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well to conduction bands. It turns out that all three 
effects mentioned above are important for causing 
a difference between model potentials suitable for 
valence and conduction bands, which, in our case, 
favor a somewhat smaller exchange effect for 
conduction bands. This conclusion is supported by 
past calculations(3*s) on the rare gas solids, since 
the band gaps calculated with state-independent 
potentials are smaller than observed. In some 
cases the difference is small, but this is aided by 
the incorrect placement of the valence band edge 
appreciably below the corresponding atomic level. 
The conduction band edge is also placed too low 
in these calculations, below the value obtained 
with the new potential. 

We therefore propose that the new potential is 
suitable for valence band calculations and better 
suited for conduction bands, as far as an absolute 
determination of energy levels is concerned, than 
existing v&r) approximations to free electron 
exchange. These remarks will be further clarified 
as we compile our calculated results. 

3. CALCULATIONS 
This section sketches the calculation of rela- 

tivistic band structure, effective masses, and 
deformation potentials with the new potential 
(i.e. [S] in Fig. 2). Many details are omitted; these 
are extensively covered in the author’s thesis.‘20) 

A. Nonrelativistic ene-rgy bands 
The valence bands are first computed by the 

tight-binding method, essentially according to 
FOWLER’S(~) method for krypton. Our basis set 
includes functions from the 5s25p4 atomic con- 
figuration, three-center integrals are neglected, 
and only two-center integrals between an atom 
and its nearest neighbors are considered. The 
resulting valence bands are shown beneath the 
break in scale in Fig. 3. As indicated previously, 
the p-like valence bands bracket the corresponding 
free atom value at - 11.38 eV. 

Valence and conduction bands were also deter- 
mined by the OPW method. The core eigenfunc- 
tions to which we orthogonalize are accurately 
tight-binding functions formed from atomic 
solutions of 

[- V”+tir)%~, = E,z#G~, (10) 

where v(r) is the new potential. We have solved this 

equation numerically for the core functions (and 
the 5s and Sp functions used in the preceding 
paragraph). Valence and conduction energies were 
found at symmetry points P, X, L, and K. The 
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FIG. 3. Calculated nonrelativistic band structure of Xe. 

convergence of some lower energies with in- 
creasing number of plane waves in the basis set is, 
shown in Figs. 4-7. Some rough correspondences. 
to atomic levels are: P,(l) to .5s, l?,,(l) to Sp, 
I’,(2) (conduction band edge) to 6s, and P2s, to 
5d. Notice that there are different kinds of marks 
on the right-hand margins of these figures. First 
there are (x) marks, which represent our extra- 
polations of the convergence lines. There are also 
horizontal slashes (-) for the lower convergence 
lines; these represent the tight-binding valence 
energies for comparison. Finally, there are some 
“data points” (0) for (Fig. 5); these are a by- 
product of the calculation of deformation poten- 
tials at PI5 and .Pr, by the OPW method, but with 
an expanded basis set of 339 OPw’s, as compared 
with the present 137 at P. That calculation is des- 
cribed later. 

Convergence is generally satisfactory, except 
for the Sp-like valence band. This arises from the 
tight-binding nature of these valence states and 
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Typical band structures

GaAs 
(semiconductor)

N!. A wurtzite crystal is characterized by two lattice con-
stants a lc and c lc. A major difference between zinc blende
and wurtzite structures is that the in-plane behavior of the
bands in a wurtzite crystal is different from the behavior
along the "0001# axis $the c axis!. The %1c conduction bands
are s like at the center of the BZ, while the valence bands
belong to the &%6v :&X ,Y '!%1v:&Z'' representations. The
nearest higher-order conduction bands belong to the %6c
states of &X,Y' symmetry and the %3c states transforming like
the &Z' representation.

Due to the anisotropy of the crystal, there are two dis-
tinct interband matrix elements arising from the %6v :&X ,Y '
and %1v :&Z' representations, defined by analogy with Eq.
$2.3!. These are in practice derived from the anisotropic ef-
fective mass using expressions similar to Eq. $2.15! $assum-

ing negligible crystal-field and spin-orbit splittings!. Al-
though the different conduction-band energy contributions
from the higher %6c"&X ,Y ' and %3c"&Z' intermediate
states lead to two distinct F parameters, no experiments that
would enable us to establish independent values for the latter
have been reported. The compilations in the following sec-
tions take the F parameters in the wurtzite nitrides to be zero.

The second-order valence-band terms in the Hamiltonian
are evaluated in a manner similar to the earlier discussion for
zinc blende structures. The procedure leads to six distinct A
parameters, which are to a large extent analogous to the Lut-
tinger parameters in zinc blende materials. The detailed defi-
nitions have appeared in the literature.34–38

In contrast to the zinc blende materials, the wurtzite
structure does not give a triply degenerate valence band

FIG. 1. Diagram of the band structure in the vicinity of the energy gap of
GaAs: $a! throughout the first Brillouin zone $reproduced with permission
from Ref. 81!, $b! a magnified view near the zone center.

FIG. 2. Direct %-valley energy gap as a function of lattice constant for the
zinc blende form of 12 III–V binary compound semiconductors $points! and
some of their random ternary alloys $curves! at zero temperature. The en-
ergy gaps for certain ternaries such as AlAsP, InAsN, GaAsN, InPN, and
GaPN are extended into regions where no experimental data have been
reported. For GaAsN and InPN, the arrows indicate the boundaries of the
regions where the gap dependence on composition may be predicted with
any accuracy.

FIG. 3. Lowest forbidden gap as a function of lattice constant for non-
nitride III–V compound semiconductors $points! and their random ternary
alloys $lines! at zero temperature. The materials with %-, X-, and L-valley
gaps are indicated by solid, dotted, and dashed lines, respectively.
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bcc iron 
(metal)

there a large contribution. For example, as shown in
Fig. 2, the large spike near H!1; 0; 0" in the direction of
P!12 ; 12 ; 12" is due to a pair of spin-orbit coupled bands, one
occupied and one unoccupied in a small k interval. The
small energy gap gives rise to a small energy denomina-
tor, making the contribution to the Berry curvature very
large in this small interval. The largest peaks and valleys
in the distribution of the total Berry curvature are, how-
ever, located off the k-space symmetry lines. For ex-
ample, as can be seen in Fig. 3, the Berry curvature
shows sharp peaks and valleys of several orders of
magnitude in height and depth at general k points of
the (010) plane.

In order to further understand the role of spin-orbit
coupling in the AHE, we artificially varied the speed of
light, thereby changing the spin-orbit coupling strength
! / c#2. As shown in Fig. 4, "xy is linear in ! for small
coupling, but not for large coupling. For iron, nonlinear-
ity becomes significant for !=!0 > 1=2, which means
that the spin-orbit interaction in iron cannot be accurately
treated in a perturbative manner.

It is straightforward to extend our calculation to the ac
Hall case by using the Kubo-formula [22] approach:

"!!"xy $
e2

!h

Z

VG

d3k
!2#"3

X

n!n0
!fn;k # fn0;k"

% Imh nkjvxj n0kih n0kjvyj nki
!!n0 #!n"2 # !!& i$"2 ; (7)

where $ is a positive infinitesimal. In the upper panel in

FIG. 2. Band structure near Fermi energy (upper panel) and
Berry curvature "z!k" (lower panel) along symmetry lines.
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FIG. 3 (color). Fermi surface in (010) plane (solid lines) and
Berry curvature #"z!k" in atomic units (color map).
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FIG. 4. Calculated anomalous Hall conductivity (open
circles) vs the effective spin-orbit coupling strength relative
to its value for iron. The line is a guide to the eye.
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FIG. 1. Anomalous Hall effect vs $ with different numbers of
k points in full Brillouin zone. Here $ is introduced by adding
$2 to the denominator in Eq. (4). The dotted lines are obtained
(for zero temperature) using a different number of k points.
The solid lines are obtained by an adaptive mesh refinement
method.
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Transport

• of mass 
• of charge 
• of heat 
• of spin 
• …

silica. On the polished surface of Cr2O3, a thin film of Pt
(10 nm) or Cu (20 nm) is deposited as the PM layer by the
radio-frequency sputtering method. To provide the appro-
priate temperature gradient ∇T, the sample is sandwiched
with a pair of Cu blocks (covered by thin Al2O3 film to
guarantee the electrical insulation but with good thermal

contact) under the high vacuum condition less than
10−4 Torr. One Cu block serves as the thermal bath with
temperature T − ΔT, and another Cu block is equipped
with a resistive heater to keep its temperature T. Their
temperatures are actively monitored and controlled by
Cernox thermometers and a Lake Shore 335 temperature
controller. Here, the temperature gradient is given by∇T ¼
ΔT=LT with LT being the sample thickness along the
temperature gradient direction. To evaluate the magnitude
of thermally induced Js through Eq. (1), H dependence of
raw electric voltage Vraw is measured in the PM layer with
and without ∇T by nanovoltmeter. After the subtraction
of background (i.e., the one with ΔT ¼ 0), the H-odd
component of induced voltage V is extracted by
VðH;ΔTÞ¼f½VrawðH;ΔTÞ−VrawðH;0Þ%−½Vrawð−H;ΔTÞ−
Vrawð−H;0Þ%g=2. Magnetization M and thermal conduc-
tivity κ for Cr2O3 are measured with the Physical Properties
Measurement System (PPMS, Quantum Design Inc).
The target compound Cr2O3 has a corundum crystal

structure with trigonal space group R3̄c. The magnetism is
dominated by the Cr3þ ion with S ¼ 3=2, and the anti-
ferromagnetic order with local magnetic moments pointing
along the [001] axis is stabilized below the Néel temper-
ature TN ∼ 308 K [Fig. 1(b)]. Since antiferromagnetically
aligned spins prefer to lie normal to H, the application of
H∥½001% larger than the critical field valueHc induces spin-
flop transition and reorients the magnetic moment direction
as shown in Fig. 1(c) [24,25].
In the following, we mainly discuss the results for the

Cr2O3=Pt sample under the experimental configuration
shown in Fig. 1(a) (i.e., setup A) unless specified. Here,
Pt is deposited on the (110) plane of Cr2O3 and ∇T is
applied normal to it, which corresponds to the geometry of
the longitudinal spin Seebeck effect [12,13]. Magnetic field
is applied along the [001] direction of Cr2O3. To detect the
electric voltage of spin-current origin following Eq. (1), the
V component normal to H is measured within the Pt layer.
Figure 1(d) indicates the magnetic field dependence of M
for Cr2O3, as well as V in the Pt layer at T ¼ 40 K and
ΔT ¼ 15 K. The application of H∥½001% larger than Hc ∼
6 T causes a spin-flop transition and magnetization step in
the M −H profile, which remains almost T independent
below 60 K. Correspondingly, a clear steplike enhancement
of V is observed atHc. The magnitude of V in Pt is found to
be proportional toM in Cr2O3, suggesting that the observed
voltage originates from thermally induced spin current
mediated by an antiferromagnetic spin wave carrying
nonzero spin angular momentum σ ∝ M. Such a corre-
spondence is also observed for the case ofH∥½11̄0%, where a
spin-flop transition is absent and both V and M show
H-linear behavior (see the Supplemental Material [26]).
To further establish the validity of Eq. (1) in this system,

the same voltage measurement is performed for the
Cr2O3=Cu sample [Fig. 1(e)]. The obtained V in the Cu
layer is negligibly small, consistent with the much smaller

FIG. 1 (color online). (a) Experimental setup for the measure-
ment of the longitudinal spin Seebeck effect, with magnetic field
(H) applied along the [001] axis of Cr2O3. Arrows in Cr2O3

represent the local magnetic moments, and bold blue (thin red)
arrows in paramagnetic metal correspond to the propagation
direction (carried spin angular momentum) of the associated spin
current Js. LT (thickness of bulk Cr2O3 along the temperature
gradient direction) and LV [distance between the electrodes
(black circles) on the metal layer] are 0.5 and 4 mm, respectively.
Unless specified, Pt is employed as the paramagnetic metal. (b),
(c) The magnetic structures of Cr2O3 for the ground state (i.e.,
H ¼ 0) and the H-induced spin-flopped state, respectively. (d) H
dependence of induced electric voltage V for Pt and magnetiza-
tion M for Cr2O3. The similar voltage profiles are also measured
with (e) a different paramagnetic metal (Cu) and (f) different
magnitudes of temperature gradient ΔT. (g) ΔT dependence of Pt
voltage at 14 T.
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Figure 1: Shubnikov-de Haas oscillations in a GaAs/AlGaAs Hall bar containing 2DEG. (Measured
by L. Nádvorńık.)

