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Abstract

The present numerical study concerns fractional quantum Hall systems at filling factors
ν = 2

3
and 2

5
. By means of the exact diagonalization of systems with few electrons in a

rectangle with periodic boundary conditions we investigate the many–body ground states
and low–lying excited states. Homogeneous systems as well as systems with some special
forms of inhomogeneities are considered. Particular emphasis is put on the spin degree of
freedom and on possible analogies to Ising ferromagnets.

The core of the work is set up into four Chapters: experimental results and especially those
hinting at ferromagnetism at ν = 2

3
, 2

5
are reviewed and a wider theoretical introduction is

given. In another two Chapters, first the homogeneous systems are examined and then the
capability of the ν = 2

3
systems to form spin structures under the influence of magnetic

inhomogeneities is investigated.

For homogeneous systems we first examine the inner structure of the well–established spin
polarized and spin singlet incompressible ground states. Based on this study, we propose
a new interpretation of the singlet ground state at filling 2

3
. Links to composite fermion

theories are mentioned and among them especially those which may seem counterintuitive
at the first look. Further, a half–polarized state is found which could become the absolute
ground state at ν = 2

3
in a narrow range of electron density. We investigate this state and

find it in some respects similar to the singlet and polarized ground states, yet the nature
of this half–polarized state is not completely explained.

In the next Chapter, the crossover between the polarized and the singlet ground states is
studied under the influence of magnetic inhomogeneities which should support formation
of domains with different spin polarization. We find that if the domains should indeed
form, the energy gap over the crossing ground states has to close. It is proposed that this
scenario can still be compatible with the observation of a plateau in the polarization near
the transition. A candidate for a state containing domains is presented.
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1 What to study at ν =
2

3
in the new

millennium?

Correlated systems in the world of quantum mechanics: this is the target area of this thesis.
By the first two words, I would like to refer to many–body systems where single–particle
models, and also the effective single–particle ones, fail to describe the reality. In classical
physics, let us say in astronomy, many–body problems have long been studied. Consider
just the problem of three gravitating bodies, for example the Sun, Saturn and Uranus. The
full problem cannot be solved analytically, are there some options? Neglecting interactions
between the last two, we have two independent one–particle problems, Sun–Uranus and
Sun–Saturn which can easily be solved. Can we do better? Yes, we can take the Sun–
Saturn subsystem and calculate motion of Uranus on this background. And more: with
this improved trajectory of Uranus, we can calculate a correction to the motion of Saturn
and continue the iteration process. These effective one–particle problems, the latter one
being selfconsistent if the iteration converges, will likely not be analytically soluble, but
still they are much simpler than the full three–body problem.

The atom of helium, or a nucleus with two orbiting electrons, is almost the same problem
projected to the context of quantum mechanics. Again, omission of interelectronic inter-
action gives an easily soluble one–particle model where Hartree–Fock approximation is an
example of an effective one–particle model. The best variational Hartree–Fock wavefunc-
tion for the ground state is (Sect. 8.4.3. in [74]; see comment [1])

ψvar(r 1, r 2) = exp [−Z∗(|r 1|+ |r 2|)] (| ↑↓〉 − | ↓↑〉) , with Z∗ = 2− 5

16
(1.1)

and even though it gives a fairly good estimate for the ground state energy, it obviously
fails to describe the fact that the two electrons try to avoid each other. Indeed: fixing r 1

and |r 2|, we would expect that |ψvar|2 becomes maximal, if the angle ϕ between r 1 and r 2

is 180◦; instead the Hartree–Fock ψvar in Eq. 1.1 is completely independent on the angle
ϕ. In other words, the two electrons are uncorrelated [1]. In order to describe correlations
between the two electrons here, we must go beyond the Hartree–Fock approximation.

Similar to superconductivity, the fractional quantum Hall effect (Sect. 2.1) is a unique field,
where correlations between electrons give rise to macroscopically well observable ground
states which we would not expect on the level of a Hartree–Fock approximation. Corre-
lations are introduced by interelectronic interaction and, contrary to atomic physics, the
quantization of single–electron energy levels is a consequence of the strong magnetic field
(Landau levels). The latter phenomenon leads to another unusual feature of the fractional
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quantum Hall systems: Since the Landau levels are highly (macroscopically) degenerate,
so are the many–electron states in a non–interacting system; particularly for filling factors
below one, where it is useful to be restricted to the lowest Landau level, all many–electron
states have the same energy. Now, the effect of interelectronic interactions cannot be in-
vestigated by perturbation theory, as there is no single ground state to start with or, in
other words, there is no small parameter in which we could expand the perturbation se-
ries: since energy spacing between the many–body states is zero, the interaction is never
a small perturbation, regardless of how weak it is. This fact renders the fractional quan-
tum Hall systems unique from the theoretical point of view and makes completely novel
types of quantum–mechanical ground states possible: the best known of these are the
incompressible quantum liquids.

Quantum Hall ferromagnetism was one of companions of the integer quantum Hall effect
(Subsect. 3.6). The observed long–range spin order can be explained by exchange energy
gain in the ferromagnetic state and hence Hartree–Fock models are basically sufficient
to describe the ongoing physics. However, at the end of the previous millennium, new
experimental publications appeared: phenomena reminiscent of ferromagnetism have also
been observed in the fractional quantum Hall regime, being most pronounced at filling
factors 2

3
and 2

5
. In this situation, Hartree–Fock approximation is no longer acceptable:

the spin–ordered states are highly correlated. This area is not very well explored. Instead
of a lattice of spins which are all pointing in the same direction, here, we are dealing with
itinerant electrons which are either in a fully polarized or in a spin singlet state (Subsect.
2.2). Although both states are incompressible, their structure is quite different.

How far can we extend the analogy between an Ising spin–lattice ferromagnet and fractional
quantum Hall systems where two ground states with different spin order compete with each
other? This was the leading question of this thesis at the outset of the new millennium.
There are several fundamental differences between these two systems: the latter one is
itinerant and the liquid–like ground state is stable only owing to correlations while, in a
spin–lattice, the electrons are spatially fixed and the ferromagnetism occurs also in classical
systems. By observing e.g. hysteresis in magnetotransport, experimentators provided a
lot of evidence that the two phenomena are indeed very closely related (Subsect. 2.3), but
on the other hand, observations without analogy to usual Ising systems were also reported
(Subsect. 2.4). Good, so what is going on in those fractional quantum Hall systems? This
is the quest for a theoretician.

The objective of the present work was therefore to study the possible ground states and
low–lying excited states at filling factors ν = 2

3
and 2

5
with special attention to their spin

structure. The exact diagonalization of few–electron systems in a rectangular geometry
with periodic boundary conditions was chosen as a method for this investigation. Earlier,
this method provided the fundamental support for composite fermion models and this
claim remains in effect until today. Most importantly, the exact diagonalization is capable
of predicting new ground states of Coulomb–interacting systems without any a priori
knowledge about their nature. Apart from the homogeneous systems I also investigated
spin structures which can form in the low lying states when an inhomogeneity — a magnetic
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or a non–magnetic one — is present in the system.

As indicated above, Chapter 2 summarizes the key experiments which motivated this work.
On the other hand, as the reader may infer from the initial part of this introduction, the
principal challenge of the study is that we deal with many–body systems. A wide theoretical
introduction to the field of fractional quantum Hall systems is therefore necessary and it
is given in Chapter 3. After the basic tools for our study are presented, I also briefly recall
other approaches and put special emphasis on composite fermion theories (Sec. 3.4).

The majority of the original results of this thesis are contained in the following two Chap-
ters. Homogeneous systems at filling factors 2

3
and 2

5
are addressed in Chapter 4. I discuss

the structure of the incompressible ferromagnetic states, the singlet and fully polarized ones
and investigate a half–polarized state which may be the absolute ground state in a narrow
range of external parameters. Since formation of domains of different spin polarization is
common in conventional ferromagnets, in Chapter 5 I investigate systems at filling factor
2
3

on their tendency to split into domains when the singlet and polarized incompressible
states have the same energy. The probing tool are magnetic inhomogeneities.

At the end of the beginning, I would like to wish the reader to enjoy reading this thesis. If
you are a new–comer to the field of fractional quantum Hall systems, may this work help
you to discover how beautiful and original the playgrounds in the lowest Landau level are.
And if you are a senior researcher in this field, I hope, this work still brings something you
have not known before.
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2 Experimental findings and discussion

2.1 Quantum Hall Effect: classical, integer and fractional

The volume of literature on Quantum Hall Effects is vast and an attempt to summarize it
here would be preposterous. Rather, I will only try to sketch the link between the original
Nobel–honoured experiments and objects of my study within this thesis. For a more
detailed introduction I suggest the books of Yoshioka [102] or Chakraborty and Pietiläinen
[17].

With the term classical Hall effect we refer to the fact that a magnetic field (B) along z
acting on an electric current (I) along x creates an electric bias (Uxy) along y. This voltage
drop compensates the Lorentz force which the magnetic field exhibits on charge carriers
and hence the transversal (Hall) resistance Rxy = Uxy/I is proportional to B 1. Since
the Lorentz force has been compensated by Uxy, the longitudinal resistance Rxx should be
independent on magnetic field.

The quantum Hall effects are manifested by deviations from the Rxy ∝ B law, which
occur in two–dimensional samples of high–mobility (and at low temperatures): around
certain values of B/ne remarkably flat plateaus occur, just as if someone cut horizontal
stairs Rxy = h/e2(1/ν) into the (constantly inclined) slope Rxy ∝ B, Fig. 2.1. Klaus von
Klitzing was the first to observe such plateaus2 and he noticed that they occur at integer
values of ν up to very high accuracy [51]. Another finding was that whenever a plateau
in Rxy occurs, the longitudinal resistance Rxx drops to zero; this is an extreme form of
Shubnikov–de Haas magnetoresistance oscillations.

Already at the very beginning, the origin of the plateaus was correctly recognised. It
is the quantization of motion of a free electron in two dimensions in a perpendicular
magnetic field: density of states (of noninteracting electrons) consists of the delta peaks3

at En = ~ω(n + 1
2
), n = 0, 1, . . . and each peak can accommodate eB/h states per unit

area and per one spin orientation (up or down). Now, imagine some fixed B. Depending
on electron density ne (i.e. number of occupied states per unit area which can be varied by
chemical potential, ergo gate voltage, for instance), two different situations in the ground
state can occur: the highest Landau level, where some states are occupied, is (a) completely
full or (b) is not completely full. In the latter case, we could say the Fermi level lies in the

1Resistivity %xy is equal to B/nee, ne and e being the carrier density and charge.
2The original experimental device was a silicon MOSFET. In fact, von Klitzing measured Rxy as a

function of ne rather than that of B, but this is not essential.
3 If we neglect impurities in the system, see below.
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Figure 2.1: Integer quantum Hall effect (from Paalanen et al. [76]).

’band’, or in other words, there are many excitations of low (zero, in ideal case3) energy
and the system behaves like a metal; these excitations account just to rearranging electrons
in the highest occupied Landau level. Completely different is the case (b): any, even the
lowest excitation, must involve promotion of an electron to a higher Landau level and will
thus cost at least ~ω in energy.

In this last case, the system is incompressible4, insulating, or we could say, the Fermi level
lies in the gap. A way to reformulate the definition of case (a) and (b) is to introduce the
filling factor ν = ne/(eB/h) which gives the number of occupied Landau levels. Hereafter
(b) means integer value of ν and that is why the effect is called integer quantum Hall
effect. It takes a long way to explain why these incompressible and compressible states
lead to plateaus Rxy = (h/e2)(1/nu) of finite width and as it is not an objective of this
thesis to study this interrelationship5 I take the liberty of referring the interested reader to
review and references in Yoshioka’s book [102]. Here, I only wish to stress that plateaus in
transversal and minima in (or vanishing of) longitudinal resistance herald an incompressible
(gapped) many–body ground state.

4Infinitesimal excitations (like local increase of electron density, i.e. compression) cost finite energy.
5At this place, presence of disorder in the system is essential.
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Figure 2.2: Fractional quantum Hall effect (from Willett et al. [97]). Filling factor ν = 1
3 where

the features in the magnetoresistance are strongest, is out of range of this plot.

2.1.1 Many–body physics

Not a long time after the integer quantum Hall effect was discovered, plateaus of Rxy =
(h/e2)(1/ν) were found also for non–integer values of ν. Since the ground state should be
gapless within the picture of noninteracting electrons, Tsui, Stormer and Gossard [96] con-
cluded that an incompressible state can occur here only due to interelectronic interactions.

Since 1982 experiments revealed many incompressible ground states at non–integer filling
factor, Fig. 2.2. All of them have ν in the form of a fraction p/q with small integers p and
q, the denominator being odd in almost all cases. Figure 2.2 shows that the most apparent
fractions from the interval 0 < ν 1

2
belong to the sequence ν = p/(2p+ 1).

A fact worth of emphasis is, that no fractional quantum Hall state can be explained in the
picture of noninteracting electrons. Rather than to consider the scheme of density of states
with delta peaks being filled by electrons (which is basically a single electron model) we
should therefore focus on a single Landau level (the highest occupied one) and study what
many–particle states form therein owing to the electron–electron interaction.
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2.2 Ground states with different spin

Soon after Halperin suggested incompressible FQH states which were not fully spin po-
larized [41], exact diagonalization results indicated that such states can be sometimes
energetically more favourable than the fully polarized ones provided Zeeman energy EZ is
small [108],[18].

There are two criteria for the smallness of EZ : it can be compared either to the cyclotron
energy ~ω or to the Coulomb energy EC = e2/(ε`0). In vacuum, it holds ~ω = µBgB = EZ ,
but this is different in GaAs: small effective mass (rendering ω larger than in vacuum) and
smaller effective g–factor yield EZ � ~ω. This fact makes the existence of integer quantum
Hall ferromagnets possible [48].

The latter condition, EZ < EC , necessary for spin being free in the fractional quantum Hall
regime (say for filling factors ν < 1), is more restrictive. Its fulfilment can be manipulated
on (at least) three ways.

1. Lower magnetic fields (low electron density). Because of different scaling of the
two quantities with B (EZ ∝ B, EC ∝

√
B), EZ < EC is met in the limit B →

0. Experimental drawbacks of this method are, that (a) the absolute value of EC

becomes quite low and thus lower temperatures and higher electron mobilities are
required and (b) the electron density must be relatively low and/or the magnetic
field relatively high in order to achieve low fractional filling factors ν < 1.

2. Tilted field. The Coulomb and cyclotron energies are determined by the z–component
of B, just as the motion of electrons is confined to the plane perpendicular to z–axis.
Electron spins are not affected by this confinement, hence the Zeeman energy is
proportional to the total magnetic field B. By tilting the sample, we can therefore
change the ratio between Bz and B and thus between EC and EZ . However, since
B ≥ Bz in any case, we can only make the Zeeman energy effectively larger than
Coulomb energy and not smaller.

3. Pressure dependent g–factor. By applying hydrostatic pressure to a GaAs sample, we
can decrease the effective g–factor. Eventually, it is possible to achieve EZ ∝ g ≈ 0
or even to change the sign of g but such experiments are very difficult6.

Tilted field

To my knowledge, first experiments which gave a strong support for non–fully spin polarized
FQH ground states, were those of Clark et al. [20] and Eisenstein et al. [26]. They were
both related to states at filling factors 1 < ν < 2 (e.g. 8

5
, 4

3
) which are particle–hole

6Vanishing g factor requires a pressure of about 18 kbar which must be achieved at liquid helium tem-
perature.
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conjugates7 to 2
5

and 2
3
. Therefore, the electron density (’ 8

5
’) is not too low (as to make

experiments difficult) but low is the density of holes (’ 2
5

= 2 − 8
5
’) which are the relevant

current carriers. In other words, these experiments get an effective 2
5

system at much lower
magnetic field, namely at field corresponding to ν = 8

5
(recall ν ∝ 1/B) and the lower the

magnetic field, the better for EZ(∝ B)� EC(∝
√
B).

Therefore, for the cited experiments, Zeeman energy was indeed small and the observed
FQH states were spin–singlets (which are preferred for EZ = 0 at the named filling factors).
The actual observation then was that effectively increasing the Zeeman energy (by tilting
the magnetic field while keeping Bz constant) a transition to the fully spin polarized state
occurs. This conclusion was possible to draw from the reentrant behaviour of longitudinal
resistance Rxx at ν = 8

5
: it had a pronounced minimum for zero tilt angle (perpendicular

field) which disappeared for at large enough tilt and reappeared for yet higher tilt angles,
Fig. 2.3(a).

The primary disadvantage of investigations at filling factor 8
5

instead of 2
5

is that the
particle–hole conjugation must be granted. This is true only if Landau level mixing is
negligible and this in turn requires EC � ~ω which means high magnetic fields.

Landé g–factor modified by hydrostatic pressure

It seems to me that Morawicz et al. [67] who were the first to observe the fractional
quantum Hall effect under hydrostatic pressure did not recognise that they actually saw
the transition to the singlet ground state at filling 4

3
= 2 − 2

3
. At normal pressure, the

corresponding minimum in Rxx(B) was absent (just as it should be right at the transition)
and it appears with increasing pressure when the Zeeman energy decreases (along with g)
preferring thus the singlet state over the polarized one. Although authors of [67] do not
discuss the effect of varying g–factor in their experiments, they give a good account of
other quantities related to the FQHE which change under hydrostatic pressure (effective
mass, dielectric constant, disorder strength).

Later experiments by Kang et al. [50] demonstrated clearly the spin transition directly at
filling ν = 2

5
, Fig. 2.3(b). Leadley et al. [61] brought the method up to perfection: they

achieved pressures high enough to make the g–factor vanish and presented detailed data
of transport gaps at ν = 2

5
, 2

3
and 1

3
as a function of g. Most interestingly, they were also

able to make some claims about the existence of skyrmions at filling factor 1
3
. These are

the ’composite–fermion–analogy’ of skyrmions at filling factor ν = 1.

7In presence of spin degree of freedom (and neglecting Landau level mixing), filling factors ν and 2− ν
are particle–hole conjugate. These holes are meant not in the sense of host material bandstructure but
rather in the sense of Landau levels: an almost full Landau level has several empty states which we
call here holes.
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(a) Tilted field (b) Modified g.

Figure 2.3: Spin transition of the incompressible ground state at filling factors 8
5 and 2

5 which
are particle–hole conjugates in the limit of no Landau level mixing (~ω much larger than Zeeman
and Coulomb energy). Figures taken from Eisenstein et al. ([26], Fig. 2.) and Kang et al. ([50],
Fig.1).

Spin transitions achieved by varying the electron density

It was not unusual to perform experiments at different electron densities since the very
early times of the FQHE and for instance Fig. 3 in [20] shows how presence or absence
of a minimum in Rxx at ν = 4

3
depends on the electron density (or equivalently8 on B at

which it is ν = 4
3
). The following methods allow to access different electron densities:

• Strength of doping. Tsui and Gossard showed in the early times of the IQHE that
silicon MOSFET structure used by von Klitzing can be replaced by a GaAs/ GaAlAs
heterostructures where Si–donors are spatially separated from the 2D electron gas
confined to the triangular potential well at the GaAs/GaAlAs surface [95] 9. Con-
centration of the Si–donors determines then the density of electrons in the 2DEG.
Obviously, this method allows for one value of electron density per one sample grown.

8Eq. 3.6: ν = ne/(eB/h) or ne = B · (eν/h). If we choose to study some particular filling factor, say
ν = 4

3 , then the lower the electron density ne, the lower is the magnetic field B at which we reach this
filling factor.

9Since the ionized donors are one of major sources of impurity scattering, the concept of separating them
from the 2DEG was the crucial step to achieve high mobility samples.
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• Illumination. By illuminating GaAs/GaAlAs heterostructures the carrier density can
be increased. For this purpose, red light–emitting diodes are mounted to samples (e.g.
[55]).

• A gate is in principle a ’metallic’ plate parallel to and separated (by an insulating
layer) from the 2D electron gas. Just as in an usual capacitor, voltage applied to the
gate Vg controls (is proportional to, in the simples picture) the density of electrons
in the 2DEG. Since Vg can be varied continuously it allows to sweep through a
whole range of electron densities. This technique is most convenient to study spin
transitions induced by varying the ratio of Zeeman and Coulomb energy (or B ∝ ne

at fixed ν) but it is technologically nontrivial to prepare gated structures with high
mobility. Examples of gated 2D systems are Si–MOSFETs as used by von Klitzing
[51], single GaAs/GaAlAs heterostructures (triangular wells) [42] and wide quantum
wells with two gates (back and front) [57].

Using a continuous variation of the electron density many results were obtained in the field
of phase transitions especially at filling factors ν = 2

3
and 2

5
. This will be the topic of the

following Section.

Concluding remarks

Experiments described so far demonstrate the existence of FQH ground states with different
spins only indirectly. Direct measurements of the spin–polarization of the 2D electron gas
were performed later by Kukushkin, see Sec. 2.4. A more detailed review of experimental
and theoretical results regarding spin of FQH states was given by Chakraborty [16] (in
2000).

2.3 Phenomena at fractional filling factors reminiscent of

ferromagnetism

In the previous Section I sketched how the existence of fractional incompressible ground
states with different spin polarization was demonstrated experimentally. In 1998, experi-
mental articles appeared, which indicated that a transition between a spin polarized and
spin singlet ground state may be accompanied with unexpected phenomena reminiscent of
ferromagnetism. These were works of Kronmüller et al. [55] from MPI Stuttgart and Cho
et al. [19] from the University of Chicago and Santa Barbara.

Kronmüller et al. measured the longitudinal resistance (Rxx) of a high mobility narrow
quantum well10 during a sweep through magnetic field. A deep minimum is expected

10This is a GaAlAs/GaAs/GaAlAs heterostructure. Since the conducting layer of GaAsis only 15 nm
wide, electron states are quantized in the growth direction. Moreover, they are energetically far apart
due to such a strong confinement. Only the lowest subband (state in the growth direction) is occupied
and mixing to higher subbands can be neglected. The system is nearly perfectly two–dimensional.
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to occur at filling ν = 2
3

(i.e. at corresponding B = neh/(νe), Eq. 3.6) indicating an
incompressible ground state, singlet (ne � nc) or fully polarized (ne � nc). The minimum
should vanish for ne ≈ nc, i.e. just at the transition between the two types of ground
states11. Instead, a sharp peak was observed in Rxx around ν = 2

3
. The peak exceeded

typical values of Rxx around ν = 2
3

often by more than 100% and it was therefore baptised
huge longitudinal magnetoresistance (HLM), Fig. 2.4.

The most obvious property of the peak was that it occurred only for slow sweeps, it
completely disappeared when the magnetic field was changed fast during the measurement
of Rxx. When the magnetic field was set so that Rxx reached just the peak value, the
resistance increased in time and saturated on time scales of 10 s. The saturation time was
different for different samples, it was longer in Hall bars with larger area (inset in Fig.
2.4). Also, hysteresis of Rxx was observed: Rxx(B) was different when the magnetic field
was swept up or swept down (Fig. 3 in [55]).

Since charge carriers are excited into the quantum well by illuminating the sample, the
electron (carrier) density is in practice restricted to one single value (when light is on).
Luckily enough, the particular value of ne in samples of Kronmüller was approximately
just the one corresponding to the transition between spin polarized and spin singlet state
at filling factor 2

3
. However, the authors of the article [55] verified that the HLR peak disap-

pears in tilted magnetic field where we move off the transition as Zeeman energy becomes
larger than Coulomb energy (compared to the case when magnetic field is perpendicular,
see Sec. 2.2).

While the longitudinal resistance changed dramatically under the conditions described
above, slight changes were also visible in the Hall resistance: hysteresis and shift of the
plateau value by about 1% [54]. Similar but less pronounced phenomena were found at
filling factor ν = 3

5
.

Cho et al. [19] reported hysteretic phenomena at filling factor ν = 2
5
, 3

7
, 4

7
and 4

9
, Fig. 2.5(a).

This group mastered the technique of varying the effective g–factor by hydrostatic pressure
(see Sec. 2.2) which allowed them to show that hysteresis occurs only if the singlet and
polarized ground states (of ν = 2

5
) have similar energy (Fig. 2 in [19]). In later studies [27],

the temporal evolution of Rxx was studied and a logarithmic behaviour without saturation
was found12 In this article, a wide comparison with other types of magnetic materials was
also presented.

These findings were published about simultaneously with first experiments on quantum
Hall Ising ferromagnetism at integer filling factors [48]. This occurs when two Landau
levels (capable of accommodating in total 2eB/h states) cross and they are to be occupied
by only eB/h states (counted per unit area of 2DEG). Denote states in one of these
Landau levels by pseudospin up and states in the other one by pseudospin down. Due
to interelectronic interaction (basically exchange energy), the ground state is either all
electrons with pseudospin up or all electrons with pseudospin down, just as in a spin lattice

11Cf. with previous Section: low ne means low B (at which we reach ν = 2
3 ) whereas Zeeman energy will

be smaller than Coulomb energy. B = neh/(
2
3e)

12Saturation rate r = dRxx/d log t was shown to diverge at low temperatures as 1/T α with α ≈ 1.3.
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(a) HLR peak was observed only for slow
sweeps through magnetic fields.

(b) The effect appears only at the critical
electron density where polarized and sin-
glet ground states have the same energy.

Figure 2.4: Huge longitudinal (magneto)resistance (HLR) at filling factor ν = 2
3 . From

Kronmüller et al. [55] and Hashimoto et al. [42].

with Ising type anisotropy13. The system thus exhibits a long–range order in pseudospin,
however, its fundamental distinction from spin lattices is, that it is an itinerant ferromagnet.
Other types than just Ising ferromagnetism is also possible in integer quantum Hall systems.
A fundamental classification was given by Jungwirth and MacDonnald [46].

Taking into account the analogy between electronic systems at filling factor 2
3

or 2
5

and
composite fermion systems at filling factors ±2, it was suggested [19] that experiments of
Kronmüller and Cho demonstrate quantum Hall ferromagnetism of composite fermions.

2.3.1 Further studies

Long relaxation rates of Rxx observed by Kronmüller [55] suggested that nuclear spins are
somehow involved in the whole business. This link was proven by NMR measurements [53],
[23]: the peak resistance of the HLR effect responded sensitively when the sample was
irradiated at frequency corresponding to transitions between different spin states of the
host material nuclei (gallium or arsenic), Fig. 7 in Ref. [23]. Apart from the implications

13H = ΣijJSiSj +
∑

i S
2
i . This model requires that (in the ground state) nearest neighbours have parallel

spin and each spin is either up or down (not e.g. pointing along x).

17



for this particular experiment, this opens up a new way how to measure nuclear magnetic
resonance resistively (rather than by registering how much of the RF signal was absorbed).
It is noteworthy, that the nuclear resonance peak (measured in Rxx) was fourfold split.
This is quite unexpected since the nuclei (75As) have spin I = 3/2 which allows for three
different transition frequencies between the four states Iz = ±3

2
,±1

2
. Coupling between

electron and nuclear spin in quantum Hall systems had already been known before (Dobers
et al. [24]) but these works were pioneering in the context of fractional fillings.

Voltage–current characteristics of magnetoresistance around filling factor 2
3

were also a
subject of a thorough study by Kraus et al. [52]. Barkhausen jumps (long known from
magnetism [14]) in the temporal evolution of Rxx at ν = 2

3
were found by Smet et al. [91]

bringing thus another evidence of ferromagnetism, Fig. 2.5(b). Support for the existence
of domains (singlet and polarized) was provided also by surface acoustic wave experiments
by Dunford et al. [25]. Suggestions and demonstrations how to control nuclear spin
polarization by manipulating the electron system were presented by Hashimoto et al. [42].
Since nuclear spins are one of hot candidates for qubits, such studies were cordially welcome
by journals even of the Nature class (Smet et al. [90]).

Kraus et al. [52] proposed that there are two different operating modes of a 2
3

system
at the (singlet to polarized) transition: the authors of Ref. [52] call them quantum Hall
ferromagnetism and huge longitudinal resistance. At low excitation currents, the feature
observed in Rxx (at ν = 2

3
and transition between the two ground states) is small, Fig.

2.6(a), and resistively detected nuclear magnetic resonance of arsenic shows threefold split-
ting as expected for I = 3/2 nuclei [91]. At higher currents, the peak in Rxx is big (or,
with original words, ’huge’) and the NMR signal is fourfold split [53]. Assuming domains
of polarized and singlet states in both regimes, the small Rxx peak in the former regime
is due to scattering of electrons along domain wall loops, as it was suggested under con-
ditions of integer QHE systems by Jungwirth and MacDonald [47]. The magnitude of the
peak in Rxx in the latter regime was explained by scattering of electrons between domains
whereas the nuclear spin polarization changes (flip–flop scattering) contributing thereby to
the disorder potential14 Nevertheless, convincing evidence for this model was not presented
yet.

2.4 Half–polarized states at filling factor 2
3

The story about filling factor 2
3

is not complete if we mention only ferromagnetic–like
phenomena.

Kukushkin et al. [56] employed an optical technique to measure the polarization of the
2D electronic system in a gated single heterostructure. Thus, these experiments allowed to
study electron polarization at fixed filling factor and variable electron density (or, equiva-
lently, fixed filling factor and variable magnetic field). At filling factor 2

3
these experiments

14Authors of Ref. [52] speculate that more and more smaller and smaller domains arise in the electronic
system in such situation. This would lead to a larger resistance.
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(a) Hysteresis at filling 2
5 disappears

when energies of the singlet and the po-
larized ground states become too much
different (top curve).

(b) Barkhausen jumps during saturation in
time of Rxx at its HLR peak value.

Figure 2.5: More evidence for ferromagnetism at filling factors 2
3 and 2

5 . From Cho et al. [19]
and Smet et al. [91].

confirmed that for low densities (or low Zeeman energy, see Sec. 2.2) the polarization is
zero while it is one for high electron densities, Fig. 2.7, just as we expect for spin singlet
and fully polarized ground states. However, around the transition between these two a
clear plateau at value one half was observed. Similar structures (plateaus in polarization
at non–extremal values) were observed also at other filling factors.

Later experiments by Freytag et al. suggested that when Zeeman energy is decreased, the
fully polarized ground state at ν = 2

3
goes into a stable ground state with spin polarization

approximately 0.75 or 0.8. However, these experiments could not reach Zeeman energies
low enough for the unpolarized (singlet) ground state to take over. The structure studied
was a multiple GaAs/GaAlAsquantum well, i.e. many quantum wells (d = 30 or 25 nm
wide) separated by barriers (250 or 185 nm wide GaAlAslayer) wide enough so that the
wells can be considered independent. As a probing tool for the electronic polarization the
Knight shift of the NMR signal from gallium nuclei was used15.

15Knight shift is proportional to the polarization of the electron system.
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(a) QHF (b) HLR

Figure 2.6: Singlet to spin-polarized transition at filling factor 2
3 : Quantum Hall Ferromagnetism

(QHF) at low excitation currents (1 nm) and Huge Longitudinal Resistance (HLR) at high cur-
rents (50 nm). Plots show the longitudinal resistance Rxx as a function of filling factor ν and
electron density n. From Kraus et al. [52].
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(a) Optical experiments: plateau at
polarization one half for ν = 2

3 .
(b) Measurements of the Knight shift: polarization settles at
a value between 0.75 and 0.8.

Figure 2.7: Filling factor 2
3 : stable intermediate states with polarization other than zero (singlet

state) or one (spin polarized state). From Kukushkin [56] and Freytag [29].
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3 Theoretical basics

3.1 One electron in magnetic field

Purpose of this section is to review the textbook problem of one electron confined to
a plane subject to a perpendicular magnetic field. A quantum mechanical answer, the
macroscopically degenerate Landau levels will be recalled as well as different bases of these
Hamiltonian eigenspaces. Various choices of the vector potential gauge will lead us natu-
rally to explicit formulae for wavefunctions which will be useful later when studying many
particle systems in a magnetic field. Also, symmetries of the Hamiltonian will be men-
tioned, especially the magnetic translations which supersede ordinary spatial translations
when magnetic field is present.

3.1.1 Magnetic field in quantum mechanics

A painless introduction according to Murthy and Shankar [72].

Everybody (up to a set of measure zero) knows what a classical charged particle moving
at velocity v in a plane does if it is subject to a homogeneous magnetic field B. Due to the
centripetal Lorentz force, it moves on a circular cyclotron orbit with radius rc and angular
frequency ω:

ω =
|e|B
m

, rc =
v

ω

Here e is the charge and m the mass of the particle.

Obviously, its energy does not depend on the center of the cyclotron orbit but rather on
the position and velocity relative to it. Hereafter, the former coordinate will be called
guiding centre, R , the latter coordinate will be referred to as cyclotron coordinate, � .

We now want to transfer this concept to quantum mechanics. The cyclotron coordinate
will lead to Landau level quantization, the guiding centre coordinate will provide us with
the degeneracy of the Landau levels. The Hamiltonian written in terms of px, py, x, y is

H0 =
1

2m
(p + eA )2 =

1

2m
Π2 , (3.1)

where the vector potential A defines a homogeneous magnetic field in z–direction, B =
Bẑ 0 = ∇ × A . Since A is a function of x, y, the canonical momentum p fails to be a
good quantum number ([H, p ] 6= 0) and the kinetic momentum Π = [H0, r ] = mv takes its
place.
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Now, we perform a coordinate transformation. The cyclotron coordinate is uniquely de-
termined by � ⊥ v , i.e. � ∝ ẑ 0×Π and | � | = rc, and the guiding centre by r = R + � (see
Fig. 3.1).

� =
`20
~

ẑ 0 × Π , R = r − � .

ηx = −`
2
0

~
(py + eAy) Rx = x+

`20
~

(py + eAy) (3.2)

ηy =
`20
~

(px + eAx) Ry = y − `20
~

(px + eAx)

(3.3)

A convenient length scale, the magnetic length `0 =
√

~/|e|B has been introduced. These
new variables constitute the same algebra as px, x, py, y

[ηx, ηy] = −i`20 , [Rx, Ry] = i`20 , [ηj, Rl] = 0 , j, l ∈ {x, y} , (3.4)

except for that `20 replaced ~ in [x, px] = i~. It is worth of a notice that even though �

and R depend on the gauge, these commutation relations do not. They only depend on
magnetic field via `20 ∝ 1/B.

The Hamiltonian reexpressed in these new variables (ηx, ηy, Rx, Ry) reads

H0 =
~

2

2m`40

� 2 =
~

2

2m`40
(η2

x + η2
y) , and [H0,R ] = 0 . (3.5)

It might seem puzzling that coordinates ηx and ηy do not commute. Consider however the
cyclotron motion (Fig. 3.1): both ηx and ηy fluctuate within range [−rc, rc]. If we tried to
suppress the fluctuation (rc = 0), we would have to stop the particle completely. A sharp
value of position and velocity is however prohibited by the uncertainty principle.

The problem described by Eq. 3.5 is equivalent to the one–dimensional harmonic oscillator,
’p2

x + x2’, owing to the fact that commutators [x, px] and [ηx, ηy] are the same up to a
numerical factor. Except for the energy scaling, the spectrum of H0 in Eq. 3.5 is therefore
the same as of the harmonic oscillator

En = (n+ 1
2
)~ω .

On the other hand, [H0,R ] = 0 shows that there is a cyclic coordinate and moreover H0

is independent of it. This coordinate distinguishes states which belong to the same energy
level. Owing to [Rx, Ry] = i`20 and thus ∆Rx∆Ry = 2π`20, each state occupies thus an area
of 2π`20 in the [Rx, Ry] space and thus there are L2/(2π`20) states in each energy level En

in a system of area L2.

The energy levels we have just seen are the Landau levels. Their degeneracy, L2/(2π`20)
states of equal energy En in a system of area L2, is indeed macroscopic: for B = 1 T
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B

e=−|e|

R

r

η

0

Figure 3.1: Negatively charged particle in a plane: cyclotron coordinate � and guiding centre R .

there are 0.24 × 1011 states in a system of area 1 cm2. We should bear in mind that the
degeneracy changes proportionally to magnetic field B.

A system of Ne non-interacting particles (areal density N = Ne/L
2) is essentially described

by the Hamiltonian H0 and in the ground state. Landau levels are simply filled up to the
Fermi level. It is therefore handy to define the filling factor

ν =
Ne

L2/(2π`20)
=

N

eB/h
=

Ne

(BL2)/(h/e)
=

Ne

Φ/Φ0
=

Ne

Nm
. (3.6)

This number denotes both (a) the number of occupied Landau levels (which can be non-
integer if the last Landau level is only partly occupied) and (b) the reciprocal value of the
number Nm of magnetic flux quanta Φ0 passing through the 2D system per particle.

