
 

 

Figure 2. History of improvements in the mobility of 
2DEG in GaAs-AlGaAs heterostructure. Adapted from 
[6]. 

B. Fractional Quantum Hall Effect (FQHE) 
Two years after the first observation of QHE, FQHE 

was discovered by Tsui, Stormer and Gossard [8,9,5]. 
FQHE has almost the same characteristic as QHE, 
except that the quantized Hall resistance is h/e2 divided 
by a fraction. The first fraction is 1/3 and around 100 
fractional quantum Hall (FQH) states have been 
observed so far [10]. Most of them are odd denominator 
fractions. Higher mobility 2DEG and lower temperature 
are the keys to observed FQHE. 

Laughlin proposed an elegant wave function to 
explain the first FQH state [11,12,5]. In this wave 
function, interaction between electrons is considered 
and Laughlin's wave function explains other 1/m (m is 
an odd integer) fractional quantum Hall states [11,12]. 
The similarity between QHE and FQHE requires energy 
gaps. Landau levels serve as the origin of gaps in QHE, 
and Laughlin’s theory expects an energy gap in FQHE. 
It seems counterintuitive that numerous electrons form 
quasiparticle with charge less than a single electron, but 
Laughlin suggested excitations with fractional element 
charge as well. In particle physics, quarks are expected 
to carry 2e/3 or –e/3. In condensed matter physics, 
theoretical study in polymer proposed fractional charge 
at the domain boundary. However, FQHE is the first 
system actually observing fractional excitations. The 
1/m states are predicted to have quasi-particles with e/m 
fractional charge. There has been plenty of evidence 
probing the fractional charge from transport [13], shot 
noise [14-16], interference [17-20], tunneling [21-24] 
and scanning single electron transistor [25,26] 
experiments. 

 
Figure 3. Demonstration of the similarity between FQHE and QHE (Source: H. L. Stormer). Adapted from [27].
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N!. A wurtzite crystal is characterized by two lattice con-
stants a lc and c lc. A major difference between zinc blende
and wurtzite structures is that the in-plane behavior of the
bands in a wurtzite crystal is different from the behavior
along the "0001# axis $the c axis!. The %1c conduction bands
are s like at the center of the BZ, while the valence bands
belong to the &%6v :&X ,Y '!%1v:&Z'' representations. The
nearest higher-order conduction bands belong to the %6c
states of &X,Y' symmetry and the %3c states transforming like
the &Z' representation.

Due to the anisotropy of the crystal, there are two dis-
tinct interband matrix elements arising from the %6v :&X ,Y '
and %1v :&Z' representations, defined by analogy with Eq.
$2.3!. These are in practice derived from the anisotropic ef-
fective mass using expressions similar to Eq. $2.15! $assum-

ing negligible crystal-field and spin-orbit splittings!. Al-
though the different conduction-band energy contributions
from the higher %6c"&X ,Y ' and %3c"&Z' intermediate
states lead to two distinct F parameters, no experiments that
would enable us to establish independent values for the latter
have been reported. The compilations in the following sec-
tions take the F parameters in the wurtzite nitrides to be zero.

The second-order valence-band terms in the Hamiltonian
are evaluated in a manner similar to the earlier discussion for
zinc blende structures. The procedure leads to six distinct A
parameters, which are to a large extent analogous to the Lut-
tinger parameters in zinc blende materials. The detailed defi-
nitions have appeared in the literature.34–38

In contrast to the zinc blende materials, the wurtzite
structure does not give a triply degenerate valence band

FIG. 1. Diagram of the band structure in the vicinity of the energy gap of
GaAs: $a! throughout the first Brillouin zone $reproduced with permission
from Ref. 81!, $b! a magnified view near the zone center.

FIG. 2. Direct %-valley energy gap as a function of lattice constant for the
zinc blende form of 12 III–V binary compound semiconductors $points! and
some of their random ternary alloys $curves! at zero temperature. The en-
ergy gaps for certain ternaries such as AlAsP, InAsN, GaAsN, InPN, and
GaPN are extended into regions where no experimental data have been
reported. For GaAsN and InPN, the arrows indicate the boundaries of the
regions where the gap dependence on composition may be predicted with
any accuracy.

FIG. 3. Lowest forbidden gap as a function of lattice constant for non-
nitride III–V compound semiconductors $points! and their random ternary
alloys $lines! at zero temperature. The materials with %-, X-, and L-valley
gaps are indicated by solid, dotted, and dashed lines, respectively.
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Figure 1. The channel resistance at T - 0.1 K is plotted as a function of gate voltage for two 
different carrier concentrations induced by illumination. The existence of a resistance 
quantised in units of h/2ie2, where i is the number of occupied sub-bands, is illustrated. The 
inset shows a schematic diagram of the device used in this work. The split gate itself is 0.5 pm 
wide and 0 .4pm long. Two split gates are illustrated, one of which is selected for the 
experiment. 

gas is decreased below 0.7 pm, the resistance of the constriction dominates over the 
resistance of the wide regions and effectively becomes the sample resistance. The 
mobility of the electrons in the heterojunctions used was between 2.5 x lo5 and 
lo6 cm2 V-' s-l and the carrier concentration was between 2 and 5 x 10l1 cm-*. These 
values correspond to an elastic mean free path in excess of 2 pm, which is much greater 
than the length of the constriction. Our previous work with electrostatic squeezing 
has suggested that scattering from the enclosing potential well is principally specular. 
Therefore, at temperatures sufficiently low that electron4ectron and electron-phonon 
scattering are weak, the dimensional quantisation should become apparent, and trans- 
port through the sample is ballistic, i.e. without collision of any kind. 

The resistance of point contacts which ballistically inject electrons was first con- 
sidered by Sharvin (1965), and point contact spectroscopy was subsequently developed 
as a method for investigating inelastic scattering processes in both metals (Yansen 1974, 
1977, Jansen et a1 1977) and semiconductors (Pepper 1980). By analogy with Sharvin's 
treatment, we now calculate the resistance of a ID ballistic resistor. 

The current due to one particular ID sub-band, I,, is given by 

I, = nedu (1) 
where n is half the number of carriers per unit length, in the subband, e is the electronic 
charge and 6 u  is the increase in electron velocity acquired on transit through the 
constriction. The appropriate ID density of states N ( E )  as a function of energy, E ,  can 
be written 

where g, is the spin degeneracy and m* is the effective mass. 
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Figure 1. The channel resistance at T - 0.1 K is plotted as a function of gate voltage for two 
different carrier concentrations induced by illumination. The existence of a resistance 
quantised in units of h/2ie2, where i is the number of occupied sub-bands, is illustrated. The 
inset shows a schematic diagram of the device used in this work. The split gate itself is 0.5 pm 
wide and 0 .4pm long. Two split gates are illustrated, one of which is selected for the 
experiment. 
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resistance of the wide regions and effectively becomes the sample resistance. The 
mobility of the electrons in the heterojunctions used was between 2.5 x lo5 and 
lo6 cm2 V-' s-l and the carrier concentration was between 2 and 5 x 10l1 cm-*. These 
values correspond to an elastic mean free path in excess of 2 pm, which is much greater 
than the length of the constriction. Our previous work with electrostatic squeezing 
has suggested that scattering from the enclosing potential well is principally specular. 
Therefore, at temperatures sufficiently low that electron4ectron and electron-phonon 
scattering are weak, the dimensional quantisation should become apparent, and trans- 
port through the sample is ballistic, i.e. without collision of any kind. 

The resistance of point contacts which ballistically inject electrons was first con- 
sidered by Sharvin (1965), and point contact spectroscopy was subsequently developed 
as a method for investigating inelastic scattering processes in both metals (Yansen 1974, 
1977, Jansen et a1 1977) and semiconductors (Pepper 1980). By analogy with Sharvin's 
treatment, we now calculate the resistance of a ID ballistic resistor. 

The current due to one particular ID sub-band, I,, is given by 

I, = nedu (1) 
where n is half the number of carriers per unit length, in the subband, e is the electronic 
charge and 6 u  is the increase in electron velocity acquired on transit through the 
constriction. The appropriate ID density of states N ( E )  as a function of energy, E ,  can 
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n = 1, 2, . . .
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Carbon Nanotube Quantum Resistors
Stefan Frank, Philippe Poncharal, Z. L. Wang, Walt A. de Heer*

The conductance of multiwalled carbon nanotubes (MWNTs) was found to be quantized.
The experimental method involved measuring the conductance of nanotubes by re-
placing the tip of a scanning probe microscope with a nanotube fiber, which could be
lowered into a liquid metal to establish a gentle electrical contact with a nanotube at the
tip of the fiber. The conductance of arc-produced MWNTs is one unit of the conductance
quantum G0 " 2e2/h " (12.9 kilohms)–1. The nanotubes conduct current ballistically and
do not dissipate heat. The nanotubes, which are typically 15 nanometers wide and 4
micrometers long, are several orders of magnitude greater in size and stability than other
typical room-temperature quantum conductors. Extremely high stable current densities,
J # 107 amperes per square centimeter, have been attained.

The intriguing possibility that nanoscopic
graphitic structures may someday be used as
electronic elements has been reinforced by
predictions (1) as well as recent demonstra-
tions (2–4) of their device properties. How-
ever, not much is known about the elec-
tronic transport in nanotubes. Theory pre-
dicts that the electrons flow ballistically
through them and that the conductance
(the inverse of the resistance) is quantized
(5–7), but neither effect has been observed
previously (3, 4, 8–13).

Quantized conductance results from the
electronic wave guide properties of ex-
tremely fine wires and constrictions [see, for
example, (13–20)]. When the length of the
conductor is smaller than the electronic
mean free path, then the electronic trans-
port is ballistic, in which case each trans-
verse wave guide mode or conducting
channel contributes G0 to the total conduc-
tance. Calculations indicate that conduct-
ing single-shell nanotubes have two con-
ductance channels (5–7). This predicts that
the conductance of a single-wall nanotube
(SWNT) is 2G0 independent of diameter
and length.

Another important aspect of ballistic

transport is that no energy is dissipated in
the conductor (20). Instead, the Joule heat is
dissipated in the electrical leads, which con-
nect the ballistic conductor to the macro-
scopic elements of the circuit. The nondis-
sipative property survives if elastic scattering
occurs, for example, from impurities and de-
fects. However, elastic scattering affects the
transmission coefficients and thereby reduc-
es the conductance (20–22), which then is
no longer precisely quantized [see (19)].

Until recently, conductance quantiza-
tion had only been observed in two-dimen-
sional electron gases at ultralow tempera-
tures (15). Room-temperature quantized
conductance has now also been observed in
metallic wires, which usually are at most a
few nanometers long and a fraction of a
nanometer wide (16–19). Although con-
ductance quantization requires ballistic
transport (20–22), we were able to demon-
strate both properties independently.

In our experimental scheme we used arc-
produced multiwalled carbon nanotubes
(MWNTs) (23–26). The nanotubes were
typically very straight with lengths of 1 to 10
$m (24, 25) (Fig. 1). High-resolution trans-
mission electron microscopy (HRTEM)
showed that their diameters ranged from 5
to 25 nm, with inner cavities from 1 to 4
nm; they typically had about 15 layers (25).
The nanotubes were embedded in fibers that
occur in the soft material inside the hard-

shelled deposit of the arc (24, 25). These
fibers are very fine and compact (nominally
50 $m in diameter at the tips and 1 mm
long) and are composed of nanotubes and
graphitic particles; TEM revealed that usu-
ally several particularly long (#3 $m) nano-
tubes protrude from the tip of the fiber. The
protruding nanotubes are usually bundled
with others of different lengths, hence only
one nanotube is at the extreme end. An
example is shown in Fig. 1. The nanotube
fiber was attached to a gold wire with col-
loidal silver paint, and the resulting nano-
tube contact was installed in place of the tip
of a scanning probe microscope (SPM) (27)
so that the nanotube contact could be raised
and lowered using the SPM controls. A
heatable copper reservoir containing mercu-
ry (or other low–melting temperature metal)
was placed below the nanotube contact.
The liquid metal was used as the second
contact to the nanotubes and allows a gentle
and reproducible contact with the nano-
tubes to be made (mercury does not wet the
nanotubes). Moreover, TEM revealed that
before the nanotubes are dipped in the liq-
uid metal, they are covered with fine gra-
phitic particles. Dipping them had a cleans-
ing effect, and afterward the protruding

S. Frank, P. Poncharal, W. A. de Heer, School of Physics,
Georgia Institute of Technology, Atlanta GA 30332, USA.
Z. L. Wang, School of Materials Science and Engineering,
Georgia Institute of Technology, Atlanta GA 30332, USA.

*To whom correspondence should be addressed.

z - Piezo

I

V

Nanotubes

Metal

Tip

Heater

FiberA B

200 nm
50 nm

Fig. 1. Nanotube con-
tact used in nanotube
conductance measure-
ments. (A) Transmission
electron micrograph of
the end of a nanotube fi-
ber recovered from the

nanotube arc deposit. The fibers consist of car-
bon nanotubes and small graphitic particles. The
fiber shown here is %1 mm long and 0.05 mm at
the tip, from which protrude several long and
straight nanotubes. The nanotubes are very clean
after they have been dipped in liquid metal (like the
one shown), in contrast to the virgin tips on which
many small graphitic particles are seen. The long
nanotube is 2.2 $m long and 14 nm wide. The
inset shows the end of the longest tube under
higher magnification; it is bundled together with
another one that terminates 400 nm before the
first one. (B) Schematic diagram of the experimen-
tal setup. The nanotube contact is lowered under
SPM control to a liquid metal surface. After con-
tact is established, the current I is measured as
the fiber is moved into the liquid metal, so that the
conductance can be determined as a function of
the position of the nanotube contact.
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nanotubes were completely free of particles.
In a typical experiment, the nanotube

contact was lowered toward the liquid met-
al contact (LMC) with the coarse drive of
the SPM. After electrical contact was es-
tablished, the nanotube contact was cycli-
cally driven in and out of the LMC under
piezo control (peak-to-peak amplitude Hpp
! 0.1 to 7 "m, frequency f ! 0.1 to 10 Hz).
A potential Vap # 10 to 50 mV was applied
to the contact, and the current through the
circuit was measured together with the pi-
ezo displacement. Data from sequences of
typically 200 to 1000 dipping cycles with
50,000 measured points per cycle were re-
corded automatically in each data file.