3.1 Shubnikov–de Haas oscillations

Oscillations shown in Fig. 1 originate from quantum mechanics and cannot be explained by semi-
classical theory of charge carriers as it is. However, we can borrow the substantial quantum feature
of electrons, described by their wavefunction, and explain what corrections to Eq. (17) should be
expected.

What quantum mechanics tells us (and what semiclassical theories do not know6) is that
the wavefunction of an electron must unambiguous that is, if an electron follows a cyclotron
trajectory, its phase must be the same modulo 2⇡ at the beginning and at the end of each period.
Alternatively, one could require the length of the closed trajectory to be an integer multiple of
electron’s wavelength. More precisely, this Bohr-Sommerfeld quantization condition readsI

~k · d~r = 2⇡(n+ �) (18)

where n is an integer and � a quantum-mechanical correction (related to the fact that for instance

Landau level energies in units of ~! are n + 1
2 and not just n; see Sec. 5.3). Inserting ~~k =

m~v� e ~A into the l.h.s. of Eq. (18), we get 2⇡R2
CeB/~� (e/~)

H
~A ·d~r = 2SB/(~/e)�SB/(~/e) =

2⇡SB/(h/e) in terms of magnetic flux � = SB passing through electron’s cyclotron orbit. Except
for the corrective term �, Eq. (18) can be reexpressed as a requirement that � be an integer
multiple of magnetic flux quantum �0 = h/e.

Let us apply condition (18) to states at the Fermi level. As we could have verified when solving

Eqs. (16), real-space trajectories (cyclotron orbits) correspond to a periodic motion in the ~k-space
via a mapping that consists of a 90� rotation and rescaling by7 m!/~. A 2D electron will orbit

around the Fermi surface in the ~k-space and so will a 3D electron which moreover never leaves

6There is not a universal rule of what one should call ”semiclassical theory”. The construction we are just about
to described is sometimes also called ”semiclassical theory”.

7That is: take ~r(t), multiply it by m!/~, rotate it and you get ~k(t).
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Drude formula: classical derivation

2 Classical, semiclassical, and quantum

The three attributes above are often used without having a sharp boundary between the respective
areas in mind. However, thinking about transport, one can roughly get oriented on the following:

• classical transport. Charge carriers (electrons) are treated as charged balls subject to New-
tonian mechanics that typically includes electric and magnetic forces. Electrical current
between A and B is evaluated by counting the number of particles that have travelled from
A to B over a unit of time. This number is multiplied by the (elementary) charge.

• semiclassical transport focuses on the phase space and its occupation described by the dis-
tribution function g(~r,~k, t). In equilibrium, it equals the Fermi-Dirac distribution and out
of equilibrium (e.g. when current-driving electrical field is applied), it is described by the
Boltzmann equation. Summing over the occupied states when out from equilibrium yields
the current (again after multiplication by change).

The Boltzmann equation treats electrons almost as in classical case but: (a) rather than by

momentum ~p, the states are identified by their wavevector ~k = ~p/~, and (b) the relationship
between energy E and p = |~p| may be more complicated than simply E = p2/2m. The

dispersion relation E = E(~k) is typically taken from a pure quantum-mechanical model e.g.

of a crystalline solid. With some exaggeration: semiclassics – classics = quantum dispersion
relation.

• quantum transport requires not only the knowledge of the dispersion relation but also of
the corresponding wavefunctions. Without any need to refer to classical notions (particle =
charged ball), it calculates current as a response to time-dependent perturbation (current-
driving electric fields).

Quite often, all three approaches lead to the same result at the end. A well-known example is
the Drude formula

� =
n

m
e2⌧ (5)

which we shall now derive thrice for a 2D electron gas.

2.1 Drude formula (classical)

Among all the assumptions needed here (see [1], Chapter 1, p. 6), let us highlight that electrons
thought to be independent from each other, undergo completely randomizing collisions that occur
on average after time ⌧ .

In absence of magnetic fields, a particle of charge q emerging from the last collision with random
velocity ~v0 at time t = 0 will accelerate according to1 ~F = m~a, i.e. ~v(t) = ~v0 + qt ~E/m. Averaged
over random scattering events (that occur around t = ⌧ on average), the mean particle velocity is
q⌧ ~E/m and total current (in amperes) from A to B equals q2⌧ ~E/m times the number of particles
available and divided by the distance from A to B (we imagine that all particles start at A at
the same time and ask how long they need to travel to B). Recast in terms of current density ~j
(in Am�d+1 for d-dimensional system),

~j =
n

m
e2⌧ ~E , (6)

where n is the charge carrier concentration in m�d (and we inserted q = �e for electrons). Obvi-
ously, the conductivity (in inverse ⌦md�1) of Eq. (5) is recovered for any number of dimensions
at once.

1Conventions: electric field ~

E points from the positive pole to the negative one. Electron charge is q = �e < 0
(like in [1]!). Current flows in the same direction as positively charged particles, ~j = nq~v (opposite to the motion
of electrons).
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Drude formula: semiclassical derivation

2.2 Drude formula (semiclassical)

To cheat as little as possible, we should start with a Hamiltonian. Consider Ĥ = p̂2/2m⇤ in two

dimensions; the corresponding dispersion relation reads E(~k) = ~2k2/2m⇤ with e↵ective mass m⇤

and k = |~k|. At this point, we have provided information about the (possibly complicated) band
structure that had to be obtained from quantum mechanical calculation. It is the approximation
we chose that m⇤ replacing the vacuum electron mass is the only remnant of this complexity.

Boltzmann equation for the ~k-indexed states reads @g/@t + (@g/@t)drift = (@g/@t)scatt —
in-flow of particles due to drift or explicit time dependence (’source term’, ’adding particles by
hand’, for instance photoexcitation) equals the out-flow due to scattering. In a steady state (and
no externally driven excitation, @g/@t = 0), homogeneous system (@g/@xi = 0), linear response
to ~E, and relaxation time approximation (the collision part approximated as shown on the r.h.s.
below), this transforms into

�@f

@"
~v · q ~E = �g � g0

⌧
. (7)

Here g0(~k) = f
�
E(~k)

�
is the equilibrium (i.e. Fermi-Dirac) distribution and ⌧ is the phenomeno-

logical relaxation time. At this point, we introduce the chemical potential µ (appearing in f) and
set it for this moment equal to the Fermi level "F . It should be noted that in obtaining Eq. (7),

(a) the dispersion relation has been employed (~v = ~�1@E/@~k) together with (b) semiclassical

equations of motion ~~̇k = q ~E.
The unknown in Eq. (7), g can readily be expressed (g = g0 + ⌧ · . . .) and it represents the

distribution function (occupation of states) of a system that has been driven out from equilibrium
by a weak electric field ~E. Current (density) calculated as

~j =

Z
d2k

(2⇡)2
q~v(~k)g(~k) = q2⌧

Z
d2k

(2⇡)2

✓
�@f

@"

◆
~v(~v · ~E) (8)

turns out to be proportional to ~E times a second-rank tensor whose xx component equals

�xx =
e2

m⇤ ⌧
1

4⇡

2m

~2 "F . (9)

Making use of the 2D relation n = k2F /(4⇡), we once again recover the Drude formula (5). The
derivation in 3D goes by analogy, it yields vaguely speaking a di↵erent result than Eq. (9) (it

contains "3/2F ) which however transforms again into the same Drude formula as in (5) if we express
it in terms of n rather than "F .

Relaxation time can be calculated using the (modified) Fermi golden rule

1

⌧(~k)
=

2⇡

~ ni

Z
d3k0

(2⇡)3
|Mkk0

|2(1� cos ✓kk0)�
�
E(~k)� E(~k0)

�
(10)

where Mkk0
is the matrix element of the single impurity potential between the state before (~k) and

after (~k0) scattering and ni is the density of impurities. The factor 1 � cos ✓kk0 makes backward
scattering more important than forward scattering since the latter should not impede current flow
much (cos ✓kk0 = ~k · ~k0/|~k||~k0|). ’Original’ Fermi golden rule is written without this factor and
it gives the so called quantum relaxation time as opposed to the transport relaxation time of
Eq. (10). The ~k–dependence of ⌧ is usually neglected and for some special cases (spherical Fermi
surface, isotropic scatterers) is even absent.

For so called uncorrelated short-range scatterers, V (~r) =
P

i V0�(~r � ~ri) placed at random
positions {~ri}, Eq. (10) gives 1/⌧ / niV

2
0 g("F ) where g("F ) is the density of states at the Fermi

level.

5

k
x

ky

kF

E(~k) =
~2
2m

(k2
x

+ k2
y

)

E(~k)  EF
g = g(~r,~k, t)

determine what happens out of equilibrium

�0 =
ne2⌧

mg(~k) = f(E(~k)) +�g(~k)

using the solution of Boltzmann equation:

~E



Drude formula: fully quantum-mechanical derivation

Kubo central

Karel Výborný

Apr22, 2016

1 Index

• Kubo formula for a Superlattice (kuboform.ps). Starting with the DC Kubo formulae for
�
ii

and �
ij

, expressions derived that take wavefunctions of a tight-binding model of a 1D
superlattice on a 2DEG in magnetic field [1].

• Kubo formula for 2DEG: a detailed derivation. Same starting point as above, plain 2DEG
in magnetic field.

• Evaluation of magnetic l&c dichroism in (Ga,Mn)As (mld-notes.pdf). Part of these longer
notes is a derivation of the Kubo formula from Liouville equation with a damping term (fol-
lowing derivation in the thesis of J. Kolorenč which probably follows, in turn, the original [2]).
AC formulae for �

xx

and �
xy

are given together with some examples.

• Self-Energy Approximation (selfenergy.pdf). Derivation of � for a random-alloy crystal.

• Self-energy via Self-consistent Born approximation (scba-notes.pdf). An example of self-
energy calculation for 2DEG, starting from formula (4.96) in Mahan [3].

• JZel’s derivation, Eq. (51)

2 Kubo formula for disorder-induced indirect transitions

We seek an expression for absorption coe�cient ↵(!) in a crystal with some little disorder po-
tential V . The absorption coe�cient is the imaginary part of !n/c (Eq. (4) of [4] or Eq. (5.8) of
Abram/Rees/Wilson [5]) where n =

p
µ✏ and ✏ = ✏

b

+ i�/!✏0 where ✏0 is the vacuum permittivity,
✏
b

⇡ 10.9 is the GaAs permittivity above the phonon resonances [4] and µ = 1 is the relative
permeability. In the rest, calculation of conductivity �(!) is discussed.

Starting with Eq. (11) in mld-notes/111221 and going towards Eq. (13), but expressing the
result in terms of Green’s functions defined in Eq. (12), we get

�(!) =
h̄e2

2⇡V

Z
dE f(E)


Tr

�
G+(E)�G�(E)

�
v
x

G�(E + h̄!)�G�(E)

h̄!
v
x

�Tr
�
G+(E)�G�(E)

�
v
x

G+(E)�G+(E � h̄!)

h̄!
v
x

�
.

(1)

The Green’s functions1 now contain the full Hamiltonian with disorder potential V ,

Ĝ+(E) ⌘ 1

E � Ĥ + i✏̃
, (2)

1
Note that

ˆG�
(E)� ˆG+

(E) = 2⇡i�(E � ˆH).

1

e.g. xx-component, finite frequencies:

�ij / Tr v̂ihĜv̂jĜi

~j / Tr ~̂vhĜ(~̂v · ~E)Ĝi

what is the trace?

Tr Â =
X

i

h i|Â| ii

in general, need to know the wavefunctions but for free electrons: 

hx| 
k

i = e

ikx ) h 
k

|v
x

| 
k

i = ~k/m



Examples of low-dimensional systems:
semiconductor heterostructures

2D

molecular beam epitaxy (MBE)



Examples of low-dimensional systems:
oxide heterostructures

2D
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Figure 1 | Transport properties of MgZnO/ZnO field-effect heterostructures. a, Schematic cross-sections of the samples. The 2DEG is located near the
MgZnO/ZnO interface in a Zn-polar ZnO substrate (sample A) or in a ZnO homoepitaxial layer (500 nm thick) (sample B). b, An optical microscope image
of Hall-bar devices and measurement configurations. c, The electron density (n) dependence of electron mobility (µ) for samples A (left) and B (right) at
temperatures of 0.06K, 2 K and 10K, indicated by red, blue and black symbols, respectively. Insets: Linear gate voltage dependence of n for each sample.

for samples A and B with different n. The top panel in Fig. 3a
(n = 4.1⇥ 1011 cm�2) shows fractional states at ⇥ = 4/3 and 5/3
with vanishing ⌅xx , as well as the distinct dip in ⌅xx for ⇥ = 8/3.
Compared with sample A (top panel in Fig. 3b) having lower µ
and comparable n, the oscillation amplitude of ⌅xx in sample B
at ⇥ = 4/3 and 5/3 is apparently much larger. As n decreased
in sample B (bottom panel in Fig. 3a), however, we found finite
resistance in ⌅xx minima at ⇥ = 5, marked by the red arrow.
Except for this anomaly, vanishing ⌅xx in other integer states
was preserved. Below this electron density, transport properties
in sample B could not be properly measured, possibly owing to
the inhomogeneity in the 2DEG density. In sample A, however,
we could observe magnetotransport properties in the extreme
quantum limit (bottom panel of Fig. 3b) at n = 1.2⇥ 1011 cm�2

(rs = 10.8). Despite the low µ of about 21,000 cm2 V�1 s�1 in
sample A, the ⌅xx vanishes at ⇥ = 1. The curvature of the ⌅xx
trace changes at magnetic fields where fractional states ⇥ = 2/3 and
2/5 are expected. To emphasize this behaviour, d⌅xy/dB (green),
which clearly shows dips at corresponding fractional Landau filling
factors, is also plotted.