Integer quantum Hall effect occurs just when ν equals an integer. In that case any excita-
tion, even infinitesimal, must promote at least one electron to a higher Landau level and
costs therefore a finite energy ≥ ~ω rendering the ground state incompressible1. See Sec.
2.1 for more details.

3.1.2 Wavefunctions and different gauges of magnetic field

So far, we did not choose any particular form of the vector potential. If we want to get
explicit expressions for wavefunctions in some particular Landau level, we will have to
solve some differential equations. Therein, the vector potential A will appear, and even
though not necessary, it is very handy to choose some particular gauge and to make all
terms in those differential equations explicit. As the Landau levels are degenerate there are
many different bases which span the same space (a particular Landau level). As a matter
of fact, the wavefunctions we are going to obtain will reflect the symmetry of the vector
potential. We should therefore choose the gauge appropriate to the desired symmetry of
the wavefunctions.

In this subsection we will recall gauge invariant formulae for calculating eigenfunctions of
H0 (given by Eq. 3.1). Explicit forms of the wavefunctions in circular (symmetric) gauge
and Landau gauge will be derived in the next subsection.

1In a compressible medium, infinitesimal compression must cost infinitesimal energy.
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Wavefunctions from gauge invariant formulae

According to Eq. 3.5 there are four operators relevant for the problem of a charged particle
in 2D subject to a perpendicular magnetic field: ηx, ηy, Rx and Ry. The former two are
responsible for Landau levels (energies of a harmonic oscillator), the latter two for the
degeneracy. Regarding the commutation relations, [ηx, ηy] = −i`20 and [Rx, Ry] = i`20
(and [ηx,y, Rx,y] = 0), we could reformulate the problem as an abstract two–dimensional
harmonic oscillator with one direction ’suppressed’ by a vanishing excitation energy

H0 =
~

2

2m`40
(η2

x + η2
y) + 0 · (R2

x +R2
y) .

In order to get formulae for eigenstates, we introduce ladder (or creation and annihilation)
operators a, b, [a, a†] = [b, b†] = 1, [a(†), b(†)] = 0

H0 = ~ω(a†a+
1

2
) + 0 · (b†b +

1

2
) ,

a = (ηx − iηy)/(`0
√

2) , b = (Rx + iRy)/(`0
√

2) . (3.7)

Normalized eigenstates to this Hamiltonian are

|n,m〉 =
(a†)n

√
n!

(b†)m

√
m!
|0, 0〉 , (3.8)

and the ground state is defined by

a|0, 0〉 = 0 , b|0, 0〉 = 0 . (3.9)

The energy of such states, H0|n,m〉 = (n + 1
2
)|n,m〉, is given solely by n while m is the

quantum number which distinguishes the degenerate states within one Landau level.

One way to obtain an explicit form of eigenfunctions toH0 (in the real space representation)
is the following: (a) choose one particular gauge of the vector potential A , (b) evaluate the
ladder operators (first Eq. 3.2 and pi = (~/i)∂i, then Eq. 3.7), (c) get the ground state by
solving the differential equation 3.9 and finally (d) obtain an arbitrary state by applying
the creation operators, Eq. 3.8.

3.1.3 Angular momentum, symmetric gauge

According to Chakraborty and Pietiläinen [17].

A plane with perpendicular homogeneous magnetic field is obviously rotationally invariant.
Therefore we expect the Hamiltonian H0 (Eq. 3.1) to conform with this symmetry. Let
us choose the symmetric gauge A = 1

2
B(y,−x, 0) and transform H0 into (dimensionless)

polar coordinates according to x/`0 = r cosϕ, y/`0 = r sinϕ.

H0 =
1

2
~ω

(
−

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

︸ ︷︷ ︸
∆

+
1

4
r2

]
− 1

i~

∂

∂ϕ︸ ︷︷ ︸
Lz/~

)
(3.10)
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This may be called a ’Fock–Darwin form2’ of H0 as it is a good starting point to describe
2D quantum dots defined by parabolic confinement in the xy plane (confinement potential
simply adds to the 1

4
r2 term in Eq. 3.10 and the problem remains analytically soluble).

The Hamiltonian H0 is a sum of two terms: a 2D harmonic oscillator with energy levels
~ω(i + 1

2
), i = 0, 1, . . . and an angular momentum term contributing by energy3 −~ωm,

m = 0, 1, . . . , i.
H0 = ~ω(a†xax + a†yay)− ~ω(Lz/~) .

The lowest Landau level (E = 1
2
~ω) consists of states (i,m) = (0, 0), (1, 1), (2, 2), . . . the

first Landau level (E = 3
2
~ω) of (1, 0), (2, 1), (3, 2) . . . etc. (see also Fig. 3.3). Obviously

E = ~ω

(
1

2
i− 1

2
m +

1

2

)
= ~ω

(
n +

1

2

)
, where n = i−m

is the Landau level index and each Landau level is infinitely degenerate4.

Normalized wavefunctions of state (i,m) are simultaneously eigenfunctions of a 2D har-
monic oscillator (i-th level) and angular momentum m~. Using n = i − m instead of
i,

ψn,m(r, ϕ) =

[
n!

2π2m(n+ |m|)!

]1/2

exp(−imϕ) exp(−r2/4)r|m|L|m|
n (r2/2) , (3.11)

n = 0, 1, 2, . . . : Landau level index

m = 0, 1, 2, . . . : angular momentum

is expressed in terms of the associated Laguerre polynomials ([35], p. 1037)

Lm
n (x) =

1

n!
exx−m dn

dxn
(e−xxn+m) . (3.12)

Complex coordinates

Since we investigate particles moving in a 2D plane and wavefunctions have complex values,
it is often helpful to describe the position of a particle by a complex number z = x + iy
rather than by a two–component vector. Let us briefly introduce this concept.

The transformation rules are the following

z = (x+ iy) ∂z =
1

2
(∂x − i∂y)

z̄ = (x− iy) ∂z̄ =
1

2
(∂x + i∂y) ,

2Derived by Fock and Darwin in 1928 and 1930, see Refs. in [17], App. A. [H0, Lz] = 0 is obvious in this
form.

3Note that (i) H0 is nonnegative rendering |m| ≤ i inevitably and (ii) each level i is (i+1)–fold degenerate
as it should be for a 2D oscillator.

4If we constrain the system to a finite area of diameter R and allow only states which fulfill 〈r〉 < R, we
would recover the known degeneracy. We would have counted πR2/(2π`20) states in each Landau level
n.
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and this form grants (apart from others)

∂zz = ∂z̄ z̄ = 1 , ∂z̄z = ∂z z̄ = 0 , ∂̄z = ∂z̄ .

Setting just for this Subsection `0 = 1, the Hamiltonian, Eq. 3.10, takes the form

H0/(
1
2
~ω) = −1

4
(∂z∂z̄ + zz̄) +

1

2
i(z∂z − z̄∂z̄) ,

and the eigenfunctions, Eq. 3.11, up to a normalization, are given by

ψn,m(z) = exp(1
4
zz̄)∂n

z ∂
m+n
z̄ exp(−1

2
zz̄) . (3.13)

In particular,

• the lowest Landau level (n = 0) is spanned by functions

ψm(z) = zm exp(−1

4
zz̄) (3.14)

which can be easily cross–checked with formula 3.11 and the fact Lm
0 (x) = xm. Except

for the exponential factor, an arbitrary state in the lowest Landau level is an analytic
(holomorph) function, i.e. it is a power series in variable z and does not contain z̄.

• an arbitrary state in the n–th Landau level is a polynomial of n–th degree in the
(antianalytic) variable z̄.

3.1.4 Magnetic translations, Landau gauge

A plane with perpendicular homogeneous magnetic field is obviously also translationally
invariant. Spatial translations applied to the Hamiltonian leave the magnetic field un-
changed but may alter the gauge. Operators which conserve also the gauge (and which
therefore commute with H0) are the magnetic translations (Zak [106],[107]).

The basic idea of magnetic translations is quite transparent. Consider the Landau gauge:
the vector potential A = (0, Bx, 0) is obviously invariant to translations y → y + ∆y
(here, ordinary translations and magnetic translations coincide). However, (an ordinary)
translation x→ x+∆x causes A → A ′ = A +(0, B∆x, 0). The additional constant vector
field has to be accounted for by magnetic translations.

Let us interrupt this discussion at this point and let us write the Hamiltonian H0 (Eq. 3.1)
in Landau gauge

H0 =
1

2
~ω

[
− ∂2

∂x′2
+

(
−i ∂
∂y′

+ x′
)2

]
, (x′, y′) = (x/`0, y/`0) . (3.15)

Using a separation ansatz we readily arrive at a one–dimensional harmonic oscillator prob-
lem

ψ(x′, y′) = exp(ik′yy
′)χ(x′) ,

1

2
~ω

[
−d2χ(x′)

dx′2
+ (k′y + x′)2χ(x′)

]
= Eχ(x′) .
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In this effective 1D problem the spectrum does not depend on k′y which can be an arbitrary
real number. Wavefunctions χ(x′) are also k′y–independent up to a shift by −k′y (note that
x′ = x/`0 and k′y = ky`0). Summarized:

E = ~ω

(
n +

1

2

)

ψn,k′
y
(x′, y′) = exp(−ik′yy′) exp[−(x′ + k′y)

2/2]hn(x′ + k′y) , (3.16)

n = 0, 1, 2, . . . : Landau level index

k′y ∈ [−∞;∞] : momentum along y

Here hn(τ) are (unnormalized) Hermite polynomials defined by

hn(τ) = (−1)n exp(τ 2)
dn

dτn
exp(−τ 2) .

Since h0(τ) = 1, states in the lowest Landau level (n = 0) are

ψ0,k′
y
(x′, y′) = exp(−ik′yy′) exp[−(x′ + k′y)

2/2] . (3.17)

The infinite degeneracy of each Landau level (there is an infinite number of values for k ′y)
is only due to the infinite size of the system considered here. If we were restricted to an
area of L2, values of k′y would become quantized and we would have counted just L2/(2π`20)
states (see Subsec. 3.5.1).

Magnetic translations

Let us now find the operator T (u ) which corresponds to the translational symmetry of
a charged particle in a plane with perpendicular homogeneous magnetic field. We will
start with ordinary translations t(u ) = exp(iu · p /~) and will demand that the operator
commutes with H0.

The nth Landau level is spanned by wavefunctions ψn,k′
y

(Eq. 3.16) where k′y runs through
all real numbers. By translating this state by u = (ux, uy) we expect to get another state
lying in the same Landau level5.

u = uxx̂ 0 = (ux, 0) : t(u )ψn,k′
y

= exp(−ik′yy′) exp[−(x′ + k′y − ux)
2/2]hn(x

′ + k′y − ux) ,

u = uyŷ 0 = (0, uy) : t(u )ψn,k′
y

= exp(−ik′y(y′ − uy)) exp[−(x′ + k′y)
2/2]hn(x′ + k′y) .

In the latter case, t(uy ŷ 0)ψn,k′
y

= exp(ik′yuy)ψn,k′
y
, the function remained in the n-th Landau

level and acquired only an unessential (constant) phase.

5Also from the purely mathematical point of view: this condition is equivalent to that the translation
operator commutes with H0.
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The former case is more troublesome: t(uxx̂ 0)ψn,k′
y

= exp(iuxy
′)ψn,k′

y−ux is no longer a
function in the n-th Landau level (since the phase factor is not constant). We can even
show that this function has projections to all Landau levels6 However, there is an easy
help. The operator

T (uxx̂ 0) = exp(−iuxy
′)t(uxx̂ 0)

does not change the modulus of the wavefunction — and thus preserves the effect of
translating a localized particle embodied into t(uxx̂ 0) — and it fulfills T (uxx̂ 0)ψn,k′

y
=

ψn,k′
y−ux, i.e. it keeps the state in the same Landau level (it preserves the energy of the

state).

A definition of magnetic translations, for Landau gauge A = (0, Bx, 0), is thus at hand:

u = (u′1, u
′
2) : T (u ) = exp(−iu′xy′)t(u ) . (3.18)

Up to a constant phase factor, this is a special case of a result valid for any gauge [38] (in
dimensionful coordinates)

T (u ) = exp

(
i

~
u · p − i

`20
u · A /B − i

`20
ẑ · u × r

)
.

To verify that [T (u ), H0] = 0, it is the easiest to show that the generator u · p + (~/`20)(u ·
A /B + ẑ · u × x ) commutes with H0. Now that we have translation operators commuting
with the Hamiltonian we can construct simultaneous eigenstates to H0 and T . When
calculating eigenstates of H0, this allows us to be restricted to one particular subspace
of T . Or, if we already have eigenstates of H0 we can try to classify them by their T–
eigenvalues. If we find an eigenvalue of exp(ik · u ) for translation T (u ), we can identify
the state as a wave of wavevector k . This concept will be very useful for many body states
(Subsect. 3.5.1).

In contrast to ordinary translations, the magnetic translations do not always commute
with each other. Instead they obey the algebra

T (u 1)T (u 2) = exp

(
i

2`20
ẑ · u 1 × u 2

)
T (u 1 + u 2)

rather than simply t(u 1)t(u 2) = t(u 1 + u 2). This relation of magnetic translations implies
the Aharonov–Bohm effect: moving a particle along a closed path gives the wavefunction an
extra phase of 2A/2`20 = 2πAB/(h/e) = 2πΦ/Φ0. Quantization of magnetic flux Φ = AB
into flux quanta Φ0 follows then from single–valuedness of the wavefunction, i.e. the
Aharonov–Bohm phase must be an integer multiple of 2π (see Subsec. 3.5.1).

6〈t(uxx̂ 0)ψn,k′

y
||ψñ,k̃′

y

〉 = δk′

y
,k̃′

y

cn,ñ where cn,ñ are the integrals according to x′. These are overlaps of two

functions (gaussian times Hermite polynomial) centered at different positions, k′y and k′y−ux wherefore
the orthogonality relations between different Hermite polynomials are void. cn,ñ are thus nonzero (and
can be expressed in terms of associated Laguerre polynomials).
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Complex coordinates

Eigenfunctions to H0 in the form given by Eq. 3.16 can also be reformulated in terms
of variables z = x + iy and z̄. A noteworthy fact (analogous to Eq. 3.14 and comments
thereafter) is that any state in the lowest Landau level can be expressed as

ψ(z) = exp(−1

2
y2)f(z) ,

where f(z) is an analytic function of z, free of poles in the complex plane.

3.2 What to do when Coulomb interaction comes into

play

The quantum mechanical solution of one electron — or many non-interacting electrons in
a plane subject to a perpendicular magnetic field is at the root of the integer quantum
Hall effect. The basic fact is that for integer filling factors, any even arbitrarily small
excitation costs at least the energy ~ω. This gap renders the ground state incompressible
(see comment at the very end of Subsect. 3.1.1). The fractional quantum Hall effect
cannot be explained in this picture: for instance at filling factor ν = 1

3
, a non-interacting

system has a many–fold degenerate ground state, or, excitations cost zero energy, the
ground state should be compressible. Today it is well established that the effect is due
to electron–electron interactions which select among those states one special ground state
and separate it by a gap from the excitations.

This section summarizes some basic analytic results about spin–polarized incompressible
ground states at some special fractional fillings in the range 0 < ν < 1. Several basic types
of excitations will be mentioned and finally, incompressible states with less than full spin
polarization will be introduced.

3.2.1 Filling factor below one: restriction to the lowest Landau level

The Hamiltonian of the many–electron system consists now of two terms: the kinetic energy
(leading to Landau level quantization) and the electron–electron interaction. Until it is
explicitely written, we will consider spinless (or fully spin polarized7) electrons.

H =

Ne∑

i=1

p 2
i

2m
+

e2

4πε

1

2

∑

i6=j

1

|r i − r j|
(3.19)

Consider some particular filling factor, ν = 1
3

for example, and let us vary the magnetic
field8. The kinetic energy will change in proportion with ~ω ∝ B. The interaction energy

7For example due to strong Zeeman splitting.
8Since ν = n/(2π`20) = n/(eB/~), this implies changing the electron density simultaneously.
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E/~ω

~ω

∝ e2

ε`0

1
2
Ne

V = 0 V > 0

Many body states

1
2
Ne + 1

1
2
Ne + 2

Figure 3.2: Interaction between electrons lifts the
huge degeneracy between the many–body states in
the lowest Landau level (even when neglecting mix-
ing to higher Landau levels, which is reasonable for
~ω � e2/ε`0). In a real system, the degeneracy is in-
finite just as the ’whole 2D plane’ is infinite. Instead,
we consider a square with periodic boundary condi-
tions instead. For example, at filling factor ν = 1

3 , if
there are Ne electrons in the square, Eq. 3.6 implies
that there are Nm = 3Ne one electron states available.
Without interaction, there are thus

(3Ne

Ne

)
≈ (27/4)Ne

degenerate Ne–electron states (of energy 1
2Ne~ω) in

the lowest Landau level.

on the other hand scales with 1/a ∝
√
B. That is because the typical electron–electron

distance a changes as
√

1/n =
√

1/(νeB/~) ∝ 1/
√
B.

In the high field limit we can therefore expect that the Coulomb interaction is a small
perturbation9 which lifts the degeneracy of Landau levels (Fig. 3.2).

A semiquantitative condition for this is

e2

4πεa
� ~ω , where

a ≈ 1√
n

=

√
2π`0√
ν

, `20 =
~

|eB| , ω =
|eB|
m

Under realistic experimental conditions, this can be fulfilled10 and it is thus reasonable to
start with the assumption that (in strong magnetic fields) all electrons occupy the lowest
Landau level. In this approach, kinetic energy is quenched (all electrons have the same
kinetic energy, 1

2
~ω), or in other words, the first term in Eq. 3.19 is merely a constant

Ne
1
2
~ω which may be omitted.

3.2.2 Laughlin wavefunction

The following n-electron trial wavefunction for the ground state at filling factor ν = 1
3

earned R. B. Laughlin the Nobel Prize in 1998 (complex coordinates, see Subsect. 3.1.3)

ΨL(z1, . . . , zn) = exp
(
−(|z1|2+. . .+|zn|2)/4`20

)∏
i<j

(zi − zj)
3

︸ ︷︷ ︸
(∗)

, (∗) =
∑

k ckz
m1,k

1 z
m2,k

2 . . . z
mn,k
n

(3.20)Let us briefly mention the facts which make this suggestion plausible. [59]

9I stress that it is ’small’ in respect to the cyclotron energy. It is however large compared to single–
particle–level spacing within one Landau level (which is zero in ideal case).

10At least with ≈ instead of �.
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(i) The state should lie completely in the lowest Landau level. Thus, up to the expo-
nentials, the wavefunction must be a polynomial in each variable zi and it may not
contain any z̄i (see Eq. 3.14 and following comments).

(ii) Regarding rotational symmetry of the Hamiltonian, the state must be an eigenstate to
total angular momentum M~. Expanding the product in Eq. 3.20 as indicated, this
means that each summand (regardless of k) must have the same sum of exponents,
M =

∑n
i=1mi,k (note m in Eq. 3.14 is the angular momentum). [60]

(iii) The wavefunction should have the Jastrow form Πi<jg(zi−zj) (up to the exponential),
i.e. watching one pair of electrons, it depends only on their mutual distance, and this
dependence is the same for any pair11.

These points determine the form of ΨL in Eq. 3.20 up to the exponent at factors zi − zj.

(iv) The wavefunction should describe a state of filling factor ν = 1
3
. This sets the

exponent to the value 1/ν = 3 as it will be explained shortly (Subsection 3.2.3).

It is striking that none of these arguments involves the particular form of the interelectronic
interaction V (r). In this sense it is indeed a matter of luck that ΨL describes almost
precisely12 the state of Coulomb–interacting electrons at filling factor ν = 1

3
. Central

reason for this success is a combination of the following three points

(α) single–electron states have large overlaps at filling factor 1
3

which makes them feel
V (r) at very short distances

(β) Coulomb repulsion is very strong at short distances

(γ) electrons in a state described by the Laughlin wavefunction avoid being close to each
other, since |ΨL|2 ∝ r6 as r = |zi − zj| → 0. Therefore the energy of the state ΨL is
quite low.

It is not hard to see how delicate the success of ΨL is. The Laughlin wavefunction can also
be used to describe states at filling ν = 1

m
with m = 5, 7, . . .. However, for fillings ν < 1

7
, a

hexagonal Wigner crystal has lower energy than the corresponding Laughlin wavefunction
[62]. Under these conditions, the effective electron density is much lower13 and the long–
range part of the Coulomb interaction becomes more important than the short–range part
(thus point (α) is violated and point (γ) is no longer needed).

11It is essential for this ansatz that the interaction is the strongest if two electrons are close to each other.
See Subsection 3.3.4 and [102] p. 66 for details.

12Numerical tests of ΨL are described in Section 3.5.
13One electron in the lowest Landau level occupies an area of 2π`20 (Subsection 3.1.1), imagine it as a blot

of perimeter ∼ `0. At filling factor 1/m, there are n = 2π`20/m electrons (per unit area). Obviously,
with growingm (while keeping `0 constant), the number of electrons decreases and so does their overlap
(since size of blots stays the same).
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Another example are higher Landau levels. An analogue to ΨL can be constructed if, e.g.
two Landau levels are full (and taken as an inert background), and the last Landau level has
filling of 1

3
. Such states are however typically compressible because the Coulomb interaction

is not as strong at short distances in higher Landau levels as in the lowest Landau level
(see Fig. 3.5 and explanation in the text about pseudopotentials which effectively describe
the interaction if particles are confined to a particular Landau level).

Some other possible physical pictures of ground states at fractional fillings will be men-
tioned in Subsection 3.2.6.

How to interpret the Laughlin wavefunction

What kind of state does the many–body wavefunction ΨL describe? A usual way how to
answer this question is to calculate density or density–density correlation functions and we
will follow this line in Chapter 4. Laughlin, however, suggested another tricky approach
based on a statistical interpretation of quantum mechanical wavefunctions14 :

|Ψm|2 = exp
(
−βEm(z1, . . . , zn)

)
, Em(z1, . . . , zn) = −m2

∑

j<k

ln |zj−zk|+m
∑

j

|zj|2/4`20 .

Assuming that the electrons are in the state described by Ψm, we may ask what the most
likely configurations to be measured will be (imagine making a snapshot of the system,
i.e. measuring the position of all electrons simultaneously). The last equation shows that
the probability for a particular configuration z1, . . . , zn (in the Laughlin state) is the same
as probability of such a configuration in a classical plasma of particles interacting by a
repulsive logarithmic interaction15.

In more detail: a one–component 2D plasma (OCP) with a neutralising homogeneous
background (density %) has energy

E = −e2
∑

j<k

ln |zj − zk|+
1

2
π%e2

∑

j

|zj|2 . (3.21)

Thus, by comparison, the Laughlin wavefunction corresponds to a classical plasma of par-
ticles of charge e = m and an attractive background of density % = 1/(2π`20m).

This analogy is very powerful. Even intuitively, we can say that particles will try to spread
out uniformly in order to compensate the background charge in every point. Previously
known facts about OCP in 2D teach us that Laughlin states are liquid–like up to m ≈ 70
(and crystalline for larger m; however, Laughlin states are no longer ground states of the

14Ψm is the Laughlin wavefunction ΨL with power of three replaced by power of m. Provided m is odd,
this wavefunction describes a fermionic state at filling factor ν = 1/m; see (iv) in discussion after Eq.
3.20.

15We speak of the plasma as of a classical one since the probability has just been presented as the
Boltzmann distribution at one particular temperature which has been set to 2/m (follows from β =
1/kBT ). See also comment [2].
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quantum mechanical problem for such high values of m, see above). Techniques known
from plasma problems (on basis of Monte–Carlo) allow for a numerical estimation of the
energy of ΨL up to high precision16. Values of some other observables like density–density
correlation functions can be evaluated in a similar manner [62], for a review see Sec. 5.4
in [17].

3.2.3 Vortices and zeroes

These two words are of extraordinary importance to the fractional quantum Hall effect, so
let us explain them first. A formula tells sometimes more than a thousand words:

zero vortex

fz(z) = z − z0 fv(z) = arg(z − z0) =
z − z0

|z − z0|
.

Zero and vortex may appear as a feature of a function of a complex variable. Although
they are bound to one particular point (z0), they have an impact on global properties of the
function. In particular, going once around the point z0, the phase of the function changes
by 2π 17, irrespective of the path:

∮
dt

d arg f
(
z(t)

)

dt
= 2π ×# of zeroes/vortices enclosed by the curve z(t) , (3.22)

where z(t) is a closed curve which does not intersect itself (to prevent going more than
once around a zero).

Zeroes have the nice property of analyticity18 , vortices not; note also, that vortices are
ill-defined for z = z0.

A physicist’s view of the vortex/zero counting formula 3.22 is based on the Aharonov–Bohm
effect. Imagine the 2D plane pierced by a solenoid carrying magnetic flux Φ. Even though
there is no magnetic field outside the solenoid, (the wavefunction of) a particle (charge
e) going once around it gathers a phase of Φ/(h/e). Equation 3.22 (or the requirement
of uniqueness of the wavefunction) is then just an expression of the quantization of the
magnetic flux, Φ = n(h/e) = nΦ0, n = 0,±1, . . .. In agreement with this, it can be
shown that passing one magnetic flux quantum at z = z0 adiabatically through the system
introduces one new zero into the wavefunction [59].

As far as the phase is considered, a vortex has the same effect as a zero. However, |fv(z)| ≡ 1
and thus adding it to some particular wavefunction does not influence the particle density.
On the other hand, not only is a vortex a non–analytic function (analyticity was needed

16However, the basic idea here is still the usual goal of Monte Carlo: to evaluate a many–dimensional
integral numerically. For example 〈ΨL|H |ΨL〉.

17A zero counting procedure is based on this observation: consider a holomorph function f(z) free of
singularities in region R. The integral

∮
dz(d/dz) ln f(z) around the boundary of R is equal to 2πi–

times the number of zeroes of f(z) in the region R.
18Or holomorphy: they are continuous and functions of only z, not of z∗.
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to stay in the lowest Landau level; see comments after Eq. 3.20), it is not even continuous
at z = z0 which is a basic requirement for a quantum mechanical wavefunction. It may be
thus regarded only in the framework of some approximation.

It is then suggestive to think of the zeroes or vortices of some particular wavefunction as
of magnetic flux quanta. Consider the Laughlin wavefunction ΨL(z1, . . . , zn) and fix all
particles but one, say z1. We know that ΨL describes n electrons confined to a disc of area
A = n/% (see Eq. 3.21). Let us therefore fix particles z2, . . . , zn somewhere inside the disc
and let us go with z1 once around. Function f(z) = ΨL(z, z2, . . . , zn) is a polynomial of
degree 3(n− 1) (except for the exponential factor which is however nonzero everywhere),
it has 3(n− 1) zeroes within the disc and we thus arrive at the conclusion that the particle
z1 sees 3(n−1) flux quanta. Including another three zeroes which come from the center-of-
mass part of the wavefunction not included in Eq. 3.20, the total bilance is 3n flux quanta
and n particles or filling factor 1

3
(Eq. 3.6).

Note that the zeroes of the Laughlin wavefunction are bound to electrons: factor (zi− zj)
3

in Eq. 3.20 means that the i–th electron sees a triple zero at the position of the j-th
electron. This observation is the starting point of the concept of composite fermions (Sect.
3.4).

3.2.4 Particle–hole symmetry

Particle–hole symmetry provides a mapping between systems at fillings ν and 1−ν (spinless
electrons) or ν and 2− ν (spinful electrons). The mapping is exact provided Landau level
mixing is absent. An illustrative example: for fully polarized electrons19 spectra of a ν = 1

3

and 2
3

systems are identical (up to a constant) and the corresponding wavefunctions are
related by a (actually simple) transformation.

Think of the lowest Landau level as of a 1D chain; Landau gauge is particularly illustrative
for this, one–electron states (Eq. 3.17) are localized along x. The basic idea of the particle–
hole symmetry is that two electrons at positions i and j feel the same repulsive force as
two holes at the same positions, i.e. the whole 1D chain is full and only at i and j electrons
are missing.

Let us put it into mathematical terms. Let a†j be a creation operator of a single–electron
state with momentum ky = 2πj/b, being therefore localised in x–direction around Xj =
ky`

2
0 (Eq. 3.17). Assuming j can take values20 0, . . . , m − 1, particle–hole conjugated

n-body states are

a†j1 . . . a
†
jn
|0〉 (particles) ←→ aj1 . . . ajn |1〉 (holes), (3.23)

where |0〉 is an empty Landau level (vacuum) while |1〉 ≡ a†0 . . . a
†
m−1|0〉 is a completely

filled Landau level.

19Meaning: only the lowest Landau level with spin up is considered, lowest Landau level spin down and
all higher Landau levels as far in energy that they can be neglected.

20This is the case for periodic boundary conditions.
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A straightforward calculation shows that matrices of a translationally invariant two–body
operator21 Â are the same (up to a multiple of identity matrix and complex conjugation) in
an arbitrary n–particle basis and its conjugated (m−n)–hole basis. The only approximation
we must perform is to neglect Landau level mixing.

Result of the calculation is the following. The diagonal terms of an operator A in the
particle basis and in the hole basis fulfil

〈1|a†j1 . . . a
†
jn
A ajn . . . aj1 |1〉 =

m− 2n

m
〈1| A |1〉+ 〈0|aj1 . . . ajn A a†jn

. . . a†j1|0〉 (3.24)

and the off-diagonal terms remain the same up to the complex conjugation.

Two special cases are worth of special attention:

• Energy. Spectra of (fully polarized) systems at ν = n/m and ν = (m−n)/m are the
same up to a shift

Ei
ν = Ei

1−ν + Ef (m− 2n)/m , (3.25)

where Ef is the energy of a completely filled (lowest) Landau level. This result does
not depend on the form of the interaction V (r). A nice demonstration of formula
3.25 is shown in Fig. 4.39(b).

Note that conjugated states (Eq. 3.23) may have different values of J (sum of ji
modulo m, Eq. 3.49). For instance: for m = 4, consider a three–electron state
|j1j2j3〉 = |013〉 and its particle–hole conjugate |j1〉 = |2〉; the former has J = 0 while
the latter has J = 2. 22.

Thus, extending the example above, when comparing spectra of ν = 3
4

and ν = 1
4

systems in subspaces with fixed J , we must look not at the same J ’s but at J = 0
for ν = 3

4
and at J = 2 for ν = 1

4
.

• Density–density correlation functions. For gΨ(r ) = 〈
∑

i<j δ(r − r i + r j)〉Ψ we get

gΨ(r ) =
m− 2n

m

(
1− exp(−r2/2`20)

)
+ gΨ′(r ) , (3.26)

where Ψ and Ψ′ are arbitrary particle–hole conjugated states23. Note that gΨ′ refers
to electrons in the ’hole’ state. Correlations between holes in Ψ′ are the same as those
between electrons in Ψ.

Note, that here g(r ) is not defined in the normalized form δ(r − r i + r j)/(n(n− 1)).
Also note, that g(r ) of a full Landau level may depend on system (’finite–size’)
parameters: e.g. in a rectangle with periodic boundary conditions, it depends on
aspect ratio.

21The calculation has been done for the Coulomb operator and the density–density correlation operator.
Translational invariance is however the only substantial assumption.

22Of course, the ’particle J ’ (we sum the ji’s of the occupied one–particle states) of the one state is the
same as the ’hole J ’ (we sum ji’s of the empty one–particle states) of the other.

23A general n–body state can be written as an expansion in slater determinants of the form shown in Eq.
3.23. The conjugation is then meant to act on all terms individually.
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Let us mention that densities of particle–hole conjugated states are related by nΨ(r ) =
m− nΨ′(r ), exactly as we expect from the picture of a ’hole’ as a ’missing particle’. From
this point, the plus sign in Eq. 3.26 might look puzzling. At the second glance, however,
’gΨ = n · n’ and therefore ’gΨ′ = (1− n) · (1− n) = 1− 2n + gΨ’.

3.2.5 More about Laughlin wavefunction: low energy excitations

Laughlin wavefunction ΨL (Eq. 3.20) has a beautiful form, yet its energy or correlation
function must be evaluated numerically24 . Despite this, related to ΨL, many nontrivial
phenomena with clear physical interpretation can be named. Here, we will discuss two
particular types of low–energy excitations from the Laughlin state: charge– and spin–
density waves.

The Laughlin state has a homogeneous density and making the density non–uniform is
quite expensive25 . It is however possible to construct a superposition of charge–density
waves with different phase offsets (all with the same weight) but with the same wavevector
Q . Such a state can be generated using

ΨL(z1, . . . , zn)
make CDW−→

n∑

j=1

exp(iQ · r j)ΨL(z1, . . . , zn) . (3.27)

Its density is still uniform and the CDW is seen first in density–density correlations26 .
Energy, or better the dispersion E(Q ), of such states can be evaluated within single mode
approximation and the first ones to accomplish this were Girvin, MacDonald and Platzman
[32] (see also Girvin’s lectures [31]). Exact diagonalization results then demonstrate that
CDWs are indeed among the lowest excitations and thus the single mode approximation
is plausible [37] (see also Subsec. 4.1.3). Moreover, excluding spin flip, CDW excitations
with Q`0 ≈ 1.4 where E(Q ) achieves its minimum (called the magnetoroton minimum),
are the lowest excitations at all and determine thus the size of the gap at filling factor
ν = 1

3
.

In multicomponent systems, e.g. when electrons can be spin up or spin down, it is also
possible to generate spin–charge density waves by

ΨL(z1, . . . , zn)
make SCDW−→

n∑

j=1

exp(iQ · r j)S
+
j ΨL(z1, . . . , zn) , (3.28)

24Closed formula for the energy was derived by Takano and Isihara [92] but for practical purposes, it must
be evaluated by computer. Very exact (and quite simple) expressions for energy and g(r) based on this
formula are presented for example by Goerbig [33] (Introductory section about FQHE, formulae 1.12
and 1.13). See also Xia [100].

25The currency is one Joule.
26By fixing one particle and looking for the density of the other particles (as we do when we evaluate

density–density correlation function), we effectively choose just one of the waves out of the superposi-
tion. Then we, of course, see a modulated density.
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as it was suggested by Rasolt and MacDonald [78]. These states are gapless Goldstone
modes [34] (in the limit Q → 0), provided the Zeeman splitting vanishes [3]. For nonzero
Zeeman splitting gµBB they are simply shifted by gµBB upwards and the ground state
remains gapped. A detailed study on how the SDW excitations depend on the form of
the electron–electron interaction was published by MacDonald and Palacios [64].

3.2.6 Other fractions and spin

The principal fractions ν = 1/m along with ν = 1 − 1/m seem to be well described by
Laughlin wavefunctions (except for very small ν where Wigner crystal is more favourable).
These are however not all fractions which have been observed in the interval 0 < ν < 1.
Most other fractions (but not all) are members of the sequences ν = p/(2ps±1) with p and
s integer and they all have odd denominators. It also turned out, that not all fractional
quantum Hall states are fully spin polarized and moreover, for one value of filling factor,
ground states with different spin polarization are possible, depending on the ration between
Zeeman and Coulomb energy (Sec. 5.1 and Sec. 2.2).

In this Subsection I will mention one particular proposal for the ground state wavefunction
at fillings which are not of the form 1/m. This proposal covers neither all observed fractions
nor spin polarizations. Its simple form, however, makes it easy to compare it to numerical
results and I therefore consider it important to be mentioned. An (almost) complete picture
of the observed fractions and polarizations appears within the composite fermion theories
which will be mentioned later (Sect. 3.4).

Halperin wavefunctions: two–component systems

Regarding the possibility of not fully spin polarized wavefunctions, Halperin proposed the
following WFs [41]

Φmm′n[z] =
∏

i<j≤N↑

(zi−zj)
m

∏

k<l≤N↓

(z′k−z′l)m′
∏

i≤N↑

∏

k≤N↓

(zi−z′k)n
∏

i,j

exp(−|zi|2/4`20) exp(−|z′j|2/4`20)

(3.29)
with m,m′ odd. The state assumes N↑ (N↓) particles with spin up (down) and zi (z′j)
describe their positions. The filling factors of the two components are

ν↑ =
m′ − n
mm′ − n2

, ν↓ =
m− n

mm′ − n2
,

or equivalently, they describe a state at filling ν = ν↑ +ν↓ and polarization p = (ν↑−ν↓)/ν.
For example, the choice m = m′ = 3 and n = 2 leads to the total filling factor 2

5
and zero

spin polarization (ν↑ = νdn). On the other hand, no choice of m,m′, n leads to a fully spin
polarized (S = Ne/2) state at the same total filling factor. Examples of some other filling
factors which can be achieved in terms of Φmm′n[z] are given in the book of Das Sarma
and Pinczuk [21] (pp. 165).
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These trial wavefunctions are an extension to the Laughlin state for systems where Zeeman
energy is negligible compared to Coulomb energy. On their basis, Jain’s composite fermion
wavefunctions were proposed (Sect. 3.4). In Chapter 4 I will use them for a reference to
numerical results.