Figure 2A is a plot of conductance versus
time for two time intervals in one sequence.
The tip speed was $5 "m/s. Each conduc-
tance cycle corresponds to one piezo cycle.
The plateau at 1G0 indicates that the con-
ductance of the contacting nanotube jumps
from 0 to #1G0, where it remains constant
for a time corresponding to a distance of #2
"m along the nanotube. The constant value
of the conductance is consistent with a bal-
listic conductor of uniform width and incon-
sistent with classical conductors for which
the conductance varies as the inverse of the
length. The observation of this ballistic prop-
erty with a conductance near G0 strongly
suggests that this nanotube is indeed a quan-
tized conductor. The abundance of corrobo-
rating experimental evidence, of which we
present a representative sample here, verifies
this property in general.

Usually we observed a sequence of steps
at 1G0 intervals rather than a single step.
These steps occur when other tubes also
come into contact with the LMC, as in Fig.
2C, where a second step occurred after a
dipping distance of 200 nm. This distance is
consistent with the expected location of a
second tube that is bundled together with
the first (compare with inset, Fig. 1A).
When the nanotube contact was submerged
further, more nanotubes came into contact
with the LMC and produced additional steps
toward higher conductance, such as the step
at 500 nm in Fig. 2C. Ultimately, the fiber
touched the LMC and the residual resistance
was on the order of 50 ohms (or %0.5% of
the typical resistance of one nanotube).

In Fig. 2C, the conductance does not
immediately rise to G0 but is #0.5G0 for the
first 25 nm. The major step at 200 nm is also
preceded by an initial step #40 nm long.
This effect is frequently observed and can be
related to the tip structure of the nanotubes
(23–26). We found that #30% of the nano-
tubes have tapered tips (23) that are up to
twice as long as the diameter of the corre-
sponding tube (Fig. 3B). This size is consis-
tent with the lengths of the minor steps. The
reduced conductance is readily explained in
terms of the tip-to-shaft interface (26),
which [like defects (1, 5)] can elastically
scatter electrons, thereby reducing the trans-
mission coefficient (21, 22) [see also (19)].
A close-up view of the tip effect is shown in
Fig. 2D, where the scanning range was re-
duced to 70 nm. The pre-step at G & 1⁄2G0

is 34 nm long. The two well-defined peaks in
the histogram of the corresponding sequence
of 1000 traces are shown in Fig. 3A and
indicate the reproducibility of this feature.

Complementary to the conductance trac-
es, the data are also presented as conduc-
tance histograms (that is, the histogram of
all the measured conductance points in a
sequence) in order to average out noise and
fluctuations. Figure 2B shows the histogram
(actually plotted sideways) of 250 traces of
Fig. 2A. The plateau near G0 in Fig. 2A is
represented by the peak in the histogram,
which has a maximum that is very close to
1G0. The quantization is clear and is even
more pronounced than in metal contacts.
Moreover, we did not adjust for a “series
contact resistor,” as is often done for metal
nanowires to align the conductance plateaus
with conductance quanta (16–19).

Conductance quantization, as described
here, was observed in all 20 nanotube con-
tacts we constructed. However, in several
cases, long anomalous plateaus ('500 nm)

Fig. 2. Carbon nanotube
conductance measure-
ments. (A) Conductance
of a nanotube contact
that is moved at constant
speed into and out of the
mercury contact as a
function of time. The pe-
riod of motion is 2 s and
the displacement (z !
$2.5 "m. The conduc-
tance “jumps” to #1G0
and then remains con-
stant for #2 "m of its dip-
ping depth. The direction
of motion is then re-
versed and the contact is
broken after 2 "m. The
cycle is repeated to show
its reproducibility; cycles
201 through 203 are displayed as an example. (B) Histogram of the conductance data of all 250 traces in
the sequence. The plateaus at 1G0 and at 0 produce peaks in the histogram. The relative areas under the
peaks correspond to the relative plateau lengths. Because the total displacement is known, the plateau
lengths can be accurately determined; in this case, the 1G0 plateau corresponds to a displacement of
1880 nm. Plateau lengths thus determined are insensitive to random oscillations of the liquid level and
hence are more accurate than measurements from individual traces. (C) A trace of a nanotube contact with
two major plateaus, each with a minor pre-step. This trace is interpreted as resulting from a nanotube that
is bundled with a second one (as in Fig. 1A, inset). The second tube comes into contact with the metal
#200 nm after the first. Shorter plateaus (from #10 to 50 nm long) with noninteger conductance are often
seen and are interpreted to result from the nanotube tips. A clear example of this effect is shown in (D).

Fig. 3. (A) Nanotube histograms of nanotube con-
tacts in various liquid metals. (a) Histogram of a
nanotube ((z ! $35 nm) in Hg. From the peak
area, the tip length (corresponding to G & 1⁄2G0)
is found to be 34 nm long, followed by a shaft for
which G & 1G0. (b) Histogram showing two dis-
tinct peaks at 0.9G0 and 2.05G0 with lengths of
159 and 339 nm, followed by a less distinct peak
near 3G0 with a length of #240 nm. (c) Nanotube
contact histogram in liquid Cerrolow, showing a
peak corresponding to a conductance plateau at
1G0 (length 530 nm), one at 2G0 (length 750 nm),
and one at 3G0 (length 420 nm). (d) A histogram
using liquid gallium with a peak at 1G0 (660 nm),
one at 2G0 (520 nm), and a broader structure at
3.1G0 (370 nm). The broadened peak structures
in (c) and (d) are caused by higher noise levels in
these measurements. (B) Schematic diagram of a
carbon nanotube (composed after high-resolution
electron micrographs), showing two typical tip
structures and a shaft. The tube is #15 nm wide
and is composed of 12 layers; the upper tip is 30
nm and the lower tip is #7 nm long.
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nanotubes were completely free of particles.
In a typical experiment, the nanotube

contact was lowered toward the liquid met-
al contact (LMC) with the coarse drive of
the SPM. After electrical contact was es-
tablished, the nanotube contact was cycli-
cally driven in and out of the LMC under
piezo control (peak-to-peak amplitude Hpp
! 0.1 to 7 "m, frequency f ! 0.1 to 10 Hz).
A potential Vap # 10 to 50 mV was applied
to the contact, and the current through the
circuit was measured together with the pi-
ezo displacement. Data from sequences of
typically 200 to 1000 dipping cycles with
50,000 measured points per cycle were re-
corded automatically in each data file.

Figure 2A is a plot of conductance versus
time for two time intervals in one sequence.
The tip speed was $5 "m/s. Each conduc-
tance cycle corresponds to one piezo cycle.
The plateau at 1G0 indicates that the con-
ductance of the contacting nanotube jumps
from 0 to #1G0, where it remains constant
for a time corresponding to a distance of #2
"m along the nanotube. The constant value
of the conductance is consistent with a bal-
listic conductor of uniform width and incon-
sistent with classical conductors for which
the conductance varies as the inverse of the
length. The observation of this ballistic prop-
erty with a conductance near G0 strongly
suggests that this nanotube is indeed a quan-
tized conductor. The abundance of corrobo-
rating experimental evidence, of which we
present a representative sample here, verifies
this property in general.

Usually we observed a sequence of steps
at 1G0 intervals rather than a single step.
These steps occur when other tubes also
come into contact with the LMC, as in Fig.
2C, where a second step occurred after a
dipping distance of 200 nm. This distance is
consistent with the expected location of a
second tube that is bundled together with
the first (compare with inset, Fig. 1A).
When the nanotube contact was submerged
further, more nanotubes came into contact
with the LMC and produced additional steps
toward higher conductance, such as the step
at 500 nm in Fig. 2C. Ultimately, the fiber
touched the LMC and the residual resistance
was on the order of 50 ohms (or %0.5% of
the typical resistance of one nanotube).

In Fig. 2C, the conductance does not
immediately rise to G0 but is #0.5G0 for the
first 25 nm. The major step at 200 nm is also
preceded by an initial step #40 nm long.
This effect is frequently observed and can be
related to the tip structure of the nanotubes
(23–26). We found that #30% of the nano-
tubes have tapered tips (23) that are up to
twice as long as the diameter of the corre-
sponding tube (Fig. 3B). This size is consis-
tent with the lengths of the minor steps. The
reduced conductance is readily explained in
terms of the tip-to-shaft interface (26),
which [like defects (1, 5)] can elastically
scatter electrons, thereby reducing the trans-
mission coefficient (21, 22) [see also (19)].
A close-up view of the tip effect is shown in
Fig. 2D, where the scanning range was re-
duced to 70 nm. The pre-step at G & 1⁄2G0

is 34 nm long. The two well-defined peaks in
the histogram of the corresponding sequence
of 1000 traces are shown in Fig. 3A and
indicate the reproducibility of this feature.

Complementary to the conductance trac-
es, the data are also presented as conduc-
tance histograms (that is, the histogram of
all the measured conductance points in a
sequence) in order to average out noise and
fluctuations. Figure 2B shows the histogram
(actually plotted sideways) of 250 traces of
Fig. 2A. The plateau near G0 in Fig. 2A is
represented by the peak in the histogram,
which has a maximum that is very close to
1G0. The quantization is clear and is even
more pronounced than in metal contacts.
Moreover, we did not adjust for a “series
contact resistor,” as is often done for metal
nanowires to align the conductance plateaus
with conductance quanta (16–19).

Conductance quantization, as described
here, was observed in all 20 nanotube con-
tacts we constructed. However, in several
cases, long anomalous plateaus ('500 nm)

Fig. 2. Carbon nanotube
conductance measure-
ments. (A) Conductance
of a nanotube contact
that is moved at constant
speed into and out of the
mercury contact as a
function of time. The pe-
riod of motion is 2 s and
the displacement (z !
$2.5 "m. The conduc-
tance “jumps” to #1G0
and then remains con-
stant for #2 "m of its dip-
ping depth. The direction
of motion is then re-
versed and the contact is
broken after 2 "m. The
cycle is repeated to show
its reproducibility; cycles
201 through 203 are displayed as an example. (B) Histogram of the conductance data of all 250 traces in
the sequence. The plateaus at 1G0 and at 0 produce peaks in the histogram. The relative areas under the
peaks correspond to the relative plateau lengths. Because the total displacement is known, the plateau
lengths can be accurately determined; in this case, the 1G0 plateau corresponds to a displacement of
1880 nm. Plateau lengths thus determined are insensitive to random oscillations of the liquid level and
hence are more accurate than measurements from individual traces. (C) A trace of a nanotube contact with
two major plateaus, each with a minor pre-step. This trace is interpreted as resulting from a nanotube that
is bundled with a second one (as in Fig. 1A, inset). The second tube comes into contact with the metal
#200 nm after the first. Shorter plateaus (from #10 to 50 nm long) with noninteger conductance are often
seen and are interpreted to result from the nanotube tips. A clear example of this effect is shown in (D).

Fig. 3. (A) Nanotube histograms of nanotube con-
tacts in various liquid metals. (a) Histogram of a
nanotube ((z ! $35 nm) in Hg. From the peak
area, the tip length (corresponding to G & 1⁄2G0)
is found to be 34 nm long, followed by a shaft for
which G & 1G0. (b) Histogram showing two dis-
tinct peaks at 0.9G0 and 2.05G0 with lengths of
159 and 339 nm, followed by a less distinct peak
near 3G0 with a length of #240 nm. (c) Nanotube
contact histogram in liquid Cerrolow, showing a
peak corresponding to a conductance plateau at
1G0 (length 530 nm), one at 2G0 (length 750 nm),
and one at 3G0 (length 420 nm). (d) A histogram
using liquid gallium with a peak at 1G0 (660 nm),
one at 2G0 (520 nm), and a broader structure at
3.1G0 (370 nm). The broadened peak structures
in (c) and (d) are caused by higher noise levels in
these measurements. (B) Schematic diagram of a
carbon nanotube (composed after high-resolution
electron micrographs), showing two typical tip
structures and a shaft. The tube is #15 nm wide
and is composed of 12 layers; the upper tip is 30
nm and the lower tip is #7 nm long.
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nanotubes were completely free of particles.
In a typical experiment, the nanotube

contact was lowered toward the liquid met-
al contact (LMC) with the coarse drive of
the SPM. After electrical contact was es-
tablished, the nanotube contact was cycli-
cally driven in and out of the LMC under
piezo control (peak-to-peak amplitude Hpp
! 0.1 to 7 "m, frequency f ! 0.1 to 10 Hz).
A potential Vap # 10 to 50 mV was applied
to the contact, and the current through the
circuit was measured together with the pi-
ezo displacement. Data from sequences of
typically 200 to 1000 dipping cycles with
50,000 measured points per cycle were re-
corded automatically in each data file.

Figure 2A is a plot of conductance versus
time for two time intervals in one sequence.
The tip speed was $5 "m/s. Each conduc-
tance cycle corresponds to one piezo cycle.
The plateau at 1G0 indicates that the con-
ductance of the contacting nanotube jumps
from 0 to #1G0, where it remains constant
for a time corresponding to a distance of #2
"m along the nanotube. The constant value
of the conductance is consistent with a bal-
listic conductor of uniform width and incon-
sistent with classical conductors for which
the conductance varies as the inverse of the
length. The observation of this ballistic prop-
erty with a conductance near G0 strongly
suggests that this nanotube is indeed a quan-
tized conductor. The abundance of corrobo-
rating experimental evidence, of which we
present a representative sample here, verifies
this property in general.

Usually we observed a sequence of steps
at 1G0 intervals rather than a single step.
These steps occur when other tubes also
come into contact with the LMC, as in Fig.
2C, where a second step occurred after a
dipping distance of 200 nm. This distance is
consistent with the expected location of a
second tube that is bundled together with
the first (compare with inset, Fig. 1A).
When the nanotube contact was submerged
further, more nanotubes came into contact
with the LMC and produced additional steps
toward higher conductance, such as the step
at 500 nm in Fig. 2C. Ultimately, the fiber
touched the LMC and the residual resistance
was on the order of 50 ohms (or %0.5% of
the typical resistance of one nanotube).