We now turn to sample B, which shows pronounced quantized
states at ⇥ = 4/3 and 5/3 for n = 4.1⇥ 1011 cm�2, and determine
the activation energies (�) of these fractional states from
the temperature-dependent transport. Figure 4a shows ⌅xy at
T = 0.06K (top black line) and ⌅xx obtained at elevated
temperatures as a function of the magnetic field. Only the magnetic
field region for 1 < ⇥ < 2 is shown, where quantized plateaux of
⌅xy were clearly obtained at ⇥ = 4/3 and 5/3. From the Arrhenius
plots of ⌅xx at ⇥ = 4/3 and 5/3 as shown in Fig. 4b, we determine
the value of � according to the formula ⌅xx = ⌅0 exp(��/2kBT ),
where kB is the Boltzmann constant20–26. The best fit of the
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Figure 2 | Comparison of electron–electron interaction and scattering
time in some material systems. Transport scattering time (⇧tr = µm⇤/e,
where e is the elementary charge andm⇤ is the effective mass of electrons;
0.29m0 for bulk ZnO (ref. 28)) plotted as a function of the strength of
electron–electron interaction (rs = 1/

⌃
⇤naB⇤, where aB⇤ is the effective

Bohr radius) for sample A (red open squares), B (red filled squares) and
GaAs electron systems (0.067m0) reported in refs 15–17, Si/SiGe
(0.22m0; ref. 6), AlAs (0.46m0; ref. 7) and GaN (0.2m0; ref. 18).

data points yields � of 0.48 K and 1.3 K for ⇥ = 4/3 and 5/3,
respectively. Figure 4c compares these values in Coulomb units
with the previously reported � versus the scattering rate 1/⇧tr for
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for samples A and B with different n. The top panel in Fig. 3a
(n = 4.1⇥ 1011 cm�2) shows fractional states at ⇥ = 4/3 and 5/3
with vanishing ⌅xx , as well as the distinct dip in ⌅xx for ⇥ = 8/3.
Compared with sample A (top panel in Fig. 3b) having lower µ
and comparable n, the oscillation amplitude of ⌅xx in sample B
at ⇥ = 4/3 and 5/3 is apparently much larger. As n decreased
in sample B (bottom panel in Fig. 3a), however, we found finite
resistance in ⌅xx minima at ⇥ = 5, marked by the red arrow.
Except for this anomaly, vanishing ⌅xx in other integer states
was preserved. Below this electron density, transport properties
in sample B could not be properly measured, possibly owing to
the inhomogeneity in the 2DEG density. In sample A, however,
we could observe magnetotransport properties in the extreme
quantum limit (bottom panel of Fig. 3b) at n = 1.2⇥ 1011 cm�2

(rs = 10.8). Despite the low µ of about 21,000 cm2 V�1 s�1 in
sample A, the ⌅xx vanishes at ⇥ = 1. The curvature of the ⌅xx
trace changes at magnetic fields where fractional states ⇥ = 2/3 and
2/5 are expected. To emphasize this behaviour, d⌅xy/dB (green),
which clearly shows dips at corresponding fractional Landau filling
factors, is also plotted.

We now turn to sample B, which shows pronounced quantized
states at ⇥ = 4/3 and 5/3 for n = 4.1⇥ 1011 cm�2, and determine
the activation energies (�) of these fractional states from
the temperature-dependent transport. Figure 4a shows ⌅xy at
T = 0.06K (top black line) and ⌅xx obtained at elevated
temperatures as a function of the magnetic field. Only the magnetic
field region for 1 < ⇥ < 2 is shown, where quantized plateaux of
⌅xy were clearly obtained at ⇥ = 4/3 and 5/3. From the Arrhenius
plots of ⌅xx at ⇥ = 4/3 and 5/3 as shown in Fig. 4b, we determine
the value of � according to the formula ⌅xx = ⌅0 exp(��/2kBT ),
where kB is the Boltzmann constant20–26. The best fit of the
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data points yields � of 0.48 K and 1.3 K for ⇥ = 4/3 and 5/3,
respectively. Figure 4c compares these values in Coulomb units
with the previously reported � versus the scattering rate 1/⇧tr for
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Spin and orbital reconstructions. In previous sections, we have 
discussed the rearrangement of charge at oxide interfaces, which is 
driven primarily by electrostatic interactions. Because of the strong 
correlation between charge, spin and orbital degrees of freedom, 
modulations of the charge density in TMOs can easily lead to spin 
or orbital polarization. One example we have already encountered 
is the CaMnO3/CaRuO3 interface, where transfer of a small density 
of itinerant charge carriers enhances the ferromagnetic double-
exchange between Mn spins at the expense of antiferromagnetic 
super-exchange interactions, and hence induces ferromagnetic 
spin polarization at the interface6,35. An example of charge-driven 
orbital polarization has been observed at the LaAlO3/SrTiO3 inter-
face (discussed above) where the polarity mismatch (combined with 
the incipient ferroelectricity of SrTiO3) induces substantial lattice 
deformations36, which subsequently lead to a rearrangement of 
the level hierarchy of the partially occupied Ti t2g orbitals through 
crystal-field effects37.

Another source of orbital and spin polarization in oxide hetero-
structures is epitaxial strain resulting from the mismatch of the 
lattice parameters of the TMO constituents. In analogy to the size 
mismatch between anions and cations in bulk TMOs, this strain 
is accommodated by a combination of uniform deformations and 
staggered rotations of the metal-oxide octahedra, which influence 
the orbital occupation through the crystal field. Lattice defor-
mations resulting from epitaxial strain are ubiquitous in oxide 

hetero structures and superlattices. Ultrathin TMO films have 
served as model systems for studies because of their influence on the 
competition between different spin–orbital ordering patterns in the 
plane of the film38,39. However, unlike the charge-driven reconstruc-
tions discussed above, which can be effectively screened at least in 
metallic or highly polarizable dielectric TMOs, the strain-driven 
spin and orbital polarization is typically maintained over a spatial 
range of tens of nanometres.

Directly at the interface, the local crystalline environment of 
the transition metal ions differs strongly from the bulk-like envi-
ronment just one unit cell away (Fig.  5). This implies large local 
differences in both the crystal field and in the network of cova-
lent exchange bonds between metal-ion pairs by bridging oxygen 
ions. These differences can trigger genuine interfacial ‘spin–orbital 
reconstructions’ not secondary to charge rearrangements or epi-
taxial strain. This type of reconstruction has been predicted40-44 and 
observed45,46 at interfaces between TMOs with partially occupied, 
nearly degenerate d orbitals, such as LaTiO3 or LaNiO3 with a chem-
ically distinct wide-bandgap insulator such as LaAlO3 (Fig. 5). The 
loss of covalent metal–oxygen–metal bonds at the interface raises 
the energy of d orbitals with lobes pointing towards the interface 
and leads to preferential occupation of orbitals polarized parallel 
to the interface.

The opposite effect has been observed at interfaces of super-
conducting YBa2Cu3O7 (refs 47,48) and multiferroic BiFeO3 (ref. 49) 
with the metallic ferromagnet La0.7Ca0.3MnO3, where new exchange 
bonds are formed across the interface and induce interfacial orbital 
and spin polarization. However, these systems are also strongly 
affected by charge transfer across the interface, which has to be taken 
into account to arrive at a quantitative description of the experi-
mental results. Other systems with strongly entangled charge, spin 
and orbital degrees of freedom are interfaces of the orbitally nearly 
degenerate antiferromagnetic Mott insulators LaTiO3 and LaVO3 
with SrTiO3 (as discussed above), where the polarization mismatch 
between the constituents generates interfacial charge-density pro-
files that cannot be obtained by chemical substitution in the bulk 
form. For these systems, novel interfacial charge, spin and orbitally 
ordered states have been predicted40,41,50. Direct observation of the 
corresponding ordering patterns lateral to the interface remains a 
challenge for experimental research.

Emergent interface states
As discussed in the previous section, interfaces of TMOs exhibit 
various interesting properties, ranging from two-dimensional 
confinement of electronic states that can be naively expected from 
carrier-doped bulk solid solution analogues, to emergent phenom-
ena that are hard to predict owing to strong correlation effects of 
d electrons as well as reconstructions of their various degrees of 
freedom. The concomitant presence of two broken symmetries 
is one of the most intriguing subjects of near-future research of 
TMO interfaces (Fig. 1). Given that any single interface structurally 
breaks I symmetry, inducing magnetism or superconductivity is an 
approach for examining the emergent properties and functionalities 
of TMO interfaces.

Magneto-electric coupling in tricolour superlattices. Both 
CaMnO3/CaRuO3 and LaMnO3/SrMnO3 interfaces are known to 
show ferromagnetism owing to the effective doping induced by 
charge transfer6,12–14. However, the magnetization (M) induced at a 
single interface is often too small to be detected by conventional 
tools, and it is hard to characterize the cross-coupling of M with 
electric polarization (P), such as magneto–electric effects. One of 
the ways to amplify the effect is making superlattices to multiply 
the signal. In conventional ABAB superlattices, however, P has the 
opposite sign between AB and BA interfaces, which largely cancel 
each other. In tricolour ABCABC superlattices, all the P at the AB 

(AO) (A'O)(BO2)

(AO)2–(BO2)2+ (AO)–(BO2)+ (AO)+(BO2)–(AO)0(BO2)0

‘0–6‘
Cation valence ‘A–B‘
‘1–5‘

LaTiO3 in SrTiO3 (001)

‘2–4‘ ‘3–3‘

(B'O2)

A

4.0

WO3

ReO3

KTaO3 BaTiO3

SrTiO3

CaTiO3

SrMnO3

CaMnO3

LaAlO3

LaMnO3

LaTiO3

La1–xSrxTiO3

La 1–x
Sr xM

nO 3
NaNbO3

3.9

3.8

La
tti

ce
 c

on
st

an
t (

Å)

3.7

O

B

A' B'

a

b

c

1 nm

La3+ Sr2+ Ti3+/ Ti4+

Figure 3 | Atomic and charge structure of pervoskite heterointerfaces. 
a, Schematic of ideal heterointerfaces between two perovskites, ABO3 and 
A’B’O3 stacked in the [001] direction. b, Representative lattice constants 
for various perovskites as a function of their charge sequence. c, Scanning 
transmission electron microscopy image of a LaTiO3/SrTiO3 superlattice10. 
The red arrows show the lanthanum layer. Panel c, reproduced from ref. 10, 
© 2002 NPG.

REVIEW ARTICLE NATURE MATERIALS DOI: 10.1038/NMAT3223

© 2012 Macmillan Publishers Limited. All rights reserved

106 NATURE MATERIALS | VOL 11 | FEBRUARY 2012 | www.nature.com/naturematerials

Spin and orbital reconstructions. In previous sections, we have 
discussed the rearrangement of charge at oxide interfaces, which is 
driven primarily by electrostatic interactions. Because of the strong 
correlation between charge, spin and orbital degrees of freedom, 
modulations of the charge density in TMOs can easily lead to spin 
or orbital polarization. One example we have already encountered 
is the CaMnO3/CaRuO3 interface, where transfer of a small density 
of itinerant charge carriers enhances the ferromagnetic double-
exchange between Mn spins at the expense of antiferromagnetic 
super-exchange interactions, and hence induces ferromagnetic 
spin polarization at the interface6,35. An example of charge-driven 
orbital polarization has been observed at the LaAlO3/SrTiO3 inter-
face (discussed above) where the polarity mismatch (combined with 
the incipient ferroelectricity of SrTiO3) induces substantial lattice 
deformations36, which subsequently lead to a rearrangement of 
the level hierarchy of the partially occupied Ti t2g orbitals through 
crystal-field effects37.