3.3 Other types of electron–electron interactions

Short–range interaction (SRI) and its model in fractional quantum Hall systems is the main
objective of this section. We will first inspect a general two–particle interaction under the
influence of a strong magnetic field which will lead us to Haldane pseudopotentials {Vm}.
One particular choice of {Vm} defines the SRI and we will also get acquainted to some other
types of interactions which have been considered previously. Finally, we will introduce
the following useful concept: by varying the Haldane pseudopotentials continuously and
watching the ground state we may identify what part of the interaction determines the
structure of the ground state. In particular, following [39], we will show that the Laughlin
wavefunction (the ground state27 at ν = 1

3
) is completely determined by the short–range

part of the interaction: regardless of the long–rangedness of the Coulomb force.

Last part of this Section will be devoted to transfer of the ideas above to particles moving
on a torus.

3.3.1 Two particles, magnetic field and a general isotropic interaction

Let us consider two negatively charged particles on a plane subject to a perpendicular
magnetic field B. Assume that their interaction is described by a potential (energy) V (r)
which depends only on their mutual distance. Classically, when starting from rest, the
particles would move on a straight line towards or away from each other were it not for the
magnetic field. The Lorentz force bends their trajectories and makes them orbit around
their centre-of-mass on a circular trajectory. In quantum mechanics, this circular motion
is quantized just as in the case of an electron orbiting around a hydrogen nucleus. Roughly
speaking, only discrete separations rm between the two particles are allowed. Interaction
energies V (rm) = Vm rather than V (r), r ∈ (0;∞) fully determine the spectrum of a
many–body system of particles interacting via V (r).

We will now derive and explain these claims more precisely. The Hamiltonian for two
particles reads

H =
1

2m
(p 1 + |e|A 1)

2 +
1

2m
(p 2 + |e|A 2)

2 + V (|r 1 − r 2|) . (3.30)

Within the following several derivations we will temporarily use dimensionless coordinates
to make the formulae more transparent. Assume the symmetric gauge, A = (− 1

2
By, 1

2
Bx, 0)

and take x′ = x/`0, where `0 is the magnetic length,
√

~/|e|B.

27Precisely speaking: a very good approximation (99%) to the ground state.
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Figure 3.3: Spectrum of one particle confined to a plane subject to a perpendicular magnetic field
or, equivalently, the spectrum corresponding to the relative motion of two particles (Hrel). Left:

without particle–particle interaction, the two terms, ’harmonic oscillator’ (quantum number i)
and ’angular momentum’ (quantum number m) combine into Landau levels (quantum number
n). Right: interaction lifts the degeneracy. If the interaction potential is small compared to
the harmonic oscillator term (i.e. 〈V 〉 � ~ω), Landau levels are roughly preserved. The energy
levels Vm within the lowest Landau level (sorted according to m = 〈Lz/~〉) are then the Haldane
pseudopotentials.

Just as for single particle (Sec. 3.1.1):

H/(~ω) =
1

2
(−i∇′

1 + � 1)
2 +

1

2
(−i∇′

2 + � 2)
2 + V ′(|r ′

1 − r ′2|) ,

where ω = |e|B/m denotes the cyclotron frequency, � (r /`0) = A (r )/B is the dimensionless
vector potential and V ′(r /`0) = V (r )/(~ω). In the following we will skip the primes which
indicate here that everything is expressed in dimensionless coordinates.

It is just a piece of standard handcraft to separate the Hamiltonian into centre-of-mass
and relative parts (and we follow Laughlin [60]). We adopt coordinates

r CM =
r 1 + r 2

2
, r rel =

r 1 − r 2√
2

and become rewarded by

H = HCM +Hrel =
1

2
(−i∇CM + � CM)2

︸ ︷︷ ︸
HCM

+
1

2
(−i∇rel + � rel)

2 + V (|r rel|)
︸ ︷︷ ︸

Hrel

.

The centre-of-mass (CM) part is identical to the Hamiltonian of a single particle in a
perpendicular magnetic field and we will now focus only on the relative motion. Its kinetic
part (also an electron-in-magnetic-field Hamiltonian) can be rewritten in the Fock–Darwin
form (Eq. 3.10)

Hrel = −1

2
∆rel +

1

8
r2
rel −

i

2

∂

∂ϕrel
+ V (|r rel|) ,
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or, back to dimensionful units (starting with this formula, all coordinates have again di-
mension, x rather than x/`0):

Hrel[ J] =
p2

rel

2m
+

1

8
~ω(rrel/`0)

2 − 1

2
ωLz

rel
︸ ︷︷ ︸

Hrel,kin

+V (|r rel|) (3.31)

with Lz
rel denoting the (z–component of relative) angular momentum.

This is a Hamiltonian of one particle (in 2D) confined by a potential which is a parabola
1
8
mω2r2

rel plus an extra term V (|r rel|). To be more illustrative, we will now assume that
V (rrel) = (e2/4πε)·1/r but this particular choice is not essential for the following discussion.
We could have taken (nearly) any other interaction.

Since [Hrel, L
z
rel] = 0, we can classify the eigenstates of Hrel by their angular momentum.

In the absence of interaction (V = 0), the spectrum would be just Landau levels ~ω(n+ 1
2
),

each of them containing states with angular momenta m = 0, 1, 2, . . . Now, in accord with
our discussion in Sec. 3.2.1), we wish both particles (described by the full Hamiltonian, Eq.
3.30) to stay in the lowest Landau level (LLL). This can happen only if the centre-of-mass
part lies in the LLL and the relative part lies in the LLL28 . Thus we are restricted to
angular momenta m = 0, 1, 2, . . ., the eigenstates of Hrel being

ψm
rel,V =0(r, ϕ) = exp(−imϕ) rm exp(−r2/2) (3.32)

and they all have the same energy, 1
2
~ω. This is the highly degenerate lowest Landau level.

Now, we switch the interaction on and keep it small compared to the cyclotron energy,
e2/(4πε`0)� ~ω. We may still look for the eigenstates of Hrel as of eigenstates of angular
momentum

ψm
rel(r, ϕ) = Rm(r)e−imϕ

but the functions Rm(r) will now be different from rm exp(−r2/4). Also, they will not have
the same energy. Because 〈r〉m = 〈ψm

rel|r|ψm
rel〉 grows29 with increasing m, we can expect

that their energies Vm drop at the same time (we consider repulsive interaction between
particles). However, in spite of the lifted degeneracy, the range of energies Vm should be
still � ~ω.

The operator of the Coulomb interaction (in the lowest Landau level) can be then written
in terms of its spectral decomposition

V (rrel) =
∞∑

m=0

|ψm
rel〉Vm〈ψm

rel| .

As far as only spectrum of a many–body system interacting by V (rrel) is concerned, the set
of numbers Vm rules everything (regardless of the particular form of ψm

rel)
30.

28Then the total energy is ECM +Erel = 2 · ~ω(0 + 1
2 ), i.e. two non-interacting particles in the LLL.

29 A semiclassical estimate: ~m = 〈Lz〉m ∝ 〈r〉m〈v〉m = (〈r〉m)2ω. The approximation 〈rv〉m ≈ 〈r〉m〈v〉m
has been made.

30On the other hand, given V (r), we need the wavefunctions ψm
rel to calculate Vm.
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The quantities {Vm} are called Haldane pseudopotentials. They were first introduced in
[36] in the context of interacting electrons on a sphere.

3.3.2 Haldane pseudopotentials

In the previous subsection we arrived at the concept of Haldane pseudopotentials. Several
remarks are due.

(1) Roughly speaking, the Haldane pseudopotentials {Vm} can be interpreted as the inter-
action energy of two particles if they are orbiting around each other at distance 〈r〉m ≈
`0
√

2m. A precise formulation is: Vm is the interaction energy of a two–particle state with
angular momentum m~ under the constraint of restriction to the lowest Landau level31 .
This is precisely the original definition from [36].

Thus, a short–range interaction can be modelled by setting all Vm’s to zero except for the
state where the two particles are nearest to each other (V0 for bosons and V1 for fermions).

(2) The claim 〈ψm
rel|r|ψm

rel〉 ≈ `0
√

2m is only approximate. The higher m, the better it
is fulfilled (assuming that the particle-particle interaction decays with distance, V → 0
when r → ∞). This is a demonstration of the ’rule-of-experience’ that for high values of
quantum numbers semiclassical approaches are valid.

Fig. 3.4 illustrates this fact by comparing `0
√

2m and 〈r〉m of the non–interacting system
(V = 0).

(3) Fermions and bosons. Careful reader may have noticed that we have spoken just about
two particles so far. An additional constraint that e.g. (spatial part of the) wavefunction
be antisymmetric implies

ψrel(r 1, r 2) = −ψrel(r 2, r 1) ⇒ ψrel(r, ϕ) = −ψrel(r,−ϕ) .

Therefore, only states with m odd are allowed in the case of two electrons with the same
spin (cf. Eq. 3.32). In other words: only the values of V1, V3, . . . are needed when we
describe motion of fully spin polarized electrons.

(4) Uniqueness. If V (r) is given, the pseudopotentials Vm are uniquely determined. The
opposite is however not true: if we know only the values of Vm, we cannot reconstruct V (r)
unless we know also the wavefunctions ψm

rel.

3.3.3 Particular values of Haldane pseudopotentials on a sphere

In this and in the next Subsection, we will classify various physical systems according to
their Haldane pseudopotentials Vm. Or the other way round: some characteristic sets {Vm}
will be presented and the corresponding physical systems will be shown. This will lead us
to a definition of some model interactions (like short–range interaction). Here we will deal
with spherical systems, electrons on a torus will be discussed later (Subsection 3.3.6).

31Note that for each Lz = m~ there is only one such state in each Landau level.
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m = Lz/~

Figure 3.4: Mean interparticle distance 〈r〉m for
free particles in the lowest Landau level (Eq.
3.32) compared to `0

√
2m (m is actually discrete

variable, m = 0, 1, 2, . . .). Match between the
curves for large values of m demonstrates valid-
ity of quasiclassical approach.

Consider two electrons located in arbitrary Landau levels n1 and n2, respectively, in a state
with total angular momentum m. Given these three numbers, the state is uniquely defined,
up to the center-of-mass part of the wavefunction. Assuming interaction of the form V (q)
(in the Fourier space), their interaction energy can be shown to be (Haldane in [77])

V n1,n2
m =

∫ ∞

0

qdqV (q)Ln1(q
2/2)Ln2(q

2/2)Lm(q2) exp(−q2) . (3.33)

The Laguerre polynomials are defined by

Ln(x) =
1

n!
[xne−x](n)ex .

For the case of Coulomb interaction, V (q) = α/|q|, integrals in Eq. 3.33 can be evaluated
(easily and) analytically. Figure 3.5 shows their values for the cases (a) both particles in
the Lowest Landau level (n = 0), (b) both particles in the first Landau level (n = 1) and
(c) one in the lowest and one in the first Landau level.

It is not surprising that in the first case (n1 = n2 = 0) the coefficients Vm decay mono-
tonically with increasing m, exactly as the Coulomb energy does with increasing distance.
The non-monotonic structure of Vm for the case of particles in the first Landau level is due
to the additional structure of wavefunctions in higher Landau levels (they have a node at
r = 0 for n = 1).

3.3.4 Model interactions: hard core, hollow core

Why is a hard–core interaction (also known as the short–range interaction) that important
for the physics of the lowest Landau level?

For (i) it is the strongest part of the Coulomb interaction, (ii) the Laughlin wavefunction
is an exact gapped ground state for this interaction and (iii) the ground state changes only
little if the other terms of the Coulomb interaction are considered.

Let us discuss this in more details. Short–range interaction (SRI) for spin polarized elec-
trons is defined by Haldane pseudopotentials

short–range int. (spin polarized electrons): {V1, V3, V5, . . . } = {1, 0, 0, . . .} . (3.34)

43



(a) (b) (c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9

P
se

ud
op

ot
en

tia
l

m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9

P
se

ud
op

ot
en

tia
l

m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9

P
se

ud
op

ot
en

tia
l

m

Figure 3.5: Values of Haldane pseudopotentials Vm on a sphere: interaction energy between two
particles (a) both in the lowest Landau level, (n1, n2) = (0, 0), (b) both in the first Landau level,
(n1, n2) = (1, 1), and (c) one in the lowest and another in the first Landau level, (n1, n2) = (1, 0)).

Even values of m are inaccessible for the sake of the antisymmetry of the wavefunction.
Note that for the Coulomb interaction, Fig. 3.5a, V1 is indeed the strongest pseudopotential
(out of those with odd m).

On the other hand, considering the Laughlin wavefunction (of N particles), any pair of
electrons in it is in a state with relative angular momentum m = 3: owing to factors
(zi − zj)

3. As there are no pairs with angular momentum m = 1, the total energy of this
state will be V1 · 0 + V3 ·N(N − 1)/2 = 0 for SRI. Also, this state is rigid: any excitation
of this state must remove the triple zero from some of the electrons (leaving only a single
zero required by antisymmetry) thereby creating some pairs with m = 1. The minimum
excitation energy (gap) will thus be V1.

These are analytical results. A surprising numerical result is that the many–body ground
state changes only slightly if other pseudopotentials V3, V5, . . . are ’turned on’ up to their
Coulomb values (Fig. 3.5a). This has been confirmed by Haldane and Rezayi [39] (later
also by others, e.g. [28]) by calculating the overlap between the real ground state and the
Laughlin state for different sets of Vm. It is also shown in [39] that if V1 is lowered beyond
some critical value (while keeping other pseudopotentials on their Coulomb values), the
gap collapses rendering the ground state compressible.

An advantageous property of the interaction (3.34) is that it is effectively non–parametric,
the only present parameter V1 can be factored in front of the Hamiltonian and determines
only the overall scaling of the energy scale (assuming restriction to the lowest Landau
level).

These results can be summarized by stating that the short–range interaction is the one
component of a realistic interaction which determines almost completely the properties of
the ν = 1/m spin–polarized ground states.

Obviously, for non–fully spin polarized systems it is not possible to keep V1 6= 0 only.
Electrons of like spin are still closest in the state m = 1 (with energy V1), electrons of
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unlike spin are however closest in the state m = 0 with energy V0. Such a model is
obviously not as elegant as in the former case, it contains two parameters V0, V1 whose
ratio cannot be factored out of the Hamiltonian. An alternative might be the following
potential:

{V0, V1, V2, . . . } = {∞, 1, 0, 0, 0, . . .} . (3.35)

Another typical model potential presented by Haldane and Rezayi [40] was inspired by the
low value of V0 in the first Landau level as compared to the lowest Landau level (Fig. 3.5).
They suggested the hollow–core potential

hollow–core interaction: {V0, V1, V2, . . . } = {0, 1, 0, 0, 0, . . .} .
and tried to explain the even–denominator fractional quantum Hall effect at ν = 5

2
in terms

of this interaction.

3.3.5 Haldane pseudopotentials on a torus

Haldane introduced the quantities Vm for interacting electrons on a sphere [36]. In that
case, m can be identified as the relative angular momentum of the electron pair (apart
from the fact that with increasing m the separation between the particles increases). In
contrast to that, configuration space rotational symmetry is lost on a torus and angular
momentum is no longer a good quantum number. In this subsection we will introduce an
alternative definition of Haldane pseudopotentials which is applicable also for particles on
a torus.

First, recall that matrix elements of the Coulomb interaction (on a torus) can be conve-
niently evaluated in Fourier space (see Subsection 3.5.4) where

Coulomb: V (r ) =
e2

|r | ⇒ V (q ) =
e2

|q | .

Consider now a more general (radial, bounded) interaction with its Fourier transforms
V = V (|q |) and expand V (|q |) into a Taylor series. Owing to V (r ) = V (−r ) = V (|r |),
the series will be free of odd powers q2k+1. Now, go back to the direct space32 [94]

V (q) = ṽ0+ṽ2q
2+ṽ4q

4+. . . ⇒ V (r) = ṽ0δ(r)−ṽ2∇2δ(r)+ṽ4∇4δ(r)−. . . . (3.36)

The coefficients ṽi now fully characterize the particle–particle interaction and we are look-
ing for a way how to translate them into Vm’s. Let us take the functions ψm

rel from the
planar system (Eq. 3.32 plus normalization) and let us calculate Vm = 〈ψm|V (r)|ψm〉. If
V (q) = q2k then

V (q) = q2k : Vm = (−1)k

∫
dr2ψmψ

∗
m∇2kδ(r ) =

(−1)k

2mm!

[(
1

r

d

dr
r

d

dr

)k

r2m exp(−r2/2)

]

r=0

.

(3.37)

32Note that F [f(r)](n) = qnFf(r).
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V0 V1 V2 V3 V4 V5

q0 (k = 0) 1 · 20 0 0 0 0 0
q2 (k = 1) 1 · 21 −1 · 21 0 0 0 0
q4 (k = 2) 2 · 22 −4 · 22 2 · 22 0 0 0
q6 (k = 3) 6 · 23 −18 · 23 18 · 23 −6 · 23 0 0
q8 (k = 4) 24 · 24 −96 · 24 144 · 24 −96 · 24 24 · 24 0

Table 3.1: Values of Haldane pseudopotentials corresponding to particle–particle interactions of
the type V (q) = q2k. These values are additive, e.g. V (q) = − 1

2q
2 +1 corresponds to ’hollow core

interaction’: {Vm} = {0, 1, 0, 0, 0, . . .}.

This is a unique prescription of how an interaction of the type V (q) = q2k can be transcribed
into the terms of Vm. The table 3.1 concludes these ’transcription coefficients’ for several
lowest powers of q 33. Note especially that Vm = 0 for m > k.

In conclusion, an interaction potential defined by some particular set of values of Haldane
pseudopotentials Vm can be recalculated into the coefficients ṽi in Eq. 3.36 (Taylor series
of V (q)) using Table 3.1 or, more generally using formula 3.37.

Again, several remarks should be made.

(1) Expansion in Eq. 3.36, being first suggested by Trugman and Kivelson [94], looks a bit
unusual. In the distributional sense, we say that a non-zero ranged potential V (r) can be
written as a sum of terms with ’zero range’ (δ function and all its derivatives are zero for
r 6= 0).

Instead of a δ function imagine rather a sharp peaked function δb, a Lorentzian of width
b, for instance. Functions ∇2kδb(r ) will then have ’the longer range the higher k is’. This
’physical’ statement34 is illustrated in Fig. 3.6. In this sense, Eq. 3.36 is an expansion of
V (q) in terms of increasing ranges. Compare this with Tab. 3.1.

(2) When calculating the Coulomb matrix elements for particles on a torus (Subsection
3.5.4), we do not use the full function V (q) but only its values in discrete ’lattice’ points q .
This is obviously due to the periodic boundary conditions (i.e. confinement to the torus).

In particular, q = 0 is missing among these points.

Thus, we need not worry about the long–rangedness of the Coulomb potential, V (q →
0) → ∞ which renders it unexpandable into power series of q. Instead of 1/q we may
imagine to have considered any other polynomial in q which matches the values of 1/q at
the ’lattice’ points. Both interactions must lead to the same results.

(3) We employed ψm of an infinite system in order to calculate Vm for the particular V (q) =
q2k. These functions are appropriate for an infinite system (disc geometry). However,
formula 3.37 includes ψm(r) (and its derivatives) only at r = 0. At least for short distances

33If an interested reader will be looking for an expression giving the elements in the line k I recommend
to start with k!

(
k
m

)
(−1)m+k.

34’Mathematical’ = exact, ’physical’ = less exact.
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Figure 3.6: An approximation to the delta distribution in one dimension (Lorentzian of halfwidth
b). Left to right: δb(x), δ

′
b(x), δ

′′
b (x). The higher the derivative, the larger the ’range’ of the

function. (separation of the last maximum from origin)

we may expect that ψm(r) on a torus and on a plane is the same, since both manifolds are
locally flat (this may be explicitly verified by comparing Eq. 3.32 and Eq. 3.40 around
r = 0).

Thus Tab. 3.1 is valid both for plane and torus geometry.

(4) Example: consider two electrons (in plane, on a sphere, on a torus) in the lowest Landau
level and interacting via V (q) = αq2. Eigenstates (sorted according to increasing value of
the particle–particle distance 〈r〉) in this system may be indexed by an integer, call it m.
The state m = 0 will have energy −α, the state m = 1 will have energy α and all other
states (with larger interparticle separation) have zero energy.

The state with m = 0 will have a symmetric wavefunction and will be thus prohibited
for electrons of like spin. Thus there will be only one state with non-zero energy for this
case (and it is the state with the lowest interparticle separation) and V (q) = αq2 defines
therefore a hard–core interaction.

On a plane and on a sphere, m will be the angular momentum of the Hamiltonian eigen-
states.

3.3.6 Short–range interaction on a torus

The decomposition of the Coulomb interaction (in the lowest Landau level) into the Hal-
dane pseudopotential has already been shown in Fig. 3.5. This is also the spectrum of two
Coulomb–interacting particles on a sphere.

Let us focus on particles on a torus now, Fig. 3.7. The index m is no longer angular
momentum of the pair as this is not a good quantum number. However, the mean distance
between the two particles grows with rising m.

In the region of small interparticle distances the spectrum is analogous to the spherical
system. Also the wavefunctions are similar to the spherical system, they preserve the
circular symmetry (Fig. 3.8). Such states can be described as (almost exact) eigenstates
to angular momentum m~. Note however, that each level is now fourfold degenerate which
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Figure 3.7: Haldane pseudopotentials on a sphere and on a torus. Left: comparison between
sphere and torus. Right: definition of a short–range interaction (hard–core potential) on torus
used in this work. Note the ill–definedness of m on a torus (see Fig. 3.8).

stems from the rotational symmetry of the square (with periodic boundary conditions)
the particles are confined to. For higher–interparticle distances these quadruplets are no
longer degenerate and it is meaningless to describe them in terms of a common m (see the
enlarged region in Fig. 3.8a).

A reasonable model mimicking the short–range interaction is to keep the first two energies
of the spectrum in Fig. 3.7, i.e. the pseudopotentials V0, V1 at their ’Coulomb’ values
while setting the other ones to zero. Table 3.1 gives a prescription how to encode such
an interaction into V (q). We thus arrive at an interaction potential defined by V (q) =
0.34q2 − 1.51 which was used throughout this work to model a short–range interaction
unless something else is explicitly stated.

3.4 Composite fermion theory, Chern-Simons, Shankar

In Subsection 3.2.3 a very basic observation about the Laughlin wavefunction ΨL (Eq. 3.20)
has been made: three zeroes of ΨL are bound to each electron35. One zero is required by the
Pauli principle (when z1 = z2, the wavefunction must vanish), the others were ’voluntary’.
Now, compare this wavefunction to the exact ground state of ν = 1 (at B →∞):

GS, ν = 1 : Ψ ∝
∏

i<j

(zi − zj) , Laughlin state, ν =
1

3
: ΨL ∝

∏

i<j

(zi − zj)
3 ,

where we omitted the exponential terms being the same for both wavefunctions.

35Recall that we fixed positions of z2, . . . , zn and used the last ’free’ coordinate z1 to inspect the wave-
function.
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Figure 3.8: Two–particle eigenstates of Coulomb–interacting particles on a torus confined to
the lowest Landau level. States are shown irrespective of the symmetry or antisymmetry of the
wavefunction. Left: spectrum (horizontal axis has no meaning: levels are ’randomly’ distributed
into four groups in order to show degeneracies; each point displayed corresponds to one state).
Right: density–density correlation functions g(r ) of several states. Conditional probability to find
the second particle at r provided the first particle sits in the corner (the four corners are identical
due to periodic boundary conditions). The states with the smallest interparticle distance can be
characterised by a common m = 〈Lz/~〉 (their g(r ) are almost identical to the eigenstates of Lz).
Higher lying states are strongly affected by periodic boundary conditions. The highest states
show again circular symmetry, but the second particle is not orbiting around the first one but
rather around the opposite point on the torus.

It has been argued that a zero (just as a vortex) of the wavefunction is felt by electrons
as a magnetic flux quantum (Subsect. 3.2.3). From this viewpoint, the Laughlin state
can be interpreted just as the ν = 1 state where two magnetic flux quanta are attached
to each electron. These objects (electron dressed by two flux quanta) are called composite
fermions (CFs)36. Note however that the precise definition of a composite fermion may
vary in different theories. This will be explained below.

On an intuitive level, this concept explains the existence of a gapped ground state at
filling factor ν = 1

3
. Originally, there are three flux quanta per electron (Eq. 3.6) and

the huge Hilbert space of many–electron states in the lowest Landau level is completely
degenerate without interaction. In other words, we expect no gap without interaction. If
we now assume, that the Coulomb interaction leads to the formation of composite objects,
electron and two flux quanta, then there remains only one free flux quantum per each
such object (CF). This in turn implies the filling factor of νCF = 1 for CFs (Eq. 3.6)
and we know that in this case the ground state of particles obeying Fermi statistics37 will

36Similarly, Laughlin state at ν = 1
5 can be interpreted in terms of electrons with four flux quanta attached.

We will however discuss mostly the 2CF’s here and will skip the ’two’ unless confusion might arise.
37See comment [4].
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be gapped: if a Landau level is completely filled, then any, even infinitesimal, excitation
requires promoting at least one CF into a higher CF Landau level which costs finite energy
≥ ~ωCF .

The last paragraph could be a good advertisement for composite fermion theories in Sunday
Times or in Bild Zeitung. However, since this work is a thesis rather than an advertisement,
let me try to introduce some of the current composite fermion theories in a little bit more
detail.

3.4.1 Chern–Simons transformation

Looking at the Laughlin wavefunction in the way sketched above, it might occur reasonable
to embody the flux attachment somehow already in the Hamiltonian.

The Chern–Simons (CS) transformation is just a gauge transformation of the magnetic
field

a CS(r ) = αΦ0

∫
d2r1

ez × (r − r 1)

|r − r 1|2
Ψ†(r 1)Ψ(r 1) .

It does not change the magnetic field (and it can be thus titled ’gauge transformation’)
felt by electrons only owing to the fact that two electrons cannot be simultaneously on the
same place. Price for this is that the transformation is singular (a CS diverges for r = r i).
Ψ†(r ) are the one–electron field operators and α is the number of attached magnetic fluxes.

After this transformation the full Hamiltonian

H =
1

2m

∫
d2r Ψ†(r ) [−i~∇r + eA (r )− ea CS(r )]2 Ψ(r ) (3.38)

contains — apart from one particle terms — two particle terms (those containing a CS) and
also three particle terms Ψ†(r )Ψ(r )Ψ†(r 1)Ψ(r 1)Ψ

†(r 2)Ψ(r 2) (they originate from a 2
CS).

A mean field approximation can be made at this point where the density operator Ψ†(r 1)Ψ(r 1)
in a CS is replaced by the mean value nS. We arrive at a single particle problem with
effective magnetic field BCF = B − αφ0nS . Let us give an example how this works

CS transf. mean field

many–body system at
ν = 1

3

−→ a very complicated
many–body problem
at ν = 1

3

−→ simple one–particle
problem at ν = 1

Since the final ’simple one–particle problem at ν = 1’ has a non–degenerate ground state,
i.e. fully occupied lowest Landau level, the effect of the interaction between electrons can
now be taken into account perturbatively.

Of course, a mean field approximation is not the only possible treatment of the Hamiltonian
3.38. Theories going beyond mean field, i.e. those treating fluctuations of the gauge field,
are however very complex.
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By the CS transformation we attach 2s = α vortices38(not zeroes) to each electron. In the
mean field approximation the problem is equivalent to non–interacting particles in reduced
magnetic field BCF which then corresponds to filling factor νCF . It turns out that all exper-
imentally observed fractions ν (except for the ’new fractions’, Subsect. 3.2.6) correspond
to integer νCF . Let us conclude with the overview of relations between quantities referring
to electrons and to composite fermions (cf. Eq. 3.6)

BCF = B(1− 2sν) = B − 2snSΦ0 , `∗ ≡ `CF =
`0√

1− 2sν
,

1

νCF
=

1

ν
− 2s , (3.39)

or ν =
p

2sp+ 1
, assuming p, s integer .

3.4.2 Composite fermions à la Jain

Compared to the Chern–Simons transformation, Jain’s suggestion goes in some sense the
same way but opposite direction [44], [45]. It starts with a wavefunction of particles
(fermions) at integer filling νCF = p, attaches s zeroes (not vortices) to each particle and,
after projection into the lowest Landau level, it presents the result as a trial wavefunction
for the ground state at filling ν = p/(2sp + 1) (Eq. 3.39). This procedure reproduces
exactly the Laughlin wavefunction and at other fractions it gives wavefunctions with very
high overlap with ground states calculated numerically (by exact diagonalization).

There are two central reasons why this approach is very popular. On one hand, it gives
a simple single–particle picture of what is going on in the highly correlated many–body
problem. On the other hand, it gives explicit formulae to work with since it is easy to write
down a wavefunction of p full Landau levels. A very pleasant feature of this approach is
that it allows to incorporate spin of electrons easily [99]. Just take p↑ full Landau levels
with spin up and p↓ full Landau levels with spin down39. These Landau levels are then
called composite fermion Landau levels. Magnetic field felt by the composite fermions, i.e.
the field corresponding to filling factor νCF = p is called effective magnetic field Beff . It is
weaker than magnetic field B corresponding to the electronic state at ν (Eq. 3.39).

Note, that filling factors in Eq. 3.39 are all in range ν < 1
2
. For 1

2
< ν < 1, Jain et al.

[99] suggest the idea of antiparallel flux attachment. It accounts to setting the effective
field Beff antiparallel to the real field B, the additional flux quanta are however added in
parallel to B 40. In terms of Eq. 3.39 this means p→ −p or ν = p/(2sp− 1).

An example of candidates for ground states and their polarization provided by Jain’s
composite fermion theory is given in Tab. 3.2. See Chakraborty [16] for a review regarding
ground states with various spins (both from theoretical and experimental side).

38Condition α be even is dictated by Fermi statistics, for α odd we get composite bosons. [4]
39This is not just a hypothetic possibility: it can be arranged by a suitable ratio EC/EZ between cyclotron

energy (Landau level separation) and Zeeman energy (EC/EZ can be changed e.g. by changing the
Landé g factor). For EC/EZ → 0 we expect only fully polarized states, for EC/EZ → ∞ we expect
spin singlet states (for p even).

40i.e. antiparallel to Beff , that is how the name comes about.
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p↑ 1 2 3 −2 . . . 1 2 2 −1
p↓ 0 0 0 0 1 1 2 −1

p = p↑ + p↓ 1 2 3 −2 2 3 4 −2

ν = p/(2sp+ 1) 1
3

2
5

3
7

2
3

2
5

3
7

4
9

2
3

S/n
2

1 1 1 1 0 1
3

1
2

0

Table 3.2: The scheme of construction of the Jain’s wavefunctions for composite fermions with
two flux quanta attached: examples of composite fermion filling factors (p↑, p↓ are numbers of
fully occupied spin up and spin down CF Landau levels) and corresponding electronic filling
factors.

3.4.3 Composite fermions à la Shankar and Murthy (Hamiltonian
theory)

Hamiltonian theory of FQHE (Shankar and Murthy [72]) builds on previous works of Jain
and those concerning Chern–Simons transformations and, citing words of its authors, it
combines the strengths of them both.

It provides a (projected) Hamiltonian of the lowest Landau level which scales only with
Coulomb interaction. In addition to each electron a new independent object is introduced:
a pseudovortex. Its definition41 assures, that if an electron goes around a pseudovortex, it
picks up the phase of 2π 2s (i.e. it has the same effect as an insertion of 2s flux quanta);
note, it is not a zero of the wavefunction. The projected Hamiltonian is written in coordi-
nates which are a combination of the electron and pseudovortex position ; this combination
is then called composite fermion coordinate.

For this Hamiltonian an ansatz for a ground state can be written down. At filling ν =
p/(2sp+ 1), it is just p Landau levels filled with composite fermions (in the sense as they
have just been defined) and it is then possible to evaluate their Hartree–Fock energies.

The first substantial success of this theory is that it produces a correct scaling of spectra
within the lowest Landau level (∝

√
B). Compared to Jain’s theory, it keeps track of

the fact that the two fluxes (which sit exactly at each electron in the Laughlin state)
can be only loosely bound to electrons. This happens by giving the pseudovortices their
’independence’. On the other hand, the electronic coordinates are actually the only really
independent ones42 and thus the price we must pay for the extension of the Hilbert space
is that we must perform a projection to ’physical states’ at the end.

However, this does not seem to be really a problem and thus the Hamiltonian theory seems
to be the most advanced development in an effort to understand the many body physics
in fractional quantum Hall effect.

41On the level of commutation relations (Eq. 129 in [72]).
42For instance in the Laughlin wavefunction, all the zeroes (zi − zj) are expressed in terms of electronic

coordinates.
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3.5 Numerical methods or How to test the CF theory

The main part of this Section will concern the exact diagonalization (ED) as this was
the method chosen in my study. It is not exact to say this is the only numerical method
used in the context of the fractional quantum Hall effect. Basically, some numerics is
at the end of nearly any method as soon as many–body problems are concerned, be it
Hartree–Fock treatment of composite fermions or Monte Carlo simulations of the Laughlin
state mapped onto a one–component plasma. What we rather mean here is that ED is a
very low–level method: it solves the complete many–body Schrödinger equation. The only
substantial43 approximation of the model is to put the interacting electrons on a compact
(finite–sized) surface, possibly without edges, instead of an infinite plane. The hope is that
effects inflicted by the finite size can be separated from those generic to a two–dimensional
electron gas.

Since there are no approximations in the Hamiltonian (in particular such ones derogating
the many–body nature of the states), exact diagonalization has always been a standard to
compare results of other theories with.

First, we will introduce the ’finite–sized surfaces’44 of interest (torus [103] and sphere [36]),
then exact–diagonalization will be discussed and finally remarks on possible extensions will
be presented.

3.5.1 Torus geometry

One possibility to model an infinite plane by a finite manifold without edges is a rectangle
(a by b) with periodic boundary conditions. Topologically, this is the same as a torus; let
us, however, stay with the former picture (even if we sometimes use the word ’torus’ as a
shortcut for this model).

What are the single particle states (of the lowest Landau level) in this case? Recall Eq. 3.17
where single–particle states complying with translational symmetry along y are given45

ψ0,k′
y
(x′, y′) = exp(−ik′yy′) exp[−(x′ + k′y)

2/2] .

Periodic boundary conditions along y, i.e. ψ(x′, 0) = ψ(x′, b/`0), allow only discrete values
of k′y = (2π`0/b)j with j integer. At the same time, if we require ψ0,k′

y
(x′, y′) to be centered

within46 [0; a/`0) (in the x direction), we have 0 ≤ −k′y < a/`0. Thus, up to sign,

0 < j <
ab

2π`20
= m .

43Another usual yet not really necessary approximation is to neglect Landau level mixing, i.e. restriction
to the lowest Landau level only. Also note, that there is a long way from an ideal 2D system which
study here, to the experimental reality (impurities, effective mass approximation, etc.).

44We will not discuss the disc geometry here since it contains an edge. In rather small systems which are
accessible to exact diagonalization it is then difficult to separate edge and bulk properties.

45Primed coordinates are in units of magnetic length, x′ = x/`0, k
′ = k`0.

46This condition can be written also as 0 ≤ Xj < a, Xj = ky`
2
0. Note that x′ = a/`0 is the same as x′ = 0.

We thus have to omit one of these two points to avoid double counting.
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Eq. 3.6 has taught us that ab/(2π`20) is equal to number of magnetic flux quanta (Φ/Φ0)
which pass through the rectangle and it must be therefore an integer. This brings us
to the central insight that there is only a finite number m of states in a square with
periodic boundary conditions (subject to magnetic field and discarding all but the lowest
Landau level). Later we will argue that m is equal to the number of magnetic flux quanta
penetrating the rectangle (after Eq. 3.43).