In Fig. 2C, the conductance does not
immediately rise to G0 but is #0.5G0 for the
first 25 nm. The major step at 200 nm is also
preceded by an initial step #40 nm long.
This effect is frequently observed and can be
related to the tip structure of the nanotubes
(23–26). We found that #30% of the nano-
tubes have tapered tips (23) that are up to
twice as long as the diameter of the corre-
sponding tube (Fig. 3B). This size is consis-
tent with the lengths of the minor steps. The
reduced conductance is readily explained in
terms of the tip-to-shaft interface (26),
which [like defects (1, 5)] can elastically
scatter electrons, thereby reducing the trans-
mission coefficient (21, 22) [see also (19)].
A close-up view of the tip effect is shown in
Fig. 2D, where the scanning range was re-
duced to 70 nm. The pre-step at G & 1⁄2G0

is 34 nm long. The two well-defined peaks in
the histogram of the corresponding sequence
of 1000 traces are shown in Fig. 3A and
indicate the reproducibility of this feature.

Complementary to the conductance trac-
es, the data are also presented as conduc-
tance histograms (that is, the histogram of
all the measured conductance points in a
sequence) in order to average out noise and
fluctuations. Figure 2B shows the histogram
(actually plotted sideways) of 250 traces of
Fig. 2A. The plateau near G0 in Fig. 2A is
represented by the peak in the histogram,
which has a maximum that is very close to
1G0. The quantization is clear and is even
more pronounced than in metal contacts.
Moreover, we did not adjust for a “series
contact resistor,” as is often done for metal
nanowires to align the conductance plateaus
with conductance quanta (16–19).

Conductance quantization, as described
here, was observed in all 20 nanotube con-
tacts we constructed. However, in several
cases, long anomalous plateaus ('500 nm)

Fig. 2. Carbon nanotube
conductance measure-
ments. (A) Conductance
of a nanotube contact
that is moved at constant
speed into and out of the
mercury contact as a
function of time. The pe-
riod of motion is 2 s and
the displacement (z !
$2.5 "m. The conduc-
tance “jumps” to #1G0
and then remains con-
stant for #2 "m of its dip-
ping depth. The direction
of motion is then re-
versed and the contact is
broken after 2 "m. The
cycle is repeated to show
its reproducibility; cycles
201 through 203 are displayed as an example. (B) Histogram of the conductance data of all 250 traces in
the sequence. The plateaus at 1G0 and at 0 produce peaks in the histogram. The relative areas under the
peaks correspond to the relative plateau lengths. Because the total displacement is known, the plateau
lengths can be accurately determined; in this case, the 1G0 plateau corresponds to a displacement of
1880 nm. Plateau lengths thus determined are insensitive to random oscillations of the liquid level and
hence are more accurate than measurements from individual traces. (C) A trace of a nanotube contact with
two major plateaus, each with a minor pre-step. This trace is interpreted as resulting from a nanotube that
is bundled with a second one (as in Fig. 1A, inset). The second tube comes into contact with the metal
#200 nm after the first. Shorter plateaus (from #10 to 50 nm long) with noninteger conductance are often
seen and are interpreted to result from the nanotube tips. A clear example of this effect is shown in (D).

Fig. 3. (A) Nanotube histograms of nanotube con-
tacts in various liquid metals. (a) Histogram of a
nanotube ((z ! $35 nm) in Hg. From the peak
area, the tip length (corresponding to G & 1⁄2G0)
is found to be 34 nm long, followed by a shaft for
which G & 1G0. (b) Histogram showing two dis-
tinct peaks at 0.9G0 and 2.05G0 with lengths of
159 and 339 nm, followed by a less distinct peak
near 3G0 with a length of #240 nm. (c) Nanotube
contact histogram in liquid Cerrolow, showing a
peak corresponding to a conductance plateau at
1G0 (length 530 nm), one at 2G0 (length 750 nm),
and one at 3G0 (length 420 nm). (d) A histogram
using liquid gallium with a peak at 1G0 (660 nm),
one at 2G0 (520 nm), and a broader structure at
3.1G0 (370 nm). The broadened peak structures
in (c) and (d) are caused by higher noise levels in
these measurements. (B) Schematic diagram of a
carbon nanotube (composed after high-resolution
electron micrographs), showing two typical tip
structures and a shaft. The tube is #15 nm wide
and is composed of 12 layers; the upper tip is 30
nm and the lower tip is #7 nm long.
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nanotubes were completely free of particles.
In a typical experiment, the nanotube

contact was lowered toward the liquid met-
al contact (LMC) with the coarse drive of
the SPM. After electrical contact was es-
tablished, the nanotube contact was cycli-
cally driven in and out of the LMC under
piezo control (peak-to-peak amplitude Hpp
! 0.1 to 7 "m, frequency f ! 0.1 to 10 Hz).
A potential Vap # 10 to 50 mV was applied
to the contact, and the current through the
circuit was measured together with the pi-
ezo displacement. Data from sequences of
typically 200 to 1000 dipping cycles with
50,000 measured points per cycle were re-
corded automatically in each data file.

Figure 2A is a plot of conductance versus
time for two time intervals in one sequence.
The tip speed was $5 "m/s. Each conduc-
tance cycle corresponds to one piezo cycle.
The plateau at 1G0 indicates that the con-
ductance of the contacting nanotube jumps
from 0 to #1G0, where it remains constant
for a time corresponding to a distance of #2
"m along the nanotube. The constant value
of the conductance is consistent with a bal-
listic conductor of uniform width and incon-
sistent with classical conductors for which
the conductance varies as the inverse of the
length. The observation of this ballistic prop-
erty with a conductance near G0 strongly
suggests that this nanotube is indeed a quan-
tized conductor. The abundance of corrobo-
rating experimental evidence, of which we
present a representative sample here, verifies
this property in general.

Usually we observed a sequence of steps
at 1G0 intervals rather than a single step.
These steps occur when other tubes also
come into contact with the LMC, as in Fig.
2C, where a second step occurred after a
dipping distance of 200 nm. This distance is
consistent with the expected location of a
second tube that is bundled together with
the first (compare with inset, Fig. 1A).
When the nanotube contact was submerged
further, more nanotubes came into contact
with the LMC and produced additional steps
toward higher conductance, such as the step
at 500 nm in Fig. 2C. Ultimately, the fiber
touched the LMC and the residual resistance
was on the order of 50 ohms (or %0.5% of
the typical resistance of one nanotube).

In Fig. 2C, the conductance does not
immediately rise to G0 but is #0.5G0 for the
first 25 nm. The major step at 200 nm is also
preceded by an initial step #40 nm long.
This effect is frequently observed and can be
related to the tip structure of the nanotubes
(23–26). We found that #30% of the nano-
tubes have tapered tips (23) that are up to
twice as long as the diameter of the corre-
sponding tube (Fig. 3B). This size is consis-
tent with the lengths of the minor steps. The
reduced conductance is readily explained in
terms of the tip-to-shaft interface (26),
which [like defects (1, 5)] can elastically
scatter electrons, thereby reducing the trans-
mission coefficient (21, 22) [see also (19)].
A close-up view of the tip effect is shown in
Fig. 2D, where the scanning range was re-
duced to 70 nm. The pre-step at G & 1⁄2G0

is 34 nm long. The two well-defined peaks in
the histogram of the corresponding sequence
of 1000 traces are shown in Fig. 3A and
indicate the reproducibility of this feature.

Complementary to the conductance trac-
es, the data are also presented as conduc-
tance histograms (that is, the histogram of
all the measured conductance points in a
sequence) in order to average out noise and
fluctuations. Figure 2B shows the histogram
(actually plotted sideways) of 250 traces of
Fig. 2A. The plateau near G0 in Fig. 2A is
represented by the peak in the histogram,
which has a maximum that is very close to
1G0. The quantization is clear and is even
more pronounced than in metal contacts.
Moreover, we did not adjust for a “series
contact resistor,” as is often done for metal
nanowires to align the conductance plateaus
with conductance quanta (16–19).

Conductance quantization, as described
here, was observed in all 20 nanotube con-
tacts we constructed. However, in several
cases, long anomalous plateaus ('500 nm)

Fig. 2. Carbon nanotube
conductance measure-
ments. (A) Conductance
of a nanotube contact
that is moved at constant
speed into and out of the
mercury contact as a
function of time. The pe-
riod of motion is 2 s and
the displacement (z !
$2.5 "m. The conduc-
tance “jumps” to #1G0
and then remains con-
stant for #2 "m of its dip-
ping depth. The direction
of motion is then re-
versed and the contact is
broken after 2 "m. The
cycle is repeated to show
its reproducibility; cycles
201 through 203 are displayed as an example. (B) Histogram of the conductance data of all 250 traces in
the sequence. The plateaus at 1G0 and at 0 produce peaks in the histogram. The relative areas under the
peaks correspond to the relative plateau lengths. Because the total displacement is known, the plateau
lengths can be accurately determined; in this case, the 1G0 plateau corresponds to a displacement of
1880 nm. Plateau lengths thus determined are insensitive to random oscillations of the liquid level and
hence are more accurate than measurements from individual traces. (C) A trace of a nanotube contact with
two major plateaus, each with a minor pre-step. This trace is interpreted as resulting from a nanotube that
is bundled with a second one (as in Fig. 1A, inset). The second tube comes into contact with the metal
#200 nm after the first. Shorter plateaus (from #10 to 50 nm long) with noninteger conductance are often
seen and are interpreted to result from the nanotube tips. A clear example of this effect is shown in (D).

Fig. 3. (A) Nanotube histograms of nanotube con-
tacts in various liquid metals. (a) Histogram of a
nanotube ((z ! $35 nm) in Hg. From the peak
area, the tip length (corresponding to G & 1⁄2G0)
is found to be 34 nm long, followed by a shaft for
which G & 1G0. (b) Histogram showing two dis-
tinct peaks at 0.9G0 and 2.05G0 with lengths of
159 and 339 nm, followed by a less distinct peak
near 3G0 with a length of #240 nm. (c) Nanotube
contact histogram in liquid Cerrolow, showing a
peak corresponding to a conductance plateau at
1G0 (length 530 nm), one at 2G0 (length 750 nm),
and one at 3G0 (length 420 nm). (d) A histogram
using liquid gallium with a peak at 1G0 (660 nm),
one at 2G0 (520 nm), and a broader structure at
3.1G0 (370 nm). The broadened peak structures
in (c) and (d) are caused by higher noise levels in
these measurements. (B) Schematic diagram of a
carbon nanotube (composed after high-resolution
electron micrographs), showing two typical tip
structures and a shaft. The tube is #15 nm wide
and is composed of 12 layers; the upper tip is 30
nm and the lower tip is #7 nm long.
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nanotubes were completely free of particles.
In a typical experiment, the nanotube

contact was lowered toward the liquid met-
al contact (LMC) with the coarse drive of
the SPM. After electrical contact was es-
tablished, the nanotube contact was cycli-
cally driven in and out of the LMC under
piezo control (peak-to-peak amplitude Hpp
! 0.1 to 7 "m, frequency f ! 0.1 to 10 Hz).
A potential Vap # 10 to 50 mV was applied
to the contact, and the current through the
circuit was measured together with the pi-
ezo displacement. Data from sequences of
typically 200 to 1000 dipping cycles with
50,000 measured points per cycle were re-
corded automatically in each data file.

Figure 2A is a plot of conductance versus
time for two time intervals in one sequence.
The tip speed was $5 "m/s. Each conduc-
tance cycle corresponds to one piezo cycle.
The plateau at 1G0 indicates that the con-
ductance of the contacting nanotube jumps
from 0 to #1G0, where it remains constant
for a time corresponding to a distance of #2
"m along the nanotube. The constant value
of the conductance is consistent with a bal-
listic conductor of uniform width and incon-
sistent with classical conductors for which
the conductance varies as the inverse of the
length. The observation of this ballistic prop-
erty with a conductance near G0 strongly
suggests that this nanotube is indeed a quan-
tized conductor. The abundance of corrobo-
rating experimental evidence, of which we
present a representative sample here, verifies
this property in general.

Usually we observed a sequence of steps
at 1G0 intervals rather than a single step.
These steps occur when other tubes also
come into contact with the LMC, as in Fig.
2C, where a second step occurred after a
dipping distance of 200 nm. This distance is
consistent with the expected location of a
second tube that is bundled together with
the first (compare with inset, Fig. 1A).
When the nanotube contact was submerged
further, more nanotubes came into contact
with the LMC and produced additional steps
toward higher conductance, such as the step
at 500 nm in Fig. 2C. Ultimately, the fiber
touched the LMC and the residual resistance
was on the order of 50 ohms (or %0.5% of
the typical resistance of one nanotube).

In Fig. 2C, the conductance does not
immediately rise to G0 but is #0.5G0 for the
first 25 nm. The major step at 200 nm is also
preceded by an initial step #40 nm long.
This effect is frequently observed and can be
related to the tip structure of the nanotubes
(23–26). We found that #30% of the nano-
tubes have tapered tips (23) that are up to
twice as long as the diameter of the corre-
sponding tube (Fig. 3B). This size is consis-
tent with the lengths of the minor steps. The
reduced conductance is readily explained in
terms of the tip-to-shaft interface (26),
which [like defects (1, 5)] can elastically
scatter electrons, thereby reducing the trans-
mission coefficient (21, 22) [see also (19)].
A close-up view of the tip effect is shown in
Fig. 2D, where the scanning range was re-
duced to 70 nm. The pre-step at G & 1⁄2G0

is 34 nm long. The two well-defined peaks in
the histogram of the corresponding sequence
of 1000 traces are shown in Fig. 3A and
indicate the reproducibility of this feature.