Another source of orbital and spin polarization in oxide hetero-
structures is epitaxial strain resulting from the mismatch of the 
lattice parameters of the TMO constituents. In analogy to the size 
mismatch between anions and cations in bulk TMOs, this strain 
is accommodated by a combination of uniform deformations and 
staggered rotations of the metal-oxide octahedra, which influence 
the orbital occupation through the crystal field. Lattice defor-
mations resulting from epitaxial strain are ubiquitous in oxide 

hetero structures and superlattices. Ultrathin TMO films have 
served as model systems for studies because of their influence on the 
competition between different spin–orbital ordering patterns in the 
plane of the film38,39. However, unlike the charge-driven reconstruc-
tions discussed above, which can be effectively screened at least in 
metallic or highly polarizable dielectric TMOs, the strain-driven 
spin and orbital polarization is typically maintained over a spatial 
range of tens of nanometres.

Directly at the interface, the local crystalline environment of 
the transition metal ions differs strongly from the bulk-like envi-
ronment just one unit cell away (Fig.  5). This implies large local 
differences in both the crystal field and in the network of cova-
lent exchange bonds between metal-ion pairs by bridging oxygen 
ions. These differences can trigger genuine interfacial ‘spin–orbital 
reconstructions’ not secondary to charge rearrangements or epi-
taxial strain. This type of reconstruction has been predicted40-44 and 
observed45,46 at interfaces between TMOs with partially occupied, 
nearly degenerate d orbitals, such as LaTiO3 or LaNiO3 with a chem-
ically distinct wide-bandgap insulator such as LaAlO3 (Fig. 5). The 
loss of covalent metal–oxygen–metal bonds at the interface raises 
the energy of d orbitals with lobes pointing towards the interface 
and leads to preferential occupation of orbitals polarized parallel 
to the interface.

The opposite effect has been observed at interfaces of super-
conducting YBa2Cu3O7 (refs 47,48) and multiferroic BiFeO3 (ref. 49) 
with the metallic ferromagnet La0.7Ca0.3MnO3, where new exchange 
bonds are formed across the interface and induce interfacial orbital 
and spin polarization. However, these systems are also strongly 
affected by charge transfer across the interface, which has to be taken 
into account to arrive at a quantitative description of the experi-
mental results. Other systems with strongly entangled charge, spin 
and orbital degrees of freedom are interfaces of the orbitally nearly 
degenerate antiferromagnetic Mott insulators LaTiO3 and LaVO3 
with SrTiO3 (as discussed above), where the polarization mismatch 
between the constituents generates interfacial charge-density pro-
files that cannot be obtained by chemical substitution in the bulk 
form. For these systems, novel interfacial charge, spin and orbitally 
ordered states have been predicted40,41,50. Direct observation of the 
corresponding ordering patterns lateral to the interface remains a 
challenge for experimental research.

Emergent interface states
As discussed in the previous section, interfaces of TMOs exhibit 
various interesting properties, ranging from two-dimensional 
confinement of electronic states that can be naively expected from 
carrier-doped bulk solid solution analogues, to emergent phenom-
ena that are hard to predict owing to strong correlation effects of 
d electrons as well as reconstructions of their various degrees of 
freedom. The concomitant presence of two broken symmetries 
is one of the most intriguing subjects of near-future research of 
TMO interfaces (Fig. 1). Given that any single interface structurally 
breaks I symmetry, inducing magnetism or superconductivity is an 
approach for examining the emergent properties and functionalities 
of TMO interfaces.

Magneto-electric coupling in tricolour superlattices. Both 
CaMnO3/CaRuO3 and LaMnO3/SrMnO3 interfaces are known to 
show ferromagnetism owing to the effective doping induced by 
charge transfer6,12–14. However, the magnetization (M) induced at a 
single interface is often too small to be detected by conventional 
tools, and it is hard to characterize the cross-coupling of M with 
electric polarization (P), such as magneto–electric effects. One of 
the ways to amplify the effect is making superlattices to multiply 
the signal. In conventional ABAB superlattices, however, P has the 
opposite sign between AB and BA interfaces, which largely cancel 
each other. In tricolour ABCABC superlattices, all the P at the AB 
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quantum well of SrTiO3 (refs 68,69; Fig. 7d), which also displays 
2D superconductivity70. Here a narrow region of single-crystal 
SrTiO3 is chemically doped to spatially define a superconducting 
region. When the width of this region is reduced below the super-
conducting coherence length, there is a 3D–2D crossover in the 
superconducting state; similarly, on the de Broglie length-scale, 
there is a separate dimensional crossover for the normal-state 
electrons, which exhibit sub-band quantization for narrow chan-
nels71. Together with the flexibility to vary the local doping level, 
a rich phase diagram can be engineered to examine superconduc-
tor/normal-metal/insulator phase transitions in various dimen-
sions. A notable feature of δ-doping is that the mobility strongly 
increases in the 2D limit, similar to δ-doping in semiconductors. 
This aspect suggests that a new regime of 2D superconducting 
phase transitions can be experimentally accessed approaching 
the clean limit. Furthermore, bilayer and superlattice structures 
can be designed to tune interlayer coupling in an artificial ana-
logue of bulk layered superconductors, providing opportunities 
to address general questions of the role of interlayer coupling in 
quasi-2D superconductivity.

In addition to controllable carrier density, the interfaces such as 
LaAlO3/SrTiO3 and FET devices offer a novel platform for Rashba 
physics, in which the spin–orbit interaction can be manipulated 
by the gate electric field72,73. At any interface, inversion symmetry 
is inherently broken, but the gate effects allow us to control the 
strength of asymmetric potentials, which can be a great advan-
tage for manipulation of spin polarization in TMO interfaces. 
In this sense, the interface superconductivity in LaAlO3/SrTiO3 
hetero structures as well as in MOSFETs and EDLTs should be fur-
ther considered as non-centrosymmetric systems. In contrast, the 
(un-gated) δ-doped structure is inversion symmetric, and thus 
Rashba effects are excluded.

This contrast is perhaps highly relevant for the recent observa-
tions of the microscopic coexistence of ferromagnetism with super-
conductivity in LaAlO3/SrTiO3 heterostructures74–76, which is not 
found in δ-doped SrTiO3. The fact that these normally antagonis-
tic order parameters can be simultaneously observed indicates that 
this interface breaks all of the principal symmetries, I, T and G, and 
with charge22, orbital37 and spin reconstructions28 all at play. It is 

therefore an intriguing question whether this interface, composed 
of ‘standard’ materials, can exhibit exotic superconducting77 and 
edge-state phenomena as a result of the formation of an emergent 
interface state.

Fractional quantum Hall effect in ZnO/(MgZn)O hetero-
structures. Charge accumulation at oxide interfaces has been used 
for realizing emergent phenomena as discussed above. When one 
employs the clean semiconductor ZnO, its 2DEG can exhibit the 
fractional quantum Hall effect, which is known to emerge only 
in extremely clean systems such as GaAs (ref. 78). The process of 
charge accumulation is, in some sense, similar to the polar catas-
trophe in the LaAlO3/SrTiO3 system79. In MgxZn1-xO/ZnO hetero-
structures, the mismatch in spontaneous polarization of the two 
piezoelectric compounds is compensated by the charge accumu-
lation at the interface80. Electrons are confined in the narrower 
bandgap material ZnO as shown in inset of Fig. 8a. The first dem-
onstration of the quantum Hall effect in oxides was made possible 
in a Mg0.15Zn0.85O/ZnO heterostructure fabricated by pulsed laser 
deposition, which achieved a maximum electron mobility (μ) of 
5,500 cm2 V−1 s−1 (ref. 80). The use of molecular beam epitaxy has 
since enabled a great reduction in the impurity concentration of the 
samples, resulting in a significant μ enhancement81,82. Fig. 8a shows 
an example of the magneto-transport properties for a Mg0.01Zn0.99O/
ZnO heterostructure with a charge carrier density n = 2 × 1011 cm–2 
and μ = 300,000 cm2 V−1 s−1 that was top-gated83. In addition to the 
integer states (ν = 1, 2 and so on), many fractional states including 
the most fundamental ν = 1/3 are clearly seen.

Given increasingly higher mobility electrons at oxide inter-
faces, mesoscopic physics will become a new frontier, where elec-
tron coherence lengths exceed device size. For comparison with 
other semiconductors, we plot in Fig.  8b the transport scattering 
time τtr = μm*/e to represent the cleanness of the systems hosting 
2DEGs, where e and m* are the elementary charge and the electron 
effective mass, respectively. Given its large m* and low dielectric 
constant ε, ZnO displays strong electron correlation effects as char-
acterized by the Wigner–Seitz radius rs = 1/√πna*B where a*B is the 
effective Bohr radius [(ε/ε0)/(m*/m0)]aB (ε0 is the vacuum permit-
tivity, m0 is the bare electron mass, and aB is the Bohr radius). In 
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Examples of low-dimensional systems:
surface exposed to vacuum

2D

bias voltages Vgu, Vgt and Vr were applied to the guard,
split-gate, and reservoir electrodes, respectively. The
helium surface was then charged with electrons by
thermionic emission from a tungsten filament. The maxi-
mum surface electron density in the reservoirs was ns ¼
""0ðVr # VguÞ=ed, where e is the elementary charge and
"0 is the dielectric constant of vacuum.

A small ac voltage Vin of frequency 200 kHz was super-
imposed on the right reservoir electrode to drive electrons
between the two reservoirs through the central channel.
With reference to the standard lumped-circuit model [15],
the peak-to-peak current I and conductance G of the
electron system were measured by performing a phase-
sensitive measurement of the voltage capacitively induced
on the left reservoir electrode. The temperature was 1.2 K,
at which the electron system remains in a liquidlike state.

We first describe a simple electrostatic model of the
system. Note that in this model, a more positive voltage
corresponds to a lower potential energy for an electron.
Finite element modelling (FEM) software was used
to simulate the electrostatic potential profile on the
helium surface in the central channel. The results for
the geometry of sample 1 are shown in Fig. 1(b). When
Vgt is more negative than Vr, a saddle-point potential is
formed between the split-gate electrodes, with a maximum
in the x direction along the channel and a minimum in
the lateral y direction [Fig. 1(c)], creating a constriction
for electrons. We may write this potential as Vðx; yÞ ¼
Vb þ 1

2ax
2 # 1

2 by
2, where Vb is the potential at the center

of the saddle point and a and b are constants. We will
assume a and b depend on Vgu and Vr but remain constant

over small variations in Vgt. The reservoir, split-gate and

guard electrodes have capacitances Cr, Cgt, and Cgu re-

spectively to the region of space at the center of the
constriction (x ¼ 0, y ¼ 0). The total capacitance of the
region is then C! ¼ Cr þ Cgt þ Cgu and we define con-

stants to represent the relative strength of coupling from
each electrode to the constriction region as ! ¼ Cr=C!,
" ¼ Cgt=C! and # ¼ Cgu=C!. Then Vb can be given

by Vb ¼ !Vr þ "Vgt þ #Vgu, where !þ "þ # ¼ 1.
For sample 1(2) the FEM analysis gives the values ! ¼
0:75ð0:67Þ, " ¼ 0:10ð0:15Þ, # ¼ 0:15ð0:18Þ.
For electrons in the reservoirs, we assume that the

electrostatic potential of the electron system Ve depends
on Vr and on ns and can be written as Ve ¼ #ensd=""0 þ
Vr. When #eVe >#eVb electrons may pass through the
constriction. However, as Vgt is swept negative #eVb

increases and, when #eVe <#eVb, the electron transport
is blocked by a potential barrier. Treating the electron
system as a charge continuum, the threshold of current
flow is therefore defined by the condition Ve ¼ Vb. Such
behavior has been demonstrated in preliminary measure-
ments with a similar split-gate device [16].
Upon sweeping Vgt negative, the current flowing through

the central channel decreased and then became zero at a
threshold voltage V th

gt , as expected from the electrostatic

model whenVe ¼ Vb. V
th
gt wasmeasured for different values

of Vr (from positive to negative) for Vgu ¼ 0 V and Vin ¼
8 mVpp. The results of two such measurements, made

with sample 1 after separate charging events, are shown in
Fig. 2(a). In both cases, V th

gt initially decreases as Vr is

decreased. Then, at a certainvalue ofVr, the trend is reversed
as the threshold starts to increase. In Figs. 2(b)–2(d) we
present a simple model to describe the dependence of V th

gt

on Vr. We schematically show the electrostatic potential
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FIG. 1. (a) Scanning electron microscope image of sample 1.
Inset: The split-gate electrode in the central channel. (b) Contour
plot of the electrostatic potential at the helium surface in the
central channel calculated by FEM software for Vgu ¼ Vgt ¼
0 V, Vr ¼ þ0:3 V. The darker colors indicate regions of more
positive potential (lower energy for electrons). (c) Calculated
potential along the channel Vðx; 0Þ and across the constriction
Vð0; yÞ for Vgu ¼ 0 V, Vr ¼ þ0:3 V and Vgt ¼ þ1:3, þ0:3,
#0:7, #2:3 V (dark to light grey). Note that the vertical axes
are inverted.
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FIG. 2 (color online). Measurements with sample 1.
(a) Measured values of V th

gt with changing reservoir electrode

voltage Vr (positive to negative as indicated by the arrows) for
ns ¼ 1:5& 1013 m#2 (red circles) and ns ¼ 5:2& 1012 m#2

(green circles). The dotted and dashed lines are linear fits to
the data. Inset: the current I decreases to zero at V th

gt .