States ψ0,k′
y
(x′, y′) shown above are not periodic in the x direction and this can be ac-

complished by periodic continuation: ψ(x, y) → ψ(x, y) + ψ(x + a, y) + . . . . The (non-
normalized) single particle states we will be dealing with are thus (Yoshioka [103], [101],
[104])

ϕj(x
′, y′) =

∞∑

k=−∞

exp

[
iy′(

j

m
+ k)ζ − 1

2

(
x′ − (

j

m
+ k)ζ

)2
]
, ζ =

√
a

b
· 2πm ,

j = 0, 1, 2, . . . , m− 1 . (3.40)

These states constitute the (single–particle) basis of the lowest Landau level.

This sequence of arguments is sufficient for the purposes of this work, yet we camouflaged
an important aspect about periodic boundary conditions. Let us have a closer look.

Twisted boundary conditions

It is relevant to require the |ψ|2 rather than ψ itself to be periodic (Bloch’s theorem).
Thus, the wavefunction may acquire a non-trivial phase when going once around the torus.
Mathematically, this can be described using the magnetic translation operators (Eq. 3.18):

T (aex)ψ = exp(iφx)ψ , T (bey)ψ = exp(iφy)ψ . (3.41)

Fixing phases φx, φy, the correct (unnormalized) periodic single particle states are

ϕj(x, y) =
∞∑

k=−∞

exp(ikφx)︸ ︷︷ ︸
T (kaex)

t(kaex) exp(−iXjy/`
2
0 + iφyy/b) exp[−(x−Xj)

2/2`20] ,

Xj =
j

m
a , j = 0, 1, . . . , m− 1 , (3.42)

where t(ξex) is an ordinary translation, i.e. turning ψ(x, y) into ψ(x+ ξ, y). For φx, φy = 0
the original result (Eq. 3.40) is recovered. This choice of φx, φy is also used throughout
this work.

Interpretation of φx, φy. By imposing the periodic boundary condition we arrived at the
statement that wavefunctions must be centered (in x) at Xj = (a/m) · j, j = 0, 1, . . .
There is no a priori reason for the point x = X0 = 0 to be more important than x =
X? = (a/m) · 0.5 which is not among Xj’s (i.e. there is no wavefunction centered at X?

among the described states). By varying φx, the set {X0, X1, . . .} = (a/m){0, 1, . . .} is
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transformed into (a/m){0 + φx/2π, 1 + φx/2π, . . .}. Thus, sweeping φx from 0 to 2π, we
probe all points in the x direction. Independently on this, we may sweep through all ky

points in the interval [0; 2π/b] by changing φy. Thus, φx and φy are analogous to lattice
wavevectors within the first Brillouin zone in an ’ordinary’ periodic system (defined by
ordinary rather than magnetic translations).

In summary: by considering only a finite system, we have only m states to probe the whole
plane (i.e. [0, a] in x and [0, 2π/b] in y). Sweeping φx, φy from 0 to 2π we can access an
arbitrary point in the plane.

Another interpretation of φx, φy was given by Tao and Haldane [93] in terms of additional
magnetic fluxes47 (h/e)(φx,y/2π). It was also shown that φx increasing linearly in time acts
as a homogeneous electric field in x direction (see [38] or [43] ).

General basis of single particle states on a torus: complex coordinates

A precise discussion of one–particle states on a torus (including the phases φx, φy) was first
given by Haldane and Rezayi [38] (instead of a rectangle they even considered a general
parallelogram). On a rigorous basis, they showed that the most arbitrary state is

ψ(x, y) = exp(− 1
2
x2) · exp(ikz)

m∏

l=1

ϑ1 (π(z − zl)/b|i)
︸ ︷︷ ︸

analytic

, z = x+ iy (3.43)

where ϑ1(u|τ) is an elliptic theta function ([35], p. 921), k is a real number in range
|k| < πm/b and zi are some fixed complex numbers within the rectangle [0, a] × [0, b].
In terminology of Eq. 3.42, these states correspond to any j and any φx, φy. The most
important thing to know about theta functions is that it ϑ1(z−zl|i) ∝ z−zl for |z−zl| → 0
and that this is its only zero in the rectangle (Fig. 3.10). In this form, it is also clear that
m is equal to the number of flux quanta in the elementary cell (the rectangle): going
once around the rectangle, the wavefunction gathers a phase of 2π× number of zero points
inside. That number is just m.48

By choosing fixed φx, φy, there arise m possible choices for the values of k and z0 =
∑

l zl,
let us name them j = 0, 1, . . . , m− 1. For each pair (k, z0) we can construct one function
of the form (Eq. 3.43) and the resulting m functions will constitute a basis of the lowest
Landau level, just as the basis in Eq. 3.42. There is naturally a large freedom in choosing
one particular basis. This happens by choosing some particular position of the zero points
zl’s (while observing the constraint on z0). The basis in Eq. 3.42 can be obtained from
Eq. 3.43 by putting the zeroes on a line, zl = ibl/m + j/ma and choosing k = (2π/b)j for
the state ϕj (with φx = φy = 0); even though it is by far not obvious from an inspection
by bare eye. Fig. 3.9 shows a 2D plot of one of such functions.

47These come from two ideal anuloids (closed solenoids): one goes inside the torus and another around
the torus outside.

48Linearly independent functions in the form of Eq. 3.43 which fulfil the boundary conditions.
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Figure 3.9: One possible one–particle state on a torus pierced by three flux quanta (i.e. m = 3).

In principle, wavefunctions in Eq. 3.43 are very similar to those obtained in circular gauge
(Eq. 3.14) except for substituting49 z by ϑ1(z|i). This is a manifestation of the fact,
that even on a torus, circular symmetry is approximately preserved at short distances
and deviations occur first when ϑ1(z|i) diverts from z at larger distances z. One could
say, ϑ1(z|i) is the function f(z) = z adapted to the torus (i.e. deformed to comply with
periodic boundary conditions).

On the other hand (contrary to infinite plane), each single–electron wavefunction on a
torus has as many zeroes as there are flux quanta passing through the torus.

3.5.2 Many–body symmetries on a torus

Center-of-mass

After Haldane and Rezayi [38].

What changes if we consider n–body states instead of single–particle ones? Given the con-
sidered Hamiltonian (homogeneous system plus interaction depending only on interparticle
distances, Eq. 3.52), the most obvious symmetry is the separation of center-of-mass and
relative part of the wavefunction50

Ψ(z1, . . . , zn) = ΨCM(Z)ψrel , Z = z1 + . . .+ zn . (3.44)

The center-of-mass part is just a one–particle wavefunction (it describes the motion of
a particle with mass and charge equal to the total mass and total charge of all involved

49In Eq. 3.14 we could have taken as a basis not 1, z, z2, . . . , zm−1 but some other m linearly independent
polynomials of m-th degree instead. They would have the form Πm

l=1(z − zl).
50Remember that the Laughlin wavefunction (Eq. 3.20) is just the relative part.
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Figure 3.10: Theta function ϑ1(z|i).

particles), hence it must have the form as shown in Eq. 3.43. Haldane and Rezayi [38]
showed that it has q zeroes in the region [0; a]× [0; b] (given filling factor ν = Ne/(qNe)).
Again (as for single–particle states), there are q basis states for ΨCM . Since the energy
does not depend on the center-of-mass position (in a homogeneous system), these three
states will lead to degenerate many–body states (provided, ψrel remains the same).

This introduces a delicate topic: of course, the electron density in a given state depends
on the center-of-mass part of the wavefunction. Different choices of bases in the q-fold
(i.e. threefold for ν = 1

3
) degenerate space of center-of-mass wavefunctions may lead to a

q-tuple of states with practically homogeneous density in some cases or with quite strongly
varying density in other cases (Fig. 3.11). This is true in spite of that we always describe
the same ground state subspace. Even worse: often (in homogeneous systems) we want to
study only the relative part of the wavefunction, which must be the same in all cases (if it
is the Laughlin WF, we know for example, it leads to a homogeneous density). The central
trouble is then that Hamiltonian eigenstates obtained by exact diagonalization contain
ΨCM .

A more detailed discussion of how ΨCM influences numerical results obtained on a torus is
given in Subsect. 4.1.4.

Relative part of the wavefunction

After Haldane [37], see also more details in [17], Subsect. 7.2.

The discussion in the previous paragraph is based on (magnetic) translations of the center-
of-mass TCM(u ). In an n–body state, the translation of a single (i–th) particle ti(v )
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Figure 3.11: Two different bases for ΨCM . At filling ν = 1
3 there are three allowed CM states

on a torus. They are labeled α, β, γ in this figure. For each element of each basis we show the
modulus of ΨCM , the density of the corresponding Laughlin state with six electrons, i.e. ΨCMΨL,
and section of the density along x and along y. Note the positions of the three zeroes in different
ΨCM ’s (marked by the red arrows).
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can be split into a translation of the center of mass TCM( 1
n
v ) and a relative translation

Trel,i(v − 1
n
v ). Owing to the indistinguishability of particles, the effect of the relative

translation ti(v ) on a particular many–particle state is the same for any i; we may thus
omit the index and imagine i = 1, for instance.

Again, just as in Bloch’s theorem, a wavevector k r can be attributed to these relative
translations (Haldane [37])

Trel(v )ψ = exp(ik r · v )ψ . (3.45)

Since Trel(v ) commutes with the Hamiltonian51(Eq. 3.52), the Hamiltonian eigenstates
can be sorted according to values of k r.

This concept is very similar to a single particle in a periodic potential. However, there
is no real periodic potential in an infinite plane and we introduced one particular period
artificially: the largest period possible within our model is the size of the rectangle.

The Brillouin zone for k r is rectangular (Fig. 3.12) and its size grows with the size of the
elementary cell. For filling factor ν = p/q (p, q without common divisor > 1) and number
of flux quanta per cell Ns = Nq, the allowed values of k r are

k r`0 =

√
2π

Nsλ
(s, t) , |s|, |t| ≤ N/2 and integer. (3.46)

λ is the aspect ratio. For the sake of comparison between systems of different sizes we will
sometimes use size-independent units for k r, where k̃ r = (π, π) will mean the upper right
corner of the Brillouin zone (i.e. s = t = N/2).

It can be verified ([17], p. 169), that application of the operator

∑

j

exp(iq · r i) (3.47)

to an arbitrary state (let it have a sharp value of k r) increases its wavevector by q . On
the other hand, the operator (3.47) generates a charge-density wave with wavevector q , as
can be best verified by the simple example of the Fermi gas.

Isotropic states are supposed to have k r = 0.

Momentum

So far, we have introduced two sorts of translational symmetries of states on a torus: one
of the center-of-mass part of the wavefunction and another of the relative part. Since the
corresponding (magnetic) translation operators commute with the (homogeneous) Hamil-
tonian, it would, in principle, be possible to split the basis of the whole lowest Landau level
into several smaller bases and diagonalize in the subspaces separately. Each base would be
characterized by a particular value of k CM and k r.

51In Bloch’s theorem, the allowed translations are given by an arbitrary lattice vector v . Not all of them
are allowed for Trel though [37].
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Figure 3.12: The first Brillouin zone for relative translations on torus (square with periodic
boundary conditions). Its size depends on the number of particles in the system. At filling factor
ν = p/q with Ne = Np particles (and Nm = Nq fluxes), number of allowed k r–points is N 2

and the upper right corner is k r = γ(π, π), γ =
√
N/2π. Different colours indicate points of

different symmetry (or degeneracy number of a state with this k r in a homogeneous system), the
rightmost figure shows the limit of large N .

This procedure can help to treat larger systems but it costs some extra effort to implement
it and moreover it is only possible in homogeneous systems. We will now discuss another
symmetry of the Hamiltonian which is a combination of the previous two and is preserved
with a certain class of inhomogeneities.

The homogeneous Hamiltonian (Eq. 3.15) in Landau gauge (i is particle index, Vint is e.g.
Coulomb interaction between particles)

H = Vint +
∑

i

H i
0 , H0 =

1

2
~ω

[
− ∂2

∂x′2
+

(
−i ∂
∂y′

+ x′
)2

]
, (x′, y′) = (x/`0, y/`0)

obviously conserves the total momentum in y direction. Due to the periodic boundary
conditions52 allowed values of ky are (2π/b)j, j = 0, 1, . . . , m−1 (cf. Subsect. 3.5.1). In an
n-body state constructed as a Slater determinant of single–electron states ϕji

(Eq. 3.40),
the total momentum (along y) is thus

(b/2π)Ky = (b/2π)

n∑

i=1

ki
y = j1 + . . .+ jn( mod m) ≡ J . (3.48)

Values of J thus range for instance from 0 to m− 1.

It is useful to keep in mind, that ji is (up to the factor) the point in x–direction at which
ϕji

is centered (Xji
= (ji/m)a). Thus, J can also be interpreted53 as the x–coordinate of

the center-of-mass of the n-electron state.

52Periodicity in y enforces integer j and periodicity in x maps j onto j +m.
53This would be exact if the gaussian in ϕj(x, y) were very narrow.
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Without proof, let us now present the precise connection between J and the wavevectors
following from TCM and Trel (i.e. k CM , k

r).

Be again ν = p/q (p, q without common divisor > 1) and m = Nq the number of flux
quanta per cell. An arbitrary J can be decomposed into two parts

J = JCM ·N + Jrel , |Jrel| ≤ N/2 , JCM integer, (3.49)

i.e. Jrel is J modulo N and JCM is J divided by N . Jrel is directly the y-component of k r

(more precisely Jrel = t or Jrel = N/2− t in Eq. 3.46, the former for pq(n− 1) even, the
latter for pq(n− 1) odd [17]).

JCM distinguishes states which differ only in the center-of-mass coordinate: by a successive
application of TCM to one state Ψ we can go through all possible values of JCM = 0, 1, . . . ,
q − 1.

In each subspace with definite J , states of all different kr
x are contained. Since Trel (by

allowed translation vectors) commute with the total momentum in y, it is in principle
possible to split a basis to particular J into subspaces with kr

x = −N/2, . . . N/2. However,
the basis state will not have the simple form of (antisymmetrized) product states of ϕj (in
Eq. 3.40) anymore.

3.5.3 Other popular geometries: sphere and disc

Spherical geometry

Apart from the torus, the electrons might be confined to a sphere [36] (a review in [17],
Sect. 5.3). Together with the torus, these have been the two geometries used to model an
infinite plane as they are both locally flat and have no edges. For very large finite systems,
results calculated on a torus and on a sphere should coincide.

The basic difference between the two geometries are the symmetries. In a rectangle with
periodic boundary conditions, translational symmetries are preserved (see Subsect. 3.5.2).
On a sphere, angular momentum L is preserved. Its length L = |L | corresponds to an
effective wavevector |k r| = (|L |/~)/R, where R is radius of the sphere (Haldane [36], or
[17] Sect. 7.1). The direction of L (or alternatively Lz, for instance) is related to the
direction of k r: for example a wave going around the equator will have L pointing to the
pole.

It has been demonstrated, that spectra calculated on a torus and those calculated on a
sphere very nicely agree if the former is plotted against |k r| and the latter against (|L |/~)/R
([17], Sect. 7.1,7.2).

Disc geometry

Laughlin wavefunction in the form given by Eq. 3.20 is in fact not translationally invariant,
owing to the exponential factor. Rather, it describes Ne electrons localized in a disc of

61



area Ne/% = Ne · 2π`20m (Eq. 3.21; ν = 1/m) as we may expect already from the analogy
to a classical plasma.

From the point of view of exact diagonalization (Subsect. 3.5.4), this geometry is less
suitable for studies of homogeneous (infinite) systems. The reason is that contrary to
torus or sphere, disc has an edge. For numbers of particles accessible for numerical studies
(Ne . 10), relatively many particles will be influenced by the edge and relatively few
particles will behave like ’bulk’. Disc geometry on the other hand suitable to study e.g.
edge states in the fractional quantum Hall systems. It is also very popular for studies
of quantum dots: the central notion is the ’maximum density droplet’ (MDD) which is
basically a round quantum dot filled with electrons of constant density corresponding to
filling factor one (see review of Reimann and Manninen [79]). Analogy of the MDD in the
fractional filling regime (ν = 1

3
), the Laughlin droplet, was studied for example by Mitra

et al. [66].

It is possible to ’translate’ the Laughlin wavefunction in Eq. 3.20 to torus [38] or spherical
geometry [36]. These wavefunctions can be then compared to numerical results of exact
diagonalization (Subsect. 3.5.4) in the particular geometry. Overlaps found to lie very close
to unity for different sizes and different geometries are then the final proof of correctness
of Laughlin’s wavefunction [28] (cf. also Figs. 4.4 and 4.3).

3.5.4 Exact diagonalization

Many (n) interacting electrons in a rectangle with periodic boundary conditions can be
described in the following way.

• Choose the number of flux quanta penetrating the rectangle (m). All allowed single–
particle states ϕj are those written in Eq. 3.40 (or Eq. 3.42 for nontrivial boundary–
condition phases φx, φy). Their number is m.

• Construct all possible n–particle states (for the given number of flux quanta m).
Most conveniently, these can be antisymmetrized products (Slater determinants) of
n states ϕji

, denote them by

|j1 . . . jn〉 = a†j1 . . . a
†
jn
|0〉 . (3.50)

• Filling factor is then fixed to ν = n/m (see Eq. 3.6).

• Take an arbitrary (exact54 many–body) Hamilton operator and calculate its matrix
elements in basis |j1 . . . jn〉k, k = 1, . . . , N (dimension of the matrix is thus N).

54Keep in mind that ’exact’ refers only to its many–body nature. Substantial approximations are needed
to get from the experimental reality to an ideal 2D system.
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• Diagonalize the Hamilton matrix. Eigenvalues are the total energies Ei, eigenvectors
v i = (v1

i , . . . , v
N
i ) are related to the many–body eigenstates by

H|ψi〉 = Ei|ψi〉 , |ψi〉 =

N∑

k=1

vk
i |(j1 . . . jn)k〉 . (3.51)

Remarks. (i) This procedure is exact if we consider a system where electrons in the lowest
Landau level form a periodic system. The approximation lies therefore in representing an
infinite system by a periodic repetition of a ’representative’ finite cell, a procedure which
has been very successfully applied in condensed matter theory. Formulated in other words:
the Hamiltonian is exact and all approximations55 are implemented by the choice of the
basis. (ii) The dimension of the matrix is finite by construction (e.g. m choose n for spin
polarized particles). No cut–off for one particle states is needed.

In the rest of this Subsection we will present the particular form of the Coulomb matrix
elements (after [17], Sect. 5.1 or original [103]).

The exact Hamilton operator in first and in second quantization is

H =
e2

4πε

∑

i<j

V (|r i − r j|) (3.52)

H =
∑

j

Wa†jaj +
∑

j1,j2
j3,j4

Aj1,j2,j3,j4a
†
j1
a†j2aj3aj4 ,

where a†j create single–electron states. The latter expression assumes already periodic
boundary conditions: the first sum is the ’Madelung energy’ of the electron interacting
with its own periodic images56 [15], Eq. 2.17.

W = − e2√
ab


2−

∑

l1,l1
(l1,l2)6=(0,0)

ϕ− 1
2

(
π(l21λ+ l22/λ)

)

 , ϕn(z) ≡

∫ ∞

1

dte−zttn . (3.53)

Choosing the single–electron basis according to Eq. 3.40 (or 3.43), the interaction matrix
elements are given by

Aj1,j2,j3,j4 =
1

2

∫
dr 1dr 2ϕ

∗
j1

(r 1)ϕ
∗
j2

(r 2)V (|r 1 − r 2|)ϕj3(r 2)ϕj4(r 1) =

=
πe2

2π`20m

∑

qx=(2π/a)s
qy=(2π/b)t

s,t∈Z

(s,t)6=(0,0)

δ′j1+j2,j3+j4
δ′s,j1−j4

V (q ) exp

[
−1

2
q 2`20

]
× (3.54)

× exp [−2πit(j1 − j3)/m]× α(j1 + j2 − j3 − j4, φy) .

55Number of particles, their placement on torus (including the phases φx, φy) and also restriction to the
lowest Landau level.

56If only the electrons were considered, this energy would diverge at least as
∑

n 1/n. To keep it finite, a
neutralizing positive background must be considered (Eq. 2.8 in [15]).
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with both integrals taken over the rectangle [0; a] × [0; b]. Primed Kronecker δ compares
the two arguments modulo m. The last factor α is solely due to the boundary condition
phase φy

α(∆J, φy) = δJ,0 + δ∆J,m exp(iφy) + δ∆J,−m exp(−iφy) ,

the matrix elements do not depend on φx.

The periodic continuation of the Coulomb interaction in two dimensions is given by

V (r ) =
e2

|r |

∣∣∣∣
per

=
1

ab

∑

q

2πe2

|q | exp(iq · r ) , q =

(
2π

a
s,

2π

b
t

)
, s, t ∈ �

, (3.55)

hence the Fourier series of V (r ) used in Eq. 3.54 is V (q ) = 2πe2/|q |.
Hamiltonian 3.52 assumes spin–polarized particles. Its extension to particles which may
have different spin is straightforward, since the Coulomb interaction conserves spin [108].

H =
∑

j

Wa†jaj +
∑

j1,j2
j3,j4
σ,σ′

Aj1,j2,j3,j4a
†
j1σa

†
j2σ′aj3σ′aj4σ . (3.56)

σ, σ′ can take on two values: up and down. Creation operators a†jσ must be extended
appropriately: they create a particle in state ϕj either with spin up or spin down.

Symmetries and choices of bases

Regarding the structure of the basis of my choice (Eq. 3.50) there are two Hamiltonian
symmetries which are easy to use: conservation of total momentum along y (described by
J , Eq. 3.48) and conservation of the z–component of the total spin (Sz).

’Easy to use’ means here that the basis of the whole lowest Landau level in the form
|(j1σ1 . . . jnσn)k〉 (Eq. 3.50 with spin) can simply be sorted into groups corresponding to
particular values of J and Sz.

Sorting according to J splits the basis into m subspaces of approximately the same size
≈ (m

n
)/m. Utilisation of Sz brings a bit smaller profit, since the Sz = 0 subspace is larger

than the Sz = n/2 subspace by a factor of about ( n
n/2

) ≈ 2n−1/
√

2πn. Thus size of the
largest group is not simply number of all states divided by the number of subspaces.

Other symmetries of the homogeneous Hamiltonian would correspond to conservation of
the total spin S2 and conservation of kr

x (Subsect. 3.5.2). Eigenstates to these operators,
however, are generally not of the simple ’product’ form (Eq. 3.50), but they are linear
combinations of such states. More importantly, these symmetries are gone if inhomoge-
neous systems are considered. Cleverly chosen inhomogeneities can however preserve the
symmetries mentioned previously (see Subsect. 5.2).

If the aim is to choose n as high as possible, then the largest accessible systems have about
ten electrons. At filling ν = 1

3
with J symmetry employed and Sz = n/2, the basis counts
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1 001 603 elements57 for n = 10. The largest bases I was able to handle contained 3× 106

elements, extremely elaborate programs can handle bases up to sizes about an order of
magnitude larger [68]. An alternative to the classical exact diagonalization is presented
below.

3.5.5 Density matrix renormalization group

Exact diagonalization as it has just been presented, boasts of taking the complete basis
of the lowest Landau level on a torus. As long as the low–energy states are considered,
many of the basis states will be almost absent in the product–state expansion (Eq. 3.51):
especially those which place many electrons close to each other and thus contribute with a
large Coulomb energy. Leaving out such states from the basis will not affect the calculated
ground state noticeably while it reduces the matrix sizes considerably.

Density matrix renormalization group (DMRG) is a systematic method to leave out irrel-
evant basis states. Roughly, its basic idea is to successively enlarge the considered system
and for calculating the (n + 1)–particle ground state to use only the most important n–
particle states.

The idea was used originally for one–dimensional systems (see e.g. a nice review by
Schollwöck [85]). Shibata and Yoshioka [86],[87],[88],[89],[105] noticed that the single-
electron basis of the lowest Landau level is in principle one-dimensional (Eq. 3.42) and
adapted this method as an extension of the exact diagonalization for studies of the lowest
Landau level. They were thus able to study systems with up to about 20 particles at fillings
close to ν = 1

3
.

3.6 Quantum Hall Ferromagnets

Consider the following situation: ν = 1 and vanishing Zeeman energy. What is the ground
state? (see a nice review by Girvin [31])

In the absence of Zeeman splitting, the lowest Landau levels (n = 0) for spin up and
for spin down have the same energy, thus (without interaction) there are 2eB/h states
available with energy 1

2
~ω, which is the lowest energy an electron can have in the presence

of a magnetic field B. Filling factor one means that only eB/h states (per unit area) are
occupied. Hence there is a vast number of degenerate ground states without interaction.

One of these states has the form

ΨH = Φ(z1, . . . , zn)| ↑↑ . . . ↑〉 .

Antisymmetry of ΨH implies antisymmetry of Φ, or in other words Φ vanishes when (any)
zi approaches (any) zj. Each particle is surrounded by a correlation hole (cf. Eq. 4.5).

57In the J = 5 subspace where the ground state is (cf. Eq. 3.49).
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and ν = 1, ↓ LL crossing; n = 0, ↓ full)

Figure 3.13: Spectra of two examples of quantum Hall ferromagnets (exact diagonalization). For
Ising ferromagnet, only to the two crossing Landau levels are considered (the deep lying n = 0, ↓
level is fully occupied and treated as inert).

Therefore, in the presence of a sufficiently repulsive interaction, energy of this state will
be lower than the energy of any state which does not have this property.

For Coulomb interaction, the energy cost of a single electron flip (which implies violation
of Φ’s antisymmetry) can be evaluated analytically: E = (e2/ε`0)

√
π/8. Quantitatively,

this number is comparable to the cyclotron energy58
~ω and the fully polarized state thus

becomes the ground state stabilized by the huge gain in exchange energy.

For Pauli principle to apply (Φ vanishes as zi → zj), it is only important that all spins
have the same direction, not that they are all up. Thus, the ground state is characterized
by full spin polarization (S = n/2) and arbitrary Sz: all states (S−)kΨH , k = 0, 1, . . . n are
degenerate ground states.

It therefore turns out, that the ν = 1 system in the absence of Zeeman splitting constitutes
an example of a Heisenberg ferromagnet. An exact spectrum in a small system is shown in
Fig. 3.13(a): in agreement with the argumentation above, the ground state has S = n/2
and it is well separated from excited states.

Other types of integer quantum Hall ferromagnets are possible, but they all share the
common scheme: two degenerated Landau levels which provide 2eB/h ’free places’ and
only eB/h of them should be occupied. Depending on which Landau levels are degenerate,
different types of ferromagnets can follow. A classification of possible cases was given by
Jungwirth and MacDonald [46].

Let us introduce one more example, the ν = 2 QHF which turns out to be an Ising type
ferromagnet. By changing the ratio between Zeeman and cyclotron energy, n = 0, ↑ and

58In GaAs at magnetic fields in the range of few tesla.
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Figure 3.14: Integer quantum Hall ferromagnets
occur when two crossing Landau levels should
be only half–filled (2eB/h free states, eB/h elec-
trons to occupy them). Blue (black) levels in-
dicate completely filled (empty) Landau levels,
green levels are ’active’. Depending on which
Landau level crossing is active, different types of
ferromagnets occur: Heisenberg type for ν = 1,
Ising type for ν = 2, 3 (the latter type was de-
scribed in Ref. [47] for example).

n = 1, ↓ Landau levels can be brought to coincidence (Fig. 3.6). Experimentally, this can
be accomplished either by changing the g–factor (it decreases with pressure [19]) or by
tilting the magnetic field (cyclotron energy depends only on the component perpendicular
to the 2DEG plane, Zeeman energy depends on the total field; the ratio between these
two thus depends on the tilt angle) [22]. The low lying n = 0, ↓ Landau level is fully
occupied (eB/h states) and can be taken as inert. The remaining eB/h states (giving
in total ν = 2) can be distributed among the 2eB/h available places of the two crossing
Landau levels (Fig. 3.13(b)). Contrary to the ν = 1 QHF, there are only two ground states
now: either n = 0, ↑ is full or n = 1, ↓ is full (Fig. 3.6). To obtain this result we should use
the exact diagonalization due to the large degeneracy present when interaction is switched
off. However, the fact that putting some electrons to the n = 0, ↑ level and some to the
n = 1, ↓ level costs extra energy, is probably a consequence of the fact that spin up orbitals
are not the same as spin down orbitals [46] (they lie in different Landau levels).

A more detailed discussion of the spectra of a Heisenberg and an Ising QHF (Fig. 3.13) is
given in Subsec. 4.3.3.

Quantum Hall ferromagnets which occur at integer filling factor have the advantage that
they can often be well described by Hartree–Fock models, at least as far as ground state
is considered. Even here, exact diagonalization studies can sometimes unveil unexpected
ground states, as shown by Nomura [75] in bilayer systems (spin degree of freedom is
substituted by pseudospin which refers to the two layers).

The principial question which is addressed in this thesis is, whether quantum Hall ferro-
magnetism can also occur at fractional filling factors. Experimentally, there are strong
hints that the answer is yes [90], [27] (Sec. 2.3). It is then tempting to interpret these
findings in terms of system with integer filling of composite fermions. It is a great challenge
to confirm this hypothesis.
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4 Structure of the incompressible states
and of the half–polarized states

4.1 Basic characteristics of the incompressible ground

states

Where to start with telling the story. . . An answer of universal validity to this question is:
at the beginning [63]. Being interested in phenomena occurring at the transition between
two incompressible ground states, the spin-polarized and the singlet one, it is reasonable
to get acquainted with these two ground states first.

In the very illustrative model of non-interacting composite fermions (NICF; Sec. 3.4 and
especially Subsect. 3.4.2), the ground state at electronic filling factor ν = 2

3
= 2/(2 · 2− 1)

corresponds to two Landau levels (LLs) filled with CFs. If, in some particular situation,
the CF cyclotron energy is smaller than the Zeeman splitting, these will be the n = 0, ↑,
n = 1, ↑ CF Landau levels and the ground state will be fully spin polarized (Fig. 4.1).
If the ratio between Zeeman and CF cyclotron energies is reversed, the ground state has
n = 0, ↑, n = 0, ↓ CF Landau levels filled and is therefore a spin singlet1. Here, the CFs
are electrons with two flux quanta attached antiparallel to the effective magnetic field Beff

[99] (Subsect. 3.4.2), which leads to a minus sign in the denominator of the CF filling
factor formula 3.39.

A similar situation, i.e. occurrence of two incompressible ground states, the singlet and the
polarized one, occurs also at filling factor ν = 2

5
. Here, the ground state can be interpreted

as two filled CF LLs where the two flux quanta were attached parallel to Beff . Thus, these
ground states should be completely equivalent to the ground states at ν = 2

3
within the

NICF approximation.

Let us compare this picture (attempting to describe an infinite two-dimensional system)
with ’exact results’, i.e. with a finite system treated exactly. Looking at the exact spectra
of a ν = 2

3
and a ν = 2

5
(finite) system (Fig. 4.2) we readily recognize ground states in the

S = 0 and the S = N/2 sector which are well separated from excited states, as compared
to the typical level separation within the excitation spectrum or in subspaces with other
values of the total spin. Also, as the NICF model predicts, the spin singlet ground state

1Consider the action of the S− (lowering operator for the z-component of spin) on the ground state:
flipping a spin ↑→↓ must annihilate the state, because there is no room for an extra spin down in the
lowest CF LL which is completely filled. Finally, S−|Ψ, Sz = 0〉 = 0 implies that |Ψ, Sz = 0〉 is a S2 = 0
state.
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Figure 4.1: Systems at filling factors ν = 1
3 ,

2
3 and 2

5 correspond to νCF = 1, 2 and 2 within
the non-interacting CF picture. The composite fermions (CF) are electrons with two magnetic
flux quanta attached parallel (for ν = 1

3 ,
2
5) or antiparallel (for ν = 2

3 ) to the effective magnetic
field Beff (but always parallel to the real external field B). When Zeeman splitting is increased
crossings between CF Landau levels occur and spin polarization of the ground state changes.
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Figure 4.2: Energy levels of 8 particles on torus
at filling factors 2

3 and 2
5 without Zeeman split-

ting. Obviously, up to an inessential shift,
the short–range interaction used here (cf. sec-
tion 3.3) produces quite similar spectra like the
Coulomb interaction. Note the large excitation
energies for the ground states at S = 0 and S = 4
(as compared to other inter-level separations):
these produce the gaps needed for incompress-
ibility of the ground states in the thermodynam-
ical limit.

(n = 0, ↑, n = 0, ↓) has a lower energy E(S = 0) than the polarized one (n = 0, ↑, n = 1, ↑),
E(S = N/2) if the Zeeman energy is set to zero. Both ground states have k r = (0, 0) which
corresponds to L = 0 in a system with circular symmetry (Subsect. 3.5.2, 3.5.3). Angular
momentum equal to zero is in turn a property inevitable in any state with only completely
filled Landau levels. This is another hint that what we deal with here are states with
completely filled CF Landau levels.

In the following, I will continue discussing properties of both incompressible states at ν = 2
3

and at ν = 2
5

obtained by exact diagonalization and I will occasionally mention links to
composite fermion theories.
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Ψ =
∑

i

ciA|ji1〉 ⊗ |ji2〉 ⊗ |ji3〉 ⊗ |ji4〉 =

= 0.423556 | · · · • • · · · · • • ·〉
−0.423556 | • • · · · · • • · · · ·〉
+0.335551 | · · • · · • · · • · · •〉
−0.328373 | · · · • • · · · • · · •〉+ . . .

(a) Four–electron wavefunction as an expansion
of Slater determinants (product states antisym-
metrized by A). In each of them, each • indi-
cates an occupied state and position of • signifies
j = 1, 2, . . .12 of this one–particle state.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 0  5  10  15  20  25  30  35  40  45

|c
i|

i: # of basis state

Coulomb
short range

(b) Moduli of coefficients of all terms in the ex-
pansion (dimension of the four–electron basis is
43). For comparison, coefficients for a short–range
interacting state, Subsect. 3.3.4, are also shown.
Overlap between these two states is −0.9893.

Table 4.1: The ground state at ν = 1
3 is highly correlated, i.e. it is a superposition of many

Slater determinants. Here it is demonstrated for a four electron state on a torus (with Coulomb
interaction). In this case, there are 12 one–particle states available (Ne/Nm = 4/12) and they are
centered around Xj = a · j/Nm in the x–direction in the basis chosen for our calculations (Eq.
3.40).

4.1.1 Densities and correlation functions

Having computed a many-particle wavefunction numerically usually does not automatically
mean that we can say much about the nature of the state it describes. Very often, the only
statement to be made is that the state is highly correlated, or entangled. By this we mean
that the state cannot be written as a single Slater determinant [5], not even approximately,
and thus its description goes far beyond any Hartree–Fock model. An illustrative example
of this is the Laughlin state, Tab. 4.1 (note the comment [6]).

To learn more about the state it is apt to evaluate expectation values of observables such as
density or density-density correlation functions. In the first quantization formalism these
are the following operators

n(r ) =
∑

i

δ(r − r i) (4.1)

g(r ) =
1

Ne(Ne − 1)

∑

i6=j

δ
(
r − (r i − r j)

)
, (4.2)

summations running over all particles in the system. For inhomogeneous systems it is also
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useful to consider an ’unaveraged’ density-density correlation operator

g(r ′′, r ′) =
1

Ne(Ne − 1)

∑

i6=j

δ(r ′ − r i)δ(r
′′ − r j)

)
.

This is the probability (density) of finding a particle at place r’ provided there is a particle
at place r ′′. The function g(r ) is just g(r + r ′, r ′) averaged over all r ′, hence g(r ) ∝ g(r +
r ′, r ′) for homogeneous systems, i.e. both quantities are the same up to a proportionality
constant.

For not fully spin polarized states it is also useful to watch quantities n↑(r ), g↑↓(r ), etc.
defined by the operator

g↑↓(r ) =
1

Ne(Ne − 1)

∑

i6=j

δσi↑δσj↓δ
(
r − (r i − r j)

)
. (4.3)

and analogous relations2.

The normalization of density and density–density correlation functions we chose in Eqs.
4.1,4.2,4.3 is the following:

∫
drn(r ) = Ne ,

∫
dr g(r ) = 1 ,

∫
dr gσσ(r ) =

Nσ(Nσ − 1)

Ne(Ne − 1)
, σ ∈ {↑, ↓} , (4.4)

where integrals are taken over the whole system (elementary cell).