Complementary to the conductance trac-
es, the data are also presented as conduc-
tance histograms (that is, the histogram of
all the measured conductance points in a
sequence) in order to average out noise and
fluctuations. Figure 2B shows the histogram
(actually plotted sideways) of 250 traces of
Fig. 2A. The plateau near G0 in Fig. 2A is
represented by the peak in the histogram,
which has a maximum that is very close to
1G0. The quantization is clear and is even
more pronounced than in metal contacts.
Moreover, we did not adjust for a “series
contact resistor,” as is often done for metal
nanowires to align the conductance plateaus
with conductance quanta (16–19).

Conductance quantization, as described
here, was observed in all 20 nanotube con-
tacts we constructed. However, in several
cases, long anomalous plateaus ('500 nm)

Fig. 2. Carbon nanotube
conductance measure-
ments. (A) Conductance
of a nanotube contact
that is moved at constant
speed into and out of the
mercury contact as a
function of time. The pe-
riod of motion is 2 s and
the displacement (z !
$2.5 "m. The conduc-
tance “jumps” to #1G0
and then remains con-
stant for #2 "m of its dip-
ping depth. The direction
of motion is then re-
versed and the contact is
broken after 2 "m. The
cycle is repeated to show
its reproducibility; cycles
201 through 203 are displayed as an example. (B) Histogram of the conductance data of all 250 traces in
the sequence. The plateaus at 1G0 and at 0 produce peaks in the histogram. The relative areas under the
peaks correspond to the relative plateau lengths. Because the total displacement is known, the plateau
lengths can be accurately determined; in this case, the 1G0 plateau corresponds to a displacement of
1880 nm. Plateau lengths thus determined are insensitive to random oscillations of the liquid level and
hence are more accurate than measurements from individual traces. (C) A trace of a nanotube contact with
two major plateaus, each with a minor pre-step. This trace is interpreted as resulting from a nanotube that
is bundled with a second one (as in Fig. 1A, inset). The second tube comes into contact with the metal
#200 nm after the first. Shorter plateaus (from #10 to 50 nm long) with noninteger conductance are often
seen and are interpreted to result from the nanotube tips. A clear example of this effect is shown in (D).

Fig. 3. (A) Nanotube histograms of nanotube con-
tacts in various liquid metals. (a) Histogram of a
nanotube ((z ! $35 nm) in Hg. From the peak
area, the tip length (corresponding to G & 1⁄2G0)
is found to be 34 nm long, followed by a shaft for
which G & 1G0. (b) Histogram showing two dis-
tinct peaks at 0.9G0 and 2.05G0 with lengths of
159 and 339 nm, followed by a less distinct peak
near 3G0 with a length of #240 nm. (c) Nanotube
contact histogram in liquid Cerrolow, showing a
peak corresponding to a conductance plateau at
1G0 (length 530 nm), one at 2G0 (length 750 nm),
and one at 3G0 (length 420 nm). (d) A histogram
using liquid gallium with a peak at 1G0 (660 nm),
one at 2G0 (520 nm), and a broader structure at
3.1G0 (370 nm). The broadened peak structures
in (c) and (d) are caused by higher noise levels in
these measurements. (B) Schematic diagram of a
carbon nanotube (composed after high-resolution
electron micrographs), showing two typical tip
structures and a shaft. The tube is #15 nm wide
and is composed of 12 layers; the upper tip is 30
nm and the lower tip is #7 nm long.
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Four-terminal measurement on a quasi 1D channel
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Figure 4. (a) Schematic representation of the device 
used to demonstrate quantum oscillations in the 
thermopower of a quantum point contact by means of a 
current heating technique. The channel has a width of 
4 pm, and the two opposite quantum point contacts at its 
boundaries are adjusted differently. (6) Measured 
conductance and voltage - ( V ,  - V,) as a function of the 
gate voltage defining point contact 1. at a lattice 
temperature of 1.65 K and a current of 5pA.  The gates 
defining point contact 2 were kept at -2.OV. 

servations are a manifestation of the quantum oscilla- 
tions in S described in section 2. 

A detailed comparison of the oscillations in figure 4(b) 
with the ideal electron waveguide model (extended to 
the regime of finite thermovoltages and temperature 
differences) has been presented elsewhere [13]. The de- 
crease in amplitude of consecutive peaks is in agreement 
with equation (19). We therefore only discuss the 
amplitude of the strong peak near G = 1.5(2e2/h). The 
stepfunction transmission probability result (19) predicts 
S -  - 4 0 p V K - '  for this peak, but a value 
S- -201 V K - '  is probably more realistic (cf figure 3). 
The measured value of about 50pV for the amplitude of , 

that peak thus indicates that the temperature of the 
electron gas in the channel is AT - 2 K  above the lattice 
temperature T = 1.65 K. 

The increase in temperature AT is expected to be 
related to the current in the channel by the heat balance 
equation 

c J T  = ( [ / W , d 2 p ~ ,  (26) 
with c, = (x2/3)(kBT/E,)n.kB the heat capacity per unit 
area, n, the electron density, and re an energy relaxation 
time associated with energy transfer from the electron gas 
to the lattice. The symmetry of the geometry implies that 
V, - V,  should be even in the current, and equation (26) 
predicts more specifically that the thermovoltage dif- 
ference V, - V, K A T  should be proportional to 12-at 
least for small current densities. This is born out by 
experiment [13, 141 (not shown). Equation (26) allows us 
to determine the time rz from the experimental value 
AT - 2 K. Under the experimental conditions of figure 
'yb) we have T = 1.65 K, 1 = 5 pA, W,, = 4pm, p = 2 0 a .  
We thus find T~ - 10-los, which is not an unreasonable 
value for the 2DEG in GaAs-AIGaAs heterostructures at 
helium temperatures 1171. 

The sudden decrease in VI - V, beyond the last peak 
(strong negative gate voltages) is not quite understood. 
As discussed in section 2, the behaviour of S in this 
regime depends crucially on the details of the energy 
dependence of t (E) .  

3.2. Thermal conductance 

The sizable thermopower of a quantum point contact (up 
to -4OpVK-') suggests its possible use as a miniature 
thermometer, suitable for local measurements of the 
electron gas temperature. We have used this idea in an 
experiment designed to demonstrate the quantum steps 
in the thermal conductance of a second quantum point 
contact. 

The geometry of the device is shown schematically in 
figure 5(a). The main channel has a boundary containing 
a quantum point contact. Using current heating, the 
electron gas temperature in the channel is increased by 
A T  giving rise to a heat flow Q through the point contact. 
This causes a steady state temperature rise ST of the 
ZDEG region behind the point contact (neglected in the 
previous subsection), which we detect by a measurement 
of the thermovoltage across a second point contact 
situated in that region. 

T o  increase the sensitivity of our experiment, we have 
used a low-frequency AC current to heat the electron gas 
in the channel, and a lock-in detector tuned to the second 
harmonic to measure the root-mean-square amplitude of 
the thermovoltage VI - V,. The voltages on the gates 
defining the second quantum point contact were adjusted 
so that its conductance was G = 1.5(2e2/h). Finally, we 
applied a very weak magnetic field (1SmT) to avoid 
detection of hot electrons on ballistic trajectories from 
the first to the second point contact. 

Figure 5(b) shows a plot of the measured thermovol- 
tage as a function of the voltage on the gates defining the 
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prepared by other techniques (e.g., molecular beam epitaxy).
Colloidal chemistry methods are also cheaper and easier to
upscale, and are highly versatile in terms of composition, size,
shape and surface control. Moreover, colloidal NCs can be
used as building blocks for complex nanostructures, such as
NC superlattices.4,5

The combination of ease of fabrication and processing and
flexibility in property-tailoring has turned colloidal NCs and
HNCs into promising materials for a multitude of applications
(optoelectronics, photonics, spintronics, catalysis, solar energy
conversion, thermoelectrics, information processing and storage,
sensors, and biomedical applications),4–18 spurring an intense
research activity over the past decades. As a result, a remarkable
degree of control over the composition, size, shape and surface
of colloidal NCs has been achieved. Several excellent reviews
and books covering various aspects of colloidal NC research
have been published recently.4–9,16–47 Therefore, this critical
review is not intended as a comprehensive treatise, but rather
as an enticing overview of the field, in which the fundamental
principles are highlighted and the current state-of-the-art is
outlined and discussed.

2. Properties of colloidal heteronanocrystals: when
the whole is greater than the sum of its parts

The properties of colloidal HNCs emerge from their hybrid
organic–inorganic nature, and are dictated not only by
the individual characteristics of the inorganic and organic

components, but also by their mutual interaction. The organic–
inorganic interface and the interplay between the organic
surfactant molecules are also of crucial importance during
the synthesis of colloidal HNCs, being the driving forces
behind the remarkable control achieved in recent years over
the size, shape and architecture of HNCs (section 3 below). This
has yielded an exquisite variety of colloidal HNCs, spanning
from concentric core/(multi)shell quantum dots (QDs) of
various shapes to intricate multipod HNCs, via heterodimers,
nanodumbbells and heteronanorods (Fig. 3).25–30

2.1 The inorganic component

The inorganic nanoparticle (NP) dictates the optoelectronic
and magnetic properties, which are defined by the composi-
tion, size and shape of the HNC. These properties may be
further modulated or modified by the organic ligand layer, as
will be discussed below (section 2.2).
A HNC comprises two (or more) materials that share one or

more interfaces. The nature of the materials connected by the
heterojunction can be widely different.25–30 Consequently,
HNCs can be made combining metals (e.g., Ag–Au), metals
and semiconductors (e.g., Au–CdSe), metals and insulators
(e.g., Co–Fe3O4 or Au–SiO2), metal alloy and metal oxides
(e.g., FePt–Fe3O4), and different semiconductors or insulators
(e.g., CdSe-ZnS or ZnS-Fe3O4). Multicomponent colloidal
HNCs combining different types of materials have also been
obtained (e.g., CdSe/(Cd,Zn)S/ZnS core/multishell QDs
embedded in SiO2 NPs67).
The ability to join different materials in the same HNC

opens up a rich realm of possibilities for property engineering.
For example, magnetic and optical functionalities can be

Fig. 1 Suspensions of colloidal CdSe NCs of different sizes (1.7 to 4.5 nm

diameter, from left to right) under UV excitation. This iconic image of

colloidal nanoscience provides a beautiful visual demonstration of two

fundamental nanoscale effects: quantum confinement (size dependent

luminescence colours) and large surface to volume ratio (colloidal

stability).

Fig. 2 Molecular simulation snapshot of a colloidal CdSe NC capped

by hexylamine molecules. Colour coding: black, Se; orange, Cd; light

blue, C; dark blue, N; white, H; yellow, S; brown, P; red, O.

The simulation methodology is described in ref. 3. Courtesy of

P. Schapotschnikow (Delft University of Technology, Netherlands).

Fig. 3 Schematic survey of colloidal HNC architectures (for clarity the

surfactant layer is not represented). The diversity of possible material

combinations for each category can be illustrated by a few examples:

(a) CdSe/ZnS,30 InP/ZnS,30 Co/CdSe;48 (b) PbSe/CdSe;49 (c) CdTe/CdSe;50

(d) Au/Fe3O4;
51 (e) Au–Fe3O4,

52 CdSe–Fe2O3,
53 CdSe–Au,54

FePt–CdSe,55 FePt–PbS,55 CdS–Fe2O3;
56 (f) Au–Fe3O4–Au;

51

(g) CdSe/CdS,57–59 ZnSe/CdS;59 (h) Au/Ag;29 (i) CdTe–CdSe–CdTe,60

PbSe–CdSe–PbSe,61 Au–CdSe–Au,62 Co–TiO2–Co;
63 (j) CdS–Ag2S;

64

(k) PbSe–CdSe,61 Co–TiO2;
63 (l) CdSe–CdS–CdSe,65 CdTe–CdSe–CdTe;66

(m) CdSe–Au;62 (n) CdSe–CdTe;65 (o) CdSe–CdTe.65 TEM images of

some of these HNCs will be provided later. Courtesy of M. Casavola

(Utrecht University, Netherlands).
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prepared by other techniques (e.g., molecular beam epitaxy).
Colloidal chemistry methods are also cheaper and easier to
upscale, and are highly versatile in terms of composition, size,
shape and surface control. Moreover, colloidal NCs can be
used as building blocks for complex nanostructures, such as
NC superlattices.4,5

The combination of ease of fabrication and processing and
flexibility in property-tailoring has turned colloidal NCs and
HNCs into promising materials for a multitude of applications
(optoelectronics, photonics, spintronics, catalysis, solar energy
conversion, thermoelectrics, information processing and storage,
sensors, and biomedical applications),4–18 spurring an intense
research activity over the past decades. As a result, a remarkable
degree of control over the composition, size, shape and surface
of colloidal NCs has been achieved. Several excellent reviews
and books covering various aspects of colloidal NC research
have been published recently.4–9,16–47 Therefore, this critical
review is not intended as a comprehensive treatise, but rather
as an enticing overview of the field, in which the fundamental
principles are highlighted and the current state-of-the-art is
outlined and discussed.

2. Properties of colloidal heteronanocrystals: when
the whole is greater than the sum of its parts

The properties of colloidal HNCs emerge from their hybrid
organic–inorganic nature, and are dictated not only by
the individual characteristics of the inorganic and organic

components, but also by their mutual interaction. The organic–
inorganic interface and the interplay between the organic
surfactant molecules are also of crucial importance during
the synthesis of colloidal HNCs, being the driving forces
behind the remarkable control achieved in recent years over
the size, shape and architecture of HNCs (section 3 below). This
has yielded an exquisite variety of colloidal HNCs, spanning
from concentric core/(multi)shell quantum dots (QDs) of
various shapes to intricate multipod HNCs, via heterodimers,
nanodumbbells and heteronanorods (Fig. 3).25–30

2.1 The inorganic component

The inorganic nanoparticle (NP) dictates the optoelectronic
and magnetic properties, which are defined by the composi-
tion, size and shape of the HNC. These properties may be
further modulated or modified by the organic ligand layer, as
will be discussed below (section 2.2).
A HNC comprises two (or more) materials that share one or

more interfaces. The nature of the materials connected by the
heterojunction can be widely different.25–30 Consequently,
HNCs can be made combining metals (e.g., Ag–Au), metals
and semiconductors (e.g., Au–CdSe), metals and insulators
(e.g., Co–Fe3O4 or Au–SiO2), metal alloy and metal oxides
(e.g., FePt–Fe3O4), and different semiconductors or insulators
(e.g., CdSe-ZnS or ZnS-Fe3O4). Multicomponent colloidal
HNCs combining different types of materials have also been
obtained (e.g., CdSe/(Cd,Zn)S/ZnS core/multishell QDs
embedded in SiO2 NPs67).
The ability to join different materials in the same HNC

opens up a rich realm of possibilities for property engineering.
For example, magnetic and optical functionalities can be

Fig. 1 Suspensions of colloidal CdSe NCs of different sizes (1.7 to 4.5 nm

diameter, from left to right) under UV excitation. This iconic image of

colloidal nanoscience provides a beautiful visual demonstration of two

fundamental nanoscale effects: quantum confinement (size dependent

luminescence colours) and large surface to volume ratio (colloidal

stability).