(b) Schematic model of the electrostatic potential profile of the
device at the current threshold Ve ¼ Vb. (c) For#eVe <#eVgu,

the electron density remains constant as Vr becomes more
negative. (d) As electrons are lost to the guard, Ve ¼ Vgu.
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Integer Quantum Hall Effect on a Six-Valley Hydrogen-Passivated Silicon (111) Surface
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We report magnetotransport studies of a two-dimensional electron system formed in an inversion layer
at the interface between a hydrogen-passivated Si(111) surface and vacuum. Measurements in the integer
quantum Hall regime demonstrate that the expected sixfold valley degeneracy for these surfaces is broken,
resulting in an unequal occupation of the six valleys and anisotropy in the resistance. We hypothesize the
misorientation of Si surface breaks the valley states into three unequally spaced pairs, but the observation
of odd filling factors is difficult to reconcile with noninteracting electron theory.

DOI: 10.1103/PhysRevLett.99.016801 PACS numbers: 73.40.!c, 71.70.Di, 73.43.Qt

The silicon field effect transistors (FETs) that are at the
heart of contemporary microelectronics rely on mobile
electrons or holes confined at the interface between Si
and a higher band gap barrier material. This barrier in
metal oxide silicon (MOS) FETs is SiO2, an amorphous
material which introduces inevitable disorder at the
Si-SiO2 interface and limits the carrier mobility in these
devices. A crystalline interface can be created using epi-
taxial SiGe-Si layers in which mobilities can be over an
order of magnitude higher than the best MOSFET devices
[1], but this technique is limited to the [100] oriented
surfaces [2]. Recently, a new technique for Si crystalline
interfaces has been demonstrated [3] in which a Si inter-
face is passivated with a monolayer of hydrogen and the
barrier material is a vacuum. While the inertness and high
degree of atomic perfection of these surfaces has been
known for some time [4–6], the development of high
mobility electronic devices on H-Si enables the exploration
of two-dimensional (2D) physics of novel Si surface ori-
entations and may one day allow quantum devices to be
engineered at the atomic scale using surface manipulation
techniques [7].

We report here the first detailed magnetotransport stud-
ies of a 2D electron system (2DES) at a H-Si(111) surface
gated through a vacuum barrier. Electron mobilities are an
order of magnitude higher (24; 000 cm2=Vs) than Si(111)
MOSFETs, enabling the observations of the integer quan-
tum Hall effect (IQHE). In the effective mass approxima-
tion, the ground state for a 2DES on the Si(111) surface is
sixfold degenerate with each Si conduction band valley
contributing an equal number of carriers [Fig. 1(d)], each
with anisotropic in-plane masses, mx " 0:19mo and my "
0:67mo [8] (mo is the mass of the free electron). However,
measurements of Shubnikov–de Haas (SdH) oscillations
in Si(111) MOSFETs have shown conflicting valley degen-
eracies of two [8–10] and six [11,12] along with isotropic
resistivities for both. Subsequent proposals [11,13] have
tried to explain these anomalous observations, but to date,
conclusive experimental results are still lacking.

The high mobility 2DES can be created by contact
bonding two individual Si substrates [3] [Fig. 1(a)]. One

is the H-Si(111) substrate (float zone, p-type, !#
10 ! cm) which has four phosphorous contacts forming
a 1-mm-wide square with sides oriented parallel to the
$1"10% and $11"2% crystallographic directions [Fig. 1(b) and
1(c)]. The second is a silicon-on-insulator (SOI) sub-
strate which acts as the remote gate, where an electric field
can be controlled within an etched cavity. The Si(111)
surface is H-passivated by immersion in an ammonium
fluoride solution. The two substrates are then bonded in
vacuum (#10!6 Torr), which allows the remote gate to

FIG. 1 (color). (a) Schematic cross-section of a H-Si(111)
substrate contact bonded to a SOI substrate. A p& layer in the
SOI defines the gate, where blue arrows depict the electric field.
A 2DES is formed at the H-Si(111) surface within an encapsu-
lated cavity. (b) The H-Si(111) substrate has four n& contacts
numbered accordingly. Tilted magnetic fields are applied in the
x-z plane. (c) A 1 "m' 1 "m AFM image of atomic steps on a
H-Si(111) surface in relation to the crystal directions and the
contacts of the device. (d) The projection of the six valleys for
the Si(111) surface with pairs of valleys labeled A, B, and C.
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Examples of low-dimensional systems:
graphene

2D

Subtle quantum effects
artificial graphene - what could we optimally expect

!ím je grafen zajímav"?

• vysoká pevnost
• velmi tenk"
• elektricky vodiv" a p#itom pr$hledn"
• vysoká mobilita (PRL 103, 136403 uvádí                                    )
• lineární disperze

chemical synthesis has so far yielded only tiny platelets some
10 benzene rings across, containing up to 222 carbon atoms.
Conventional crystal growth techniques are also of little help,
since thermal fluctuations at growth temperatures tend to
twist otherwise flat nanometer-scale graphene crystallites into
the third dimension. The nascent 2D crystallites try to mini-
mize their surface energy and inevitably morph into one of
the rich variety of stable 3D structures that occur in soot.

But there is a way around the problem. Interactions with
3D structures stabilize 2D crystals during growth. So one can
make 2D crystals sandwiched between or placed on top of
the atomic planes of a bulk crystal. In that respect, graphene
already exists within graphite, which can be viewed as a stack
of graphene layers stuck together by van der Waals–like at-
traction. One can then hope to fool Nature and extract single-
atom-thick crystallites at a low enough temperature that they
remain in the quenched state prescribed by the original
higher-temperature 3D growth. Unfortunately, no one has in-
vented tweezers small enough to pull individual atomic
planes from bulk crystals.

It turns out that graphene sheets, like fullerenes and car-
bon nanotubes, have always been around. Right before our
eyes, in fact. In the simple trace of a pencil is debris com-
posed mostly of readily visible, thick graphite flakes rubbed
from the bulk crystal. But thinner, very nearly transparent
crystallites—some a single layer thick—are also present. The
hard part is not making graphene but finding it in the
haystack of thicker flakes.

Typically, a few micron-sized graphene crystallites exist
in a graphite debris field covering an area of 1 cm2. Scanning
electron microscopy is of little help in the search because it
cannot distinguish monolayers from nanometer-thick flakes.
Atomic-force and scanning-tunneling microscopes provide
the required atomic resolution but can usually detect the step
between a substrate and a monolayer only when the substrate
is atomically smooth. Even more forbidding is the need to
scan the entire area of a pencil trace with atomic resolution. 

The serendipitous choice in the Manchester lab for find-
ing graphene was to use not paper, or any other writing sur-
face, but an oxidized Si wafer—the same material widely
used by the semiconductor industry. The oxide surface re-
flects a rainbow of colors, and the interference pattern pro-
duced by layers of graphene on the oxide provides a faint but
visible contrast, much like the fringes in an oily puddle (see
figure 1). Fortunately, the human eye and brain are a team
powerful enough to distinguish even that weak contrast in
rapid optical microscope inspections of graphite debris. With
a little experience, finding those few graphene crystallites
takes only a couple of hours. 

No one really uses pencils to make graphene. Instead, to
make graphene crystals suitable for experiments, bulk
graphite is gently pushed along a Si wafer, a “drawing” tech-
nique that several laboratories have now refined to the level
of art. Graphene crystallites as large as 100 µm across can be
formed this way and also obtained commercially (see http://
www.grapheneindustries.com).
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The honeycomb lattice of graphene, pictured below, consists of
two interpenetrating triangular sublattices: The sites of one
sublattice (green) are at the centers of triangles defined by the
other (orange). The lattice thus has two carbon atoms, desig-
nated A and B, per unit cell, and is invariant under 120° rota-
tions around any lattice site. Each atom has one s and three p
orbitals. The s orbital and two in-plane p orbitals are tied up
in graphene’s strong covalent bonding and do not contribute
to its conductivity. The remaining p orbital, oriented perpen-
dicular to the molecular plane, is odd under inversion in the
plane and hybridizes to form π (valence) and π* (conduction)
bands, as shown at right. 

In the Bloch band description of graphene’s electronic struc-
ture, orbital energies depend on the momentum of charge car-
riers in the crystal Brillouin zone (inset, right). The π and π*

bands (blue in the electronic structure plot) are decoupled from
the σ and σ* bands (red) because of inversion symmetry and
are closer to the Fermi energy because they participate less in
bonding. The Fermi energy separates occupied and empty
states. In a neutral graphene sheet, this is the energy where
valence and conduction bands meet (zero energy above, often
referred to as the neutrality point). The bands form conical val-
leys that touch at two of the high-symmetry points, convention-
ally labeled K and K’, in the Brillouin zone. Near these points
the energy varies linearly with the magnitude of momentum
measured from the Brillouin-zone corners. The four other
Brillouin-zone corners are related to K and K’ by reciprocal
lattice vectors and do not represent distinct electronic states.
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Box 1. Crystal and electronic structures of graphene
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artificial
graphene:

Grafen - jedna vrstva grafitu

In Edwin Abbott’s 1884 novella Flatland: A Romance of
Many Dimensions, the narrator (a square, of course) leads the
reader through some of the special features of two dimen-
sions. As the geometric characters in the story come to learn,
dimension matters—a lesson that has not been lost on 20th-
and 21st-century physicists. Although we can readily imag-
ine a world with fewer or more dimensions and describe it
mathematically, it seems at first glance that for natural phe-
nomena we are stuck with three spatial dimensions and one
time dimension. Not so! For many years now, for example,
physicists have studied electronic properties of the two-
dimensional systems that occur in layered semiconductors,
and not without reward, since the operation of every com-
puter chip today relies on properties of the electronic flatland
at the interface between silicon and its oxide.

Any real flatland must have a finite thickness. In the case
of semiconductors, the thickness typically extends from 10 to

100 atomic layers and the system can accurately be described
as 2D only because of quantum size effects that make the de-
grees of freedom for electron motion in the short direction ir-
relevant. A few years ago a research group at the University
of Manchester led by one of us (Geim) succeeded in isolating
and studying the ultimate flatland—graphene, a one-atom
thick sheet of carbon atoms arranged laterally in a honey-
comb lattice.1 (For a primer on graphene’s crystal and elec-
tronic structures, see box 1.) This flatland is not only the
thinnest material in our universe, but also so charming in its
properties that it had already been the object of theoretical
study for more than half a century2 before it at last became
available for experimental inspection.

Graphene spotting
Fundamental forces place seemingly insurmountable barriers
in the way of creating a true flatland. In the case of graphene,

© 2007 American Institute of Physics, S-0031-9228-0708-010-6 August 2007    Physics Today 35

Graphene: Exploring
carbon flatland
Andrey K. Geim and Allan H. MacDonald

Just one atom thick, this two-dimensional semiconductor does not resemble
any known material. 

Andrey Geim is a professor of physics at the University of Manchester in the UK. Allan MacDonald is a professor of physics at the 
University of Texas at Austin.

1 mµ

Figure 1. Spotting graphene. (a) Different colors in this 300-micron-wide optical micrograph reveal the presence of graphite
flakes with differing thicknesses rubbed from bulk graphite onto the surface of an oxidized silicon wafer. Individual atomic
planes are hidden in the debris but still can be found by zooming in and searching for flakes that show the weakest contrast.
Force microscopy is used later to measure the thickness of identified crystallites. (b) A one-atom-thick single crystal of
graphene hangs freely on a scaffold of gold wires, as seen with a transmission electron microscope. (Adapted from ref. 12.)

teprve od roku 2004 je známo,
!e vrstvy mohou b"t stabilní

i samy o sob#

Novoselov, Geim et al., Science 306, 666
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Wafer-Scale Graphene
Integrated Circuit
Yu-Ming Lin,* Alberto Valdes-Garcia, Shu-Jen Han, Damon B. Farmer, Inanc Meric,†
Yanning Sun, Yanqing Wu, Christos Dimitrakopoulos, Alfred Grill,
Phaedon Avouris,* Keith A. Jenkins

A wafer-scale graphene circuit was demonstrated in which all circuit components, including graphene
field-effect transistor and inductors, were monolithically integrated on a single silicon carbide
wafer. The integrated circuit operates as a broadband radio-frequency mixer at frequencies up to
10 gigahertz. These graphene circuits exhibit outstanding thermal stability with little reduction in
performance (less than 1 decibel) between 300 and 400 kelvin. These results open up possibilities of
achieving practical graphene technology with more complex functionality and performance.