As long as homogeneous systems are concerned we naturally expect density and also po-
larization to remain constant. For the incompressible states this is true only up to finite
size effects: the density shows a slight modulation which decays rapidly as the system size
is increased. Discussion of these effects which have no relevance for the real infinite 2D
system will be presented later (see section 4.1.4).

In the following, by g(r) we mean g(r ) with r = |r | for isotropic and homogeneous systems.
Also, whenever we will speak about ’correlation functions’ we mean (equal time) density–
density correlation functions.

Fully occupied Landau levels

The density-density correlation function can be analytically evaluated for a state with
ν = n fully occupied Landau levels [49] (for spin polarized electrons). This is the ground
state of non-interacting electrons (at integer filling factor). In this case

g(r) = 1− 1

n2
exp(−[(rkF )2/4n])

[
L1

n−1

(
(rkF )2

4n

)]2

, (4.5)

2Quantities g↑↓(r ) and g↓↑(r ) obey g↑↓(r ) = g↓↑(−r ). For isotropic systems it thus makes no sense to
distinguish these two quantities.

71



where Lα
n(x) are the associated Laguerre polynomials [7],[35]. In particular, for n = 1 and

n = 2:

ν = 1 :

gν=1(r) = 1− exp(−r2/2`20) (4.6)

ν = 2 :

gν=2(r) = 1− exp(−r2/4`20) ·
1

4
[2− r2/4`20]

2 .
 0

 0.5

 1

 0  1  2  3  4  5  6

g(
r)

r/l0

Correlation function, integer filling factors

ν=1
ν=2

0.95

1.00

 2  3  4

The Fermi wavevector kF for a system subjected to a perpendicular magnetic field is
defined as kF in exactly the same system (i.e. the same areal density of electrons) just
with magnetic field switched off. In this scheme

(kF `0)
2 = 2ν , or kF =

√
2ν`−1

0 . (4.7)

It is a pleasant news that by taking the limit
ν = n→∞ in Eq. 4.5 we obtain

gFS(r) = 1−
[

2

kFr
J1(kFr)

]2

, (4.8)  0

 0.5

 1

 0  2  4  6  8  10  12  14

g(
r)

rkF

Correlation function, free 2D Fermi gas (B=0)

which is the correlation function of free electrons in two dimensions (Fermi sea). It should
not be anything else because ν →∞ with kF kept constant means that B is decreased to
zero at a given areal density of electrons.

Filling factor ν = 1
3

Provided Landau level mixing is absent and considering only the short-range interaction
between particles (Sec. 3.3), the ground state at filling factor ν = 1

3
is described by

the Laughlin wavefunction ΨL(z1, . . . , zn), Eq. 3.20. Up to my knowledge, no closed [8]
analytical expression of the correlation function in this state is available. Only the short
range behaviour can be determined analytically3, g(r) = cr6 + o(r6) for r → 0.

Numerically, 〈ΨL|g(r)|ΨL〉 can be evaluated by various Monte Carlo techniques (see end
of Sec. 3.2.2), Fig. 4.3. These results are closer to the thermodynamic limit — referring to
larger numbers of particles — than g(r) which can be obtained from exact diagonalization
(Fig. 4.4) but this is only because we have an analytic WF of the GS in this case (ΨL).
Exact diagonalization can be performed only for systems with Ne . 10 electrons, but it is
not necessary to know anything about the ground state in advance apart of that it lies in
the lowest Landau level. Therefore, exact diagonalization provides us a way to confirm that

3For z1 − z2 → 0, |ΨL|2 vanishes proportional to (z∗1 − z∗2)3(z1 − z2)3 = |z1 − z2|6.
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ν = 1
3

ν = 2
5

Water

Figure 4.3: Left and middle: Correlation functions of the ground states of 50-60 particles at
filling factors 1

3 and 2
5 of the principal Jain’s sequence, ν = p/(2p + 1) (cf. Subsect. 3.4.2).

The wavefunctions (WF) predicted by composite fermion theory were taken (for ν = 1/3 this is
identical with the Laughlin WF) and g(r) was calculated by a Monte Carlo method. Taken from
Ref. [49]. Right: correlation function between oxygen atoms in liquid water as an example of a
density–density correlation function in a well–known liquid (see text on p. 75). Results of both
numerical simulation and experiments are shown, see the original paper by Allesch et al. [12] for
details.

ΨL is indeed the ground state or a good approximation to it, e.g. for Coulomb–interacting
electrons. Note also that Figs. 4.4 refer to electrons on torus whereas Fig. 4.3 refers to
the disc geometry (see Subsect. 3.5.3). The fact that correlation functions are very similar
in both geometries (compare Fig. 4.4(b) and Fig. 4.3) supports the hypothesis that the
corresponding states are universal and hence basically the same as the ground state in an
infinite 2D system.

Several points should be mentioned here.

(i) The correlation function g(r ) in Fig. 4.4 is rather isotropic, at least on distances
smaller than a/2. This distinguishes the Laughlin state from a Wigner crystal (Sub-
sect. 4.4.1) or a unidirectional charge density wave (Subsect. 4.1.3) in which some
special directions exist. This fact motivates also the ’incompressible liquid’ terminol-
ogy4.

(ii) The first maximum in g(r) occurs at r1 ≈ 4.4`0 (Fig. 4.4(b)) and this separation
can be taken as a typical interparticle distance in the Laughlin state5. After r1,

4Liquids and gases differ in the strength of interparticle interaction. Whereas negligible in gases, the
interaction in liquids is strong compared to kinetic energy. In the lowest Landau level, kinetic energy
is zero (or constant, more precisely, Subsect. 3.2.1).

5It is an interesting fact that this distance lies close to the mean interparticle distance determined by
the filling factor, rmean/`0 =

√
2π/ν ≈ 4.35 (cf. Eq. 3.6). This quite precise match between ’pure

geometry’ (rmean) and a property of ΨL (r1) probably considerably contributes to the exceptional
stability of the Laughlin state.
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(a) Ne = 10. Due to the absence of cir-
cular symmetry on the torus, g(r ) is in
general not only a function of r = |r |.
For |r | � a, g(r ) is however quite
isotropic (inset in Fig. 4.4(b)). The first
electron is sitting at the corner (the four
corners are identical owing to the pe-
riodicity). The lower plot differs from
the upper one only by a finer z–scale
which highlights the structures in g(r )
at larger distances.
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(b) Section of g(r ) forNe = 5, 8, 9, 10–electron ground
states along r = (x, x); the perfectness of match to
g(r) in Fig. 4.3 gives us a feeling how little the ground
state is affected by the finiteness of the system. It is
noteworthy that g(r) can be astonishingly well fitted

by the [gFS(r)]
3

(Eq. 4.8) up to distances beyond the
first maximum (up to vertical scaling, only kF must
be fitted, see the text). Inset: sections along diagonal
and side of the square for the Ne = 10 system. g(r )
is isotropic well beyond the first maximum.

Figure 4.4: Correlation functions in the ground state of Ne electrons on a torus (square, length
of sides a = b, with periodic boundary conditions) at filling factor ν = 1

3 . The function g(r ) gives
the probability of finding an electron at position r = (x, y) provided there is an electron sitting
at r ′ = (0, 0). For a homogeneous system the choice of r ′ does not influence the probability
distribution of finding the second electron.

oscillations in g(r) decay rapidly. The overall form of g(r) in the Laughlin state
clearly differs from the correlation function of a free 2D Fermi gas (Eq. 4.8):

1. Laughlin state (Fig. 4.4(b)): the first peak of g(r) is relatively high, measured
for instance by ratio g(r1)/g(r → ∞) & 1.1 6. 2D Fermi gas (Fig. next to
Eq. 4.8): the first structure of g(r) is about ten times weaker. Here, it is more
appropriate to watch the depth of the first minimum, see the next point.

2. 2D Fermi gas: all maxima (at ri
FS) of g(r) have the same value, g(ri

FS) = 1.

6In a finite system like in Fig. 4.4(b), we must substitute r → ∞ by the largest distance possible. It is
r = a/

√
2, that is about 10`0 in the Ne = 10 system.
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Laughlin state: the first maximum g(r1) ≈ 1.1 (for Ne → ∞) is much higher
than other maxima.

3. 2D Fermi gas: g(r) ∝ r2 for r → 0. This is purely the effect of Pauli exclusion
principle; mathematically, it comes from the antisymmetry of the wavefunction
(Ψ), in other words, Ψ is a Slater determinant. Laughlin state: g(r) ∝ r6.
This is a manifestation of correlations in the state, i.e. of the fact that ΨL

cannot be written as a single Slater determinant. g(r) ∝ r6 also means that
any two electrons avoid being close to each other very efficiently and this helps
to minimize the Coulomb energy which is high at short inter–particle distances
([39]; some details are also in Subsect. 3.3.4).

Just as an illustration, a correlation function g(r) of liquid water is shown in Fig.
4.3, right. Of course, it is not possible to directly compare water and a 2D electron
gas in the fractional quantum Hall regime. I hope though, the reader shares my
impression that g(r) of the Laughlin state (Fig. 4.3, left) is similar to g(r) of liquid
water (Fig. 4.3, right) rather than to g(r) of a 2D Fermi gas (Eq. 4.8).

(iii) The Laughlin state (Fig. 4.4(b)) also differs from integer filling factor states appar-
ently (Fig. next to Eq. 4.6). The latter ones (i = 1, 2, . . .) namely have always
gν=i(r) ∝ r2 at r → 0. Also gν=i(r) has exactly i − 1 maxima, i.e. gν=1(r) is free of
maxima.

This demonstrates the fact, that in the νCF = 1 composite fermion (CF) state,
which is the model of the ν = 1

3
electronic ground state (Sect. 3.4), the electron–

electron correlations are different to those in a ν = 1 electronic state. This is a bit
counterintuitive, since the CFs were created by adding two zeroes to electrons in the
ν = 1 state and we could have therefore expected that the electrons ’remained at
their original positions’ under this transformation. Figures 4.4(b) and (the one next
to Eq.) 4.6 however show that even though the CF density equals the electronic one
the electron–electron correlations are different in both states.

(iv) On ’intermediate length scales’, the correlation function of the Laughlin state g(r)
in Fig. 4.4(b) can be strikingly well fitted by

c · [gFS(r)]3 , (4.9)

where gFS(r) is the correlation function of a free 2D Fermi gas, Eq. (4.8). Herefore,
we put kF ≈ 0.874`−1

0 which is only by about 7% more than what we would expect
for filling factor ν = 1

3
, Eq. (4.7).

The quality of the match relies on the choice of m = 3 for the exponent in Expr. 4.9
(for r → 0) and on the fitting constants c and kF (around r ≈ r1). The surprising
fact is therefore only the good match between r = 0 and r = r1. Also note that long–
range (r � r1) behaviours of Expr. 4.9 and g(r) of the Laughlin state are different.
This again emphasises the differences between the Laughlin state and the Fermi gas.
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Expression 4.9 provides therefore only another representation of the exchange hole,
parallel to approximate formulae given e.g. by Girvin [30].

In conclusion, we have seen that the correlation function of the correlated ν = 1
3

ground
state (Fig. 4.3) has a strong first maximum (near to 4.4`0) and an unusual exchange
hole g(r) ∝ r6. These features distinguish the 1

3
state from both free 2D Fermi gas and

completely filled Landau levels and indicate the liquid–like and correlated nature of the
Laughlin state.

Filling factor ν = 2
3

Provided the Landau level mixing is absent, the particle–hole symmetry in one Landau
level gives a direct relation (isomorphism) between Hilbert subspaces of fully polarized
states at ν = 2

3
= 1− 1

3
and ν = 1

3
(Subsect. 3.2.4). Owing to this relation eigenvectors of

any radial two–particle interaction are exactly the same7 in both spaces and corresponding
eigenvalues are identical up to a constant shift (see section 3.2.4).

The correlation function in the fully polarized ν = 2
3

ground state (Fig. 4.5) is thus linked
to the one of the Laughlin WF by an analytical formula (Eq. 3.26) . For a system with
Nm flux quanta8 it reads

2

3
Nm(

2

3
Nm − 1)gν= 2

3
(r ) =

1

3
Nm(

1

3
Nm − 1)g 1

3
(r ) +

1

3
N2

mgν=1(r ) . (4.10)

The g(r) ∝ r6 short range behaviour is thus obscured by the second term.

The spin singlet ground state at ν = 2
3

has a different character. Here, we can distinguish
between correlation functions for electrons of like spin, g↑↑(r ), and for electrons of opposite
spin, g↑↓(r ), Fig. 4.6. Neither of them bears any apparent resemblance to either the ν = 2

3

or ν = 1
3

polarized ground states. I should like to point out some of their particular
features.

(i) The ring-like form of g↑↓(r ) suggests that the state consists of pairs of particles with
opposite spin with average separation r↑↓ ≈ 3.3`0.

(ii) There is a deep hole in g↑↓(r) around zero. This cannot be due to Pauli exclusion
principle which applies only to electrons of like spin, but rather solely due to Coulomb
repulsion. As a check (not presented here), a further comparison between g↑↓(r) in
Fig. 4.6 and the ’lowest LL Pauli hole’ gν=1(r) (Eq. 4.6) shows that they have indeed

7In the following sense: Take an eigenvector for ν = 1
3 . This is a linear combination of Slater determinants

from the ν = 1
3 space. Replace each of them by its particle–hole counterpart and the resulting state

from the ν = 2
3 space is an eigenstate.

8I.e. rectangular elementary cell of area 2π`20Nm. Note that number of electrons in one system is equal to
number of holes in the conjugated system. Therefore, in Eq. 4.10, gν=1/3 and gν=2/3 refer to systems
with different numbers of electrons, Ne = Nm/3 and Ne = 2Nm/3, respectively. Recall ν = Ne/Nm,
Eq. 3.6.
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different form. Also note that the value of g↑↓(0) is not exactly zero, it is several
percent of the maximal value of g↑↓(r) (see also Subsect. 4.1.2).

(iii) There is a well pronounced shoulder in g↑↑(r) around r ≈ 2`0. It is very suggestive,
how well this shoulder can be fitted by the correlation function of a full lowest LL
(the ’lowest LL exchange hole’), Eq. 4.6. This is shown in Fig. 4.10(a).

This feature reminds of the relation between 1
3

and 1− 1
3

systems Eq. 4.10. This is
also supported by the fact, that after the shoulder is subtracted, g̃(r) the remaining
part of g↑↑(r) is ∝ r6 at short distances (Fig. 4.10(a)), just as it is the case in the 1

3

Laughlin state. However, particle–hole conjugation between filling factors 1
3

and 2
3

is
applicable only for spin–polarized states9.

(iv) The sum of g↑↑(r) and g↑↓(r) properly scaled10 for Ne →∞ lies very close to gν=1(r )
with `0 substituted by `0

√
2, Fig. 4.7. Therefore, if spin is disregarded, the singlet

ground state at ν = 2
3

(created by magnetic field B) strongly resembles the state of
a completely filled lowest LL (at magnetic field B/2).

Summary: the polarized ground state at ν = 2
3

is the particle–hole conjugate of the Laughlin
state at ν = 1

3
. The electronic correlation function of the 2

3
state reproduces the ’liquid–

like’ maximum at r1 ≈ 4.4`0 but the ν = 1
3

broad exchange hole with g(r) ∝ r6 is hidden
behind the ’lowest LL exchange hole’, gν=1(r).

The singlet GS seems to consist of pairs of spin up and spin down electrons with character-
istic size of 3.3`0. Together with the ’sum rule’, point (iv) above, this could be interpreted
as that Ne electrons in the singlet GS form Ne/2 pairs, each with total Sz = 0 and these
pairs form the same state as Ne/2 fermions at ν = 1 (in the ground state).

In particular, I would like to stress that the singlet state cannot be described as a mixture
of two mutually uncorrelated ν = 1

3
Laughlin liquids, one with spin up, another with spin

down, as we could wrongly infer from the picture of non–interacting composite fermions,
see comment [9].

Filling factor ν = 2
5

This filling factor should be the counterpart to ν = 2
3

within the CF picture. The two
magnetic fluxes are attached parallel rather than antiparallel to the effective magnetic
field and in both cases the CF filling is two (Sect. 3.4). In spite of this relation the
density–density correlations between electrons show significant differences.

The correlation hole of the polarized ground state (Fig. 4.8 or Fig. 4.3, middle) is much
broader for ν = 2

5
. The first maximum occurs in both systems ( 2

5
and 2

3
) at about the same

distance ≈ 4.1`0, it is however much better pronounced in the 2
5

system and also more

9For electrons with spin, states at ν and 2− ν can be particle–hole conjugates.
10g↑↑(r) and g↑↓(r) should have the same norm, e.g. equal to one, in sense of Eq. 4.4. With the current

notation (Eq. 4.3) this is true only for Ne →∞.
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be related to each other: g↑↓(r ) + g↑↑(r ) (properly normalized, see text) is very similar to the
function 1− exp(−r2/4`20), the density-density correlation in a full Landau level with `0

√
2 in the

place of `0.

structure is present beyond the first maximum here. Around r = 0 both systems follow
g(r) ∝ r2; however, whereas g(r) for ν = 2

3
is obviously dominated by the ’exchange hole’,

i.e. gν=1(r) (cf. Eq. 4.10), the 2
5

state has a much broader minimum around r = 0.

These findings are not unexpected: consider two systems of the same area 2π`0Nm, one at
fillings 2

3
and 2

5
, respectively. The latter will be more diluted (’emptier’), since it contains

only 2
5
Nm electrons, compared to 2

3
Nm in the ν = 2

3
system (Eq. 3.6). Therefore, the

correlation hole in g(r) can be broader in the 2
5

system. Rather, it is a warning that many
claims which are true for electronic Landau levels are no longer true for composite fermion
Landau levels.

There is also a close relation between the polarized 2
5

GS and the Laughlin 1
3

state according
to the CF picture: the latter one corresponds to filling factor one, the former one to filling
factor two of composite fermions. Comparing these two states, we find a bit stronger
structures in the density–density correlation of the ν = 2

5
GS and also the first maximum

shifts to smaller distances (4.4`0 at ν = 1
3

and 4.1`0 at ν = 2
5
). Both effects are quite similar

to what happens when going from ν = 1 to ν = 2, cf. Figure next to Eq. 4.6. Comparing
the ν = 2 and 2

5
systems, we again (cf. ν = 1 and 1

3
) find much stronger structures of g(r)

in the latter case, just as we expect for a liquid state.

Some marked differences occur also in the singlet ground states at both filling factors. At
2
5
, correlation functions g↑↑(r ) as well as g↑↓(r ) seem to be quite flat beyond rm ≈ 6`0. It
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5 polarized ground state, correlation functions. Note the good match

between states in systems of different sizes.
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5 singlet ground state, correlation functions.
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may well be that the same is true for the filling 2
3

(Fig. 4.9; the shoulder in g↑↑ would
probably have to be subtracted first), but then the plateau would occur first beyond some
larger rm and exact diagonalization is not applicable to confirm this with systems large
enough.

It is remarkable that after subtracting the shoulder from g↑↑(r) of the 2
3

singlet state (point
(iii) in the discussion of 2

3
), the rest g̃(r) is ∝ r6 near to r = 0. This is the same behaviour

as we find in g↑↑(r) of the 2
5

singlet state, see Fig. 4.10.

Correlations of unlike spins exhibit one clear maximum which is, as compared to 2
3
, slightly

but perceptibly shifted to a bit larger r↑↓ ≈ 3.7`0. This agrees with the above argument
that 2

5
systems are more diluted than the 2

3
ones, but quantitatively this shift is too small.

It is only ≈ 30% of what we would naively expect from comparing the areal electron
densities.

Finally, the r → 0 behaviour of the 2
5

singlet state, g↑↓(r) ∝ r4 and g↑↑(r) ∝ r6, matches
the behaviour of the {3, 3, 2}–Halperin wavefunction (Eq. 3.29) and this Φ332[z] is in turn
identical11 with the ground state wavefunction proposed by Jain’s theory (Subsect. 3.4.2).

Summary: From the viewpoint of composite fermion theories, the polarized 2
5

state (p = 2;
see Tab. 3.2) is related both to the 1

3
Laughlin state (p = 1) and 2

3
polarized ground

state (p = −2). The electron–electron correlations in exactly diagonalized systems clearly
support the former relation, the latter one ( 2

5
with 2

3
) is however far from being obvious in

this way.

Neither is the analogy between 2
5

and 2
3

apparent for the singlet ground state. Although
similarities exist (pairing between electrons of unlike spin), short range behaviour of cor-
relation functions is very different.

4.1.2 Ground state for Coulomb interaction and for a short–range

interaction

Short–range interactions as they were introduced in Section 3.3 have a special significance
for the FQHE. It has been repeatedly emphasised that the Laughlin WF is on one hand an
extremely good approximation of the ground state of a Coulomb–interacting (CI) system
while on the other hand, it is the exact ground state of electrons feeling only a short–range
mutual interaction (SRI) as it was defined in section 3.3. Consequently, it is very popular
to say that ’a short–range interaction Hamiltonian captures the essential physics of the
FQHE by inducing the correct correlations12 in the ground state’.

The SRI was used in most of the calculations presented in this work. This choice has
been made for two reasons: it brings better chances in finding analytical results (like the

11This is because Φnn′m[z] lies completely in the lowest LL and thus the last step of Jain’s procedure,
namely the projection to the LLL, is out of effect. Seen from the opposite direction: the singlet 2

5 state
corresponds to filling only the lowest CF LLs (spin up and spin down).

12By correct correlations we mean the Ψ ∝ (zi − zj)
3 behaviour of the GS wavefunction at ν = 1

3 when
particles i and j come close together. For more general remarks on SRI and CI, see section 3.3.
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(a) Filling factor 2
3 . The shoulder at r ≈ 2`0

is apparently caused by a term proportional to
1 − exp(−r2/2`20), i.e. gν=1(r), Eq. 4.6, which
contributes to the total g↑↑(r). After this term
was subtracted, a local power analysis of g↑↑(r)
has been performed (green line).

0 0.05 0.1 0.15 0.2
r/a

-1

0

1

2

3

4

5

6

7

8

9

10

d 
ln

 g
(r

)/
d 

ln
 r

Short-range behaviour of g↑↑(r), 2/5, S=0
N

e
/N

m
=8/20, S=0 ground state, section g(x,0)

(b) Filling factor 2
5 . Local power analysis near to

r = 0. Noise at very small distances is purely due
to numerical inaccuracies: values of g(r) are already
very small there.

Figure 4.10: Correlation of like spins, g↑↑(r ), of the singlet ground states at filling factors 2
3 and

2
5 . Local power analysis (Eq. 4.11) shows, that both correlation functions are ∝ r6 for r → 0;
however, the shoulder in the state at filling factor 2

3 has to be subtracted first.

Laughlin WF). Moreover we may hope that the results in finite systems converge faster
to the thermodynamical limit (N → ∞) because the electrons ’see’ only as far as their
interaction reaches and thus — sooner than for a long–range interaction — they will not
’realize’ anymore that they live on a torus and not in an infinite plane. Aim of the following
section is to show and discuss how the ground states at ν = 2

3
change if the character of

the interaction changes.

The ground state energies for CI and SRI are naturally quite different. This is however for
the largest part only an unessential shift; a part of it is the missing ’Madelung’ constant,
Eq. 3.53: under SRI an electron of course cannot interact with its own image in the
neighbouring primitive cell13. More importantly, the gap energies are quite similar in both

13This fact is not completely trivial but still quite intuitive. We will not discuss it here and put it rather as
an assumption that the distance between an electron and its image due to periodic boundary condition
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cases (see also discussion in Subsect. 5.3.1).

Since the density of the incompressible ground states should always be constant (up to
finite size effects to be discussed later) let us now focus on correlation functions. The three
plots in Fig. 4.12 show g↑↑(r) and g↑↓(r) of the singlet state and g(r) of the polarized
state; in all three cases, the correlation functions of the CI state and the SRI state are
quite similar. Most apparent differences appear at large distances; on a torus, the largest
possible separation between two electrons is r = a/

√
2. On the other hand, the correlation

functions are very precisely identical for small r. This shows that, e.g. in the polarized GS,
the wavefunction contains the factor14 (zi − zj)

3 for CI as well as for SRI. In other words,
the Laughlin state (as the GS for SRI) describes exactly the short–range behaviour of an
incompressible state of even long–range interacting electrons. Fig. 4.12 demonstrates that
this is true (at least in a very good approximation) also for other ground states where the
analytical wavefunction is not available (e.g. the singlet GS).

In fact, for the singlet GS there is a tiny but perceptible difference in g↑↓(0) for the two types
of interaction. Since g↑↓(0) is almost zero, this observation suggests that a yet modified
interaction might lead to analytical results: {V0, V1, . . .} = {∞, α, 0, 0, . . .} in terms of
pseudopotentials (Sect. 3.3). Such an interaction enforces g↑↓(0) = 0, which is anyway
almost fulfilled for the current SRI, and on the other hand it retains the pleasant property
of SRI in polarized systems, i.e. it is one–parametric.

There is yet another significant difference between SRI and CI which is not obvious in Fig.
4.12 at first glance. The difference concerns the placement of zeroes in the wavefunction
and we will concentrate on the ν = 1

3
ground state now (see Sec. 3.3).

In a general fermionic state, there must always be a zero bound to each electron in order
to fulfil the Pauli exclusion principle: two electrons (of the same spin) cannot be at the
same point in space simultaneously, ergo if z1 = zi then the wavefunction must vanish.
Factors (zi − zj)

3 in the Laughlin state mean that there are two extra zeroes exactly at
the position of each electron. That is why15 g(r) ∝ r6 for small r’s (see Fig. 4.11, right;
procedure to obtain this graph is explained at Eq. 4.11). For CI, the Laughlin WF is only
an approximation to the ground state. In the real ground state, the one ’obligatory’ zero
is still sitting on each electron and the two others are only near rather than exactly on the
top of the electron; in Fig. 4.11 left we can even see how far they are on average (these
two extra zeroes are now mobile and their position depends on the position of all other
electrons, see section 3.2.3). Note that this ’distance’ depends on the system size [69].

(a or b) is much bigger than the interaction range.
14This is true for ν = 1

3 Laughlin state. But the polarized GS at ν = 2
3 is particle–hole conjugated to it

and the g’s of both states must be equal up to a trivial function, see sec. 3.2.4.
15Recall that g(r) ∝ 〈Ψ|δ(z1 − z2 − z)|Ψ〉 and ’r = |z| = |z1 − z2|’. That is if Ψ ∝ r3, then g(r) ∝ r6.
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Figure 4.11: The incompressible ground state at ν = 1
3 (with ten electrons), Coulomb interaction

(left) and a short–range interaction (right). Section through the density–density correlation
function g(r ) along r = (x, x) is taken and the ’local degree’ of the polynomial behaviour is
determined (see the text). Whereas for SRI the local behaviour around r = 0 is obviously
g(r) ∝ r6, indicating that there is exactly a triple (6 = 2 ·3) zero of the wavefunction on on each
electron, we can clearly see only one zero at each electron’s position for Coulomb interaction,
g(r) ∝ r2 and 2 = 2 · 1. However, going away from zero the ’local degree’ grows (and goes
tendentially up to six) showing that there are two other zeros near each electron; the position of
the maximum gives an approximate size of the ’electron plus two zeroes complex’.

Local power analysis

A comment is due on the way how the plots in Figs. 4.11,4.10 were obtained. It is basically
a section of g(r ) along one straight line16 (going through r = 0); this function was then
transformed by

g(r) −→ d ln g(r)

d ln r
(4.11)

which gives a ’local degree of the polynomial behaviour’. Let me explain this: if g(r)
were αrn then obviously d ln g(r)/d ln r = n; if g(r) ∝ (r − r0)

n then d ln g(r)/d ln r =
nr/(r − r0) → n for r � r0. In other words, if there is a dominant rn term in g(r),
the quantity plotted in Fig. 4.4(b) gives the exponent. Of course, it is only approximate
except for the case g(r) = αrn but it is quite easy to evaluate and moreover it gives a
global property of the wavefunction as compared to fixing electron positions z2, . . . , zn and
examining the WF as a function of z1 (where results depend on where we fix the electrons
z2, . . . , zn).

16Its orientation is not essential, for small r the states are quite isotropic even on torus, see section 4.4(b).
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Figure 4.12: Correlation functions of the singlet and polarized ground states at ν = 2
3 : comparison

between the Coulomb and short–range interaction. The curves are identical for small r and slight
deviations occur at longer scales. This is another way to demonstrate that it is sufficient to
consider short–range interaction in order to get (almost) correct ground states under FQHE
conditions.

4.1.3 Some excited states

There is a rich variety of excitations to the incompressible FQH states: for instance quasi-
holes, excitons (quasihole–quasielectron pairs), charge density waves (CDW) or spin density
waves (SDW), all of them can be described analytically (at least to some extent), and then
of course all the rest of excitations which has not been understood up to now. Following
the introduction given in Subsect. 3.2.5, we will now see how to identify some of these
excitations in spectra obtained by exact diagonalization.

Charge density waves

Polarized ground state

CDWs can be excited for example in the liquid GS at ν = 1
3
. Disregarding the possibility

of spin flips (as it may be reasonable when Zeeman energy is too high), it turns out that
these are the lowest excitations.

In Fig. 4.13 spectra of several short–range–interacting ν = 1
3

systems (tori of different sizes)
are presented. The horizontal axis is modulus of k r, i.e. the ’crystallographic k–vector’
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described in Subsec. 3.5.2. The Laughlin state has k r = 0 and a CDW of wavevector
Q excited from this state has k r = Q ; beware however, that not every state which has
k r 6= 0 must be a charge density wave! Apart from other possible periodic excitations,
there are also basically nonperiodic excitations (e.g. quasiholes) and such states are forced
into periodicity only ’artificially’ by the periodic boundary conditions imposed in our exact
diagonalization model.

The lowest excitations in Fig. 4.13 form a well developed branch E(k r), which is usually
called magnetoroton branch, and other excited states form a quasicontinuum. As mentioned
in Subsect. 3.2.5, the dispersion of the magnetoroton branch can be calculated analytically
in the single mode approximation. The original calculation by Girvin et al. [32] for
Coulomb interacting systems at ν = 1

3
showed a well pronounced minimum in E(|k r|) of

the magnetoroton branch at k r`0 ≈ 1.4. In a short–range interacting system, shown in
Fig. 4.13, the situation is slightly different: having reached its minimum value, E(|k r|)
remains constant beyond k r`0 ≈ 1.4.

A point worth of emphasis is that the magnetoroton branch in Fig. 4.13 contains points
(energies) from exactly diagonalized systems of different sizes. This confirms our hope that
these states are not bound to some particular geometry of the elementary cell and that
they appear also in an infinite system.

Dealing with finite systems, we will always have only a finite, and usually quite small,
number of allowed values for k r (Eq. 3.46). On the other hand, the more points in k r–space
we can access, the better we can recognise modes in exact diagonalization spectra, just like
the magnetoroton branch in Fig. 4.13. Note also the large space between k r = 0 and
the next smallest |k r| ≈ 0.5`−1

0 in Fig. 4.13 which corresponds to the longest wavelength
compatible with the periodic boundary conditions.

The traditional way to improve these limits (few k r–points, too large smallest |k r| > 0) is
to study larger systems. This is however prohibitively difficult with exact diagonalization.
An alternative approach may be to study systems with aspect ratios λ = a : b slightly
deviating from one. This allows us to deform the lattice of allowed k r–points continuously
(Eq. 3.46 contains λ), and on the other hand, we can expect that the states will not suffer
from the slight asymmetry in a : b in line with the argument that these states are not
bound to any particular geometry of the elementary cell. This method is demonstrated in
Fig. 4.13 by the blue points. There, I varied the aspect ratio from one up to 1.3. Since the
energies of the CDW states still lie well on the magnetoroton branch, we can conclude that
this aspect ratio variation is still only a small perturbation, i.e. acceptable for studying
this branch.

Correlation functions of several states in the magnetoroton branch (Fig. 4.13) are shown
in Fig. 4.14. The first look at g(r ) (upper row in Fig. 4.14) may be sometimes not
enough to distinguish their charge density wave nature: the CDW is superimposed on
the structure of the ’mother’ Laughlin state, which these states are an excitation of. The
periodic structure of g(r ) is thus more clear if we subtract the corresponding correlation
function of the Laughlin state first (Fig. 4.14, lower row): we recognise three periods in y
direction in the state A or 4 periods in y and one period in x in the state C, in agreement
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Figure 4.13: The ground state (at k = 0) and low excitations in SRI fully polarized ν = 1
3 systems

of different sizes (4–10 electrons). Energy plotted against the |k r|, see Sec. 3.5.2. To be able to
study more points in k space, systems of different sizes are compared and also systems with aspect
ratios slightly varying from one, see text. Note the well pronounced magnetoroton branch. Note
that energies calculated in systems of different sizes lie on the same branch indicating that these
states are not much system–size–dependent (and therefore relevant even in infinite systems). The
correlation functions for three states lying on this branch (A,B,C) are depicted in Fig. 4.14.

with the value of k̃ r/k0 = k̃ r/(Nmπ/6) of these states. Note, that it is harder to distinguish

the periodic structure in the k̃ r = (0, π) state (B), which may be partly because this is a

point of high symmetry in the k̃ r–space (Fig. 3.12).

In conclusion, we have shown how (the best known type of) charge density wave states on
a torus can be identified in the exact diagonalization spectra and in correlation functions.
Generally, we can expect that charge density waves excited from incompressible liquid
states will form branches in E(|k r|), provided of course that their energy is not hidden in
a quasicontinuum of other excited states. Correlation functions show indeed the expected
periodicity of a CDW superimposed on the structure of the ground state.

4.1.4 Finite size effects

It was the ultimate goal of this work to elucidate phenomena occuring in infinite 2D
systems. Being tied to finite systems during numerical calculations we ought to distinguish
which effects in the results have been introduced only by the finiteness of the system and
which effects are proper to electrons in strong magnetic field regardless of the periodic
boundary conditions. This problem is quite delicate and we may hope to learn a lot from
observing how properties of e.g. the ground state (GS) change when the size of the system
is increased.

Let us start with the perfect example, a ν = 1
3

system with its exact GS written as ΨL,
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Upper row: correlation functions g(r ), lower row: g(r ) of the CDW states from which the Laughlin
state g(r ) has been subtracted.

the Laughlin wavefunction (WF), Eq. 3.20. Particle density in the state ΨL is constant17.
The first striking observation is that the density of the ground state obtained from exact
diagonalization varies quite strongly (Fig. 4.15). At the same time we notice that the
ground state, which is claimed to be incompressible, is actually triply degenerate.

Fortunately, this does not mean that finite size calculations are completely wrong. Both
facts can be attributed to the centre-of-mass part of the wavefunction (CMWF) which is
not present in ΨL but it is present in numerical calculations (see also section 3.2.3). It is
not always easy to purge numerical results from the effects imposed by CMWF so that
this topic deserves its own subsection.

Centre-of-mass part of the wavefunction: influence on density

Once again, recall that some theoretical background is given in Subsec. 3.2.3 and 3.5.1.
Here we will concentrate on the effects the centre-of-mass part of the wavefunction (CMWF)
introduces into numerical results for a system with periodic boundary conditions.

17Strictly taken, it is constant only if ΨL describes N → ∞ particles. Otherwise, the N particles are
confined to a finite disc (Subsect. 3.5.3), but within the disc, the density is constant up to very high
precision.
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Figure 4.15: Density of the ν = 1
3 incompressible ground state as obtained in torus geometry

for different system sizes. The oscillations can be traced back to the centre-of-mass part of the
wavefunction. As far as this effect is considered, differences between Coulomb interaction and
short-range interaction are small.

The complete WF of the Laughlin state at ν = 1
3

(for n particles) in the disc geometry
(Subsec. 3.5.3) might be

Ψ1/3(z1, . . . , zn) = F (Z) exp(−|Z|2/2`20)︸ ︷︷ ︸
ΨCM (Z)

× exp
(
− (|z1|2 + . . .+ |zn|2)/4`20

) ∏

i<j

(zi − zj)
3

︸ ︷︷ ︸
ΨL(z1,...,zn)

(4.12)
Z = z1 + . . .+ zn and for example F (Z) = Z3 ,

or any other analytic function with three zeroes Z1, Z2, Z3. The CMWF ΨCM has the form
(Sec. 3.2.3) of a WF for one particle (somewhere) in the lowest Landau level to which a
single variable Z is attributed.