Fig. 2 Molecular simulation snapshot of a colloidal CdSe NC capped

by hexylamine molecules. Colour coding: black, Se; orange, Cd; light

blue, C; dark blue, N; white, H; yellow, S; brown, P; red, O.

The simulation methodology is described in ref. 3. Courtesy of

P. Schapotschnikow (Delft University of Technology, Netherlands).

Fig. 3 Schematic survey of colloidal HNC architectures (for clarity the

surfactant layer is not represented). The diversity of possible material

combinations for each category can be illustrated by a few examples:

(a) CdSe/ZnS,30 InP/ZnS,30 Co/CdSe;48 (b) PbSe/CdSe;49 (c) CdTe/CdSe;50

(d) Au/Fe3O4;
51 (e) Au–Fe3O4,

52 CdSe–Fe2O3,
53 CdSe–Au,54

FePt–CdSe,55 FePt–PbS,55 CdS–Fe2O3;
56 (f) Au–Fe3O4–Au;

51

(g) CdSe/CdS,57–59 ZnSe/CdS;59 (h) Au/Ag;29 (i) CdTe–CdSe–CdTe,60

PbSe–CdSe–PbSe,61 Au–CdSe–Au,62 Co–TiO2–Co;
63 (j) CdS–Ag2S;

64

(k) PbSe–CdSe,61 Co–TiO2;
63 (l) CdSe–CdS–CdSe,65 CdTe–CdSe–CdTe;66

(m) CdSe–Au;62 (n) CdSe–CdTe;65 (o) CdSe–CdTe.65 TEM images of

some of these HNCs will be provided later. Courtesy of M. Casavola

(Utrecht University, Netherlands).
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Colloidal CdSe nanocrystals (NC), 
diameter 1.7-4.5 nm (left to right) 
under UV illumination.

shortly before their experimental discovery in 1984. For
large cluster sizes, theoretical and experimental evi-
dence for a supershell structure, i.e., a beating pattern
that envelopes the shell oscillations, was found in 1990
(Nishioka, Hansen, and Mottelson, 1990; Pedersen et al.,
1991). Much experimental and theoretical effort was de-
voted in the following years to detailed studies of the
electronic and geometric structure of metallic clusters
and their physical and chemical properties. (For a re-
view of shell structures in metallic clusters, see Brack,
1993, de Heer, 1993, and the recent monograph by
Ekardt, 1999).

In beautiful analogy to atoms, nuclei, or clusters, shell
structure can also be observed in the conductance spec-
tra of small semiconductor quantum dots. As an ex-
ample, the inset to Fig. 3 (lower right panel) schemati-
cally shows the device used by Tarucha et al. (1996): in
an etched pillar of semiconducting material, a small,
quasi-two-dimensional electron island is formed be-
tween two heterostructure barriers. The island can be
squeezed electrostatically by applying a voltage to the
metallic side gate that is formed around the vertical
structure. The dot is connected to macroscopic voltage
and current meters via the source and drain contacts.
Measuring the current as a function of the voltage on
the gates at small source-drain voltage, one observes
current peaks for each single electron subsequently en-
tering the dot (see Sec. II.B). The spacing between two
subsequent current peaks is proportional to the differ-
ence in energy needed to add another electron to a dot
already confining N particles. This quantity is plotted in
Fig. 3 (lower right panel) for two different dots with
diameters D!0.5 !m and D!0.44 !m and shows large
amplitudes at electron numbers N!2, 6, and 12. Indeed,
these numbers correspond to closed shells of a two-
dimensional harmonic oscillator. As we shall see, the ad-
ditional structures at the midshell regions are a conse-
quence of spin alignment due to Hund’s rules, in analogy
to the atomic ionization spectra (Zeng, Goldman, and
Serota, 1993; Tarucha et al., 1996; Franceschetti and
Zunger, 2000).

II. QUANTUM DOT ARTIFICIAL ATOMS

Quantum dots constitute an excellent model system in
which to study the many-body properties of finite fermi-
onic systems. Without attempting to review the many
experimental techniques that have been developed, we
provide in this section a brief introduction to the fabri-
cation of these man-made structures (Sec. II.A). A sub-
stantial amount of information on the electronic proper-
ties of quantum dots is drawn from conductance
measurements. Here the discrete nature of the electron
charge manifests itself as a Coulomb blockade. This im-
portant feature is discussed in Sec. II.B, and more de-
tails are given in Sec. II.C regarding the different types
of experimental setups for studying the level spacing.

A. Fabrication

The development in the early 1970s of superlattice
structures (Esaki and Tsu, 1970; Chang et al., 1973) and
the demonstration of carrier confinement in reduced di-
mensions by electron and optical spectroscopy in GaAs-
AlGaAs quantum wells (Chang, Esaki, and Tsu, 1974;
Dingle, Gossard, and Wiegmann, 1974; Esaki and
Chang, 1974) were of crucial importance for further de-
velopments in semiconductor physics. With the trend to-
ward miniaturizing electronic devices, systems based on
a quasi-two-dimensional electron gas (which can form in
heterostructures, quantum wells, or metal-oxide semi-
conductor devices; see Ando, Fowler, and Stern, 1982)
attracted much attention. By applying metallic gate pat-
terns or etching techniques, it became possible to further
restrict a two-dimensional electron gas to geometries in
which the carriers are confined to a ‘‘wire’’ (i.e., a quasi-
one-dimensional system) or a ‘‘dot,’’ where the carrier
motion is restricted in all three spatial directions (i.e., a
‘‘zero-dimensional’’ system).

Experiments on quantum wires like those, for ex-
ample, reported in the very early work of Sakaki (1980),
led to further investigations of the localization and inter-
action effects in one-dimensional systems (Wheeler
et al., 1982; Thornton et al., 1986). For the fabrication of
zero-dimensional artificial atoms and the search for ex-
perimental evidence of energy quantization, various ap-
proaches were taken in the beginning.1 Regarding the
observation of energy quantization, Reed et al. (1988)
performed pioneering experimental studies on etched
heterostructure pillars. Figure 4 shows a scanning elec-
tron micrograph of these dot structures, which had elec-
tric contacts on their top and bottom, respectively.

1See, among others, Smith et al., 1987, 1988; Hansen et al.,
1989, 1990; Sikorski and Merkt, 1989; Demel et al., 1990;
Lorke, Kotthaus, and Ploog, 1990; Silsbee and Ashoori, 1990;
Meurer, Heitmann, and Ploog, 1992.

FIG. 4. Scanning electron micrograph showing etched quan-
tum dots. (The white bars have a length of 0.5 !m.) Inset,
schematic picture of a single dot structure. After Reed et al.,
1988.
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(A schematic drawing of the double-barrier heterostruc-
ture is shown as an inset in Fig. 4.) Measuring the
current-voltage characteristics of single dots, Reed et al.
(1988) reported evidence that electron transport indeed
occurred through a discrete spectrum of quantum states.

Single-electron tunneling and the effect of Coulomb
interactions in asymmetric quantum pillars was also dis-
cussed by Su, Goldman, and Cunningham (1992a,
1992b). Guéret et al. (1992) built an etched double-
barrier vertical-dot structure, surrounded by a metallic
and a separately biased Schottky gate, that allowed a
variable control of the lateral confinement. In addition
to avoiding edge defects and allowing for a rather
smooth confinement of the electrons, with this device
one can control the effective size of the quantum dot by
varying the voltage on the vertical gate. Despite these
efforts, it was not until 1996 when, with a rather similar
setup (see the inset to the lower right panel in Fig. 3),
Tarucha et al. could obtain for the first time very clear
experimental evidence for energy quantization and shell
structure on a truly microscopic level. We shall return to
these measurements and their theoretical analysis later
on.

Another method frequently used to create quantum
confinement in a semiconductor heterostructure is the
lithographic patterning of gates, i.e., the deposition of
metal electrodes on the heterostructure surface. An ex-
ample is shown in Fig. 5, here for an inverted GaAs-
AlGaAs heterostructure. Application of a voltage to the
top gate electrodes confines the electrons of the two-
dimensional electron gas that is formed at the interface
between the different semiconductor materials (see Mei-
rav, Kastner, and Wind, 1990).

Other examples of the creation of quantum dots are
the selective and self-assembled growth mechanisms of
semiconducting compounds (Petroff et al., 2001). In the
Stranski-Krastanow process (Stranski and von Krast-
anow, 1939), a phase transition from epitaxial structure
to islands with similar sizes and regular shapes takes
place, depending on the misfit of the lattice constants
(strain) and the growth temperature. For a description
of the self-organized growth of quantum dots at the sur-
faces of crystals we refer the reader to the monograph
by Bimberg, Grundmann, and Ledentsov (1999). The

growth conditions determine the form of self-assembled
dots, which, for example, can be pyramidal, disk shaped
or lens shaped (Marzin et al., 1994; Petroff and Den-
baars, 1994; Grundmann et al., 1995; Notzel et al., 1995).
Drexler et al. (1994), Fricke et al. (1996), Miller et al.
(1997), and Lorke and Luyken (1997, 1998) probed the
ground states and electronic excitations of small self-
assembled quantum dots and rings by far-infrared and
capacitance spectroscopy. Double layers of vertically
aligned quantum dots were investigated by Luyken et al.
(1998). A theoretical analysis of the few-electron states
in lens-shaped self-assembled dots compared well with
the experimental results of Drexler et al. (1994) and
showed that the calculated charging and infrared ab-
sorption spectra reflect the magnetic-field-induced tran-
sitions between different states of interacting electrons
(Wójs and Hawrylak, 1996). Ullrich and Vignale (2000)
were the first to provide time-dependent spin-density-
functional calculations of the far-infrared density re-
sponse in magnetic fields and were able to reproduce the
main features of the far-infrared spectroscopy measure-
ments by Fricke et al. (1996) and Lorke et al. (1997).
Fonseca et al. (1998) performed an analysis of the
ground states of pyramidal self-assembled dots within
spin-density-functional theory, as discussed briefly in
Sec. III.J.

Quantum dots and quantum wires can also be fabri-
cated by the so-called cleaved-edge overgrowth (Pfeiffer
et al., 1990; see also Wegscheider, Pfeiffer, and West,
1996 and Wegscheider and Abstreiter, 1998). Much ex-
perimental and theoretical work has concentrated on
optical excitations, as summarized in the monograph by
Jacak, Hawrylak, and Wójs (1998). The latter work also
provides a comprehensive review on studies of excitons
in quantum dots.

B. Coulomb blockade

Electron transport through a quantum dot is studied
by connecting the quantum dot to surrounding reser-
voirs. The fact that the charge on the electron island is
quantized in units of the elementary charge e regulates
transport through the quantum dot in the Coulomb
blockade regime (Kouwenhoven and McEuen, 1999).
Here the transport between the reservoirs and the dot
occurs via tunnel barriers, which are thick enough that
the transport is dominated by resonances due to quan-
tum confinement in the dot (Tanaka and Akera, 1996).
This requires a small transmission coefficient through
the barriers, and thus the tunnel resistance has to be
larger than the quantum resistance h/e2. If the dot is
fully decoupled from its environment, it confines a well-
defined number N of electrons. For weak coupling, de-
viations due to tunneling through the barriers are small,
leading to discrete values in the total electrostatic en-
ergy of the dot. This energy can be estimated by N(N
!1)e2/(2C), where C is the capacitance of the dot.
Thus the addition of a single electron requires energy
Ne2/C , which is discretely spaced by the charging en-
ergy e2/C . If this charging energy exceeds the thermal

FIG. 5. Lateral device structure. Left, schematic drawing of a
lateral device structure; right, scanning electron micrograph of
the sample. From Meirav, Kastner, and Wind, 1990.
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Because a quantum dot is such a general kind of sys-
tem, there exist quantum dots of many different sizes
and materials: for instance, single molecules trapped be-
tween electrodes !Park et al., 2002", normal metal !Petta
and Ralph, 2001", superconducting !Ralph et al., 1995;
von Delft and Ralph, 2001", or ferromagnetic nanopar-
ticles !Guéron et al., 1999", self-assembled quantum dots
!Klein et al., 1996", semiconductor lateral !Kouwen-
hoven et al., 1997" or vertical dots !Kouwenhoven et al.,
2001", and also semiconducting nanowires or carbon
nanotubes !Dekker, 1999; McEuen, 2000; Björk et al.,
2004".

The electronic properties of quantum dots are domi-
nated by two effects. First, the Coulomb repulsion be-
tween electrons on the dot leads to an energy cost for
adding an extra electron to the dot. Due to this charging
energy tunneling of electrons to or from the reservoirs
can be suppressed at low temperatures; this phenom-
enon is called Coulomb blockade !van Houten et al.,
1992". Second, the confinement in all three directions
leads to quantum effects that influence the electron dy-
namics. Due to the resulting discrete energy spectrum,
quantum dots behave in many ways as artificial atoms
!Kouwenhoven et al., 2001".