Graphene, a layer of carbon atoms arranged
in a hexagonal lattice, is a promising can-
didate for future high-speed electronics

and radio-frequency (RF) applications (1–4) be-
cause of its high carrier mobility and saturation
velocity (5). The planar structure and the feasi-

bility of large-area graphene synthesis facilitate
the adoption of top-down device fabrication tech-
niques. Graphene transistors with intrinsic cut-off
frequencies beyond 100 GHz have been recently
achieved by several groups using graphene films
synthesized by various methods, including ep-
itaxial growth on SiC (6, 7), chemical vapor
deposition (CVD) on Cu (8), and mechanical
exfoliation (9, 10). The monolithic integration of
transistors with interconnects and other compo-
nents is an essential requirement for any semi-
conductor material to achieve a widespread
technological impact. Previous attempts to make
circuits based on graphene have used an indi-
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Fig. 1. (A) Circuit diagram of a four-port graphene RF frequency mixer. The
scope of the graphene IC is confined by the dashed box. The hexagonal shape
represents a graphene FET. (B) Schematic exploded illustration of a graphene
mixer circuit. The critical design aspects include a top-gated graphene tran-

sistor and two inductors connected to the gate and the drain of the GFET. Three
distinct metals layers of the graphene IC are represented by M1, M2, and M3. A
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arate the inductors (M3) from the underlying interconnects (M1 and M2).
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vidual graphene transistor connected to external
passive elements (11–13). Such heterogeneous
circuitry inevitably results in degraded perform-
ance dominated by interconnects and parasitics
rather than the intrinsic properties of graphene
device. For example, Wang et al. demonstrated
an RF frequency mixer operating at a few tens
of megahertz based on a single graphene tran-
sistor (12).

Despite recent progress in graphene synthesis
and device performance, scalable integration of
graphene into a practical circuit remains chal-
lenging. The key difficulties stem from the dis-
tinct materials properties of graphene with respect
to those of conventional semiconductors, such
as a different ohmic contact formation mecha-
nism (14), poor adhesion with metals and oxides
(15, 16), and its vulnerability to damage in plasma
processing. Thus, bridging the technological gap
between a single device and a practical graphene
circuit on the wafer scale requires innovative in-
tegration processes and circuit designs. Here, we
describe wafer-scalable processes that have been
developed to fabricate arrays of graphene analog
circuits, each consisting of one graphene transistor
and two inductors, all compactly integrated on a
single SiC substrate. The entire integrated circuit
(IC), including the contact pads, is less than 1mm2,

and successful integration is verified by operating
it as an RF mixer at a designated gigahertz fre-
quency range.

The previously demonstrated frequency mul-
tipliers and mixers using graphene field-effect
transistors (GFETs) were based on the ambipolar
transport characteristics of CVD and exfoliated
graphene (11–13). The mixer circuit design ex-
ploits a general gate-driven and drain-driven cur-
rent modulation behavior in GFETs that can be
used in both ambipolar and unipolar devices.
Mixers are electrical circuits used for frequency
conversion and are critical components inmodern
RF communication systems. Two high-frequency
signals, an RF signal at a frequency fRF and a local
oscillator (LO) signal at a frequency fLO, are

applied to the gate and the drain of the GFET
through port P1 and port P4, respectively (Fig. 1A).
The graphene transistor is modulated by both
signals and produces a drain current that contains
the mixed frequencies, the sum ( fRF + fLO), and
the difference ( fRF − fLO, the intermediate fre-
quency fIF) of the input frequencies. The inte-
grated inductors complement the graphene FET
to form an integrated RF mixer. Inductor L1 res-
onates out the parasitic capacitances from the
input RF pad and the gate of the graphene FET,
while inductor L2 provides an input match to the
LO signal and acts as a low-pass filter between
the drain of the FET and the output port P3. In
practice (e.g., in a radio receiver application),
frequencies of the RF and LO input signals differ
by only a small amount, and the output signal
component of interest is fIF.

Graphene circuits were fabricated on a semi-
insulating SiCwafer. A two- or three-layer graphene
film was epitaxially grown on the Si face of
the SiC substrate at temperatures above 1400°C
(17–19), as confirmed by Raman spectroscopy
and optical absorption measurements (see fig. S1
in the supporting online material). Fabrication of
the graphene IC began with top-gated, two-finger
graphene FETs (Fig. 2A), followed by integration
with on-chip inductors. To form the active chan-
nel of the transistor, we spin-coated the graphene-
SiC wafer with a layer of 140-nm-thick PMMA
[poly(methyl methacrylate)] followed by a layer
of 20-nm-thick HSQ (hydrogen silsesquioxane).
The FET channel was defined by e-beam lithog-
raphy (EBL); the surrounding graphene was re-
moved by an oxygen plasma with the exposed
HSQ film as the protecting mask. The HSQ-
PMMA stack over the channel region was sub-
sequently removed by acetone.

The removal of graphene film on SiC outside
of the active channel region was critical to
achieve good adhesion of thick metals in the
subsequent deposition processes. The ohmic
source and drain contacts, contact pads, and gate
electrode were all made of the same metal stack
of 20-nm Pd, 40-nm Au. The gate length was
550 nm and the distance between source and
drain contacts was 600 nm. The gate dielectric
was deposited by evaporating two 2-nm layers of
Al metal onto the graphene channel that were
then oxidized at elevated temperatures (~ 120°C)
in air to form a seed layer for the subsequent dep-
osition of Al2O3 (20 nm) by atomic layer dep-
osition (14). The capacitance of the resulting gate
dielectric stack was ~2. 5 × 10−7 F/cm2.

Inductors were defined by EBL and formed
by depositing 1-mm-thick Al metal. A layer of
120-nm-thick SiO2, deposited by e-beam evapo-
ration, was used to isolate the inductor loops from
the underlying metal interconnects. The inductor
had a value of 5.2 nH, a self-resonant frequency
of ~10 GHz, and quality factor (Q) of 5, as mea-
sured on a stand-alone test site. The inductance
was designed to achieve a target operation fre-
quency of 5 GHz for the mixer circuit, and the
quality factor of 5 is appropriate for broadband
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Fig. 3. (A) The drain current Id of a 550-nm–gate-
length graphene FET as a function of gate voltage
Vg at a drain bias of 1.6 V with the source electrode
grounded. The current shown was normalized with
respect to the total channel width. The device con-
ductance gm is shown on the right axis. (B) The mea-
sured drain current Id as a function of drain bias of
the graphene FET for various top-gate voltages. (C)
Distribution of peak gm of graphene FETs, all of the
same gate length of 550 nm and fabricated on the
same wafer.

B 

A 
Source

Source

Drain

Gate
Dielectric

Graphene

GFET

Fig. 2. Images of graphene ICs. (A) Scanning elec-
tron image of a top-gated, dual-channel graphene
transistor used in the mixer IC. The gate length is
550 nm and the total channel width, including both
channels, is 30 mm. Scale bar, 2 mm. (B) Optical im-
age of a completed graphene mixer including con-
tact pads. The gound-signal-ground configuration
is implemented for the probe pads suitable for
direct RF testing. Scale bar, 100 mm.
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Examples of low-dimensional systems:
carbon nanotubes, narrow channels

1D
Quantized conductance in a Carbon NanoTube
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Carbon Nanotube Quantum Resistors
Stefan Frank, Philippe Poncharal, Z. L. Wang, Walt A. de Heer*

The conductance of multiwalled carbon nanotubes (MWNTs) was found to be quantized.
The experimental method involved measuring the conductance of nanotubes by re-
placing the tip of a scanning probe microscope with a nanotube fiber, which could be
lowered into a liquid metal to establish a gentle electrical contact with a nanotube at the
tip of the fiber. The conductance of arc-produced MWNTs is one unit of the conductance
quantum G0 " 2e2/h " (12.9 kilohms)–1. The nanotubes conduct current ballistically and
do not dissipate heat. The nanotubes, which are typically 15 nanometers wide and 4
micrometers long, are several orders of magnitude greater in size and stability than other
typical room-temperature quantum conductors. Extremely high stable current densities,
J # 107 amperes per square centimeter, have been attained.

The intriguing possibility that nanoscopic
graphitic structures may someday be used as
electronic elements has been reinforced by
predictions (1) as well as recent demonstra-
tions (2–4) of their device properties. How-
ever, not much is known about the elec-
tronic transport in nanotubes. Theory pre-
dicts that the electrons flow ballistically
through them and that the conductance
(the inverse of the resistance) is quantized
(5–7), but neither effect has been observed
previously (3, 4, 8–13).

Quantized conductance results from the
electronic wave guide properties of ex-
tremely fine wires and constrictions [see, for
example, (13–20)]. When the length of the
conductor is smaller than the electronic
mean free path, then the electronic trans-
port is ballistic, in which case each trans-
verse wave guide mode or conducting
channel contributes G0 to the total conduc-
tance. Calculations indicate that conduct-
ing single-shell nanotubes have two con-
ductance channels (5–7). This predicts that
the conductance of a single-wall nanotube
(SWNT) is 2G0 independent of diameter
and length.

Another important aspect of ballistic

transport is that no energy is dissipated in
the conductor (20). Instead, the Joule heat is
dissipated in the electrical leads, which con-
nect the ballistic conductor to the macro-
scopic elements of the circuit. The nondis-
sipative property survives if elastic scattering
occurs, for example, from impurities and de-
fects. However, elastic scattering affects the
transmission coefficients and thereby reduc-
es the conductance (20–22), which then is
no longer precisely quantized [see (19)].

Until recently, conductance quantiza-
tion had only been observed in two-dimen-
sional electron gases at ultralow tempera-
tures (15). Room-temperature quantized
conductance has now also been observed in
metallic wires, which usually are at most a
few nanometers long and a fraction of a
nanometer wide (16–19). Although con-
ductance quantization requires ballistic
transport (20–22), we were able to demon-
strate both properties independently.

In our experimental scheme we used arc-
produced multiwalled carbon nanotubes
(MWNTs) (23–26). The nanotubes were
typically very straight with lengths of 1 to 10
$m (24, 25) (Fig. 1). High-resolution trans-
mission electron microscopy (HRTEM)
showed that their diameters ranged from 5
to 25 nm, with inner cavities from 1 to 4
nm; they typically had about 15 layers (25).
The nanotubes were embedded in fibers that
occur in the soft material inside the hard-

shelled deposit of the arc (24, 25). These
fibers are very fine and compact (nominally
50 $m in diameter at the tips and 1 mm
long) and are composed of nanotubes and
graphitic particles; TEM revealed that usu-
ally several particularly long (#3 $m) nano-
tubes protrude from the tip of the fiber. The
protruding nanotubes are usually bundled
with others of different lengths, hence only
one nanotube is at the extreme end. An
example is shown in Fig. 1. The nanotube
fiber was attached to a gold wire with col-
loidal silver paint, and the resulting nano-
tube contact was installed in place of the tip
of a scanning probe microscope (SPM) (27)
so that the nanotube contact could be raised
and lowered using the SPM controls. A
heatable copper reservoir containing mercu-
ry (or other low–melting temperature metal)
was placed below the nanotube contact.
The liquid metal was used as the second
contact to the nanotubes and allows a gentle
and reproducible contact with the nano-
tubes to be made (mercury does not wet the
nanotubes). Moreover, TEM revealed that
before the nanotubes are dipped in the liq-
uid metal, they are covered with fine gra-
phitic particles. Dipping them had a cleans-
ing effect, and afterward the protruding

S. Frank, P. Poncharal, W. A. de Heer, School of Physics,
Georgia Institute of Technology, Atlanta GA 30332, USA.
Z. L. Wang, School of Materials Science and Engineering,
Georgia Institute of Technology, Atlanta GA 30332, USA.
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Fig. 1. Nanotube con-
tact used in nanotube
conductance measure-
ments. (A) Transmission
electron micrograph of
the end of a nanotube fi-
ber recovered from the

nanotube arc deposit. The fibers consist of car-
bon nanotubes and small graphitic particles. The
fiber shown here is %1 mm long and 0.05 mm at
the tip, from which protrude several long and
straight nanotubes. The nanotubes are very clean
after they have been dipped in liquid metal (like the
one shown), in contrast to the virgin tips on which
many small graphitic particles are seen. The long
nanotube is 2.2 $m long and 14 nm wide. The
inset shows the end of the longest tube under
higher magnification; it is bundled together with
another one that terminates 400 nm before the
first one. (B) Schematic diagram of the experimen-
tal setup. The nanotube contact is lowered under
SPM control to a liquid metal surface. After con-
tact is established, the current I is measured as
the fiber is moved into the liquid metal, so that the
conductance can be determined as a function of
the position of the nanotube contact.
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Carbon Nanotube Quantum Resistors
Stefan Frank, Philippe Poncharal, Z. L. Wang, Walt A. de Heer*

The conductance of multiwalled carbon nanotubes (MWNTs) was found to be quantized.
The experimental method involved measuring the conductance of nanotubes by re-
placing the tip of a scanning probe microscope with a nanotube fiber, which could be
lowered into a liquid metal to establish a gentle electrical contact with a nanotube at the
tip of the fiber. The conductance of arc-produced MWNTs is one unit of the conductance
quantum G0 " 2e2/h " (12.9 kilohms)–1. The nanotubes conduct current ballistically and
do not dissipate heat. The nanotubes, which are typically 15 nanometers wide and 4
micrometers long, are several orders of magnitude greater in size and stability than other
typical room-temperature quantum conductors. Extremely high stable current densities,
J # 107 amperes per square centimeter, have been attained.