Now, in torus geometry, the WF must be changed in order to comply with periodic bound-
ary conditions (PBC, see Section 3.5.1): for ΨCM this can be summarized as

3∏

i=1

(Z − Zi)→
3∏

i=1

ϑ
(
π(Z − Zi)/a|i

)
,

where ϑ(z|i) behaves like z on short distances but for longer distances it deviates so that
ϑ(z + a|i) = ϑ(z|i) (Subsec. 3.5.2).

Placement of the three zeroes Zi within the elementary cell is in principle arbitrary. How-
ever, if we require the state Ψ1/3 to have some particular symmetry18, stringent conditions

18It is very popular to say that it is the choice of gauge what determines the form of ΨCM . This is a bit
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on the position of the zeroes may apply. As an example, observe ΨCM obtained from the
numerically calculated ground state ΨGS in a system with four particles, Fig. 4.16. The
translational symmetry along y described by the quantum number J , Eq. 3.49, implies that
Zi’s lie equally spaced on a line parallel to the y–axis (cf. [38]). Regardless of symmetries
we ask for, there are always three linearly independent ΨCM ’s at filling factor 1

3
(Subsect.

3.5.2), once we fixed the periodic boundary conditions19. The companions of ΨCM in Fig.
4.16 as obtained from analytical expressions are shown in Fig. 3.11. On an intuitive (and
mathematically incorrect) level, we could say that Z1, Z2, Z3 in a particular ΨCM are the
three complex coefficients in the linear combination which constitutes ΨCM (see comment
[10]).

Let me briefly explain, how ΨCM(Z) can be extracted from the numerically determined
four–electron wavefunction Ψ(z1, . . . , z4). I arbitrarily chose complex numbers z1, . . . , z4
with

∑
i zi = 0 and used the fact

ΨCM(4∆) =
Ψ(z1 + ∆, . . . , z4 + ∆)

Ψ(z1, . . . , z4)
ΨCM(0) .

Once again, the reader is invited to check that ΨCM which we obtain from the exact diag-
onalization (Fig. 4.16) fully matches the function we expect from analytical considerations
(α in Fig. 3.11(a)).

Let us now illustrate how ΨCM influences the one–particle density n(z). The integral

n(z) = 〈Ψ|δ(z1 − z)|Ψ〉 =

∫
dz2dz3dz4|Ψ(z, z2, z3, z4)|2 =

=

∫
dz̃2dz̃3dz̃4|ΨCM(4z − z̃2 − z̃3 − z̃4︸ ︷︷ ︸

Z

)|2|ψr(z̃2, z̃3, z̃4)|2 , with z̃i = z − zi ,

Z = z1 + z2 + z3 + z4

is in principle just a multi–variable convolution of the relative, ψr, and CM part, ΨCM , of
the total wavefunction. If we denote the relative coordinates z̃i by symbolic variable [z̃],
we can rewrite the last expression as

n(z) =

∫
d[z̃]|ΨCM(4z − [z̃])|2|ψr([z̃])|2 (4.13)

In order to understand, what happens in this complicated integral, imagine that both z
and [z̃] are simple one dimensional (real) variables. Function ΨCM(x) will have the form

misleading: regardless of the gauge, we still have three degenerate states at ν = 1
3 and we are free to

choose any basis in this three dimensional subspace. Rather, when we choose a particular gauge (which
reflects some symmetry), we are lead to make some simple product ansatz from which wavefunction of
this symmetry follows. However, the choice of this ansatz is never really necessary, we make it only for
our convenience.

19By sweeping the phases φx or φy (Eq. 3.41) applying to boundary conditions imposed on ΨCM , we
would continuously shift the zeroes Zi right or up, respectively. Thus, e.g. for φx going 0 → 2π, the
J = 2 state (α in Fig. 3.11(a)) moves to the J = 6 state (β in Fig. 3.11(a)).
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Figure 4.16: Centre-of-mass part of the wavefunction (modulus), ΨCM (Z), Z = z1 + z2 + z3 + z4
as determined in the ν = 1

3 ground state of four particles (J = 2) on a torus. Left: ΨCM(X,Y ),
right: ΨCM (X, 0) and ΨCM(X, b/6).

shown in Fig. 4.16 right, the form of function ψr(x) is for the moment unimportant, let us
imagine that it is a simple peak at x = 0 (see comments below).

Since |ΨCM(x)|2 has period one (see Fig. 4.16), the period of n(x) will be 1/4, just as we
observe in Fig. 4.15. The value of n(x) will be maximal when 4x = 1

6
+k with k an integer,

since then the maxima of the two functions in the convolution 4.13 coincide. On the other
hand, n(x) will reach its minimum for 4x = 4

6
+ k, since then the maximum of |ψr|2 is just

shifted to the minimum of |ΨCM |2.
This procedure can be repeated for variable y instead of x. The periodicity of n(y) will
be 1/12 since |ΨCM(y)|2 has period 1/3 rather than 1 (Fig. 4.16 left) and the difference
between maximal and minimal values of n(y) will be much smaller than along x, since the
same is true for the function |ΨCM |2 (also Fig. 4.16 left).

In fact it is true that ψr([z̃]) vanishes for ’[z̃] = 0’ due to Pauli principle, but this modifies
the previous discussion only quantitatively. In reality |ψr([z̃])|2 has a peak at some finite
nonzero value. The essential facts are that (i) it is nonnegative, (ii) even and (iii) it vanishes
for z̃i →∞.

Conclusion: even though e.g. the Laughlin state is translationally invariant, the CM part
of the wavefunction which is always present in the exact diagonalization studies, will cause
the density to be inhomogeneous. If the calculated states are eigenstates of J (see Eq. 3.49
for explanation), the density n(z) of an Ne–electron state

• will be 1/Ne periodic along x (cf. Fig. 4.15)

• will be 1/3Ne periodic along y (cf. Fig. 4.19 right)

• will rapidly converge to a constant for Ne →∞.
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The last statement is taken from Haldane and Rezayi [38] and it is completely in agreement
with the numerical results in Fig. 4.15. A qualitative explanation is given in comment
[11].

Centre-of-mass part of the wavefunction: influence on correlation functions

As stated at the very beginning of this chapter, g(r ) ∝ δ(r 1 − r 2 − r ) and g(r , r ′) ∝
δ(r 1− r )δ(r 2− r ′) should be ’the same’ for a homogeneous systems: we mean gr 0(r ) should
be independent of r 0 and equal to g(r ), using the notation gr 0(r ) = g(r 0, r 0 + r ). However,
whereas the former quantity depends only on the relative coordinate z1− z2 (and it is thus
untouched by the integration over Z and consequently by the CM part), the latter quantity
has the form ’density at r 1 times density at r 2’ and it may thus suffer from the fact that
the density is not constant20 . This is indeed the case (we focus on a 1

3
GS as an example):

we find that although g(x0,y0)(x, y) is similar to g(x, y) (Fig. 4.17a), it slightly varies with
(x0, y0) (Fig. 4.17b,c). These variations have the following periodicities (within numerical
accuracy)

∂

∂y0
g(x0,y0)(x, y) = 0 , g(x0+1/Ne,y0)(x, y) = g(x0,y0)(x, y)

and thus reflect the periodicity of the density modulation (constant along y and Ne periods
along x; Fig. 4.17).

The form of g(x0,y0)(x, y) as a function of x, y is more complicated. The quantity g(x0,y0)(x, y)/
g(x, y) which should be constant in an infinite system shows stripe-like structures along
y but it is far from being constant along x (Fig. 4.18). Also the periodicity (number of
stripes) is different from the one for the density. Fortunatelly, these finite size effects also
decay rather fast with increasing system size, although not as fast as in the case of the
density (Fig. 4.15): even for a ten-electron Laughlin state g(x0,y0)(x, y) may deviate from
g(x, y) by several percent (Fig. 4.18). Also note that the isotropy is lost in g(x0,y0)(x, y)
and it is recovered first in g(x, y) which may also be regarded as an average of the former
quantity with respect to x0, y0.

In conclusion, the difference between g(x, y) and g(x0,y0)(x, y) is a finite size effect (unless
spontaneous symmetry breaking occurs). It is definitely related to the CM part of the WF,
but the relation is not as straightforward as for the density and may be subject to further
analysis.

How to suppress the effect of the CM part of the WF

As stated above, for homogeneous systems, we wish to study only the relative parts of WFs
whereas numerical calculations give the product of the relative Ψr(z1, . . . , zn) and CM part
ΨCM(Z) in a form where they are not easy to separate. If we calculate quantities like the

20In mathematical terms: integrations over the CM and relative part cannot be separated.

92



(a) (c)

 0

 1.6

 0.75

 1

 1.25

(b)

(0.02,0) (0.04,0) (0.06,0) (0.10,0) (0.12,0) (0.14,0) (1/6,0)

3.2
4.0
4.8
5.6

0.0 0.5 1.0g (
x 0

,0
)(

x,
0.

5)
 [x

10
0]

x/a

(x0,y0)=(0,0)

Figure 4.17: Density-density correlation functions g(r ) and g(r , r ′): demonstration of finite size
effects (Laughlin state with 6 particles on a torus). Left to right: (a) g(r ); (b) gr 0(r ) ≡ g(r 0, r 0+r )
with r 0 varying from (0, 0) to ( 1

6 , 0) (above: in the whole primitive cell as a function of x, y, below:
section through y0 = 0.5b); (c) g(0,0)(r )/g(r ). In the absence of finite size effects, (c) would be
equal to one everywhere.
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density or correlation function in the state Ψ = ΨrΨCM , we evaluate integrals of the type

nΨrΨCM
(z) =

∫
dz1 . . .dzn|Ψr(z1, . . . , zn)|2|ΨCM(z1 + . . .+ zn)|2δ(z1 − z) .

Our aim is to rather get the quantity

nΨr(z) =

∫
dz1 . . . dzn|Ψr(z1, . . . , zn)|2δ(z1 − z)

or, in other words, to replace ΨCM(z1+. . .+zn) by a constant in the numerically calculated
wavefunction ΨrΨCM .

Even though we could numerically calculate ΨCM and then calculate the density in the state
Ψ/ΨCM , this is technically quite labourious (and requires numerical evaluation of (n− 1)-
fold integrals). Instead we can make the following trick; consider again the example of the
ν = 1

3
GS. The state is triply degenerated (in the CM part) and the three different Ψ1,2,3

CM (as
they come from ED in subspaces with sharp J) have the pleasant property that the sum of
their squared moduli is nearly constant, or in a more restrained (and honest) terminology,
its variations are much weaker than those of individual |Ψi

CM |2 (see Fig. 4.19).

With this in mind we expect that the sum nΨ1
CM Ψr

(z) + nΨ2
CM Ψr

(z) + nΨ3
CM Ψr

(z) will be
a good approximation to nΨr(z). The reader may check with Fig. 4.19 how well this is
fulfilled.

Other finite size effects

Here, we will try to abstract from the effects due to the CM part of the calculated wave-
functions. Since the operator for density–density correlation depends only on relative
coordinates we expect that g(r ) will be free of the finite size effects described in previous
paragraphs. Since the curves for g(r ) obtained from the ν = 1

3
ground state in systems

of different sizes (Fig. 4.4(b)) match very well for |r| going at least to one third of the
elementary cell we may have good confidence in these results even within the scope of
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Figure 4.19: Left to right: (1) |ΨCM (Z)|2, Z = z1 + z2 + z3 + z4 for one of the three degenerate
ground states in a 4 particle ν = 1

3 system and (2) the density n(r ) of this state. (3) |Ψ1
CM (Z)|2 +

|Ψ2
CM (Z)|2+|Ψ3

CM (Z)|2 of those three states and (4) the sum of their densities (divided by three).
Note that the last density is nearly constant (as it should be for the Laughlin state) and thus by
adding up densities of the three states differing only in the CM part, we eliminated the effect of
the CM part of WF.

infinite systems. In clear terms, we may believe that g(r) of the infinite system is nearly
the same as g(r) obtained in a finite system (with a : b = 1) as far as up to r ≈ 0.35a.

Another type of finite size effects which are ’finer’ than those originating from the CM
part of the WF is shown in Fig. 4.19, the rightmost plot. The density plotted should be
constant (after averaging over the three states degenerated in the CM part) in the infinite
system. The weak (1/Nm)-periodic structure (Nm = 12 in Fig. 4.19) which we still observe
reflects the quantization of one particle momenta by the PBC: one particle can be localized
only around one of Nm discrete set of points in the x–direction. This effect is the same
along x and y, since we ’lost’ the quantum number J , Eq. 3.49, by averaging over the
three states (which belong to J = 2, 6, 10 in the present case). Note, how extremely small
this finite size effect is.

4.1.5 Conclusion: yet another comparison to composite fermion
models

For a large part we were concerned with the ν = 1
3
, 2

3
and 2

5
incompressible ground states in

this section. All these states, including their possible spin polarizations, can be described
in terms of Landau levels (LL) filled with composite fermions (CF), Fig. 4.1 and Sec.
3.4. In particular, wavefunctions suggested by Jain (Subsec. 3.4.2) are very close to the
many–electron ground states calculated by exact diagonalization, as it is demonstrated by
comparing the wavefunctions calculated by the two approaches in terms of overlaps which
approach unity (Wu et al. [99], for instance) or of correlation functions shown in this
Section (Fig. 4.3 with Fig. 4.4, 4.8).

However, we have seen in this Section that this picture is not as intuitive as someone
may believe. Correlation functions of states with p filled CF LLs are quite different from
those of states with p filled electronic LLs. Changing orientation of the effective magnetic
field (the one following from the ’CF LL quantization’) alters the correlation functions
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drastically: even worse, it is hard to establish a relation between the ground states at
ν = 2

3
and 2

5
on the level of comparing the electronic correlation functions. We should

also mention a discrepancy in the CF model for the ν = 2
3

polarized state. It is both a
particle–hole conjugate to the ν = 1

3
Laughlin state and a state with two filled CF Landau

levels and effective magnetic field antiparallel to the real magnetic field (or attached flux
quanta). As already Wu, Dev and Jain [99] noted in their original work about antiparallel
flux attachment, these two models give two non–equivalent21 microscopic wavefunctions.
Surprisingly enough, both wavefunctions have high overlaps (≈ 0.99) with the polarized
ground state obtained by exact diagonalization [99]. Thus, either both models are in fact
indeed equivalent or this result shows that even such high overlaps may be not enough to
prove the correctness of a trial many–body wavefunction.

Another point worth of notice is that the ’CF cyclotron energies’ extracted from exact
diagonalization with electrons are not quite the same in 2

3
and 2

5
systems. In the picture

of non–interacting CFs, only the direction of the effective field Beff is reversed. Thus,
if Beff has the same modulus in both cases and Zeeman energy vanishes then Ep(Ne =
8) − Eu(Ne = 8), i.e. the difference of energies of the polarized and singlet GSs for
8–electron systems, should be equal to four times the CF cyclotron energy in the both
systems. As long as the GS energies of Ne = 8 systems are regarded, the difference of CF
cyclotron energies is small, about 5%, Fig. 4.20, the scaling factor 5 : 3 makes Beff equal
in both systems. However, the agreement becomes worse when we attempt to extrapolate
the energies to larger systems.

Also comparing 2
5

to 2
3
, differences in the lowest excitations from the polarized and singlet

ground states are quite apparent (Fig. 4.20).

All these facts demonstrate that it can be misleading to think of the 2
3

and 2
5

states as of
an exact copy of Landau levels completely filled with electrons. Composite fermion models
must be taken seriously since they provide us with many very good predictions (explicite
forms of wavefunctions, e.g.) but apart of that they are not exact, they fail to describe
some phenomena like e.g. position of zeroes in Coulomb interacting states, Subsect. 4.1.2,
the analogy between electronic and CF Landau levels is sometimes weak22.

The nature of many incompressible FQH states is therefore still not completely clear, for
example the ground states at ν = 2

3
and 2

5
. Results in this Section indicate that the singlet

states at these filling factors comprise of pairs of spin up and spin down electrons which
we would not expect from the CF analogy — at least not at first glance. Furthermore,
in the ν = 2

3
singlet (with electron density n), the ↑ − ↓ pairs seem to form a state

which could be constructed by taking a system with the lowest LL completely filled with
electrons (with electron density n/2) and then replacing each electron by an ↑ − ↓ pair.
This behaviour is not observed in the ν = 2

5
singlet. We may again conclude, that even

though the 2
5

and 2
3

ground states are very closely related on the level of composite–fermion

21At least to the best of my knowledge noone was able to show their equivalence.
22One of the inherent problems I did not mention so far is the question of mixing between CF Landau

levels: whereas LL mixing can be neglected for electrons in the limit B →∞, there is no such case for
CFs.
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Figure 4.20: Spectra of ν = 2
3 and 2

5 systems with eight electrons, zero Zeeman energy. In the
picture of non–interacting composite fermions, the energies of the polarized (S = 4) ground states
(the 2

3 and 2
5 ones) should be the same when Beff is correctly rescaled.

theories, their electronic properties are different. It can thus be misleading to extend our
intuition concerning the (completely filled) electronic Landau levels to states interpreted
as (completely filled) composite fermion Landau levels.

4.2 The half–polarized states at filling factors 2
3 and 2

5

In the previous section we dealt with the spin singlet and polarized ground states at
filling factors 2

3
and 2

5
and it was mentioned that it is the Zeeman splitting (or better,

EZ/EC ∝
√
B) which determines which of them is the actual ground state. It is the

singlet state for vanishing Zeeman splitting (low magnetic fields) and the polarized state
if the Zeeman term dominates (limit B → ∞). All this can be understood within the
composite fermion concept (Fig. 4.1) where we even obtain the prediction that there is
a direct transition (crossing) between these two ground states at some critical value of
EZ/EC or equivalently, at some critical magnetic field BC , if we sweep magnetic field and
keep the filling factor constant (cf. also Sect. 5.1).

However, experiments by Kukushkin et al. [56] (Sect. 2.4) indicate that this picture may
be incomplete. They suggest that some exactly half–polarized state becomes a stable
ground state in the vicinity of BC . In this Section I will describe one candidate for such a
half–polarized state ground state and discuss its properties.

4.2.1 Ground state energies by exact diagonalization

At first glance, spectra of homogeneous small finite systems with Coulomb interaction
(Sect. 5.1, Fig. 5.1) do not suggest any intermediate state at the transition. The picture
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Figure 4.21: Ground state energies at ν = 2
3 : the half–polarized state may become the absolute

ground state in a narrow interval of magnetic fields. Left: Energies of SRI ground states in the
subspaces S = 0 (singlet), S = Ne/4 (half-polarized) and S = Ne/2 (fully polarized) as a function
of Zeeman splitting (or magnetic field; note the energy units e2/ε`0 ∝

√
B). In all cases, energies

of the two largest systems available to calculations are shown. Middle: extrapolation of the GS
energies to infinite systems (1/N → 0). Right: The energy–versus–magnetic field diagram for
extrapolated ground state energies. This indicates that even then the HPS will be a ground state
close to the transition.

is quite different when short–range interaction is considered: in an interval of magnetic
fields around BC the GS is a state with total spin equal to Ne/4 (Fig. 4.21a), i.e. a half-
polarized state (HPS). This holds for all system sizes accessible to numerical calculation
and, by extrapolating energies to 1/N → 0 (Fig. 4.21b), it seems to hold also for infinite
systems.

I suggest that it is only through the finiteness of the system that a half polarized ground
state did not appear in Coulomb interacting systems (Fig. 5.1). The SRI systems may
be less sensitive to this generical drawback of exact diagonalization models. On the other
hand, SRI models predict wrong values of BC (see Subsec. 5.3.1) and thus the scheme
presented in Fig. 4.21(a) must be checked in systems with Coulomb interaction.

Considering Coulomb–interacting systems, the scheme suggested in Fig. 4.21(a) is sup-
ported by extrapolations of GS energies performed by Niemelä, Pietiläinen and Chakraborty
[73] in spherical geometry (Fig. 4.22a) and it is not supported by analogous calculations
on a torus presented here (Fig. 4.22b). I should like to stress that the extrapolation of
the energy of the HPS is based on solely two (or three23) points. Therefore the question
of whether the HPS becomes the absolute GS or not remains basically open until exact
diagonalizations of larger systems become possible.

Nonetheless I will assume in this Section that a half–polarized state can indeed make it in
energy down to the absolute ground state and I will therefore focus on the S = Ne/4 sector
of systems at filling factor 2

3
(and in Subsec. 4.2.5 also 2

5
). Studies were mostly focused

on the SRI states where it is easier to identify the best candidate for the half–polarized
ground state. Its Coulomb–interacting counterpart is discussed later, in Subsec. 4.2.6.

23Note that the third point in Fig. 4.22(b), the one from Ne = 4 half–polarized system, is not very reliable.
For Ne = 4 it is not quite clear which state we should consider (Subsec. 4.2.3).
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By convention24, a half–polarized state with 12 (8) electrons will consist of 9 (6) electrons
with spin up (majority spin) and 3 (2) electrons with spin down (minority spin).

4.2.2 Identifying the HPS in systems of different sizes

Provided some particular physical half–polarized state GS∞is the ground state in an infinite
system, we may ask what its realizations in finite systems of different sizes are. Vice versa:
given the half–polarized states calculated in a system of Ne = 12 (4, 8. . . ) electrons, which
state corresponds to GS∞? In this way we can think of states which ’correspond to each
other’ in systems of different sizes. The trouble is, of course, that we do not know GS∞.

Regarding the computational capacity available, I could study ν = 2
3

systems with 4, 8 and
12 particles25, the next larger system would require diagonalization in spaces of dimension
many hundred million. It seems likely that the analogues to GS∞are the GSs in Ne = 12
and Ne = 8 systems (GS12, GS8) and that it is a low lying excited state (st03) in the
smallest system, Ne = 4. In the following I should like to give some reasons for this.

• GS12 and GS8 belong to the same symmetry class defined by the ’crystallographic k r’
(Eq. 3.46). They have both k̃ r = (π, π), i.e. they lie in the ’corner of the Brillouin
zone’ (Fig. 3.12, Subsec. 3.5.2). This is also closely related to the fact that both
GS12 and GS8 are non–degenerate.

• The states GS12 and GS8 are well separated from excitations within the S = Ne/4
sector and the energy of the lowest excitation is similar (0.01 (e2/ε`0)) in systems of

24Note that this definition implies only Sz = Ne/4 and not necessarily S = Ne/4. Unless stated otherwise,
we will always speak about S = Ne/4 states.

25In order to get a state with Sz = Ne/4, numbers of spin up and spin down electrons must be in ratio
3 : 1. Therefore the total number of electrons must be a multiple of four.
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Figure 4.23: Low lying energy levels in the S = Ne/4 (half–polarized) sector of 2
3 systems with

(left to right) Ne = 4, 8 and 12 particles. The states are sorted according to |k r| (Subsec. 3.5.2).

The GS of an infinite system is likely to have k̃ r = (π, π) which is a point of very high symmetry
in the k r–space. This symmetry class is however distinct from the one of the singlet and polarized
incompressible ground states.

different size.

• Though not completely identical, the inner structure of GS12 and GS8 is very similar
as seen by the correlation functions, Fig. 4.24.

• The GS of the Ne = 4 system has a lower symmetry than the formerly described
states. Looking for a state of inner structure (correlation functions) similar to the

one of GS12 and GS8 within the sector k̃ r = (π, π), we find (Subsec. 4.2.3) remarkable
similarities with the second excited state (’st03’, marked in Fig. 4.25). However, we
should bear in mind that for Ne = 4 there is only a single electron with reversed spin
(note that e.g. g↓↓(r) ≡ 0 as a consequence), in other words the system is indeed
extremely small. Relevance of such states with respect to infinite systems is thus
doubtful.

4.2.3 Inner structure of the half–polarized states

Focus of this part will be the correlation functions of the states GS12 and GS8 and a brief
comment will be made on Ne = 4 states. As mentioned above and as the kind reader may
verify in Fig. 4.24, GS12 and GS8 look indeed similar.
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GS12 and GS8 match in all three spin–resolved correlation functions, g↑↑(r ), g↑↓(r ), g↓↓(r ),
Fig. 4.24. The match is especially good (quantitative) on short distances, r . 3`0. This
suggests that states GS12 and GS8 are not bound to some particular system size and we
can thus hope that if we could make the system larger, they would eventually develop into
the GS∞.

Differences between correlation functions of GS12 and GS8 at longer distances r are un-
derstandable, given the normalization (Eq. 4.4): the Ne = 12 system is ’larger’ than the
Ne = 8 one, yet the integral

∫
drg(r ) must be the same.

Some further points are worth of notice.

(i) g↑↓(r) is suppressed nearly to zero at r = 0 (in spite of the missing Pauli principle;
only on account of the repulsive interaction) and it displays strong maxima around
r ≈ 3.4`0.

(ii) Even though by far not identical, g↑↑(r) and g↓↓(r) are similar to each other. The
clear shoulder around r ≈ 2`0 seems to stem from the ’exchange hole’ (of the LLL)
gν=1(r) = 1− exp(−r2/2`20), see Eq. 4.5. After subtracting a suitably scaled function
gν=1(r) the shoulder completely disappears and the remaining parts of both g↑↑(r)
and g↓↓(r) are ∝ r6 close to r = 0, Fig. 4.26 and discussion below.

(iii) Up to a high precision the sum of g↑↑(r), g↓↓(r) and g↑↓(r) (with appropriate scaling,
see Fig. 4.7 for explanation) is identical with gν=1(r), however with `0 replaced by√

2`0. Not shown here.

Let us now turn to the smallest system where S = Ne/4 states may occur (at ν = 2
3
), i.e.

Ne = 4. Figure 4.25 shows correlation functions of the lowest two states in the sector of
k̃ r = (π, π). Out of these, the second state (i.e. st03) seems to be analogous to S = Ne/4
GS’s in the two larger systems (Ne = 8, 12): g↑↑(r) is again a sum of the ’correlation hole’
and a function ∝ r6, g↑↓(r) shows a peaked structure with maximum around 2.8`0 (both
of these features are missing for the lower state st02). However, as mentioned above, the
Ne = 4 system is too small for a reliable study of S = Ne/4 states (g↓↓(r) ≡ 0).

Back to the GS12 (called HPS here), it is very interesting to study the ’∝ r6 part’ (P6P) of
the like–spins correlation functions, g↑↑(r), g↓↓(r). What we mean by ’P6P’ is the rest after
we subtract the ’lowest LL correlation hole’, i.e. the gν=1(r) part causing the shoulder in
gσσ(r) around r ≈ 2`0 (green line in Fig. 4.26a,b), see above.

One of many facts we can extract from Fig. 4.26 is that P6P/ ↑↑ (refering to g↑↑(r)) and
P6P/ ↓↓ are similar but not identical. For example, they both exhibit a peaked structure
but the first maxima do not coincide, they occur26 at 5.0`0 and 5.8`0 for P6P/ ↑↑ and
P6P/ ↓↓, respectively (dark blue and grey lines in Fig. 4.26a).

26Note that the peak position is in fact unaffected by the procedure of subtracting the gν=1(r) part.
Namely, the peak is situated in a region where gν=1(r) is almost constant both for g↑↑(r) and g↓↓(r)
(Fig. 4.26).
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Figure 4.24: The likely analogues of the half-polarized (S = Ne/4) GS∞(ground state in an
infinite system) on a torus with Ne = 8 and Ne = 12 particles and filling factor 2

3 . Left to right:

density–density correlation for ↑↑ (majority spins), ↑↓ and ↓↓ (reversed spins), upper row: in the
whole primitive cell; lower row: sections along the diagonal. Note the isotropy of the state, i.e.
visual manifestation of its high symmetry.

Let us compare the P6P/ ↓↓ of the HPS with P6P/↓↓ of the singlet incompressible 2
3

GS
(dark blue and cyan lines in Fig. 4.26a). Match of these two is very good up to r ≈ 4`0,
the absence of the peak at 5.8`0 in the singlet state could be due to smallness of the system
where the singlet state was determined (Ne = 10); it might appear in the next larger
system, Ne = 12 (cf. similar situation in Fig. 4.24).

On the other hand, P6P/↑↑ of the HPS seems to resemble the singlet state less than
P6P/↓↓ of the HPS. The form of P6P/↑↑ seems to be not very different from the one
of the correlation function of the Laughlin 1

3
state (cf. Fig. 4.4(b)) whose first maximum

occurs however already at r = 4.4`0 (red and blue lines in Fig. 4.26b). In any case, P6P/↑↑
of the HPS matches better gν= 1

3
(r), i.e. the Laughlin state, than P6P of the ν = 2

3
singlet

state; here we mean especially behaviour on ranges . 3`0.

Last but not least: the correlations between unlike spins are also very similar in the singlet
state and in the HPS, Fig. 4.26c, in particular positions of the maxima differ by as little
as 0.1`0 (both are around r ≈ 3.4`0).
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that the curve A was multiplied by a suitable constant to fit the shoulder and subtracted.
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4.2.4 Discussion

Findings presented above suggest that the ν = 2
3

half–polarized ground state in short–range
interacting systems is a gapped state in which the singlet and polarized incompressible
states coexist. Below, some key points regarding the HPS are summarized.

Symmetry and energy

Both in eight– and twelve–electron systems, the ground state has k̃ r = (π, π). This is one of
two points of the highest symmetry in the k r–space: the another is k r = (0, 0) (Fig. 3.12).
In particular, ’highest symmetry’ means that this k r–point is not related to any other
point by a symmetry operation in the k r–space corresponding to relative translations (Sec.

3.5.2). This in turn implies that states with k̃ r = (π, π) or (0, 0) — and only such states
— are non–degenerate, except for center-of-mass and incidental degeneracies. Together
with the relatively large lowest excitation energy ∆(Ne = 8, 12) from both GS12 and GS8

(10% of the gap of the Laughlin state, Fig. 4.23) , this suggests that the ground state is
gapped. Also the relation ∆(Ne = 8) < ∆(Ne = 12) speaks in favour of this hypothesis: if
the gap were to vanish in an infinite system, we would expect the lowest excitation energy
to decrease with system size. Naturally, we must be careful, since we can compare systems
of only two different sizes and the function ∆(Ne) may be non–monotonous. On the other
hand, ∆(Ne = 12) ≈ 0.01 (e2/ε`0) is much larger than a typical level separation between
excited states, Fig. 4.23 and for a mere finite size effect, this gap seems too large.

In spite of the similarities to the singlet and polarized incompressible ground states, k̃ r

clearly distinguishes HPS from these two states, since they have both k̃ r = (0, 0). Also in

spherical geometry, where |k̃ r| ∝ L (Subsec. 3.5.3), these incompressible states have L = 0
while the HPS has L = S, where S is the total spin [73]. Thus, even though we showed that
the HPS could be gapped, it is of different nature than the singlet and polarized ground
states. Meaning of this different symmetry is however not clear.

It would be interesting to study this state in a system with hexagonal elementary cell [37].
This geometry is nearer to an isotropic 2D system than a torus (it has a six–fold rather than
a four–fold rotational symmetry) while it is still compatible with plane waves (in CDWs).
Most importantly, there is only one point of the highest symmetry in this geometry and a
straightforward question is whether or not the HPS will maintain its high symmetry.

Inner structure again

Features of the HPS described by points (i–iii) in Subsec. 4.2.3 are actually strikingly
similar to those of the incompressible singlet state at ν = 2

3
. Investigation of the g↑↑(r)

after the ’shoulder’ was subtracted (P6P/↑↑) suggests again some relation to the Laughlin
state which is the particle–hole conjugate to the polarized incompressible state at ν = 2

3
.

Especially manifest is the hint at pairing between unlike spins (maximum around 3.4`0 in
g↑↓(r)). On the other hand, the shoulder in correlation functions of like spins seems to be
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rather a manifestation of filling factor > 1
2
, since it occurs also for other states at filling

ν = 2
3

(than just for the singlet, polarized and half–polarized GS) and it does not occur
at filling ν = 2

5
< 1

2
(cf. Subsec. 4.2.5). It suggests that some ν = 2

3
states with less than

full polarization can be interpreted in terms of holes rather than electrons even though
particle–hole symmetry applies only for fully polarized states (cf. Subsec. 4.1.1).

In the following Sections I will continue investigating the half–polarized states at filling
factor 2

3
by other methods and continue discussing the hypothesis of ’coexisting singlet and

polarized states’. First, however, we look at two different minor issues.

4.2.5 Half-polarized states at filling ν = 2
5

At filling 2
5
, the situation is much less transparent than at filling 2

3
. First, only systems with

four and eight particles are accessible to exact diagonalization, the twelve particle system
implies matrix dimensions in the order of hundreds of millions. Second, the spectrum of
the eight particle system (in the S = Ne/4 sector) is quite different from that of a 2

3
system

(Fig. 4.2.5):

(i) the ground state lies at a different point in the k r–space, (0, 0), than the 2
3
–HPS

which has k̃ r = (π, π).

(ii) The excitation energy from this GS is very small (less than a third of that one of the
2
3

HPS).

(iii) The symmetry of the low excited states is lower than for Ne = 8, 2
3

system.

Regarding the possibility that (within the 8 electron calculations) the half-polarized GS at
ν = 2

5
is not the counterpart to the GS at ν = 2

3
, there are two 2

5
states displayed in Fig.

4.28: (a) the one with the lowest energy (in S = Ne/4 sector) and (b) the lowest state with

the same symmetry as the 2
3

HPS, i.e. k̃ = (π, π).

Similarly, as for the ν = 2
3

states, the 2
5

HPS bear features of the polarized and singlet
ground states. Let us regard the state (a):

• Near r = 0 the functions g↓↓ (minority spin), g↑↓ and g↑↑ (majority spin) are ∝ r6,
r4 and r2, respectively. In this respect, g↓↓ and g↑↓ resemble the singlet state and g↑↑
resembles the polarized state.

• Up to the first maximum, g↑↑ of the HPS is the same as in the polarized state, but
shifted by about 0.2`0 outwards. Positions of the first maxima mismatch slightly
more (by 0.4`0). The strong maximum in the centre of the cell is not present in the
HPS.

• g↑↓ of the HPS and the singlet GS match very well even beyond the first maximum
(positions of the maxima are identical, r ≈ 3.5`0). On contrary to the previous point,
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Figure 4.27: Low lying half-
polarized (i.e. S = Ne/4)
states of a 2

5 system. The
lowest state with the same
symmetry as the HPS of ν =
2
3 is marked by ♠.

there is another maximum in the centre of the cell in the HPS state (and nothing in
the singlet state).

• g↓↓ of the HPS and the singlet GS also match very well up to r ≈ 4`0 . Then there
is a deep minimum in the HPS which is absent in the singlet GS.

Turning to the state (b) we might say that it is less alike to the singlet state: the minimum
in g↓↓ is much deeper than for state (a), the first maximum in g↑↓ does not match the
maximum seen in the singlet state. On the other hand, g↑↑ seems to be more similar to
the polarized state.

Lowest excitations (in the high symmetry sectors) show even less similarities to the singlet
and polarized GSs, especially g↓↓ is quite dissimilar beyond the r ≈ 0 range and maxima
in g↑↓ match less well .

In conclusion, if there is a counterpart to the 2
3

HPS at filling 2
5

at all, I expect it to be the
state (a) (the absolute GS), even though hints for this are not very convincing.

4.2.6 Short–range versus Coulomb interaction

Let me conclude with observations regarding the Coulomb– and short–range–interacting
(SRI) systems in the sector of half–polarized states.

• the spectra do not look very similar, Fig. 4.29(a); however, the absolute ground
states have in both cases the same symmetry (they lie in the same point of the k

space).

• the Coulomb and SRI ground states (in the largest system available, Ne = 12) have
very similar structure. The correlation functions g↑↑ and g↑↓ match nicely while g↓↓
show some differences between the CI and SRI states. In spite of this, the overlap
between the two states is as large as 95%. This allows for the following conclusions
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Figure 4.28: Half–polarized states at filling 2
5 and their inner structure (density–density cor-

relation functions); eight electron system. Upper row: (a) the GS in the S = Ne/4 sector is
non-degenerate but it has a different symmetry, i.e. (0, 0), than the HPS of ν = 2

3 . (b) the lowest
half-polarized state (at 2

5 ) with the same symmetry, i.e. ( π
2 ,

π
2 ) as the HPS of ν = 2

3 (marked by ♠
in Fig. 4.2.5). Lower row: (c,d) Lowest excited states in the sector (0, 0) and ( π

2 ,
π
2 ), respectively.

– The two states ’correspond to each other’.

– The short–range part of the interaction seems to be essential for this state (very
similar as for the Laughlin state).

– Deviations in g↓↓ (minority spin) might come from the fact that spin–down
electrons are very far separated from each other (they have an effective filling of
only ν = 1

6
). Thus the long–range part of the interaction substantially influences

their motion.

