the ‘‘low frequency’’ spectral density is propor-
tional to the dc excitation current and to the charge of the
quasiparticles. In multiple channel transport, only the par-
titioned channel carries noise, which is independent of the
presence of other channels that are fully transmitted or are
fully reflected. Indeed, in previous measurements, the as-
sumption of mutually independent propagating modes was
found to strictly hold [20–22].

Two GaAs-AlGaAs heterostructures, with embedded
high mobility 2DEG, were used. One (labeled A) had a
low temperature mobility in excess of 6! 106 cm2=Vs
and an electron density 8:8! 1010 cm"2, and another
(labeled B) had a mobility 4:3! 106 cm2=Vs and an
electron density 10! 1010 cm"2. Four different structures
had been fabricated (different processes and different QPC
configurations, with three of them on the higher mobility
2DEG). The QPCs were made either by top metallic split-
gate or via ‘‘mesa-side-gates’’ [23]—these two methods
provide very different confining potentials for the constric-
tions. The data taken in all samples were found to be
quantitatively very similar. The measurements, unless spe-
cifically mentioned, were carried out in a dilution refrig-
erator at an electron temperature of 10 mK (as deduced
from shot noise measurements).

The configuration of the device is shown in Fig. 1. A
split gate, with 400 nm gap, was deposited on the surface of
the heterojunction, forming upon biasing a controlled con-
striction in the 2DEG. The multiterminal configuration
ensures a constant output resistance at the drain at a Hall
plateau (being Hall resistance)—independent of the trans-
mission of the constriction, thus allowing subtracting the
contribution of the ‘‘current noise’’ of the preamplifier
[24]. The fluctuations in the drain voltage were IdRq,
with Id the current fluctuations and Rq the quantum resis-

tance for bulk filling factor v. The drain voltage was
filtered by a resonant circuit tuned to #800 KHz with a
bandwidth of some 30 kHz, and subsequently amplified by
a homemade, low-noise, cryogenic preamplifier (cooled to

4.2 K, with voltage noise #800 pVHz"1=2 and current

noise #10 fAHz"1=2). The output of this preamplifier

was fed to a room temperature amplifier followed by a
spectrum analyzer. Note that the central frequency was
chosen to be far above the 1=f noise knee of the sample,
with the 1=f noise contribution (which is quadratic with
the current) much smaller than the shot noise and the
thermal noise. All measurements in the fractional regime
were preceded by charge measurements in the integer
regime, verifying that an electron charge is being
measured.
The spectral density of a partitioned current due to

stochastic back scattering at a finite temperature is de-
scribed well by the analytic expression [8–10]:

SIð0Þ ¼ 2eIimptð1" tÞ½cothðe(V=2kBTÞ " 2kBT=e
(V);

(1)

where the impinging current Iimp ¼ Vgq with gq ¼
ð2=3Þe2=h for bulk filling factor v ¼ 2=3, t the constric-
tion’s transmission coefficient (assuming energy indepen-
dence), e( the quasiparticle charge, and T the electron
temperature. When t depends weakly on the current, its dif-
ferential value as function of current was used. Figure 2(a)
shows a plot of the transmission, deduced from the two
terminal linear conductance g, as function of the applied
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FIG. 1 (color online). Schematic of the noise measurement
setup (see text for details).

split-gate voltage, Vg (volts)

FIG. 2 (color online). Conductance and spectral density at
electron temperature 10 mK. (a) Conductance g and transmis-
sion t of the constriction as a function of split-gate voltage. Note
the appearance of a prominent plateau at g ¼ e2=3h (t ¼ 1=2).
(b) Upper panel—dependence of the transmission (zero bias t ¼
1=2, split-gate voltage Vg ¼ "0:3 V) on injected electron en-
ergy. Lower panel—spectral density SI at this value of trans-
mission. The blue dots are the measured data points. Shown is
the expected spectral density for transmission t ¼ 1=2, tempera-
ture T ¼ 10 mK, and quasiparticle charge e( ¼ e (cyan solid
line), ð2=3Þe (red dashed line), and e=3 (olive dotted line). For
comparison, we also show (purple stars) the noise measured
when !b ¼ 2=5 and !C ¼ 1=3.
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