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Quantised conductance in a Quantum Point Contact (QPC
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Figure 1. The channel resistance at 7 ~ 0.1 K is plotted as a function of gate voltage for two
different carrier concentrations induced by illumination. The existence of a resistance
quantised in units of #/2ie?, where i is the number of occupied sub-bands, is illustrated. The
inset shows a schematic diagram of the device used in this work. The split gate itselfis 0.5 ym
wide and 0.4 um long. Two split gates are illustrated, one of which is selected for the
experiment.
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Figure 1. The channel resistance at 7 ~ 0.1 K is plotted as a function of gate voltage for two
different carrier concentrations induced by illumination. The existence of a resistance
quantised in units of #/2ie?, where i is the number of occupied sub-bands, is illustrated. The
inset shows a schematic diagram of the device used in this work. The split gate itselfis 0.5 ym
wide and 0.4 um long. Two split gates are illustrated, one of which is selected for the
experiment.
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Quantised conductance of a carbon nanotube (CNT)
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Resistance (kQ)

Four-terminal measurement on a quasi 1D channel
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Figure 2 Two- and four-terminal resistances of a ballistic quantum wire. The dashed line
shows the two-terminal resistance of the 2-um-long central section of the wire versus the
voltage applied to the associated gate 2. Gates 1 and 3 are not activated. The solid line
shows the four-terminal resistance, (Vy — Vg)/1, versus the voltage applied to gate 2. Here
I/, and Vg are the voltages at probes A and B respectively and /is the current driven from
source to drain. For this measurement, the voltages applied to gates 1 and 3 correspond
to a single mode in the wire sections in front of these gates. Measurements were
performed at a temperatureof § = 300 mK with an excitation current smaller than 1 nA.
While the two-terminal resistance moves through the characteristic quantized resistance
steps, the four-terminal resistance fluctuates around zero indicating that the inherent
resistance of a clean one-dimensional wire is vanishingly small. The small oscillations
around zero resistance (from —3.8V to —4.5V) suggest that mesoscopic variation of the
various transmission amplitudes with the one-dimensional density dominate the resis-
tance in this regime. Indeed a similar, although not identical, pattern is observed upon
successive cool-downs of the same device. As expected, similar mesoscopic variations
are observed when a magnetic field is applied (see Fig. 3). Inset, probe invasiveness in a
quantum wire. Diamonds, the ratio between the four-terminal and two-terminal
resistances versus the invasiveness of the voltage probes (see text). Solid ling, theoretical
prediction of the Landauer—Buttiker model'® (see text). All measurements are for single-
mode wires.
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Quantum dots (QDs)

Fig. 2 Molecular simulation snapshot of a colloidal CdSe NC capped

by hexylamine molecules. Colour coding: black, Se; orange, Cd; light Colloidal CdSe nanocrystals (NC)

blue, C; dark blue, N; white, H; yellow, S; brown, P; red, O. : :
The simulation methodology 1s described in ref. 3. Courtesy of diameter 1.7-4.5nm (left to I'Ight)

P. Schapotschnikow (Delft University of Technology, Netherlands). under UV illumination.
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FIG. 4. Scanning electron micrograph showing etched quan-
tum dots. (The white bars have a length of 0.5 um.) Inset,
schematic picture of a single dot structure. After Reed et al.,
1988.
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Small dots - resonant tunneling
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Kondo effect in a quantum dot
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Kondo eftect - the original
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Kondo effect in a quantum dot
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