The physics of dots containing more than two elec-
trons has been previously reviewed !Kouwenhoven et
al., 1997; Reimann and Manninen, 2002". Therefore we
focus on single and coupled quantum dots containing
only one or two electrons. These systems are particularly
important as they constitute the building blocks of pro-
posed electron spin-based quantum information proces-
sors !Loss and DiVincenzo, 1998; DiVincenzo et al.,
2000; Byrd and Lidar, 2002; Levy, 2002; Wu and Lidar,
2002a, 2002b; Meier et al., 2003; Kyriakidis and Penney,
2005; Taylor et al., 2005; Hanson and Burkard, 2007".

B. Fabrication of gated quantum dots

The bulk of the experiments discussed in this review
was performed on electrostatically defined quantum
dots in GaAs. These devices are sometimes referred to
as lateral dots because of the lateral gate geometry.

Lateral GaAs quantum dots are fabricated from het-
erostructures of GaAs and AlGaAs grown by molecular-

beam epitaxy !see Fig. 2". By doping the AlGaAs layer
with Si, free electrons are introduced. These accumulate
at the GaAs/AlGaAs interface, typically 50–100 nm be-
low the surface, forming a two-dimensional electron gas
!2DEG"—a thin !#10 nm" sheet of electrons that can
only move along the interface. The 2DEG can have high
mobility and relatively low electron density $typically
105−107 cm2/V s and #!1−5"!1015 m−2, respectively%.
The low electron-density results in a large Fermi wave-
length !#40 nm" and a large screening length, which al-
lows us to locally deplete the 2DEG with an electric
field. This electric field is created by applying negative
voltages to metal gate electrodes on top of the hetero-
structure $see Fig. 2!a"%.

Electron-beam lithography enables fabrication of gate
structures with dimensions down to a few tens of na-
nometers !Fig. 2", yielding local control over the deple-
tion of the 2DEG with roughly the same spatial resolu-
tion. Small islands of electrons can be isolated from the
rest of the 2DEG by choosing a suitable design of the
gate structure, thus creating quantum dots. Finally, low-

FIG. 1. Schematic picture of a quantum dot in !a" a lateral
geometry and !b" in a vertical geometry. The quantum dot
!represented by a disk" is connected to source and drain reser-
voirs via tunnel barriers, allowing the current through the de-
vice I to be measured in response to a bias voltage VSD and a
gate voltage VG.

FIG. 2. Lateral quantum dot device defined by metal surface
electrodes. !a" Schematic view. Negative voltages applied to
metal gate electrodes !dark gray" lead to depleted regions
!white" in the 2DEG !light gray". Ohmic contacts !light gray
columns" enable bonding wires !not shown" to make electrical
contact to the 2DEG reservoirs. !b", !c" Scanning electron mi-
crographs of !b" a few-electron single-dot device and !c" a
double dot device, showing the gate electrodes !light gray" on
top of the surface !dark gray". White dots indicate the location
of the quantum dots. Ohmic contacts are shown in the corners.
White arrows outline the path of current IDOT from one reser-
voir through the dot!s" to the other reservoir. For the device in
!c", the two gates on the side can be used to create two quan-
tum point contacts, which can serve as electrometers by pass-
ing a current IQPC. Note that this device can also be used to
define a single dot. Image in !b" courtesy of A. Sachrajda.
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trolled between 10–40 Å in radius, and 10% size
distributions.3,22 The nanocrystal surface is passivated by or-
ganic ligands. For the tunneling measurements we link the
nanocrystals to a gold film via hexane dithiol molecules,23 as
shown schematically in the upper inset of Fig. 1!a".
Scanning tunneling microscopy !STM" data were ob-

tained using a homebuilt cryogenic STM. The scan head and
sample area are evacuated just before introducing helium ex-
change gas and inserting the STM to the liquid helium bath.
All data presented here were acquired at 4.2 K. In a typical
experiment, a topographic image of an isolated InAs QD was
taken, from which its size was determined.8 Then, the STM
tip was positioned above the QD, forming a double barrier
tunnel junction !DBTJ" configuration,11,12 as depicted in Fig.
1!a". Tunneling I-V or dI/dV versus V characteristics were
acquired while disabling the scanning and feedback controls.
These data were acquired with the tip retracted from the QD
to a distance where the bias predominantly drops on the
tip-QD junction, forming a highly asymmetric DBTJ. In
these conditions, CB !VB" states appear at positive !nega-
tive" sample bias, and the real QD level separations can be
extracted directly from the peak spacings.8,24

RESULTS AND DISCUSSION

The I-V curve in Fig. 1!a" was acquired on an InAs QD,
22 Å in radius. This curve, typical of others, shows a region

of suppressed tunneling current around zero bias, followed
by a series of steps at both negative and positive bias. In Fig.
1!b" we present the corresponding dI/dV versus V , tunnel-
ing conductance spectrum, which is proportional to the tun-
neling density-of-states.25 A series of discrete peaks is
clearly observed, where the separations are determined by
both the single-electron charging energy and the discrete
level spacings in the QD. Also presented in the figure is a fit
to the orthodox model for single-electron tunneling, which
will be discussed below.
In Fig. 2, we plot a set of tunneling-conductance spectra

acquired on InAs QDs of radii ranging from 35–10 Å. In
Ref. 8, we discussed the detailed assignment of the observed
peaks, and extracted spectroscopic information from these
data. Briefly, on the positive bias side, immediately follow-
ing current onset, we always observed a doublet that we
assign to tunneling through the twofold spin degenerate 1Se
CB state. Then, a larger spacing is observed followed by a
higher multiplet, of up to six peaks, that we attribute to the
CB 1Pe state. The negative bias side shows a more complex
structure, reflecting the complicated QD VB level spectrum,3
but in each spectra one can identify two peaks with a larger
separation, from which the spacing between the ground and
first excited VB levels was extracted.

FIG. 1. Tunneling spectroscopy of a single InAs nanocrystal, 22
Å in radius (T!4.2 K). !a" Measured I-V curve !solid line" and the
simulated one !dotted line". The DBTJ configuration and the
equivalent circuit are shown schematically in the insets. !b" Simu-
lated !bottom trace" and experimental tunneling conductance
spectra.

FIG. 2. Size evolution of the tunneling dI/dV vs V characteris-
tics of single InAs QDs displaced vertically for clarity. The position
of the centers of the zero current gap showed nonsystematic varia-
tions with respect to the zero bias, of the order of 0.2 eV, probably
due to variations of local offset potentials. For clarity of presenta-
tion, we offset the spectra along the V direction to center them at
zero bias. Representative nanocrystal radii are denoted. All spectra
were acquired at T!4.2 K.
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CB 1Pe state. The negative bias side shows a more complex
structure, reflecting the complicated QD VB level spectrum,3
but in each spectra one can identify two peaks with a larger
separation, from which the spacing between the ground and
first excited VB levels was extracted.

FIG. 1. Tunneling spectroscopy of a single InAs nanocrystal, 22
Å in radius (T!4.2 K). !a" Measured I-V curve !solid line" and the
simulated one !dotted line". The DBTJ configuration and the
equivalent circuit are shown schematically in the insets. !b" Simu-
lated !bottom trace" and experimental tunneling conductance
spectra.

FIG. 2. Size evolution of the tunneling dI/dV vs V characteris-
tics of single InAs QDs displaced vertically for clarity. The position
of the centers of the zero current gap showed nonsystematic varia-
tions with respect to the zero bias, of the order of 0.2 eV, probably
due to variations of local offset potentials. For clarity of presenta-
tion, we offset the spectra along the V direction to center them at
zero bias. Representative nanocrystal radii are denoted. All spectra
were acquired at T!4.2 K.
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Tunneling through quantum dots

Tunable Coulomb blockade in nanostructured graphene
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We report on Coulomb blockade and Coulomb diamond measurements on an etched, tunable
single-layer graphene quantum dot. The device consisting of a graphene island connected via two
narrow graphene constrictions is fully tunable by three lateral graphene gates. Coulomb blockade
resonances are observed and from Coulomb diamond measurements, a charging energy of
#3.5 meV is extracted. For increasing temperatures, we detect a peak broadening and a
transmission increase of the nanostructured graphene barriers. © 2008 American Institute of
Physics. $DOI: 10.1063/1.2827188%

Graphene is a promising material1,2 to investigate meso-
scopic phenomena in two dimensions !2D". Unique elec-
tronic properties, such as massless carriers, electron-hole
symmetry near the charge neutrality point, and weak spin-
orbit coupling3 makes graphene interesting for high mobility
electronics,4,5 for tracing quantum electrodynamics in 2D
solids, and for the realization of spin qubits.6 Whereas diffu-
sive transport in graphene and the anomalous quantum Hall
effect have been investigated intensively,7,8 graphene quan-
tum dots are still in their infancy from an experimental point
of view.1,9 This is mainly due to difficulties in creating tun-
able quantum dots in graphene because of the absence of an
energy gap. Also, phenomena related to Klein tunneling
make it hard to confine carriers laterally using electrostatic
potentials.10,11 Here, we report on Coulomb blockade and
Coulomb diamond measurements on an etched graphene
quantum dot tunable by graphene side gates.12

The nanodevice, schematically shown in Fig. 1!a", has
been fabricated from graphene, which has been extracted
from the bulk graphite by mechanical exfoliation onto
300 nm SiO2 on n-Si substrate as described in Ref. 13. Ra-
man imaging14 is applied to verify the single-layer character
of the investigated devices.15–17 90 nm polymethyl methacry-
late !PMMA" is then spun onto the samples and electron-
beam !e-beam" lithography is used to pattern the etch mask
for the graphene devices. Reactive ion etching !RIE" based
on an Ar /O2 !9:1" plasma is introduced to etch away unpro-
tected graphene. A scanning force microscope !SFM" image
of the etched graphene structure after removing the residual
PMMA is shown in Fig. 1!b". Finally, the graphene device is
contacted by e-beam patterned 2 nm Ti and 50 nm Au elec-
trodes, as shown in Fig. 1!c". A Raman spectrum recorded on
the final device taken at the location of the graphene island is
plotted in Fig. 1!e". It is an unambiguous fingerprint of
single-layer graphene with a linewidth of the 2D line of ap-
proximately 33 cm−1.15–17 The elevated background origi-
nates from the nearby metal electrodes and the significant D
line is due to the edges within the area of the laser spot size
of #400 nm. In addition to Raman spectroscopy, the SFM
step height of #0.5 nm, as shown in Fig. 1!d", proves also
the single-layer character of the graphene flake and shows
that the RIE etching does not attack the SiO2.

The fabricated device consists of two #50 nm narrow
graphene constrictions connecting source !S" and drain !D"
electrodes to a graphene island with an area A#0.06 !m2.
The two graphene side gates !SG1 and SG2" and the
graphene plunger gate !PG" patterned next to the island are
used to electrostatically tune the two barriers and the island,
respectively. For the assignment of the gate electrodes see
Fig. 1!a". All three graphene side gates have been patterned
closer than 100 nm to the active graphene regions, as shown
in Figs. 1!b" and 1!c". An additional back gate !BG" is used
to adjust the overall Fermi energy.

Transport measurements have been performed in a vari-
able temperature He cryostat at a base temperature of
#1.7 K. Before the cool down, the sample has been baked in
vacuum at 135 °C for 12 h. We have measured the two-
terminal conductance through the dot by applying a small
!symmetric" dc or ac bias voltage Vbias, and measuring the
current through the dot with a resolution better than 20 fA.
At high bias !e.g., Vbias=100 mV, not shown", the !back"

a"Author to whom correspondence should be addressed. Electronic mail:
stampfer@phys.ethz.ch.

FIG. 1. !Color online" Nanostructured graphene quantum dot device. !a"
Schematic illustration of the tunable graphene quantum dot. !b" Scanning
force microscope !SFM" image of the investigated graphene device after
RIE etching and !c" after contacting the graphene structure. The minimum
feature size is approximately 50 nm. The dashed lines indicate the outline of
the graphene areas. !d" shows a SFM cross section along a path x $marked in
!b"% averaged over #40 nm perpendicular to the path proving the selective
etch process. !e" Confocal Raman spectra recorded on the final device at the
graphene island with a spot size of approximately 400 nm, clearly proving
the single-layer character of the investigated device. For more information
on the D, G, and 2D !also called D*" line please refer to Ref. 17.
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gate characteristics clearly reveal the charge neutrality point
of the graphene material. Such measurements are used to
adjust the range of the back gate voltage. In the following,
we kept the back gate fixed close to the overall charge neu-
trality point at VBG=−6 V, where the transport can be
pinched off by the two side gates VSG1 and VSG2. At small
bias !Vbias!200 "V", transport is dominated !i" by the two
narrow junctions, where strong transmission modulations
and gap effects appear, and !ii" by Coulomb blockade due to
the charging of the graphene island. Both effects can be seen
in Fig. 2, where the source-drain current is plotted as a func-
tion of the two barrier gate voltages VSG1 and VSG2 for con-
stant Vbias=200 "V. The large scale horizontal and vertical
current modulations can be attributed to either one or the
other narrow graphene constriction, being tuned !almost" in-
dependently from each other. On top, we observe Coulomb
resonances which are associated with charging of the
graphene island and, thus, tuned by both side gate potentials
VSG1 and VSG2 !diagonal lines".