The intriguing possibility that nanoscopic
graphitic structures may someday be used as
electronic elements has been reinforced by
predictions (1) as well as recent demonstra-
tions (2–4) of their device properties. How-
ever, not much is known about the elec-
tronic transport in nanotubes. Theory pre-
dicts that the electrons flow ballistically
through them and that the conductance
(the inverse of the resistance) is quantized
(5–7), but neither effect has been observed
previously (3, 4, 8–13).

Quantized conductance results from the
electronic wave guide properties of ex-
tremely fine wires and constrictions [see, for
example, (13–20)]. When the length of the
conductor is smaller than the electronic
mean free path, then the electronic trans-
port is ballistic, in which case each trans-
verse wave guide mode or conducting
channel contributes G0 to the total conduc-
tance. Calculations indicate that conduct-
ing single-shell nanotubes have two con-
ductance channels (5–7). This predicts that
the conductance of a single-wall nanotube
(SWNT) is 2G0 independent of diameter
and length.

Another important aspect of ballistic

transport is that no energy is dissipated in
the conductor (20). Instead, the Joule heat is
dissipated in the electrical leads, which con-
nect the ballistic conductor to the macro-
scopic elements of the circuit. The nondis-
sipative property survives if elastic scattering
occurs, for example, from impurities and de-
fects. However, elastic scattering affects the
transmission coefficients and thereby reduc-
es the conductance (20–22), which then is
no longer precisely quantized [see (19)].

Until recently, conductance quantiza-
tion had only been observed in two-dimen-
sional electron gases at ultralow tempera-
tures (15). Room-temperature quantized
conductance has now also been observed in
metallic wires, which usually are at most a
few nanometers long and a fraction of a
nanometer wide (16–19). Although con-
ductance quantization requires ballistic
transport (20–22), we were able to demon-
strate both properties independently.

In our experimental scheme we used arc-
produced multiwalled carbon nanotubes
(MWNTs) (23–26). The nanotubes were
typically very straight with lengths of 1 to 10
$m (24, 25) (Fig. 1). High-resolution trans-
mission electron microscopy (HRTEM)
showed that their diameters ranged from 5
to 25 nm, with inner cavities from 1 to 4
nm; they typically had about 15 layers (25).
The nanotubes were embedded in fibers that
occur in the soft material inside the hard-

shelled deposit of the arc (24, 25). These
fibers are very fine and compact (nominally
50 $m in diameter at the tips and 1 mm
long) and are composed of nanotubes and
graphitic particles; TEM revealed that usu-
ally several particularly long (#3 $m) nano-
tubes protrude from the tip of the fiber. The
protruding nanotubes are usually bundled
with others of different lengths, hence only
one nanotube is at the extreme end. An
example is shown in Fig. 1. The nanotube
fiber was attached to a gold wire with col-
loidal silver paint, and the resulting nano-
tube contact was installed in place of the tip
of a scanning probe microscope (SPM) (27)
so that the nanotube contact could be raised
and lowered using the SPM controls. A
heatable copper reservoir containing mercu-
ry (or other low–melting temperature metal)
was placed below the nanotube contact.
The liquid metal was used as the second
contact to the nanotubes and allows a gentle
and reproducible contact with the nano-
tubes to be made (mercury does not wet the
nanotubes). Moreover, TEM revealed that
before the nanotubes are dipped in the liq-
uid metal, they are covered with fine gra-
phitic particles. Dipping them had a cleans-
ing effect, and afterward the protruding
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Fig. 1. Nanotube con-
tact used in nanotube
conductance measure-
ments. (A) Transmission
electron micrograph of
the end of a nanotube fi-
ber recovered from the

nanotube arc deposit. The fibers consist of car-
bon nanotubes and small graphitic particles. The
fiber shown here is %1 mm long and 0.05 mm at
the tip, from which protrude several long and
straight nanotubes. The nanotubes are very clean
after they have been dipped in liquid metal (like the
one shown), in contrast to the virgin tips on which
many small graphitic particles are seen. The long
nanotube is 2.2 $m long and 14 nm wide. The
inset shows the end of the longest tube under
higher magnification; it is bundled together with
another one that terminates 400 nm before the
first one. (B) Schematic diagram of the experimen-
tal setup. The nanotube contact is lowered under
SPM control to a liquid metal surface. After con-
tact is established, the current I is measured as
the fiber is moved into the liquid metal, so that the
conductance can be determined as a function of
the position of the nanotube contact.
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nanotubes were completely free of particles.
In a typical experiment, the nanotube

contact was lowered toward the liquid met-
al contact (LMC) with the coarse drive of
the SPM. After electrical contact was es-
tablished, the nanotube contact was cycli-
cally driven in and out of the LMC under
piezo control (peak-to-peak amplitude Hpp
! 0.1 to 7 "m, frequency f ! 0.1 to 10 Hz).
A potential Vap # 10 to 50 mV was applied
to the contact, and the current through the
circuit was measured together with the pi-
ezo displacement. Data from sequences of
typically 200 to 1000 dipping cycles with
50,000 measured points per cycle were re-
corded automatically in each data file.

Figure 2A is a plot of conductance versus
time for two time intervals in one sequence.
The tip speed was $5 "m/s. Each conduc-
tance cycle corresponds to one piezo cycle.
The plateau at 1G0 indicates that the con-
ductance of the contacting nanotube jumps
from 0 to #1G0, where it remains constant
for a time corresponding to a distance of #2
"m along the nanotube. The constant value
of the conductance is consistent with a bal-
listic conductor of uniform width and incon-
sistent with classical conductors for which
the conductance varies as the inverse of the
length. The observation of this ballistic prop-
erty with a conductance near G0 strongly
suggests that this nanotube is indeed a quan-
tized conductor. The abundance of corrobo-
rating experimental evidence, of which we
present a representative sample here, verifies
this property in general.

Usually we observed a sequence of steps
at 1G0 intervals rather than a single step.
These steps occur when other tubes also
come into contact with the LMC, as in Fig.
2C, where a second step occurred after a
dipping distance of 200 nm. This distance is
consistent with the expected location of a
second tube that is bundled together with
the first (compare with inset, Fig. 1A).
When the nanotube contact was submerged
further, more nanotubes came into contact
with the LMC and produced additional steps
toward higher conductance, such as the step
at 500 nm in Fig. 2C. Ultimately, the fiber
touched the LMC and the residual resistance
was on the order of 50 ohms (or %0.5% of
the typical resistance of one nanotube).

In Fig. 2C, the conductance does not
immediately rise to G0 but is #0.5G0 for the
first 25 nm. The major step at 200 nm is also
preceded by an initial step #40 nm long.
This effect is frequently observed and can be
related to the tip structure of the nanotubes
(23–26). We found that #30% of the nano-
tubes have tapered tips (23) that are up to
twice as long as the diameter of the corre-
sponding tube (Fig. 3B). This size is consis-
tent with the lengths of the minor steps. The
reduced conductance is readily explained in
terms of the tip-to-shaft interface (26),
which [like defects (1, 5)] can elastically
scatter electrons, thereby reducing the trans-
mission coefficient (21, 22) [see also (19)].
A close-up view of the tip effect is shown in
Fig. 2D, where the scanning range was re-
duced to 70 nm. The pre-step at G & 1⁄2G0

is 34 nm long. The two well-defined peaks in
the histogram of the corresponding sequence
of 1000 traces are shown in Fig. 3A and
indicate the reproducibility of this feature.

Complementary to the conductance trac-
es, the data are also presented as conduc-
tance histograms (that is, the histogram of
all the measured conductance points in a
sequence) in order to average out noise and
fluctuations. Figure 2B shows the histogram
(actually plotted sideways) of 250 traces of
Fig. 2A. The plateau near G0 in Fig. 2A is
represented by the peak in the histogram,
which has a maximum that is very close to
1G0. The quantization is clear and is even
more pronounced than in metal contacts.
Moreover, we did not adjust for a “series
contact resistor,” as is often done for metal
nanowires to align the conductance plateaus
with conductance quanta (16–19).

Conductance quantization, as described
here, was observed in all 20 nanotube con-
tacts we constructed. However, in several
cases, long anomalous plateaus ('500 nm)

Fig. 2. Carbon nanotube
conductance measure-
ments. (A) Conductance
of a nanotube contact
that is moved at constant
speed into and out of the
mercury contact as a
function of time. The pe-
riod of motion is 2 s and
the displacement (z !
$2.5 "m. The conduc-
tance “jumps” to #1G0
and then remains con-
stant for #2 "m of its dip-
ping depth. The direction
of motion is then re-
versed and the contact is
broken after 2 "m. The
cycle is repeated to show
its reproducibility; cycles
201 through 203 are displayed as an example. (B) Histogram of the conductance data of all 250 traces in
the sequence. The plateaus at 1G0 and at 0 produce peaks in the histogram. The relative areas under the
peaks correspond to the relative plateau lengths. Because the total displacement is known, the plateau
lengths can be accurately determined; in this case, the 1G0 plateau corresponds to a displacement of
1880 nm. Plateau lengths thus determined are insensitive to random oscillations of the liquid level and
hence are more accurate than measurements from individual traces. (C) A trace of a nanotube contact with
two major plateaus, each with a minor pre-step. This trace is interpreted as resulting from a nanotube that
is bundled with a second one (as in Fig. 1A, inset). The second tube comes into contact with the metal
#200 nm after the first. Shorter plateaus (from #10 to 50 nm long) with noninteger conductance are often
seen and are interpreted to result from the nanotube tips. A clear example of this effect is shown in (D).

Fig. 3. (A) Nanotube histograms of nanotube con-
tacts in various liquid metals. (a) Histogram of a
nanotube ((z ! $35 nm) in Hg. From the peak
area, the tip length (corresponding to G & 1⁄2G0)
is found to be 34 nm long, followed by a shaft for
which G & 1G0. (b) Histogram showing two dis-
tinct peaks at 0.9G0 and 2.05G0 with lengths of
159 and 339 nm, followed by a less distinct peak
near 3G0 with a length of #240 nm. (c) Nanotube
contact histogram in liquid Cerrolow, showing a
peak corresponding to a conductance plateau at
1G0 (length 530 nm), one at 2G0 (length 750 nm),
and one at 3G0 (length 420 nm). (d) A histogram
using liquid gallium with a peak at 1G0 (660 nm),
one at 2G0 (520 nm), and a broader structure at
3.1G0 (370 nm). The broadened peak structures
in (c) and (d) are caused by higher noise levels in
these measurements. (B) Schematic diagram of a
carbon nanotube (composed after high-resolution
electron micrographs), showing two typical tip
structures and a shaft. The tube is #15 nm wide
and is composed of 12 layers; the upper tip is 30
nm and the lower tip is #7 nm long.
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L. Pfeiffer et al./Transport and optics in quantum wires 
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Fig. 3. Sample geometry. (a) A sketch of the first MBE growth consisting of a modulation-doped quantum well (narrow 
white layer) clad by two layers of AIGaAs (grey layers). The long and narrow tungsten stripe (T) is deposited onto the struc- 
ture. After cleaving the sample the T-gate ends at the cleavage plane. (b) The second modulation-doped MBE growth (b- 
doped A1GaAs) along the 110 direction (transparent layer). A standard Ti-Au gate (S) is deposited over the entire 110 sur- 
face. (c) An enlargement of the critical device region along with the electronic circuitry'. The hatched region denotes the 
electron system. The top gate (T) is biased to deplete the 2DEG underneath, leaving only the wire as a possible conduction 
channel. (d) A cross-section through the y-z plane in the wire region for the unbiased conditions. The 2DEG is coupled di- 
rectly to the electrons along the cleaved edge. In the ungated region this is the path by which current from the 2DEG enters 
and leaves the wire. (e) The 21)EG is depleted by the top gate. This is the least negative top gate voltage for which the quan- 
tum wire is defined. 03 For larger (negative) values of the top gate the wire confinement improves and its density is reduced. 

introduces electrons at the edge o f  the 
quan tum well (see Fig. ld).  The  quality o f  the 
growth on the cleaved surface is moni to red  by 
growing simultaneously on a polished (110) 
reference wafter. The  2 D E G  formed on the 
reference wafer has a density o f  ty~icall.y 
3 x 1 ( ) l l c m  e and a mobil i ty  o f  1 . 3×1 0 ' c m ~ /  
Vsec. From this we infer a similarly high 
quality growth on the cleaved plane. The  
cleave also defines the end o f  the tungsten 
gate. Figure lc  shows a b low-up  o f  the critical 
device region under  suitable bias condit ions.  