• in Ne = 8 systems, the most likely analogue to the Ne = 12 ground state is the
state ♦, Fig. 4.29(a) . This is the lowest 8–electron state with the same symmetry

(value of k̃ r) as the Ne = 12 ground state. Correlation functions of the two states (8–
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Figure 4.29: Half–polarized states in Coulomb interacting systems.

and 12–electron ones) match reasonably, Fig. 4.29(b) (compare also with differences
between Ne = 8 and Ne = 12 short–range ground states, Fig. 4.24).

• among the excited states the level order is often modified, comparing the Ne = 12
Coulomb and short–range systems. When trying to assign CI to corresponding SRI
states, calculating overlap between two states seems to be a more reliable tool than
comparing correlation functions.

In summary: in spite of differences in the excitation spectrum, the half–polarized ground
states of Coulomb and short–range systems seem to be basically the same. Differences
in the excited states and in the correlations between the minority spin electrons indicate
that the definition of the short–range interaction should be improved when we study the
half–polarized states: since the minority spin electrons are relatively far from each other,
non–zero values of higher pseudopotentials (Vm, m > 1; cf. Subsect. 3.3.6) should probably
be considered.

4.3 In search of the inner structure of states: response to

delta impurities

Now that some candidates for the half–polarized ground state at filling 2
3

have been intro-
duced we wish to look at them more closely and learn more about their inner structure.
The ultimate goal of such efforts is to propose trial wavefunctions just as the Laughlin
wavefunction at filling ν = 1

3
.
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Even though I did not accomplish this aim, I will present in this Section more hints at
relations between the half–polarized state and the singlet and polarized incompressible
states.

As a probing tool, the homogeneous states are subjected to a δ–line impurity and response
in density and polarization is observed. In first quantization,

Himpurity =

Ne∑

i=1

W (r i) , W (x, y) = δ(x− x0) (4.14)

This inhomogeneity profile (Fig. 4.30) was chosen since it is compatible with the torus
symmetry. For studies of point–like impurities, spherical geometry is more suitable since
it preserves the rotational symmetry, cf. references in Subsec. 4.3.1. The δ–line form is
particularly apt to unveil a tendency of the state to build plane charge or spin density
waves. We should keep in mind, that due to the restriction to the lowest Landau level,
even a δ–like potential has an effective cross section of `0 (see [80]).

As we are dealing with spinful electrons, inhomogeneities can be principially of four distinct
types:

HEI = W (r) · (δσ↑ + δσ↓) , HMI,↑ = W (r) · δσ↑ ,
HMI = W (r) · (δσ↑ − δσ↓) , HMI,↓ = W (r) · δσ↓ , (4.15)

where the function W (r) describes the spatial form of the impurity (as it is shown in Fig.
4.30 for instance). It is important to note that these impurities fail to conserve S2 but
they do conserve Sz. Also, owing to the form of W (r ) = W (x), they conserve k r

y and thus
also J (Eq. 3.49) and they spoil only the k r

x–symmetry. This is very convenient from the
computational point of view as matrix sizes remain tractable. From the physical point
of view, this inhomogeneity is a ’gentle’ tool which does not completely destroy the high
symmetry of the studied states. For example, it allows us to stay in the Sz = Ne/4 sector
when we study the half–polarized states.

The first type (HEI , electric impurity) is an ordinary non–magnetic impurity or external
electric potential. The magnetic impurity (HMI) favours particles with correct spin (↓, if
W (r) > 0) and costs energy for particles with wrong spin (↑ in this case). The last two
types describe an impurity which is seen only by one group of spins. In case that a system
consists of two separated subsystems, one of spin up particles and another of spin down
particles, these impurities allow to test only one of them without directly disturbing the
other one.

Note that some inhomogeneity types in Eq. 4.15 may be redundant, depending on the
state we apply them to. For instance, the effect of HMI,↑ and HMI,↓ must be the same up
to a sign for all states in the Sz = 0 sector.

Before we turn to the exact diagonalization results, let us briefly think about what types
of responses to general inhomogeneities we can expect at all. Most importantly, consider
the difference between compressible and incompressible states. As a classical compressible
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sizes.

Figure 4.30: δ–line inhomogeneity and sketches of possible resulting effects.

system imagine a playground of fixed size filled with a gas of negatively charged footballs of
density n(r), 〈n(r)〉 = N . A negative impurity at r = 0 will repel the gas causing n(0) < N ,
Fig. 4.30(b) (cyan line). Beyond some distance rh, the density will reach a constant level
again and this level will be slightly higher than the original density, N + δ = n(r ) > N ,
|r | > rh, so that the constraint 〈n(r )〉 = N remains preserved. Some charge has been
depleted away from the impurity, thereby compressing slightly the gas in the rest of the
system. If the depleted charge equals the charge of the impurity, the charge distribution
(charge of the footballs plus charge of the impurity) in the system will remain constant
in spite of non–constant n(r ) and the gas particles far away from r = 0 will not ’see’ the
impurity anymore. This is the case of ideal screening.

A classical incompressible liquid, say again charged footballs, will not react at all. Simply
because it cannot change its density. Even though particles of the liquid feel repulsion from
r = 0, the density will remain constant n(r) = N . We can also encounter a bit different
behaviour, Fig. 4.30(b) (red line). Though the density decreases directly at r = 0, an
oscillatory structure develops in n(r), so that the integral density in the region |r | < rh

remains as it was without the impurity. The density then also remains at its original value
N beyond rh. This is a non–ideal incompressible behaviour: at very short distances, the
density can slightly vary, but averaged over distances of at least rh, the density remains
constant. Also, since not net charge was depleted from the region |r | < rh, the impurity is
completely unscreened on distances larger than rh.

Compressible–like response as shown in Fig. 4.30(b) can be combined with quantum inter-
ferences (Friedel oscillations) and it is also possible to think of some overscreening effect
which would lead to an oscillatory n(r). This means the sole fact that n(r) exhibits
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oscillations does not necessarily have to imply incompressibility. A more reliable criterion
is that the integral density over |r | < rh remains the same with and without impurity. This
procedure is delicate in finite systems where rh can be comparable to the system size.

The last Figure, 4.30(c), shows two possible ways of how responses change with system
size. The right panel suggests that the state is not fixed to a particular size of the finite
system and especially we could expect oscillations with period r1 also in an infinite system.
On the contrary, the left panel shows a state with no intrinsic length scale and e.g. the
width of the peak is related to the (finite) size of the particular system.

Now, let us proceed to fractional quantum Hall states.

4.3.1 Electric (nonmagnetic) impurity

The effect of electric impurities on incompressible ground states has been under investi-
gation since the historic times of the fractional quantum Hall effect. The main reason is
that disorder (not too much — not too little) is essential for the occurrence of the integer
quantum Hall effect (see Chap. 2.1 and references therein). For the fractional quantum
Hall effect, two of the basic questions were, (i) how strong impurity potentials may be
so that they do not destroy the gap and (ii) how does it change the ground state. Basic
studies with the Laughlin state were performed as early as in 1985 [80], [109], [32].

Since we are limited to finite, and actually quite small systems, it is very daring to make
here statements about the infinite 2D electron gas. When we speak about ’incompressibil-
ity’ of some state we actually mean rather ’incompressible–like’ in terms of Fig. 4.30. In
fact, the main purpose of the following Subsections is to see how the polarized and singlet
state respond to impurities in a finite system and later to compare them to the half–
polarized state again in a finite system. We will focus on short-range interacting systems
here.

The Laughlin state or the fully polarized 2
3

state

The fully polarized ν = 2
3

state is a particle–hole conjugate to the ν = 1
3

Laughlin state in
a homogeneous system (Subsect. 3.2.4). In this part we will study the latter state27.

The response of a ν = 1
3

system to an impurity of the form Eq. 4.14, a δ–line along y,
is shown in Fig. 4.31. Different curves show the ground state density n(x) in systems
of different sizes (Ne = 4 to 10 particles). The repulsive impurity is always located at
x = 0 and it is ’weak’, its strength is ∼ 10% of the gap. These results agree very well with
the densities presented28 by Zhang et al. [109], who considered a δ rather than a δ–line

27Strictly taken, the particle–hole symmetry is lost when an arbitrary impurity is considered since the
Hamiltonian is no longer translationally invariant. Differences between the ν = 1

3 and 2
3 polarized

states are however small if the impurity is weak. In particular, for inhomogeneities considered in this
paragraph, it has been checked numerically that n(x) − Ne are almost the same for the two states.
Moreover, the larger Ne, the smaller are the differences.

28Note also that findings in Fig. 4.31 assume short–range interaction whereas Zhang et al. [109] and
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impurity, though for Ne = 4 systems only. Comparison between rectangular, spherical and
also disc geometry showed in all cases very similar behaviour [109].

Results in Fig. 4.31(a) support the conclusions of Zhang and Rezayi: the oscillatory
response of n(x) is size–independent and it has a period r1 ≈ 2.5`0. The response, measured
by n(0), does not vanish with increasing system size but it decays with distance from the
impurity. Comparing n(x) in Fig. 4.31(a) to the model cases in Fig. 4.30(b), we may
tend to classify the Laughlin state as an incompressible one. Incompressibility of the
Laughlin state is locally not perfect, otherwise n(x) would remain constant, at least in
infinite systems. However, if some net charge were accumulated even in a larger region (of
the order rh) around x = 0, we would expect n(x) at large distances to be consistently
higher29 than the no–inhomogeneity value n(x) ≡ Ne. This is not seen in Fig. 4.31(a).

Zhang et al. suggest that the observed response is a local charge density wave (Subsec.
3.2.5), a strong argument supporting this idea is given in the discussion below, point (iv).
Under this view, it is not surprising that the response to a δ–line shown in Fig. 4.31(a) is
very similar to the response to a δ–peak studied by Zhang: only the ’envelope function’,
not the wavelength depends on the particular form of the exciting impurity.

We should again add several comments:

(i) oscillations observed in n(x) (Fig. 4.31(a)) are not related to Friedel oscillations.
The latter appear in a Fermi gas where a sharp Fermi surface exists giving rise to
interferences, just as in correlation functions of a free Fermi gas (Subsec. 4.1.1).

(ii) small wiggles on the Ne = 4 density in Fig. 4.31(a) are due to the center–of–mass
(CM) part of the wavefunction. Being a finite size effect, they fall off rapidly with
system size as we indeed see in Fig. 4.31(a). Cf. also Subsec. 4.1.4.

(iii) the ground state of the homogeneous system is triply degenerate in the CM part
(Subsec. 4.1.4). This degeneracy is lifted by the inhomogeneity, but energy differ-
ences between these three states remain much smaller than their separation from the
lowest excited states (for the inhomogeneity strength considered; cf. [109]).

The response n(x) (of any of the three states) depends slightly on the position of the
impurity within the elementary cell, but this dependence and also differences among
the three states in energy and in n(x) quickly vanish with increasing system size. In
Fig. 4.31(a) always the impurity giving the strongest response in n(x) was chosen.

(iv) Period of oscillations: As Rezayi and Haldane [80] note, numerical calculations as in
Fig. 4.31 agree with results of the single mode approximation proposed by Girvin et
al. [32]. The linear response function χ(q) (in the ν = 1

3
Laughlin state) is dominated

by the magnetoroton collective mode around q0`0 ≈ 1.4. Would it be χ(q) = δ(q−q0),

Rezayi et al. [80] considered Coulomb interaction.
29Recall the difference N to N + δ in Fig. 4.30(b). If just a unit charge is depleted from the impurity,

then δ = 1/N . In infinite systems, the difference δ will vanish, but data in Fig. 4.31(a) come from
rather small systems N ≤ 10 where δ is not negligible.
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Figure 4.31: Polarized and singlet 2
3 state and (non-magnetic) impurity in the form of a δ-line

(along y). Normalized density along x plotted.

the density response to a point impurity potential would be n(r) ∝ J0(q0r). This
density profile looks like damped oscillations with the first node at r = 1.7`0.

Regarding a more realistic profile of χ(q), this estimate for n(r) is a very good
approximation to n(x) in Fig. 4.31(a)

As the purpose of the present work was to study systems with spin, we will now continue
to spin singlet states at ν = 2

3
. Some quite new results for the ν = 1

3
Laughlin state have

been achieved by Müller [69].

The singlet state

The 2
3

singlet ground state shows basically the same signs of incompressibility as the
polarized state. The period of the density oscillations incurred by a δ–line impurity is
almost the same (r1 ≈ 2`0), and also in terms of classification of Fig. 4.30(b), the singlet
state shows an incompressible–like behaviour (cf. discussion of the polarized state). The
striking feature of the singlet state is, that the strength of the response is about an order
of magnitude less than in the polarized state: thus in an 8–electron system, the density
response is ’hidden’ under the center-of-mass oscillations, Fig. 4.31(b).

This strong difference between the singlet and polarized ground states is unexpected since
’incompressibility’ gaps of both states are similar.

This hints at unusual stability of the singlet state with respect to charged inhomogeneities.

113



In terms of perturbation theory, this is not due to energetic reasons but rather owing to
small matrix elements of HEI between the ground state and excited states. Energy of the
first excited state, however, decreases when impurities are present and thus, in spite of the
quite stable density of the GS, the gap will eventually collapse.

Regarding the response in systems of different size, we find a considerable attenuation
when going from eight to ten–electron systems, Fig. 4.31(b). Nevertheless I assume that
the response remains finite even in the thermodynamic limit. To support this hypothesis I
would like to emphasis that the Ne = 8 (10) singlet state occurs in systems with Nm = 12
(15) flux quanta30 and these are the two smallest systems considered in Fig. 4.31(a). For
the these two systems we also observe a considerable attenuation of the n(x) response when
going from the Ne = 4 to Ne = 5 state (Fig. 4.31(a)) and this reduction in response is
definitely only a finite size effect. As close as this analogy is, observations presented in
Fig. 4.31(b) are not conclusive and an investigation of the singlet state in a larger system
(Ne = 12) would be needed.

Let us just briefly mention, that non–magnetic impurities have no effect on the polarization
of the singlet ground state.

4.3.2 Magnetic impurity in incompressible 2
3 states

As far as spin polarized states are considered, magnetic impurities (Eq. 4.15) will not
furnish us with any new information, see the comment on redundancy of some types of
impurities, Eq. 4.15. Hence only the 2

3
singlet ground state will be discussed here as the

half–polarized states deserve to be considered separately (Subsec. 4.3.4).

Considering the density, Fig. 4.32(a), we find a yet weaker response than for non–magnetic
impurities, Fig. 4.31(b). The response reminds of an incompressible system (in terms of
Fig. 4.30(b)) and may remain finite in the thermodynamic limit, cf. discussion of non–
magnetic impurities.

Polarization n↓(x)/n(x) behaves quite differently, Fig. 4.32(b): the response is large and
it looks compressible31 . Electrons with ’correct spin’ (↑) accumulate around the impurity,
n↓(0)/n(0) drops from the homogeneous value (0.5) by as much as by 5%, whereas the
average polarization off the impurity slightly increases so as to keep the overall average
value 0.5 (as required by Sz = 0). This behaviour differs strongly from the density
response (Fig. 4.32(b)).

It should also be noted that both density and polarization are here much less system–size
dependent than in the case of non–magnetic impurities.

These are quite remarkable findings: it seems that the singlet state is locally much more
’incompressible’ than the polarized state. On the other hand, the singlet state is relatively

30Number of flux quanta is a measure for system area A = 2π`20Nm, Eq. 3.6.
31Again in terms of Fig. 4.30(b). In particular, note that the polarization n↓(x)/n(x) in Fig. 4.32(b)

approaches ≈ 0.51 as we go ’far away’ from the impurity, i.e. a different value than the polarization in
the homogeneous case, 0.5.
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Figure 4.32: Singlet 2
3 ground state for an attractive magnetic impurity HMI,↑ (see Eq. 4.15) in

the form of a δ-line (along y). Normalized density and polarization along x are plotted.

easily polarizable, at least compared to the rigid density32. This again confutes the picture
of ’two uncorrelated 1

3
Laughlin liquids, one spin up, another spin down’ which we could

wrongly infer33 from the view of filled composite fermion LLs.

4.3.3 Integer quantum Hall ferromagnets

A brief introduction to integer quantum Hall ferromagnets (QHF) was given in Subsec.
3.6.

Here we will focus on the Sz = 0 sector in prototypes of Ising and Heisenberg QHFs with
neglected LL mixing. These states (Sz = 0) are analogues of the half–polarized states at
filling 2

3
, the explanation follows. Disciples of CF teachings deem the ν = 2

3
ground states

to have νCF = 2 completely filled CF LLs (Fig. 4.2). Transitions between the singlet and
polarized GSs occur, when the n = 0, ↓ CF LL crosses the n = 1, ↑ CF LL. It is then
plausible to neglect the low lying n = 0, ↑ CF LL and look only at the two crossing CF
Landau levels. The two ferromagnetic Ising states — the singlet, and polarized electronic
GS at ν = 2

3
— correspond to all CFs placed in the n = 0, ↓, and n = 1, ↑ CF LL,

respectively. Hence the half–polarized state (ν = 2
3
) corresponds to half–filled n = 0, ↓ and

half–filled n = 1, ↑. Disregarding the fully occupied n = 0, ↑ CF LL, i.e. counting only
particles in the two crossing CF LLs (in total Ne CFs), the ferromagnetic Ising states are
Sz = ±Ne/2 and the ’half–half’ state is Sz = 0.

32If we assume the density in Fig. 4.31(b) to be the response of two independent liquids, then the
polarization in Fig. 4.32(b) should be (i) smaller by a factor of five for Ne = 8 than what is observed
and (ii) considerably smaller for Ne = 10 compared to the Ne = 8 case.

33Remind that in fact it is not the claim of CF theories, that particles of n = 0, ↑ and n = 0, ↓ CF LLs
are uncorrelated.
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In this Subsection we aim to study the same situation as the one occuring at the ν = 2
3

ground state transition (within the picture of crossing CF LLs) but for electronic Landau
levels, i.e. with electrons instead of composite fermions. We therefore study a ν = 1 34

system with spin degree of freedom, where spin down (spin up) electrons lie in the n = 0
(n = 1) Landau level, respectively35 . Without electron–electron interaction, these two
Landau levels are set to equal energy so as to model the LL crossing. Mixing to the fully
occupied n = 0, ↑ LL (as well as to all higher LLs) is neglected, since all these levels are
well separated from the two crossing levels.

Heisenberg QHFs are not related to ν = 2
3

and we investigate them just for the sake
of comparison between Ising– and some other type of QHF. In the integer QHE regime,
Heisenberg QHF occurs e.g. when n = 0, ↑ and n = 0, ↓ LLs cross (and ν = 1) as it is
the case for instance at vanishing Zeeman splitting. With CFs, this happens at ν = 1

3
, i.e.

νCF = 1 (cf. Fig. 4.2).

We will first briefly discuss homogeneous states in these QHF systems and then we will
turn to their response to magnetic inhomogeneities (δ–lines).

Ising quantum Hall ferromagnet

There are two degenerate ground states of an Ising ferromagnet: both with S = Ne/2, one
Sz = Ne/2 and another Sz = −Ne/2. Excited states are in general no eigenstates36 to S2

and may only be classified according to Sz. They are all well above the ground states
(Fig. 3.13(b)) and in general, their energy grows with Ne/2−|Sz|. In the following we will
only speak about Sz = 0 states. The whole Sz = 0 sector is quite high in the complete
spectrum. Unlike for a Heisenberg ferromagnet there is nothing like a S = Ne/2, Sz = 0
ground state for an Ising ferromagnet.

Low lying Sz = 0 states of the considered Ising QHF are apparently arranged into a flat
dispersion branch37, Fig. 4.33(a). The anomalous form of this branch in a Ne = 8 system,
seems to be of finite–size origin, since Ne = 10, 12 and 14 spectra are similar to each
other. States of the lowest branch have k̃ r of the form (2πn/Ne, 0), n = 0,±1, . . . , Ne/2, or
(0, 2πn/Ne). This is in agreement with the symmetry between x and y (we consider a square
elementary cell) and it shows that rotational symmetry is absent in the low energy sector38.
The lowest branch flattens and becomes well separated from excited states with increasing
system size, and the minimum energy remains at k̃ r = (0, 0). Also, other branches develop,

the second lowest branch is described by k̃ r = (πn/Ne,±2π/Ne) (plus the x–y symmetric
partner) and minimum energy at points (π,±2π/Ne) (Ne = 12 spectrum in Fig. 4.33(a)).

34Again, we disregard the fully occupied n = 0, spin up level. Counting also electrons in this level, the
total filling factor is two.

35Technically, this requires only implementing modified values of pseudopotentials, see Fig. 3.5.
36This is a consequence of the omission of the fully occupied n = 0, ↑ level.
37For a fully occupied Landau level, J ’coincides’ with k r

y. Precisely, k r
y = (Ne/2− J)

√
2π/Nm for Ne

even in the sense of Eq. 3.46. Centre–of–mass degeneracy is absent.
38Otherwise we would observe also states with k̃ r = (kx, ky), kx, ky 6= 0.
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Figure 4.33: Half–polarized states (Sz = 0) of an Ising quantum Hall ferromagnet. ν = 2

Apart from these branches an isolated k̃ r = (0, 0) state is present (marked in green in
Fig. 4.33(a)) and it is hidden within the branch. It could be that this state becomes
the absolute ground state (and is separated from the lowest branch) in sufficiently large
systems.

The flat branch is reminiscent of results of Rezayi39 et al. [82] and could correspond to

39The cited work concerns the situation when the lowest and the third Landau levels of different subbands
cross. Rezayi et al. had first to show that this system is an Ising QHF. See subsection 3.6 for more
details. In the Sz = 0 sector of his system Rezayi et al. found a multiply (almost) degenerate ground

state with k̃ r just of the sequence (2πn/Ne, 0), similar as we see in Fig. 4.33(a) for Ne = 12.
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Figure 4.34: Half–polarized states (Sz = 0) of a Heisenberg quantum Hall ferromagnet. ν = 1

domain states, i.e. stripes along x or y with alternating spin polarization, in a system
which does not prefer any particular domain size. The origin of the highly symmetric
isolated (’green’) state is unknown.

As it can be expected, low lying states have homogeneous density40 and it is true even for
the whole lowest branch, as an example we show density in the ground state (k r = 0),
Fig. 4.33(b). States in the second lowest branch show unidirectional charge density waves.

In summary, in a homogeneous Ising QHF (corresponding to ν = 2, see description at the
beginning of this Subsection) we observe

• a flat branch of low lying states, which could become degenerate in infinite systems.
This first branch (Fig. 4.33(a)) probably consists of stripe domains41 — or spin
density waves — of all possible wavelengths λ = a/n, n = 0, 1, . . .Ne/2 just as in the
system studied in [82]. Contrary to isotropic states (like Laughlin liquid), the wave
must be parallel to one side of the square elementary cell.

• second branch (Fig. 4.33(a)) with pronounced dispersion, which could be a charge
density wave

• continuum of excited states above the two branches and

• another state, with high symmetry, k r = (0, 0), which lies among the states of the
lowest branch.

40The anticipated domains would probably be visible first in correlation functions.
41In a homogeneous system, all these states have constant both density and polarization. Domains should

be visible first in correlation functions.
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Heisenberg quantum Hall ferromagnet

The situation here is quite different from the Ising ferromagnets. The Hamiltonian (Coulomb
interaction projected to the lowest Landau level) conserves the total spin S and it even
commutes with S+ and S− which change Sz while keeping the length of the total spin.
The ground state is fully polarized, S = Ne/2, but its z–component of spin is arbitrary
(Fig. 3.13(b)).

Looking at the sector Sz = 0, Fig. 4.34(b), the lowest state is thus the ferromagnetic

S = Ne/2 state. Other low–energy states form again a branch, k̃ r = (±πn/Ne, 0) and
(0,±πn/Ne), n = 0, . . . , Ne/2 (x–y symmetry present, rotational symmetry absent). Con-
trary to the Ising QHF, this branch does not seem to flatten. States in the branch fulfil
S = Ne/2− n: the ferromagnetic (ground) state is polarized and going up the branch, the
polarization decreases. In this respect, the excitations of the lowest branch markedly differ
from spin density waves. What we observe in the Heisenberg QHF are most likely states
with n weakly interacting spin waves which were observed under the same conditions on a
sphere by Wójs and Quinn [98].

Half–polarized QHF states and magnetic impurity

If a homogeneous state cannot be established and domains formation is more favourable,
then no particular domain size is preferred. This is the central message of the following
paragraph and it applies to both Ising and Heisenberg QHFs (described at the beginning
of Subsection 4.3.3).

The two systems were subjected to a δ–line magnetic inhomogeneity, just as the incom-
pressible singlet ground state in Subsec. 4.3.2. However, QHF systems and incompressible
liquid states at ν = 1

3
or 2

3
behave quite differently. Looking at a QHF and comparing

the response in systems of different sizes, we observe no intrinsic length scale (Fig. 4.35).
Rather, the form of the response reflects the size of the system (like in the left panel of
Fig. 4.30(c)). This statement applies both to the Ising (Fig. 4.35(b)) and the Heisenberg
QHF (Fig. 4.35(a)), where we show the polarization of the energetically lowest state in a
system subject to the inhomogeneity.

It is also interesting to look at the density of the disturbed QHF states. The density of the
Heisenberg QHF remains almost unchanged (it is constant) unlike the density of the Ising
QHF state, Fig. 4.33(b) right. This is understandable: whereas in the Heisenberg QHF
spin up and spin down one–particle states have exactly the same density42, this is not the
case for the Ising QHF. In that case, spin up and spin down states come from different
Landau levels. Thus, even when the magnetic impurity shuffles the spin up and spin down
particles somehow in the Heisenberg QHF, the density does not change.

Finally, we comment on densities in the inhomogeneous states (in the Ising QHF). Results
shown in Fig. 4.33(b) belong to quite small systems (12 particles at most). In the largest
system studied, we observe a maximum in the density direct at the position of the impurity

42And also wavefunction: both spin up and spin down states are from the lowest Landau level.
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Figure 4.35: Different quantum Hall ferromagnets (QHF), half–polarized states: polarization
response to a magnetic δ-line impurity in systems of 8 and 12 particles.

(x = 0) and the maximum approaches the value of density in a homogeneous system. With
some imagination this allows for a hypothesis that — if domains are formed in an infinite
system — the density will be inhomogeneous close to the domain boundary while remaining
homogeneous inside a domain. However, we would have to study larger systems to confirm
this speculation.

4.3.4 The half-polarized states

The inner structure of the half–polarized (S = Ne/4) ground state at filling 2
3

is investigated
in this Subsection. I would like to argue that this state (assuming short–range interaction)
resembles rather the incompressible singlet and polarized ground states at ν = 2

3
than the

Ising quantum Hall ferromagnet in the Sz = 0 sector as described in Subsection 4.3.3.

In this Subsection, by ’half–polarized ground states’ we mean the 8– and 12–electron
S = Ne/4 states GS8 and GS12 as introduced in Sec. 4.2 (cf. correlation functions in Fig.
4.26).

The ground state in a homogeneous system has a nearly constant density (oscillations due
to the center-of-mass part wavefunction are less than 0.1% in the 12–electron system). This
changes when a weak δ–line magnetic impurity along y is applied: not only the polarization
but also the density becomes inhomogeneous, Fig. 4.36. The first minima of n(x) are at
the same position r1 ≈ 2.2`0 in the two system sizes considered and decaying oscillations
are likely to follow at larger distances. Comparing the two system sizes in Fig. 4.36(a),
we find a much weaker response in the larger system, but this still does not have to imply
a vanishing response in an infinite system (cf. discussion of the singlet state in Subsec.
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Figure 4.36: Half–polarized ground state (S = Ne/4) responding to a δ–line magnetic impurity,
HMI,↑ (see Eq. 4.15).

4.3.1).

Unlike the Ising quantum Hall ferromagnet discussed in Subsect. 4.3.3, the half–polarized
states seem to have an intrinsic length scale in n(x) (of the order of r1), Fig. 4.36(a). It is
remarkable that this r1 matches quite well the position of the first maximum in the density
of the Laughlin state ( 1

3
) responding to an impurity, Fig. 4.31.

Contrary to the density, the polarization does not show an intrinsic length scale as positions
of the first minima in Ne = 8 and Ne = 12 systems mismatch considerably, Fig. 4.36(b).
However, the polarization response here differs from the behaviour of the singlet state, Fig.
4.32(b). Rather, Fig. 4.36(b) suggests that n↓(x)/n(x) → 0.75 as we go away from the
impurity for the half–polarized states. This behaviour was classified as ’incompressible’ in
Fig. 4.30(b).

These observations bring me to the conclusion that the presence of the impurity will not
lead to a splitting of the state into two domains (one with spin up, second with spin
down), which we could expect for Ising QHF (Fig. 4.35). Rather it seems that an impurity
will change the polarization of the system only locally, in an ’incompressible manner’, Fig.
4.30(b). Finally, the density response has the same characteristic length scale as the singlet
and polarized ν = 2

3
ground states and such a length scale is absent in the polarization (in

agreement with behaviour of the singlet state, Fig. 4.32(b)).

A state with Sz = Ne/4 comprises of 1
4
Ne electrons with spin down (’minority spins’) and

3
4
Ne electrons with spin up (’majority spins’). Since the two populations are not balanced,

we may gain extra information by speaking to them separately. The simplest concept,
assuming non–interacting electrons, would be: HMI,↓, HMI,↑ and HMI (see Eq. 4.15) give
rise to responses in ratio 1

4
: 3

4
: 1. Very roughly, this is indeed the case. Heights of the

central peak (x = 0) for these three types of inhomogeneities are indeed approximately in
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Figure 4.37: Half–polarized ground state (S = Ne/4) responding to a δ–line magnetic impurity.
Different impurity types are considered: HMI , HMI,↑ and HMI,↓ (see Eq. 4.15).

this ratio, both for the density and for the polarization, Fig. 4.37. In the following we will
discuss investigations with spin–dependent perturbations in more detail.

Let us separate the density of majority and minority spins, Fig. 4.38. I would like to
argue that the half–polarized state with Ne electrons consists of two coexisting and weakly
interacting liquids: Ne/2 electrons in a fully polarized liquid (with Sp

z = Ne/4) and Ne/2
electrons in a Su

z = 0 state. Minority spins are thus present only in the Su
z = 0 liquid

whereas majority spins occur in both of them. Concentrate on Fig. 4.38(c).

• Minority spins (↓) react almost equally to HMI,↑ and −HMI,↓: they namely reflect
only changes in the Su

z = 0 liquid and there are as many up as down spins in it43.
The combined effect of HMI,↑ − HMI,↓ causes a response of about the sum of these
two.

• Majority spins (↑) react differently to HMI,↑ and −HMI,↓; keep in mind that n↑

reflects changes in both (polarized and Su
z = 0) liquids. The latter impurity inflicts

changes only on the Su
z = 0 part, whereas the former impurity acts on both liquids.

If both liquids would have the same sensitivity to the considered impurities, we could
expect responses in ratio 4 : 3 : 1 (HMI to HMI,↑ to HMI,↓). The fact that responses
observed in Fig. 4.38(c) (measured by the height of the central maximum) are in
ratio 3 : 2 : 1 could be an indication that the polarized liquid is less sensitive than
the Su

z = 0 liquid.

• Note also, that responses are the same (up to an inversion) for attractive and repulsive

43In fact, the HMI,↑ impurity influences also the polarized liquid component, but we cannot see it in the
density of minority spins provided the two liquids do not interact appreciably.
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Figure 4.38: The same as Fig. 4.37, but the density is decomposed into the density of majority
spins (n↑) and minority spins (n↓). By attractive (repulsive) is meant that the δ–impurity at
x = 0 is attractive (repulsive) for the majority spin.

impurities, Fig. 4.38(a) and 4.38(b), provided the impurities are weak.

Studies of the eight electron half–polarized state, Fig. 4.38(b) is not in conflict with this
interpretation, responses in densities are quantitatively different though. We should, how-
ever bear in mind that these systems (with primitive cell of size 12 flux quanta) correspond
to the smallest system (Ne = 4) considered in Fig. 4.31 (ν = 1

3
state plus an impurity)

and in that case finite size effects are already very strongly pronounced. Thus, the twelve
electron system can be considered as the smallest system with finite size effects not playing
a major role.

Conclusion

The hypothesis of the coexistence of the spin singlet and polarized liquids in the half–
polarized states (HPS) seems to be supported. We have pointed out some similarities
between the HPS and the former two incompressible states. In contrast, response to mag-
netic impurities seems to be different for the HPS and the Ising quantum Hall ferromagnet
(in the Sz = 0 sector) which would be the direct counterpart of the HPS if composite
fermions are substituted by electrons.

In general, it is not very surprising that electronic systems (ν = 2 Ising QHF) differ strongly
from the CF–counterparts. We have already seen this in correlation functions in Subsec.
4.1.1. However, the observed differences seem to be too deep to allow us to establish a
relation between QHF states and the half–polarized states introduced in Sec. 4.2.
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4.4 Deforming the elementary cell

In this Section we discuss another way of how to investigate fractional quantum Hall states:
we will exactly diagonalize ν = 1

3
and ν = 2

3
systems in elongated rectangular elementary

cells with dimensions a by b, i.e. those with aspect ratio a : b > 1. In this case, however,
the area of the rectangle is always kept constant, ab = 2π`20Nm (cf. Eq. 3.6), and therefore

ab = 2π`20Nm , ⇒ a = `0
√

2πNmλ , b = `0
√

2πNm/λ , λ = a : b . (4.16)

What can we expect? In the first approximation, we would say (i) nothing happens for
an isotropic state like the ν = 1

3
Laughlin liquid and (ii) crystalline or wave–like states

will change both in energy and in density. The reason is, that structures in homogeneous
liquid states (as we saw for example in correlation functions in Subsec. 4.1.1) are intrinsic
and not incurred by the finite system size. That is why we expect it to change neither in
energy nor in correlation function (at least on short distance) if a and b slightly change.
On the other hand, an integer multiple of the period of a wave–like or crystalline state
must be necessarily equal to a and/or b, hence by varying the aspect ratio we force it to
change its period. In a classical crystal this means compression (or better deformation,
since total ’volume’ ab remains constant) and we expect it to cost energy.

During this investigation of ν = 2
3

systems I was motivated by the work of Rezayi et
al. [82] who investigated one particular type integer quantum Hall ferromagnet. Their
exact diagonalization on a torus showed an Nm–fold nearly degenerate ground state and
the authors argued that these states comprised of stripes of alternating spin polarization
(Subsec. 4.3.3) oriented parallel to one side of the rectangle, for example a. As they varied
the aspect ratio, the states still remained degenerate44, and their energy E(λ) changed
proportional to b. This was a strong argument for the stripe order, since then dE(λ)/db
can be interpreted as energy per unit length of an interface between a spin up and spin
down stripe.

With this in mind, let us look at the half–polarized states and see what we can learn about
their nature. First, however, we start with their better understood relatives.

4.4.1 Incompressible ground states

As usual, we will start with ν = 1
3
, being probably the best understood system. This will

also be the only case where we will discuss Coulomb interacting systems, in the rest we
will stay with short–range interacting systems.

Coulomb versus short–range interaction: ν = 1
3

The spectrum of a Coulomb–interacting system has a quite rich structure, Fig. 4.39(a).
The ground state energy exhibits several minima as a function of the aspect ratio of the

44In fact, the degeneracy even improved: the small energy differences between the Nm states dropped.
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Figure 4.39: Spin polarized eight electrons at filling factor 1
3 and 2

3 . Energy of the lowest states
versus aspect ratio of the primitive cell. An overview of the polarized, singlet and half–polarized
states in the same scale is presented in the last panel.

elementary cell; in fact even more structure seems to appear in larger systems, as far as I
could infer from comparing 6, 8 and 10 electron systems. In the following, I will explain
that this structure occurs mainly due to the long–range part of the Coulomb potential, it
should be possible to describe it mainly by the Hartree part of the total energy or simply
that it is due to formation of charge density waves (CDW) resembling Wigner crystals45.
In a second step, we will discuss how correlations (and energy due to correlations) depend
on the aspect ratio, Fig. 4.39(b).