By sweeping VSG1 and VSG2 to a regime where the back-
ground current is significantly suppressed !see white point in
Fig. 2", the plunger gate VPG can be used to trace Coulomb
resonances, as shown in Fig. 3!a". In this configuration of
gate voltages, the peak positions were stable in more than ten
consecutive plunger gate sweeps. Among the regions where
the transport is completely pinched off by the narrow con-
strictions, large scale conductance modulations in the barri-
ers are observed. Nearby and on top of these large features,
clear Coulomb peaks are measured #see e.g., Fig. 3!b", which
is a close-up of Fig. 3!a"$. The period of the Coulomb oscil-
lations measured over 18 consecutive peaks is #V̄pp
%18.2 mV, as shown in Fig. 3!c". There are no systematic
peak spacing fluctuations and the observed deviations might
be influenced by the underlying transmission modulation in
both narrow constrictions. However, the distribution of the
nearest-neighbor spacing of the Coulomb oscillations is sig-
nificantly larger than expected for purely metallic single-
electron transistors.18

Coulomb diamond measurements,19 i.e., measurements
of the differential conductance !Gdiff" as function of symmet-
ric bias voltage Vbias and plunger gate voltage VPG, are shown
in Fig. 4. The elevated background at the left and right sides
is due to barrier dependent conductance modulations, as
shown in Fig. 3!b". Please note that within the swept plunger
gate voltage range, no charge rearrangements have been ob-

served. From the extent of the diamonds in bias direction, we
estimate the charging energy of the graphene dot to be EC
%3.5 meV. This charging energy corresponds to a capaci-
tance of the dot C=e2 /EC%45.8 aF. The lever arm of the
plunger gate is $PG=CPG /C%0.19. The electrostatic cou-
pling of all other lateral gates was determined19 to be CSG1
%3.9 aF, CSG2%5.9 aF, and CPG%8.7 aF. The extracted
back gate capacitance CBG%18 aF is slightly higher than the
purely geometrical parallel plate capacitance of the graphene
island C=%0%A /d%7.4 aF. This is not surprising since &A
%d, where A is the area of the graphene island and d is the
gate oxide thickness. A screened Hartree approximation can
easily account for a factor 2.20

FIG. 2. Source-drain current as a function of the two barrier gate voltages
VSG1 and VSG2 for constant bias Vbias=200 "V. The dashed lines indicate
transmission modulations and oscillations attributed to the graphene con-
strictions !horizontal and vertical lines" and to the island !diagonal line".
Measurements are preformed at VBG=−6 V and VPG=0 V.

FIG. 3. Source-drain current through the graphene nanostructure as function
of the plunger gate voltage VPG. !a" Clear Coulomb resonances are observed
on top and next to the large scale conductance modulations. !b" shows a
marked close-up of !a", and in !c" the peak spacing is plotted for 18
consecutive peaks. Measurements are preformed in the dot configuration:
VBG=−6 V, VSG1=25 mV, and VSG2=−510 mV.

FIG. 4. !Color online" Coulomb diamonds in differential conductance Gdiff,
represented in a logarithmic color scale plot !dark regions represent low
conductance". A dc bias Vbias with a small ac modulation !50 "V" is applied
symmetrically across the dot, and the current through the dot is measured.
Differential conductance has been directly measured by a lock-in amplifier.
The charging energy is estimated to be %3.6 meV from this measurements.
Measurements are preformed in the dot configuration: VBG=−6 V,
VSG1=25 mV, and VSG2=−510 mV.
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discreteness of charge still plays an important
role. Here, the transport description needs to
incorporate higher order tunneling processes
through virtual, intermediate states. When
spin is neglected, these processes are known
as cotunneling (2). When one keeps track of
the spin, it can be convenient to view tunnel-
ing as a magnetic-exchange coupling. In this
case, the physics of a quantum dot connected
to leads becomes similar to the physics of
magnetic impurities coupled to the conduc-
tion electrons in a metal host, that is, the
Kondo effect (3, 4). Recent theory has pre-
dicted new Kondo phenomena in quantum
dots (5–7). This spin system allows one to
study an individual, artificial magnetic impu-
rity and tune in situ the parameters in the
Kondo problem. The first experimental dem-
onstration for a Kondo effect in quantum dots
was recently reported by Goldhaber-Gordon
and colleagues (8). We report here more ex-
tensive measurements of the temperature (T )
dependence of the equilibrium and nonequi-
librium Kondo effect in quantum dots that
agree well with the results of (8). In addition,
we present data using both perpendicular and
parallel magnetic fields (B) that unambigu-
ously identify the Kondo physics, and we
demonstrate the tunability of the Kondo tem-
perature with an applied gate voltage.

The important parameters for the Kondo
effect are illustrated in the energy diagrams of
Fig. 1. We treat the dot as an electron box
separated from the leads by tunable tunnel bar-
riers with a single spin-degenerate energy state
!0 occupied by one electron of either spin up or
spin down. The addition of a second electron to
this state costs an on-site Coulomb energy U "
e2/C. First-order tunneling is blocked in the
case of Fig. 1A. An electron cannot tunnel onto
the dot because the two-electron energy !0 # U
exceeds the Fermi energies of the leads, $L and
$R. Also, the electron on the dot cannot tunnel
off because !0 % $L, $R. This blockade of
tunneling is known as the Coulomb blockade
(CB) (1). In contrast to first-order tunneling,
higher order processes in which the intermedi-
ate state costs an energy of order U are allowed
for short time scales. In particular, we are in-
terested in virtual tunneling events that effec-
tively flip the spin on the dot. One such exam-
ple is depicted in Fig. 1A (1–3). Successive
spin-flip processes effectively screen the local
spin on the dot such that the electrons in the
leads and on the dot together form a spin-singlet
state. This macroscopically correlated state
gives rise to the Kondo effect, which is well
known from low-temperature resistivity mea-
surements on metals containing a small fraction
of magnetic impurities (9). In a quantum dot,
the Kondo effect can be described as a narrow
peak in the density of states (DOS) at the
electrochemical potentials of the leads, $L "
$R, as shown in Fig. 1B (5–7). This Kondo
resonance gives rise to enhanced conductance

through the dot. Out of equilibrium, when a bias
voltage V is applied between the source and
drain, eV " $L & $R, the Kondo peak in the
DOS splits into two peaks, each pinned to one
chemical potential (Fig. 1C) (5, 7). This split-
ting leads to two specific features in transport.
First, at zero magnetic field, the differential
conductance dI/dV versus V mimics the Kondo
resonance in the DOS, so a peak in dI/dV is
expected around zero voltage. Second, a mag-
netic field lifts spin degeneracy, resulting in a
dI/dV versus V showing two peaks at eV "
'g$BB (5, 10), where g is the Landé factor and
$B is the Bohr magneton.

In our GaAs/AlGaAs quantum dot devices
(Fig. 1D), negative voltages applied to the
gates control the parameters !0, the electron
number N, and (L, (R, the energy broadening
of the discrete states caused by the coupling
to the left and right leads. The conductance
shows CB oscillations on varying the gate
voltage Vg (for example, Fig. 2A). Although
the exact number of electrons N is not known,
each period corresponds to a change of one
electron on the dot. N should thus oscillate
between an even and an odd number. If we
assume spin-degenerate filling of the single-
particle states (11), the total spin on the dot is

Fig. 1. (A) Schematic energy diagram of a dot
with one spin-degenerate energy level !0 occu-
pied by a single electron; U is the single-electron
charging energy, and (L and (R give the tunnel
couplings to the left and right leads.
The parameters !0, (L, and (R can be tuned by
the gate voltages. The states in the source and
drain leads are continuously filled up to the elec-
trochemical potentials $L and $R. The series (A1,
A2, A3) depicts a possible virtual tunnel event in
which the spin-up electron tunnels off the dot
and a spin-down electron tunnels on the dot.
Such virtual tunnel events, which involve spin-
flips, build up a macroscopically correlated state
with properties that are known as the Kondo
effect. (B) The Kondo effect can be pictured as a
narrow resonance in the density-of-states (DOS)
of the dot at the Fermi energies of the leads, $L " $R. The lower energy bump in the DOS is the
broadened single-particle state !0. (C) A source-drain voltage V results in the difference eV " $L & $R.
For finite V, the DOS peak splits in two; one peak is located at each chemical potential. (D) A scanning
electron micrograph of the gate structure that defines our quantum dots in the two-dimensional
electron gas (2DEG) that is about 100 nm below the surface of a GaAs/AlGaAs heterostructure. Dot 1
has an estimated size of 170 nm by 170 nm and confines )60 electrons, and dot 2 is about 130 nm
by 130 nm and confines )35 electrons [see (13) for more details]. We measured Coulomb oscillations
by simultaneously sweeping the voltages on gates 1 and 3.

Fig. 2. (A) Linear response
conductance G " I/V ver-
sus gate voltage Vg mea-
sured in dot 1 at B " 0 for
V " 7.9 $V at 45 mK
(solid) and 150 mK
(dashed) (h is Plank’s con-
stant). The parity of the
electron number in the
valleys is indicated by an
odd or even number.
From left to right, the CB
peaks become broader
(that is, ( is increasing)
because the tunnel barrier
induced by gates 1 and 2
decreases when increas-
ing the voltage on gate 1.
Increasing T from 45 to
150 mK increases the
conductance of the even-
numbered valleys but de-
creases the conductance
of valleys 3, 5, and 7. The
detailed temperature de-
pendence is shown in (B),
where we plot the change in valley conductance *Gvalley(T) " Gvalley(T) – Gvalley(Tbase) with Tbase
+ 45 mK. The inset to (B) shows the spacings ,Vg between adjacent peaks. We observe a larger
(smaller) peak spacing for even (odd) N. (C) Differential conductance, dI/dV, as a function of V for
the center of each CB valley in (A). The odd valleys have a pronounced zero-bias maximum.
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discreteness of charge still plays an important
role. Here, the transport description needs to
incorporate higher order tunneling processes
through virtual, intermediate states. When
spin is neglected, these processes are known
as cotunneling (2). When one keeps track of
the spin, it can be convenient to view tunnel-
ing as a magnetic-exchange coupling. In this
case, the physics of a quantum dot connected
to leads becomes similar to the physics of
magnetic impurities coupled to the conduc-
tion electrons in a metal host, that is, the
Kondo effect (3, 4). Recent theory has pre-
dicted new Kondo phenomena in quantum
dots (5–7). This spin system allows one to
study an individual, artificial magnetic impu-
rity and tune in situ the parameters in the
Kondo problem. The first experimental dem-
onstration for a Kondo effect in quantum dots
was recently reported by Goldhaber-Gordon
and colleagues (8). We report here more ex-
tensive measurements of the temperature (T )
dependence of the equilibrium and nonequi-
librium Kondo effect in quantum dots that
agree well with the results of (8). In addition,
we present data using both perpendicular and
parallel magnetic fields (B) that unambigu-
ously identify the Kondo physics, and we
demonstrate the tunability of the Kondo tem-
perature with an applied gate voltage.

The important parameters for the Kondo
effect are illustrated in the energy diagrams of
Fig. 1. We treat the dot as an electron box
separated from the leads by tunable tunnel bar-
riers with a single spin-degenerate energy state
!0 occupied by one electron of either spin up or
spin down. The addition of a second electron to
this state costs an on-site Coulomb energy U "
e2/C. First-order tunneling is blocked in the
case of Fig. 1A. An electron cannot tunnel onto
the dot because the two-electron energy !0 # U
exceeds the Fermi energies of the leads, $L and
$R. Also, the electron on the dot cannot tunnel
off because !0 % $L, $R. This blockade of
tunneling is known as the Coulomb blockade
(CB) (1). In contrast to first-order tunneling,
higher order processes in which the intermedi-
ate state costs an energy of order U are allowed
for short time scales. In particular, we are in-
terested in virtual tunneling events that effec-
tively flip the spin on the dot. One such exam-
ple is depicted in Fig. 1A (1–3). Successive
spin-flip processes effectively screen the local
spin on the dot such that the electrons in the
leads and on the dot together form a spin-singlet
state. This macroscopically correlated state
gives rise to the Kondo effect, which is well
known from low-temperature resistivity mea-
surements on metals containing a small fraction
of magnetic impurities (9). In a quantum dot,
the Kondo effect can be described as a narrow
peak in the density of states (DOS) at the
electrochemical potentials of the leads, $L "
$R, as shown in Fig. 1B (5–7). This Kondo
resonance gives rise to enhanced conductance

through the dot. Out of equilibrium, when a bias
voltage V is applied between the source and
drain, eV " $L & $R, the Kondo peak in the
DOS splits into two peaks, each pinned to one
chemical potential (Fig. 1C) (5, 7). This split-
ting leads to two specific features in transport.
First, at zero magnetic field, the differential
conductance dI/dV versus V mimics the Kondo
resonance in the DOS, so a peak in dI/dV is
expected around zero voltage. Second, a mag-
netic field lifts spin degeneracy, resulting in a
dI/dV versus V showing two peaks at eV "
'g$BB (5, 10), where g is the Landé factor and
$B is the Bohr magneton.

In our GaAs/AlGaAs quantum dot devices
(Fig. 1D), negative voltages applied to the
gates control the parameters !0, the electron
number N, and (L, (R, the energy broadening
of the discrete states caused by the coupling
to the left and right leads. The conductance
shows CB oscillations on varying the gate
voltage Vg (for example, Fig. 2A). Although
the exact number of electrons N is not known,
each period corresponds to a change of one
electron on the dot. N should thus oscillate
between an even and an odd number. If we
assume spin-degenerate filling of the single-
particle states (11), the total spin on the dot is

Fig. 1. (A) Schematic energy diagram of a dot
with one spin-degenerate energy level !0 occu-
pied by a single electron; U is the single-electron
charging energy, and (L and (R give the tunnel
couplings to the left and right leads.
The parameters !0, (L, and (R can be tuned by
the gate voltages. The states in the source and
drain leads are continuously filled up to the elec-
trochemical potentials $L and $R. The series (A1,
A2, A3) depicts a possible virtual tunnel event in
which the spin-up electron tunnels off the dot
and a spin-down electron tunnels on the dot.
Such virtual tunnel events, which involve spin-
flips, build up a macroscopically correlated state
with properties that are known as the Kondo
effect. (B) The Kondo effect can be pictured as a
narrow resonance in the density-of-states (DOS)
of the dot at the Fermi energies of the leads, $L " $R. The lower energy bump in the DOS is the
broadened single-particle state !0. (C) A source-drain voltage V results in the difference eV " $L & $R.
For finite V, the DOS peak splits in two; one peak is located at each chemical potential. (D) A scanning
electron micrograph of the gate structure that defines our quantum dots in the two-dimensional
electron gas (2DEG) that is about 100 nm below the surface of a GaAs/AlGaAs heterostructure. Dot 1
has an estimated size of 170 nm by 170 nm and confines )60 electrons, and dot 2 is about 130 nm
by 130 nm and confines )35 electrons [see (13) for more details]. We measured Coulomb oscillations
by simultaneously sweeping the voltages on gates 1 and 3.