O h m i c  contacts to the 2I) system are made 
far away from this region by diffusing indium 
dots into the 2DEG.  In essence, the top gate 
(T) primarily serves to separate the 2D sheets 
that contact  the 1D wire, whereas the side 
gate (S), only 200 nm from the wire, primarily 
serves to vary the electron density in the 1D 
system. 

Electronic transport measurements on thc 
quantum wire are performed at 300 mK,  in the 
contact configuration o f  Fig. lc  and measuring 
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Examples of low-dimensional systems:
semiconductor quantum dots

0D
increases approximately linearly with decreasing
temperature in the range of 100 to 300K and then
plateaus. For comparison, Fig. 1E shows PL data
for undoped CdSe QDs prepared and measured
in an identical fashion. The absorption spectra of
the Mn2+:CdSe and undoped CdSe QDs both fol-
low Varshni-like temperature dependence (Fig. 1F),
as does the PL of the undoped CdSe QDs.

The data in Fig. 1D thus indicate a PL Stokes
shift (DE, representing shift of the excitonic PL
maximum from the excitonic absorptionmaximum
at the same temperature) for theMn2+:CdSe QDs
that increases with decreasing temperature, start-
ing already at room temperature (Fig. 1F). This
anomalous temperature dependence reflects sta-
bilization of the exciton by Mn2+ through a mech-
anism that is strongly temperature dependent. In
epitaxial DMSs, a similar anomalous temperature
dependence has been observed at T < ~30 K that
reflects partial Mn2+ spin alignment in the effec-
tive exchange field (Beff) of the exciton (11, 12).
The largest Beff observed in such measurements
has been ~3.5 T (11).

The data from Fig. 1F are replotted in Fig.
2A as DE versus 1/T (where T is temperature),
along with similar data for two other colloidal
Mn2+:CdSe QD samples of different diameters.
The resulting plots all show a clear 1/T depen-
dence of DE at high temperatures (Curie regime)
that saturates at temperatures below ~50 K. As in
previous analyses (11, 12, 24), we fit these data to
a simple isotropic S = 5/2 Brillouin function (Eq.
1) to estimate the effective exchange field (Beff)
acting on the paramagnetic Mn2+ ions within the
nanocrystals. In Eq. 1, the Mn2+g factor gMn =
2.00, mΒ = Bohr magneton, k = Boltzmann con-
stant, and C is a scaling constant proportional to
the number of Mn2+ per QD (see below). Beff is
thus determined by the curvature of the data set,
not its height. As illustrated in Fig. 2B, the data
from Fig. 1F are reproduced well with Beff ≈ 75 T
(solid red line). This value of Beff is more than one
order of magnitude greater than those reported
previously. For comparison, the dashed lines in
Fig. 2B show the behavior expected from Eq.
1 for various values of Beff. As detailed below,
Beff here is a phenomenological value with con-
tributions from twomajor sources, but it is never-
theless extraordinarily large in these colloids.

DE¼C
ð2S þ 1Þ

2S
coth ð2S þ 1Þ gMnmBBeff

2kT

! "# $

−
%

1
2S

coth
gMnmBBeff

2kT

! "

g ð1Þ

All samples show similar saturation of DE
with temperature. Figure 2C plots Beff versus
1/VQD from analysis of the data in Fig. 2A using
Eq. 1, where VQD is the Mn2+:CdSe QD volume.
These data yield a straight line that intersects the
origin, demonstrating a strong influence of nano-
crystal diameter on Beff. The exceptionally large
values of Beff shown in Fig. 2, compared with
those of self-assembledDMSQDs or bulk DMSs
(7, 11, 12, 24), can be attributed to increased ex-

citon spatial confinement within these colloidal
Mn2+:CdSe QDs, with Beff increasing by ~50%
upon reduction of the QD diameter from 5.0 to
4.3 nm.

All of these colloidal Mn2+:CdSe QDs show
saturation persisting as high as ~50 K (1/T ≈
0.02 K−1). The signature EMP temperature de-
pendence of DE is even still clearly observed
in all samples up to room temperature (1/T ≈
0.003 K−1) (26). Spontaneous magnetic satura-
tion under the exchange field of an exciton has
never been reported in any EMP study. In all
previous investigations, Beff induces only partial

magnetization but is insufficient to completely
align the Mn2+ spins, even at liquid helium tem-
peratures. For example, Beff of 3.5 T induces only
75% magnetization at 5 K and only 10% mag-
netization at 50 K (Fig. 2B) (11).

A more detailed picture of these EMPs is ob-
tained from time-resolved PL (TRPL) measure-
ments. Figure 3, A and B, shows TRPL data for
doped and undoped CdSe QDs measured at
5 K. The Mn2+:CdSe QDs show a large PL
redshift within the first few nanoseconds after
the laser pulse. The entire PL band shifts in a
similar way with time. Relaxation dynamics on
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Fig. 2. Analysis of continuous-wave PL Stokes shifts. (A) PL Stokes shifts versus 1/T for three separate
Mn2+:CdSe QD samples of different diameters (red triangles, d = 4.3 nm, 4.5% Mn2+; red squares, d =
4.7 nm, 1.4%Mn2+; and blue circles, d = 5.0 nm, 4.2%Mn2+). (B) Fit of the d = 5.0 nm 4.2%Mn2+:CdSe
QD Stokes shifts to a modified S = 5/2 Brillouin function (Eq. 1) with Beff as the only floating variable, from
which Beff of 75 T is estimated (solid red line). The dashed lines illustrate other values of Beff, including 3.5 T,
the largest Beff recorded from analogous data for epitaxially grown QDs (11). (C) Beff values obtained from
fitting the data in part (A), plotted versus the inverse QD volumes (1/VQD). All reported Mn2+ concentrations
are actual incorporated concentrations (26).
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Fig. 1. Colloidal Mn2+:CdSe QDs and their continuous-wave PL. (A) Schematic illustration of photo-
induced magnetization of magnetic impurities in the effective magnetic field of a confined exciton.
Blue arrows indicate Mn2+ dopant spins, the yellow arrow indicates the exciton, and the blue curly lines
indicate surface capping ligands. (B) Transmission electron microscopy image of an isolated colloidal
Mn2+:CdSe QD. (C) Photograph of a colloidal Mn2+:CdSe QD suspension in ambient room light and in
the dark with unfocused laser irradiation. Variable-temperature continuous-wave PL spectra of colloidal
(D) d = 4.3 nm 4.5% Mn2+:CdSe and (E) undoped d = 4.0 nm CdSe QDs at different temperatures.
From top to bottom: 5 [in (E)], 8, 30, 50, 70, 100, 120, 150, 170, 200, 225, 250, 275, and 295 K. (F)
Absorption and PL peak maxima for d = 5.0 nm 4.2% Mn2+:CdSe QDs. The PL of the undoped QDs
follows Varshni-like behavior, but for the Mn2+:CdSe QDs, it decreases in energy with decreasing
temperature. See (26) for experimental details.
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prepared by other techniques (e.g., molecular beam epitaxy).
Colloidal chemistry methods are also cheaper and easier to
upscale, and are highly versatile in terms of composition, size,
shape and surface control. Moreover, colloidal NCs can be
used as building blocks for complex nanostructures, such as
NC superlattices.4,5

The combination of ease of fabrication and processing and
flexibility in property-tailoring has turned colloidal NCs and
HNCs into promising materials for a multitude of applications
(optoelectronics, photonics, spintronics, catalysis, solar energy
conversion, thermoelectrics, information processing and storage,
sensors, and biomedical applications),4–18 spurring an intense
research activity over the past decades. As a result, a remarkable
degree of control over the composition, size, shape and surface
of colloidal NCs has been achieved. Several excellent reviews
and books covering various aspects of colloidal NC research
have been published recently.4–9,16–47 Therefore, this critical
review is not intended as a comprehensive treatise, but rather
as an enticing overview of the field, in which the fundamental
principles are highlighted and the current state-of-the-art is
outlined and discussed.

2. Properties of colloidal heteronanocrystals: when
the whole is greater than the sum of its parts

The properties of colloidal HNCs emerge from their hybrid
organic–inorganic nature, and are dictated not only by
the individual characteristics of the inorganic and organic

components, but also by their mutual interaction. The organic–
inorganic interface and the interplay between the organic
surfactant molecules are also of crucial importance during
the synthesis of colloidal HNCs, being the driving forces
behind the remarkable control achieved in recent years over
the size, shape and architecture of HNCs (section 3 below). This
has yielded an exquisite variety of colloidal HNCs, spanning
from concentric core/(multi)shell quantum dots (QDs) of
various shapes to intricate multipod HNCs, via heterodimers,
nanodumbbells and heteronanorods (Fig. 3).25–30

2.1 The inorganic component

The inorganic nanoparticle (NP) dictates the optoelectronic
and magnetic properties, which are defined by the composi-
tion, size and shape of the HNC. These properties may be
further modulated or modified by the organic ligand layer, as
will be discussed below (section 2.2).
A HNC comprises two (or more) materials that share one or

more interfaces. The nature of the materials connected by the
heterojunction can be widely different.25–30 Consequently,
HNCs can be made combining metals (e.g., Ag–Au), metals
and semiconductors (e.g., Au–CdSe), metals and insulators
(e.g., Co–Fe3O4 or Au–SiO2), metal alloy and metal oxides
(e.g., FePt–Fe3O4), and different semiconductors or insulators
(e.g., CdSe-ZnS or ZnS-Fe3O4). Multicomponent colloidal
HNCs combining different types of materials have also been
obtained (e.g., CdSe/(Cd,Zn)S/ZnS core/multishell QDs
embedded in SiO2 NPs67).
The ability to join different materials in the same HNC

opens up a rich realm of possibilities for property engineering.
For example, magnetic and optical functionalities can be

Fig. 1 Suspensions of colloidal CdSe NCs of different sizes (1.7 to 4.5 nm

diameter, from left to right) under UV excitation. This iconic image of

colloidal nanoscience provides a beautiful visual demonstration of two

fundamental nanoscale effects: quantum confinement (size dependent

luminescence colours) and large surface to volume ratio (colloidal

stability).

Fig. 2 Molecular simulation snapshot of a colloidal CdSe NC capped

by hexylamine molecules. Colour coding: black, Se; orange, Cd; light

blue, C; dark blue, N; white, H; yellow, S; brown, P; red, O.

The simulation methodology is described in ref. 3. Courtesy of

P. Schapotschnikow (Delft University of Technology, Netherlands).

Fig. 3 Schematic survey of colloidal HNC architectures (for clarity the

surfactant layer is not represented). The diversity of possible material

combinations for each category can be illustrated by a few examples:

(a) CdSe/ZnS,30 InP/ZnS,30 Co/CdSe;48 (b) PbSe/CdSe;49 (c) CdTe/CdSe;50

(d) Au/Fe3O4;
51 (e) Au–Fe3O4,

52 CdSe–Fe2O3,
53 CdSe–Au,54

FePt–CdSe,55 FePt–PbS,55 CdS–Fe2O3;
56 (f) Au–Fe3O4–Au;

51

(g) CdSe/CdS,57–59 ZnSe/CdS;59 (h) Au/Ag;29 (i) CdTe–CdSe–CdTe,60

PbSe–CdSe–PbSe,61 Au–CdSe–Au,62 Co–TiO2–Co;
63 (j) CdS–Ag2S;

64

(k) PbSe–CdSe,61 Co–TiO2;
63 (l) CdSe–CdS–CdSe,65 CdTe–CdSe–CdTe;66

(m) CdSe–Au;62 (n) CdSe–CdTe;65 (o) CdSe–CdTe.65 TEM images of

some of these HNCs will be provided later. Courtesy of M. Casavola

(Utrecht University, Netherlands).
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Colloidal CdSe nanocrystals (NC), 
diameter 1.7-4.5 nm (left to right) 
under UV illumination.

Magnetically ordered nanocrystals 
(Mn-doped CdSe), optical control 
of magnetism