Fig. 2. (A) Linear response
conductance G " I/V ver-
sus gate voltage Vg mea-
sured in dot 1 at B " 0 for
V " 7.9 $V at 45 mK
(solid) and 150 mK
(dashed) (h is Plank’s con-
stant). The parity of the
electron number in the
valleys is indicated by an
odd or even number.
From left to right, the CB
peaks become broader
(that is, ( is increasing)
because the tunnel barrier
induced by gates 1 and 2
decreases when increas-
ing the voltage on gate 1.
Increasing T from 45 to
150 mK increases the
conductance of the even-
numbered valleys but de-
creases the conductance
of valleys 3, 5, and 7. The
detailed temperature de-
pendence is shown in (B),
where we plot the change in valley conductance *Gvalley(T) " Gvalley(T) – Gvalley(Tbase) with Tbase
+ 45 mK. The inset to (B) shows the spacings ,Vg between adjacent peaks. We observe a larger
(smaller) peak spacing for even (odd) N. (C) Differential conductance, dI/dV, as a function of V for
the center of each CB valley in (A). The odd valleys have a pronounced zero-bias maximum.
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discreteness of charge still plays an important
role. Here, the transport description needs to
incorporate higher order tunneling processes
through virtual, intermediate states. When
spin is neglected, these processes are known
as cotunneling (2). When one keeps track of
the spin, it can be convenient to view tunnel-
ing as a magnetic-exchange coupling. In this
case, the physics of a quantum dot connected
to leads becomes similar to the physics of
magnetic impurities coupled to the conduc-
tion electrons in a metal host, that is, the
Kondo effect (3, 4). Recent theory has pre-
dicted new Kondo phenomena in quantum
dots (5–7). This spin system allows one to
study an individual, artificial magnetic impu-
rity and tune in situ the parameters in the
Kondo problem. The first experimental dem-
onstration for a Kondo effect in quantum dots
was recently reported by Goldhaber-Gordon
and colleagues (8). We report here more ex-
tensive measurements of the temperature (T )
dependence of the equilibrium and nonequi-
librium Kondo effect in quantum dots that
agree well with the results of (8). In addition,
we present data using both perpendicular and
parallel magnetic fields (B) that unambigu-
ously identify the Kondo physics, and we
demonstrate the tunability of the Kondo tem-
perature with an applied gate voltage.

The important parameters for the Kondo
effect are illustrated in the energy diagrams of
Fig. 1. We treat the dot as an electron box
separated from the leads by tunable tunnel bar-
riers with a single spin-degenerate energy state
!0 occupied by one electron of either spin up or
spin down. The addition of a second electron to
this state costs an on-site Coulomb energy U "
e2/C. First-order tunneling is blocked in the
case of Fig. 1A. An electron cannot tunnel onto
the dot because the two-electron energy !0 # U
exceeds the Fermi energies of the leads, $L and
$R. Also, the electron on the dot cannot tunnel
off because !0 % $L, $R. This blockade of
tunneling is known as the Coulomb blockade
(CB) (1). In contrast to first-order tunneling,
higher order processes in which the intermedi-
ate state costs an energy of order U are allowed
for short time scales. In particular, we are in-
terested in virtual tunneling events that effec-
tively flip the spin on the dot. One such exam-
ple is depicted in Fig. 1A (1–3). Successive
spin-flip processes effectively screen the local
spin on the dot such that the electrons in the
leads and on the dot together form a spin-singlet
state. This macroscopically correlated state
gives rise to the Kondo effect, which is well
known from low-temperature resistivity mea-
surements on metals containing a small fraction
of magnetic impurities (9). In a quantum dot,
the Kondo effect can be described as a narrow
peak in the density of states (DOS) at the
electrochemical potentials of the leads, $L "
$R, as shown in Fig. 1B (5–7). This Kondo
resonance gives rise to enhanced conductance

through the dot. Out of equilibrium, when a bias
voltage V is applied between the source and
drain, eV " $L & $R, the Kondo peak in the
DOS splits into two peaks, each pinned to one
chemical potential (Fig. 1C) (5, 7). This split-
ting leads to two specific features in transport.
First, at zero magnetic field, the differential
conductance dI/dV versus V mimics the Kondo
resonance in the DOS, so a peak in dI/dV is
expected around zero voltage. Second, a mag-
netic field lifts spin degeneracy, resulting in a
dI/dV versus V showing two peaks at eV "
'g$BB (5, 10), where g is the Landé factor and
$B is the Bohr magneton.

In our GaAs/AlGaAs quantum dot devices
(Fig. 1D), negative voltages applied to the
gates control the parameters !0, the electron
number N, and (L, (R, the energy broadening
of the discrete states caused by the coupling
to the left and right leads. The conductance
shows CB oscillations on varying the gate
voltage Vg (for example, Fig. 2A). Although
the exact number of electrons N is not known,
each period corresponds to a change of one
electron on the dot. N should thus oscillate
between an even and an odd number. If we
assume spin-degenerate filling of the single-
particle states (11), the total spin on the dot is

Fig. 1. (A) Schematic energy diagram of a dot
with one spin-degenerate energy level !0 occu-
pied by a single electron; U is the single-electron
charging energy, and (L and (R give the tunnel
couplings to the left and right leads.
The parameters !0, (L, and (R can be tuned by
the gate voltages. The states in the source and
drain leads are continuously filled up to the elec-
trochemical potentials $L and $R. The series (A1,
A2, A3) depicts a possible virtual tunnel event in
which the spin-up electron tunnels off the dot
and a spin-down electron tunnels on the dot.
Such virtual tunnel events, which involve spin-
flips, build up a macroscopically correlated state
with properties that are known as the Kondo
effect. (B) The Kondo effect can be pictured as a
narrow resonance in the density-of-states (DOS)
of the dot at the Fermi energies of the leads, $L " $R. The lower energy bump in the DOS is the
broadened single-particle state !0. (C) A source-drain voltage V results in the difference eV " $L & $R.
For finite V, the DOS peak splits in two; one peak is located at each chemical potential. (D) A scanning
electron micrograph of the gate structure that defines our quantum dots in the two-dimensional
electron gas (2DEG) that is about 100 nm below the surface of a GaAs/AlGaAs heterostructure. Dot 1
has an estimated size of 170 nm by 170 nm and confines )60 electrons, and dot 2 is about 130 nm
by 130 nm and confines )35 electrons [see (13) for more details]. We measured Coulomb oscillations
by simultaneously sweeping the voltages on gates 1 and 3.

Fig. 2. (A) Linear response
conductance G " I/V ver-
sus gate voltage Vg mea-
sured in dot 1 at B " 0 for
V " 7.9 $V at 45 mK
(solid) and 150 mK
(dashed) (h is Plank’s con-
stant). The parity of the
electron number in the
valleys is indicated by an
odd or even number.
From left to right, the CB
peaks become broader
(that is, ( is increasing)
because the tunnel barrier
induced by gates 1 and 2
decreases when increas-
ing the voltage on gate 1.
Increasing T from 45 to
150 mK increases the
conductance of the even-
numbered valleys but de-
creases the conductance
of valleys 3, 5, and 7. The
detailed temperature de-
pendence is shown in (B),
where we plot the change in valley conductance *Gvalley(T) " Gvalley(T) – Gvalley(Tbase) with Tbase
+ 45 mK. The inset to (B) shows the spacings ,Vg between adjacent peaks. We observe a larger
(smaller) peak spacing for even (odd) N. (C) Differential conductance, dI/dV, as a function of V for
the center of each CB valley in (A). The odd valleys have a pronounced zero-bias maximum.
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Kondo effect - the originalKondo effect in metals with magnetic impurities

p. 382, G. Mahan: Many-Particle Physics

Kondo effect in metals with magnetic impurities
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discreteness of charge still plays an important
role. Here, the transport description needs to
incorporate higher order tunneling processes
through virtual, intermediate states. When
spin is neglected, these processes are known
as cotunneling (2). When one keeps track of
the spin, it can be convenient to view tunnel-
ing as a magnetic-exchange coupling. In this
case, the physics of a quantum dot connected
to leads becomes similar to the physics of
magnetic impurities coupled to the conduc-
tion electrons in a metal host, that is, the
Kondo effect (3, 4). Recent theory has pre-
dicted new Kondo phenomena in quantum
dots (5–7). This spin system allows one to
study an individual, artificial magnetic impu-
rity and tune in situ the parameters in the
Kondo problem. The first experimental dem-
onstration for a Kondo effect in quantum dots
was recently reported by Goldhaber-Gordon
and colleagues (8). We report here more ex-
tensive measurements of the temperature (T )
dependence of the equilibrium and nonequi-
librium Kondo effect in quantum dots that
agree well with the results of (8). In addition,
we present data using both perpendicular and
parallel magnetic fields (B) that unambigu-
ously identify the Kondo physics, and we
demonstrate the tunability of the Kondo tem-
perature with an applied gate voltage.

The important parameters for the Kondo
effect are illustrated in the energy diagrams of
Fig. 1. We treat the dot as an electron box
separated from the leads by tunable tunnel bar-
riers with a single spin-degenerate energy state
!0 occupied by one electron of either spin up or
spin down. The addition of a second electron to
this state costs an on-site Coulomb energy U "
e2/C. First-order tunneling is blocked in the
case of Fig. 1A. An electron cannot tunnel onto
the dot because the two-electron energy !0 # U
exceeds the Fermi energies of the leads, $L and
$R. Also, the electron on the dot cannot tunnel
off because !0 % $L, $R. This blockade of
tunneling is known as the Coulomb blockade
(CB) (1). In contrast to first-order tunneling,
higher order processes in which the intermedi-
ate state costs an energy of order U are allowed
for short time scales. In particular, we are in-
terested in virtual tunneling events that effec-
tively flip the spin on the dot. One such exam-
ple is depicted in Fig. 1A (1–3). Successive
spin-flip processes effectively screen the local
spin on the dot such that the electrons in the
leads and on the dot together form a spin-singlet
state. This macroscopically correlated state
gives rise to the Kondo effect, which is well
known from low-temperature resistivity mea-
surements on metals containing a small fraction
of magnetic impurities (9). In a quantum dot,
the Kondo effect can be described as a narrow
peak in the density of states (DOS) at the
electrochemical potentials of the leads, $L "
$R, as shown in Fig. 1B (5–7). This Kondo
resonance gives rise to enhanced conductance

through the dot. Out of equilibrium, when a bias
voltage V is applied between the source and
drain, eV " $L & $R, the Kondo peak in the
DOS splits into two peaks, each pinned to one
chemical potential (Fig. 1C) (5, 7). This split-
ting leads to two specific features in transport.
First, at zero magnetic field, the differential
conductance dI/dV versus V mimics the Kondo
resonance in the DOS, so a peak in dI/dV is
expected around zero voltage. Second, a mag-
netic field lifts spin degeneracy, resulting in a
dI/dV versus V showing two peaks at eV "
'g$BB (5, 10), where g is the Landé factor and
$B is the Bohr magneton.

In our GaAs/AlGaAs quantum dot devices
(Fig. 1D), negative voltages applied to the
gates control the parameters !0, the electron
number N, and (L, (R, the energy broadening
of the discrete states caused by the coupling
to the left and right leads. The conductance
shows CB oscillations on varying the gate
voltage Vg (for example, Fig. 2A). Although
the exact number of electrons N is not known,
each period corresponds to a change of one
electron on the dot. N should thus oscillate
between an even and an odd number. If we
assume spin-degenerate filling of the single-
particle states (11), the total spin on the dot is

Fig. 1. (A) Schematic energy diagram of a dot
with one spin-degenerate energy level !0 occu-
pied by a single electron; U is the single-electron
charging energy, and (L and (R give the tunnel
couplings to the left and right leads.
The parameters !0, (L, and (R can be tuned by
the gate voltages. The states in the source and
drain leads are continuously filled up to the elec-
trochemical potentials $L and $R. The series (A1,
A2, A3) depicts a possible virtual tunnel event in
which the spin-up electron tunnels off the dot
and a spin-down electron tunnels on the dot.
Such virtual tunnel events, which involve spin-
flips, build up a macroscopically correlated state
with properties that are known as the Kondo
effect. (B) The Kondo effect can be pictured as a
narrow resonance in the density-of-states (DOS)
of the dot at the Fermi energies of the leads, $L " $R. The lower energy bump in the DOS is the
broadened single-particle state !0. (C) A source-drain voltage V results in the difference eV " $L & $R.
For finite V, the DOS peak splits in two; one peak is located at each chemical potential. (D) A scanning
electron micrograph of the gate structure that defines our quantum dots in the two-dimensional
electron gas (2DEG) that is about 100 nm below the surface of a GaAs/AlGaAs heterostructure. Dot 1
has an estimated size of 170 nm by 170 nm and confines )60 electrons, and dot 2 is about 130 nm
by 130 nm and confines )35 electrons [see (13) for more details]. We measured Coulomb oscillations
by simultaneously sweeping the voltages on gates 1 and 3.

Fig. 2. (A) Linear response
conductance G " I/V ver-
sus gate voltage Vg mea-
sured in dot 1 at B " 0 for
V " 7.9 $V at 45 mK
(solid) and 150 mK
(dashed) (h is Plank’s con-
stant). The parity of the
electron number in the
valleys is indicated by an
odd or even number.
From left to right, the CB
peaks become broader
(that is, ( is increasing)
because the tunnel barrier
induced by gates 1 and 2
decreases when increas-
ing the voltage on gate 1.
Increasing T from 45 to
150 mK increases the
conductance of the even-
numbered valleys but de-
creases the conductance
of valleys 3, 5, and 7. The
detailed temperature de-
pendence is shown in (B),
where we plot the change in valley conductance *Gvalley(T) " Gvalley(T) – Gvalley(Tbase) with Tbase
+ 45 mK. The inset to (B) shows the spacings ,Vg between adjacent peaks. We observe a larger
(smaller) peak spacing for even (odd) N. (C) Differential conductance, dI/dV, as a function of V for
the center of each CB valley in (A). The odd valleys have a pronounced zero-bias maximum.
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