Perhaps the best way to understand the energy–versus–aspect–ratio dependence of the
Coulomb–interacting ground state is to look at two low excited states (marked by arrows
in Fig. 4.39(a)). These two states are just the CDWs mentioned above and they look
almost like Wigner crystals: one hexagonal, another square, as density–density correlation
shows, Fig. 4.40. It is then no wonder that the energy of such states is minimal, when
the aspect ratio matches its geometry. For eight electrons considered here, this happens
for46 4d : 2d = 2 and 4d : (2

√
3/2d) = 4

√
3/3 for the square and hexagonal crystal,

respectively. Perhaps the most apparent difference between a CDW and an (unpinned)
Wigner crystal is that for the latter state we expect the correlation function to drop almost
to zero between the ’lattice sites’. Obviously, this is not the case here, Fig. 4.40. This
is also understandable: at filling factor ν = 1

3
, the system is too densely populated, or

mean interparticle distance is too small, rmean/`0 =
√

2π/ν ≈ 4.35 (cf. Eq. 3.6) to allow

45Differences between Wigner crystals and CDWs are discussed below. In fact, energy of the states in
question (Fig. 4.40) will contain strong exchange contributions. Nevertheless, these states are very
similar to the classical states which minimize the Coulomb energy.

46d is the ’lattice constant’.
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Figure 4.40: Charge density waves resembling Wigner crystal states are among the lowest excita-
tions in a Coulomb interacting 1

3 system. Their energy is minimized (as a function of aspect ratio)
when the elementary cell matches the crystal geometry. Correlation functions in eight–electron
systems are shown, length of x– and y–sides corresponds to the particular aspect ratio.

the electron density (or correlation function) to vanish between two sites47. Even if we
’assembled a hexagonal Wigner crystal at ν = 1

3
’, the wavefunctions at neighbouring sites

would strongly overlap and it is then more favourable for the electrons to retain something
of the Laughlin correlations; as a result we obtain a CDW (or a ’strongly correlated crystal’
[58]) like the state in Fig. 4.40(b). At lower filling factors, rmean/`0 is larger and Wigner
crystal states become possible. This can be interpreted as a quantum phase transition
from liquid to solid as the filling factor is decreased and the extensive studies in this field
suggest the critical value ν ≈ 1

7
, see Sec. 5.7 in Chakraborty [17] for a review.

The ground state (GS) energy reflects these geometrical conditions. This state also min-
imizes its energy when the square crystal can easily be formed, but at short distances it

47An electron within the lowest Landau level cannot be localized more strongly than on a length scale of
the order of unity (magnetic length `0).
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Figure 4.41: Evolution of the Laughlin state with aspect ratio of the elementary cell (Coulomb
interaction). Correlation functions are shown.

quite strictly preserves the liquid–like correlations, Fig. 4.41: it is isotropic at least at
short distances (in Fig. 4.41(b), the ring corresponding to the first maximum is round,
not deformed; compare to Fig. 4.40) and also g(r) ∝ r6 (not obvious in Fig. 4.41). It
seems plausible that the increase of GS energy around a : b ≈ 3, Fig. 4.39(a), is due to
the loss of isotropy at shorter distances: the ring of the first maximum in g(r) disappears,
Fig. 4.41(c); g(r) ∝ r6 however remains. It is important to know, that unlike the energy,
the structure (correlation functions) of the ground state is quite insensitive to the type of
interaction (Coulomb or short–range).

Let us now concentrate on short–range interacting states. The crystalline states disappear
from the realm of low–energy excitations. The ground state energy is completely indepen-
dent on aspect ratio, it is zero. This shows Figure 4.39(b); energies of fully polarized 2

3

states displayed therein are equal to those of 1
3
–systems up to a constant shift48 . In fact,

the ground state is rigid in the following sense: a state can have zero energy only if there
are three zeroes on the position of each electron in the wavefunction. By this (together
with confinement to the lowest Landau level), the wavefunction is completely determined.
It is even surprising, that given this, the ground state looks that similar to a CDW state
at higher aspect ratios like the one in Fig. 4.41(c).

Assuming fully spin polarized electrons, 2
3

and 1
3

systems (e.g. 8/12 and 4/12) are particle–
hole conjugated. Thus, spectra of these systems are identical up to a constant energy shift,
which is just the Coulomb (or short–range interaction) energy of a completely filled lowest
Landau level49 (see Subsect. 3.2.4). In simple numbers, this is shown in Fig. 4.39(b): the
ν = 1

3
Laughlin state has zero energy for any aspect ratio (not shown), the 2

3
ground state

energy is then simply just the Hartree–Fock energy of a completely filled Landau level.

48This constant depends on aspect ratio, but the dependence is imperceptible up to a : b ≈ 4 (for 4
electron system).

49Note that this energy varies with aspect ratio (both for Coulomb and for short–range interaction). The
common statement that interaction energy of a full LL is a constant is valid in a broad range of aspect
ratios, but not everywhere. In Fig. 4.39(b), this holds up to a : b < 4.
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Beyond a : b ≈ 4, this energy is no longer constant, indicating that the deformation of
the elementary cell becomes pathologic and latest at this point, such a model describes no
longer a 2D system but rather an effective 1D system.

Consider a/b � 1. Then the Ne electrons are located on a very thin cylinder50 of length
∝

√
a/b (area of the cylinder is fixed by filling factor, ab = 2πNm) and single electron states

resemble ’rings on a pole’. The mean distance between electrons is then ∝
√
a/b/Ne and

Coulomb energy is then obviously proportional to (a/b)−1/2. The increase of the ground
state energy for very large aspect ratios, Fig. 4.39(a), is due to the repulsion between an
electron and its own periodic image in the ’short–direction’.

Excited states are even more sensitive to deformation of the elementary cell. Energy levels
group into branches beyond a/b ≈ 2, Fig. 4.39(b), which, thinking of the effective 1D
model, correspond to 0, 1, 2, etc. pairs of ’rings on pole’ sitting at neighbouring sites.
In figurative terms: there is no longer enough room for two electrons to be positioned in
’vertical’ direction (along y axis, i.e. the shorter side of the elementary cell) except when
they freeze into a crystal.

In conclusion, going beyond aspect ratio ∼ 2 (in a Nm = 12 system) the system cannot be
taken as a faithful model for an isotropic infinite system.

The singlet state

Apparently, the singlet ground state is more sensitive to varying the aspect ratio. Its en-
ergy changes at much smaller deformation than that of the polarized state, Fig. 4.39(c).
However, comparison between systems of different sizes shows, that its energy is also con-
stant provided that the aspect ratio is not too far from one and the system is large enough,
Fig. 4.42. This is another hint at isotropy of the state. A crystalline state responds more
strongly to a change of a/b, since this is in principle an attempt to compress the lattice
in one direction while expanding it in the other direction: recall just the CDW states in
ν = 1

3
systems marked by arrows in Fig. 4.39(a).

This is in agreement with a direct observation of correlation functions, Fig. 4.43. In
particular, the ring structure in g↑↓(r) (or maximum at r0 ≈ 3.4`0) remains preserved even
for aspect ratios a : b ≈ 3, Fig. 4.43(b). This is similar to how the ring structure of the
first maximum was preserved in the deformed ν = 1

3
Laughlin state (Fig. 4.41(b)). Also,

looking at g↑↑(x) and g↑↓(x) in the deformed singlet state, the sum of these two seems
to remain constant beyond r0 even in deformed systems (in spite of that g↑↓(x) decreases
beyond x = r0). This was just the conclusion in a : b = 1 systems (Fig. 4.7) and it
suggests that the singlet state did not change much even in a quite strongly deformed
system (a : b . 3). Moreover, given this is true, it allows us to use deformed systems to
see what happens on a bit larger distances51 than in a square cell.

50Such models were studied by Rezayi and Haldane [81].
51Maximum distance between two electrons in a deformed elementary cell, 1

2`0
√

2πNm(λ + 1/λ), grows
with increasing λ.
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Figure 4.42: Low lying states at filling 2
3 under vanishing Zeeman splitting versus aspect ratio of

the primitive cell. Note that energy of the singlet ground state remains about constant for aspect
ratios . 1.4 in the larger system.

Regarding the energy, which seems to react more sensitively to deformations than the
correlation functions, the following speculation seems plausible. If the singlet state is a
liquid of ↑ − ↓ pairs of characteristic size r0 ≈ 3.4`0 (cf. Subsec. 4.1.1), it ought to be
more sensitive to aspect ratio variations than the Laughlin state just because such a pair
in the ν = 2

3
singlet state is larger than a single electron in the ν = 1

3
Laughlin state.

4.4.2 Half-polarized states

The half–polarized states can be expected to suffer severely under the finite size of the
system. Most obviously, a system with eight electrons contains only two electrons with
minority spin. Contrary to fully polarized systems (where eight particles is already fair
enough), it is thus the smallest system with S = Ne/4 where many–body effects can be
studied.

Let us compare how systems of two different sizes respond to varying aspect ratio. In an
eight–electron system, Fig. 4.44(a), there are four low lying states: the ground state at

a/b = 1 with k̃ r = (π, π), a (0, 0) state which becomes the ground state at a/b > 1.5 and

a pair of degenerate states, (0, π) and (π, 0) (k̃ r is defined in Subsec. 3.5.2). The former
two states are isotropic (and lie in high symmetry points of the Brillouin zone), the other
two are spin–density waves in x and y direction, judging by the correlation functions (not
shown). Moving away from aspect ratio one, degeneracy of the latter two is lifted — just
as the 90 deg rotational symmetry of the elementary cell is broken — and the wave along
x (the longer side) becomes energetically more favourable. It is quite conspicious that this
state evolves parallel to the (π, π) state for aspect ratios above ≈ 1.4. For these values of
a : b, the inner structure of these two states seems very similar, too.

In the low–energy sector, a (0, 0) state is absent in a 12–electron system, Fig. 4.44(b).
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Figure 4.43: The singlet 2
3 state in elementary cells of different aspect ratios: density–density

correlation between like and unlike spins (the two aspect ratios shown in 2D plots are a : b = 1
and 2).

In other respects, the situation is however quite similar to the smaller system. There is a
well–separated (π, π) ground state in a square cell and this state becomes nearly degenerate
with a (0, π) state for aspect ratios & 1.4. Also, the energy of these two states decreases
with increasing aspect ratio and eventually reaches its minimum; in contrast to the smaller
system, the minimum occurs later, at a : b ≈ 2.4 (Fig. 4.44(b)) compared to ≈ 1.6 in Fig.
4.44(a), but this occurs also for the incompressible states, e.g. the singlet at ν = 2

3
(Fig.

4.42(a) vs Fig. 4.42(b)). The correlation functions of these two states, (0, π) and (π, π),
are similar to those of the (0, π) and (π, π) states in the eight–electron system (not shown).

Now turn to the correlation functions of the (0, π) and (π, π) states in a 12–electron system,
Fig. 4.45. Both states are quite isotropic, for a square elementary cell52. However, already
under slight variation of the aspect ratio, stripe structures parallel to the shorter side
evolve (a : b = 1.2, Fig. 4.45(a)). In this respect, both states look quite similar (4.45(d)

52At a very close look, we find a slight x versus y anisotropy in the (0, π) state.
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Figure 4.44: Half–polarized states (S = Ne/4) at filling 2
3 versus aspect ratio. States with next

larger spin are well above (out of scale here).

or compare Figs. 4.45(a) and 4.45(b)) and I would like to stress that the differences in
the correlation functions between the isotropic (at a : b = 1) and the wave–like state
(a : b = 1.8) are very large: both in isotropy/anisotropy and in the short–range behaviour
(Fig. 4.45(d)). This is in a stark contrast to the behaviour of the incompressible states, e.g.
the Laughlin state which preserves lot of its original isotropy even at a : b ≈ 2 (Fig. 4.41).

These observations suggest the following interpretation: the half–polarized ground state at
ν = 2

3
is an isotropic state which however inclines to the formation of a spin–density wave.

The wave has the shortest period allowed by the number of electrons, i.e. it resembles an
antiferromagnetic ordering (↑↓↑↓ . . . rather than e.g. ↑↑↓↓ . . . ) as the correlation functions
in the rightmost column in Fig. 4.45(a) suggest: since there are just three ↓–electrons in the
system, we expect two53 stripes in g↓↓(x, 0) in the case of ↑↓↑↓ . . . ordering54. However, the
amplitude of oscillations in g↓↓(x, 0) is moderate (Fig. 4.45(d)) and hence we should rather
term the state a ’spin density wave’ than e.g. a state with stripe domains of alternating
spin polarization.

Just on the basis of the present investigation, it is not clear whether in a large enough
system, this spin wave state is the ground state, a low–energy excitation or it is degenerate
with the isotropic ground state: even though the GS at a : b > 1 (spin wave) has a lower
energy than the isotropic state at a : b = 1 (Fig. 4.44(b)), this does not say much about
which state would be the ground state in a larger system. We saw a similar situation for
the ν = 1

3
Laughlin state (Fig. 4.39(a)) or the singlet ν = 2

3
state (Fig. 4.42): the energy

of the ground state was not at its minimum at a : b = 1, yet the isotropic (corresponding
to a : b = 1) state is probably the ground state in the thermodynamic limit. The question
how to decide which state — isotropic or anisotropic — will be preferred in infinite systems

53The third ↓–electron is just at the origin.
54In more detail, see Fig. 4.45(c): the minima/maxima in g↑↑(x, 0) match well with the maximum/minima

in g↑↓(x, 0). In other words, spin up is followed by spin down.
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Figure 4.45: Evolution of two half–polarized states lowest in energy with growing aspect ratio
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3 , short–range interaction). Correlation functions are
shown.

remains open, but comparison between systems of more different sizes could be very helpful.

4.4.3 Conclusions

It has been demonstrated that isotropic states like the fully polarized or singlet incompress-
ible ν = 2

3
ones tend to be insensitive to slight deformations. The ’response’ was observed

in the energy of the state and in its correlation functions, where we saw that especially
the short–range behaviour remains basically unchanged. The insensitivity improves with
increasing the system size (number of particles). We also registered some differences be-
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tween the singlet and polarized state: in systems of equal size (area) the former state was
disturbed by smaller deformations. This agrees with our previously mentioned hypothesis
(Sec. 4.1) that the singlet ground state consists of pairs of electrons with unlike spin: since
the typical size of such a pair was rather large (3.4`0), the singlet state will suffer under
the finite size of the system more than the polarized state where the ’relevant particles’
are still electrons (whose ’size’ is about `0)

55.

Investigation of the half–polarized state revealed that while the state is isotropic in a
square cell, it tends to build a unidirectional spin density wave for aspect ratios not far
from one. In this regime, it becomes also degenerate with one other state. Correlation
functions of the both states (in deformed elementary cells) are quite similar to each other.
We suggested that these states have an antiferromagnetic ordering in agreement with both
correlation functions and wavevectors of these two states, k̃ r = (0, π) and (π, π). The
question which state (isotropic or spin wave) is the real ground state in an infinite system
remained unanswered.

4.5 Summary and comparison to other studies

4.5.1 The incompressible states: the polarized and the singlet ones

We studied various properties of the fractional quantum Hall states with spin degree of
freedom at filling factors 1

3
, 2

3
and 2

5
: correlation functions, response to magnetic and non–

magnetic δ–line impurities or to deformation of the elementary cell. Briefly summarized:

• the results are in agreement with the concept of incompressibility of these states and
also (in the case of ν = 1

3
) with some earlier studies, e.g. [109].

• even though these states can be imagined as composite fermion systems with integer
filling, the analogy to Landau levels completely filled with electrons can often be
misleading. For instance: electrons of unlike spin are strongly correlated in the
ν = 2

3
singlet state while they are completely uncorrelated in a ν = 2 singlet state.

• we inferred pairing of spin up and spin down electrons in the ν = 2
3

singlet state.
In the spin–unresolved density–density correlations, this state looks as if the two
electrons in each pair were located exactly at the same position and the pairs then
formed a ν = 1 state. This conclusion was not possible for the ν = 2

5
singlet state

thereby highlighting differences between fillings 2
5

and 2
3

which are very closely related
within composite fermion theories.

55Imagine filling a container once with ten tennis balls (∼ polarized state) or with five footballs (∼ singlet
state). Slightly deforming the container will probably affect the latter system stronger.
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4.5.2 Half–polarized states

We identified a highly symmetric half–polarized state at filling factor 2
3

which could become
the absolute ground state in a narrow range of Zeeman energies (or magnetic fields). Such a
state is completely unexpected in mean–field composite fermion theories. Extending earlier
studies (exact diagonalization on a sphere) we showed that extrapolating the energy of this
state from finite size exact diagonalizations to the thermodynamic limit is problematic and
the question whether the half–polarized state really becomes the absolute ground state
remains open.

Investigations on this state both for short–range and Coulomb interacting systems showed
strong similarities to the incompressible singlet and polarized states at ν = 2

3
. Conse-

quently, we suggested that the singlet and the polarized state coexist within the half–
polarized state. The state might be gapped for short–range interacting electrons but even
if yes, it is probably not gapped for Coulomb interacting systems. These differences in
spectra accentuate the fact that extrapolations to infinite systems should be taken with
extreme caution. It also means, that the definition of the short–range interaction should
be reconsidered as it may be an oversimplified model to study the half–polarized states
(since the mean distance between two minority spin electrons is rather large, higher pseu-
dopotentials should also be taken into account).

The half–polarized state forms a pronounced spin–density wave, or antiferromagnetic order,
when anisotropy is introduced from outside (deformation of the elementary cell) but we
could not conclude whether this spin–wave will be more energetically favourable than the
isotropic form in much larger systems.

4.5.3 Half–polarized states: other studies

Let us first briefly recall other suggestions which appeared on the market since Kukushkin
et al. presented their experiment showing a plateau of the polarization at one half (see
Sect. 2.4). All works mentioned below can be applied both to filling factor 2

3
and 2

5
in

principle. Unless necessary, we will not distinguish between these two cases.

Ganpathy Murthy [70] was attracted by the idea that correlations favour either the spin
singlet or the fully polarized state. At the point where the two ground states cross (recall
Figures 4.21 and 4.1), electrons could prefer to form a translationally non–invariant state
consisting of regularly alternating areas of (locally) singlet and (locally) polarized states
arranged into a partially polarized density wave (PPDW). He argues that this structure
ought to have square rather than a hexagonal symmetry. The energy of the PPDW state
is evaluated within the Hamiltonian theory of composite fermions56 [72] and it is shown
that the PPDW state is stable (against one–particle excitations) and lower in energy than
the (homogeneous) singlet and polarized states. The period of the density wave should be
2
√
π`∗ (see Eq. 3.39) which is 7.93`0 for filling 2

5
and 6.14`0 for 2

3
. Charge modulation in

56It is basically a self consistent Hartree–Fock calculation with composite fermions which are treated in
a concept admitting of vortices bound loosely to electrons.
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the wave should be quite weak (in the order of 1%).

Apal’kov, Chakraborty, Niemelä and Pietiläinen [13] object that the energy of the PPDW
is too high and claim that a homogeneous Halperin state in the two crossing CF Landau
levels (see below) should have a lower energy57. As the mentioned Halperin state cannot
account for the half–polarized states, Apal’kov et al. suggest another candidate for the
half–polarized state, a non–symmetric excitonic liquid. They consider only the ’active
levels’ meaning the two CF Landau levels which cross. These (two) levels have total filling
of one, i.e., there are only Nm electrons for Nm places in the ↑ level and Nm places in the
↓ level. By convention, they define a ↑–particle as an ’electron’ and a missing ↓–particle
as a ’hole’; an ’electron’–’hole’ pair is an ’exciton’ and a pair of a ↓–particle and a missing
↑–particle is ’vacuum’. Owing to the constraint N↑ +N↓ = Nm, one–particle states can be
mapped onto a system consisting solely of ’vacua’ and ’excitons’. The partial filling factor
N↓/Nm ∈ [0; 1] then gives simultaneously the polarization and the number of ’excitons’ (by
Nm). Note, that ’excitons’ are bosons by virtue of an integer spin.

From this viewpoint, the ν = 1 quantum Hall ferromagnet (being described by the Halperin
(1, 1, 1) state) is a Bose condensate of excitons. In that case, all the excitons have angular
momentum58 L = 0 and they are noninteracting. Apal’kov et al. suggest that the half–
polarized state at ν = 2

3
or 2

5
could be a condensate of excitons with L = 1 (for which they

call it nonsymmetric).

To support this idea, they perform exact diagonalizations in a ν = 1 system with several
model interactions (which are meant to describe the two — active — crossing CF Landau
levels). These interactions are derived from the Coulomb potential with suppressed short–
range component, probably (without justification) with the intention to describe interacting
composite fermions. Stability of the half–polarized state is substantiated by showing that
the energy versus polarization curve has a downward cusp at half–polarization. On the
other hand, g↑↓(0) 6= 0 in the half–polarized state indicates that ’excitons’ in it do not have
L = 0 59.

Finally, the idea of Eros Mariani [65] should be presented. Parallel to the previous two
works, the two ’active’ crossing CF Landau levels are considered. An assumption is made
that they both have a partial filling of 1/2 rendering (after a second Chern–Simons trans-
formation) two Fermi seas of ’free’ composite fermions (of second generation). Mariani et
al. show that interaction of these objects with fluctuations of the gauge field leads to an
attractive effective interaction between particles with opposite spin and momentum. In
analogy to superconductive pairing, this implies a gapped ground state. An estimation of
the gap is given.

57Without invalidating the following results, this estimation seems to be however incorrect [71].
58This is most easily seen by the fact that g↑↓(0) = 0: on an ’electron’ (↑ particle), there is no ↓ particle,

i.e. there is a ’hole’. In an exciton (hydrogen atom), the only wavefunctions with ψ(r = 0) 6= 0 are
those with L = 0. In turn, g↑↓(0) = 0 follows from the fact that the Halperin state has maximum
polarization and thus the spatial part of the wavefunction must be totally antisymmetric.

59The particular value of L = 1 is demonstrated by other means.
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4.5.4 What are the half–polarized states then?

Presently, it is not clear which (if any) of the candidates proposed in the previous subsection
describes the half–polarized reality. As Murthy correctly mentions, the final instance of
judgement would be an exact diagonalization in a large enough system. Unfortunatelly, we
dispose of systems not larger than 12 particles. Nonetheless let us compare the candidates
with what was presented earlier in this chapter.

The downward cusp in energy–versus–polarization dependence cannot be assured by the
calculations presented here. However, if the lowest half–polarized state indeed becomes
the absolute ground state at the transition between the singlet and polarized state (see
extrapolations in Fig. 4.22), the cusp is likely to be present. In the other case, it will turn
into an upward cusp, as the calculated spectra suggest.

Results presented here indicate, that the half–polarized ground state ( 2
3
) has (k̃ r

x, k̃
r
y) =

(π, π) and that it shows similarities to the singlet and polarized ground states (Fig. 4.24).
In particular g↑↓(0) ≈ 0, which is in contrast with the model of a nonsymmetric exciton
liquid (cf. the correlation functions in [13]). Comparison between short–range interaction
and Coulomb half–polarized states (Fig. 4.2.6) suggest that, similar to the Laughlin state,
the short–range part of the interaction plays the major role. From this point, the model
discussed by Apal’kov et al. [13] seems to be more appropriate rather for some other
systems.

Positioning of the half–polarized state out of the centre of the Brillouin zone could be an
indication that it is indeed a standing wave. This is also supported by spectral properties
when the elementary cell is deformed (Fig. 4.44): the two lowest states becoming degen-
erate at aspect ratios larger than 1.4 could be a charge/spin–density wave (note also the
correlation functions, Fig. 4.45). The fact, that the energy of the ground state lowers with
increasing aspect ratio could indicate that this state is more stable than an isotropic one.
However, caution is advised here, since the singlet incompressible ground state does the
same (Fig. 4.42) while its isotropic form is the true ground state.

Theory of the ’superconductive’ pairing was not addressed so far. Comparisons on the
level of correlation functions, possibly in k r–space, are in principle possible, but quite
complicated because of the two Chern–Simons transformations involved.
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5 Quantum Hall Ferromagnetism at
ν =

2

3
?

5.1 Transition between the singlet and polarized

incompressible ground states

Also this Chapter starts from the fact that there are two distinct ground states at filling
factor 2

3
: the spin–singlet and the fully polarized one. Their structure was studied in

Chapter 4 and we also recalled their interpretation in terms of composite fermions (Fig.
4.1). Whichever of these two becomes the absolute ground state depends on the Zeeman
splitting which favours spins aligned parallel to magnetic field. The singlet state was the
lowest in energy for vanishing Zeeman splitting. However, increasing the Zeeman splitting,
its energy remained unchanged while the energy of the fully spin polarized state decreased
and eventually this other state became the absolute ground state. This simplest scenario,
sweeping the Zeeman energy while magnetic field is kept constant, is not very usual, albeit
it is experimentally possible (Subsect. 2.3). However, even if we simply sweep the magnetic
field (and keep constant filling ν = 2

3
which requires a simultaneous change of the electron

density), the Coulomb energy of the singlet state changes ∝
√
B and that is slower than

the Zeeman energy of the polarized state in the limit of large B; the qualitative discussion
above is thus still valid. The total energy bilance of the two ground states (in SI units) is
thus

polarized: Ep(B) =
e2

4πε`0
EC

p − gµBNeB = −|Cp|
√
B − |Dp|B ,

singlet: Es(B) =
e2

4πε`0
EC

s = −|Cs|
√
B ,

where Ne is the number of particles and EC
p > EC

s are the total Coulomb energies in units
e2/4πε`0 (as calculated by exact diagonalization, for example; not per particle). Obviously,
Ep(B) < Es(B) for B large enough. What the critical field Bc is, where both energies are
equal, depends obviously on (EC

p − EC
s )/Ne. This quantity is accessible only numerically

and it depends on Ne although we may hope that it stays nearly constant for Ne large
enough.

Figure 5.1 demonstrates this singlet to polarized transition for 4, 6, 8 and 10 Coulomb–
interacting electrons on a torus. Note that energy units in Fig. 5.1, e2/(4πε`0) ∝

√
B,
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Figure 5.1: Energies of low lying states at ν = 2
3 in a homogeneous Coulomb–interacting system

with Zeeman field: transition from an incompressible singlet ground state to a fully polarized
incompressible ground state. Different numbers of particles in a square with periodic boundary
conditions are considered, the scenario is however the same in all cases.

change with magnetic field. In these units, the potential (Coulomb) energy of all states
stays constant (singlet state) and Zeeman energy scales as ∝ e2/(4πε`0) ·

√
B.

A close look at Fig. 5.1 shows that the magnetic field Bc, at which the ground state
transition takes place, varies non–monotonically. However, an extrapolation of energies of
the two ground states to 1/N → 0 allows for a rough estimate of Bc ≈ 7 T in an infinite
system (see also Subsect. 4.2). This is in quite good agreement with experiments [55],
even though in some samples Bc as low as ≈ 2 T was observed [56], [90]. This could be
due to deviations from an ideal 2D system (see Subsect. 5.2).

In following Sections I will investigate the ground state and low–lying excited states near
to this transition. The central question is whether there are some spin structures in these
states. In particular, I was looking for signs of domain formation. Let me explain why.

The ground state is always either a singlet or fully polarized in a homogeneous system;
the energies of these two states are equal at the transition. This is similar to an Ising
ferromagnet, if we label the polarized state by pseudospin up and the singlet state by
pseudospin down. In an infinite system at non–zero temperature, however, the Ising ferro-
magnet prefers a state with domains (some with (pseudo)spin up, some down) to the two
homogeneous states. First because entropy of the former is higher (cf. [47]) and second
because the total magnetization of a domain state is approximately zero (while, locally,
most spins are parallel to their neighbours) thereby minimizing the energy of magnetic
stray fields [14]. None of these two mechanisms was included in the studied model of
a ν = 2

3
system, nevertheless, I asked how the system will respond if such a ’domain–

inducing’ mechanism is modeled by a magnetic inhomogeneity. Will the ground state split
into regions of different spin polarization? With this question in mind, the inhomogeneity
should prefer the singlet ground state in one part and the polarized ground state in another
part of the system.

From the experimental side, there are quite strong hints at ferromagnetism (Sect. 2.3).
Hysteresis, saturation (in time) of magnetoresistance, Barkhausen jumps etc. hint at
ferromagnetic states with domain structure near the transition point. The big challenge

138



for a theorist is thus either to support these views or give an alternative explanation of the
observed phenomena.

5.2 Attempting to enforce domains by applying a suitable

magnetic inhomogeneity

This and the following sections will be concerned with various attempts to induce the
formation of domains close to the transition point. At the beginning we must discuss (i)
how to enforce domains (what to add to the Hamiltonian, form of inhomogeneity) and (ii)
how to detect them (which quantities should be observed).

5.2.1 First attempt: the simplest scenario

The simplest scenario is sketched in Fig. 5.2. In the homogeneous case, the Hamiltonian
consists of two terms

H = HCoul +HZeeman =
e2

4πε

∑

i<j

1

|r i − r j|
+

∑

j

g0µBBσ
j
z , (5.1)

the Coulomb interaction and the Zeeman term. If the Coulomb energy is fixed, energies of
the two incompressible ground states can be shifted with respect to each other by varying
the Zeeman term. If B is fixed at B = Bc (i.e. the two ground state have the same energy),
the Zeeman energy can be still varied by means of the g factor. Decreasing g slightly, the
singlet state will become the absolute ground state, increasing g the polarized state will
prevail.

The idea of a ’domain–enforcing’ inhomogeneity is to the turn the constant g into g(xj) =
g0+g1(xj) in Eq. 5.1 and g(x) > g0 in one part of the system whereas g(x) < g0 in another.

Or, speaking in terms of Fig. 5.1: we slightly1 modulate the magnetic field B: in one part
of the system we consider B > Bc and in another B < Bc.

The full Hamiltonian to consider is thus

H = HCoul +HZeeman +HMI , (5.2)

HMI =
∑

j

g1(xj)µBBσ
j
z , 〈ϕi|HMI |ϕj〉 = δijEMI





i = 0, 1, . . . , 1
4
Nm : 1

i = 1
4
Nm + 1, . . . , 3

4
Nm : −1

i = 3
4
Nm + 1, . . . , Nm : 1

where |ϕj〉 is a one–particle state localized around x = (j/Nm)a (Eq. 3.40). This roughly
corresponds to g1(x) having a ’rectangular wave’ form (g1 = 1 for 0 < x < 1

4
a and

3
4
a < x < a and g1 = −1 for 1

4
a < x < 3

4
a).

1By slightly we mean that only the spin degree of freedom is affected, not the orbital. This is then of
course just an approximation.
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Figure 5.2: An idea of how to enforce domains at the crossing of singlet and polarized ground
states of ν = 2

3 . An average Zeeman field is chosen so that the both homogeneous states have
the same energy. Modulation of the Zeeman field prefers the singlet state ’in the middle’ and the
polarized state ’at the edges’ (note however the periodic boundary conditions).

Basic result of this model is: the ground states slightly change in accord with the inho-
mogeneity and nothing peculiar happens near the transition. As we sweep the magnetic
field through B = Bc, the singlet state evolves ’smoothly and monotonously’ into the po-
larized state, without any remarkable intermediate states, even in the presence of a weak
inhomogeneity.

Typical results backing this conclusion are shown in Fig. 5.3. A magnetic inhomogeneity
(Eq. 5.2) was applied to a ten–electron Coulomb–interacting system and its strength EMI

was chosen to be ∼ 10% of the incompressibility gap. Regarding the ground states and the
gap, the spectrum remains virtually unchanged (see Fig. 5.9(a) for a comparison of the
spectra between homogeneous and inhomogeneous systems). Looking now at the singlet
and polarized ground states, we find a spatially varying spin polarization2 n↑(x)/n(x),
Fig. 5.3(a). However, the mean values of the polarization still remains at 0.5 (1) as it
was in the homogeneous singlet (polarized) state, Fig. 5.3(a), leftmost (rightmost) inset.
The polarization of the ’transition state’ has a mean value of 0.75, i.e. just in the middle
between the polarized and the singlet state. This is not surprising, since the ’transition
state’ was taken to be a symmetric linear combination of the two crossing states (see
Subsect. 5.2.2). What is more interesting, is the variation of the polarization around the
mean value (Fig. 5.3(b)): in this point, the ’transition state’ lies just between the singlet
and polarized states. Contrary to what we observe in Fig. 5.3(a) (middle inset), formation
of domains near the transition would mean that the polarization of the transition state
should vary between 0.5 and 1.

2Throughout this Chapter, we will refer to p(x) = n↑(x)/n(x) as to polarization. In the literature, another
definition is more common, P (x) = [n↑(x) − n↓(x)]/n(x), both quantities are, however, equivalent:
P (x) = 2p(x) − 1. In other words, p (our definition) ranges from 0 to 1 whereas P ranges from −1 to
1.
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Figure 5.3: Response of a ten–electron system to a weak (EMI = 0.002) magnetic inhomogeneity
of the form given in Eq. 5.2. No sings of domain formation observed: the transition state does
not respond stronger than the incompressible states.

It could be that the system is simply too small for domains to evolve near the transition.
However, this does not seem to be the case, since the response to the inhomogeneity does
not grow with increasing system size but rather stays about the same (Fig. 5.3(c)).

Naturally, it could be that just the particular parameters of the model presented in Fig.
5.3 were chosen unluckily. Let us therefore discuss the inhomogeneous ν = 2

3
systems more

thoroughly.

5.2.2 Turning crossing into anticrossing: inhomogeneous inplane field

At B = BC (blue point in Fig. 5.3(a)) there is actually a crossing between the singlet
and polarized ground states rendering the transition jump–like just as in a homogeneous
system. For the transition state (the blue curve in Fig. 5.3(b)), we took a fifty-fifty linear
combination of these two ground states. We can say that the transition occurs in an
infinitesimally small interval of magnetic field around Bc.

In a realistic system, the transition is unlikely to happen all at once in the whole system. I
can imagine two mechanisms which cause a more continuous transition in a finite interval
of B.

• ’weak inhomogeneities’: spectrum (as a function of B) looks basically the same as in
Fig. 5.3(a), but there is an anticrossing at B ≈ BC .

• ’strong inhomogeneities’: the energy gap between the pair of the crossing ground
states and the excited states at B = Bc (Fig. 5.3(a)) is reduced compared to the
incompressibility gaps of the singlet and polarized ground states far away from BC ,
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i.e. for B → 0 and B → ∞. Under influence of stronger inhomogeneities, it could
be that some originally excited state (or more states) become ground state around
B ≈ BC while singlet and polarized incompressible states remain lowest in energy
only far away from BC . If this turns out to be the case, it could be that more states
(possibly of different Sz) can be mixed by the inhomogeneity, eventually rendering
the ground state compressible.

In this Subsection we will discuss the former possibility, the latter will be the topic of
Subsect. 5.2.3.

The ground state transition in Fig. 5.3(a) is a crossing even in the presence of the magnetic
inhomogeneity HMI (Eq. 5.2) because the symmetry of HMI is too high and it does not
mix the two crossing ground states. In particular, [HMI , S

2] 6= 0 but [HMI , S
z] = 0 and

the singlet state |S〉 has Sz = 0 whereas the polarized state |P 〉 is Sz = Ne/2
3. The

inhomogeneity HMI mixes states with different S but only those with equal4 Sz.

How to break this symmetry by some plausible term in the Hamiltonian and what happens
then?

Weak inhomogeneous5 inplane magnetic fields will do. This scenario is not unlikely to oc-
cur in a realistic system. It merely means, that the extra fluctuating magnetic field (which
speaks only to spins) is not pointing exactly in the direction of the (strong) external mag-
netic field causing the Landau level quantization. Existence of such symmetry–breaking
inhomogeneities is very likely in realistic systems, although they might be very weak (e.g.
hyperfine interaction with nuclear spins).

Let us consider a Hamiltonian with inplane magnetic inhomogeneities (IMI) of the form

H = HCoul +HZeeman +HMI +HIMI , (5.3)

HIMI =
∑

j

g0µBBx(xj)σ
j
x , 〈ϕi|HIMI |ϕj〉 = δijEIMI





i = 1
4
Nm : 1

i = 3
4
Nm : −1

otherwise : 0

Main claim of this Subsection is that weak HIMI only opens an anticrossing at the ground
state transition. In other words, the relevant states still basically form a two–level system
comprising of the (slightly disturbed) singlet and polarized ground states. The ’width’
of the anticrossing (measured either by the level splitting, Fig. 5.4(b), or by the range
of magnetic field where 〈Sz〉 noticeably changes, Fig. 5.9) grows with increasing EIMI

(strength of the inplane field inhomogeneity).

This fact is best demonstrated in Fig. 5.4. Inhomogeneities are weak there (compared to
both incompressibility gaps EP

g ≈ ES
g ), i.e. EMI , EIMI � Eg, and the spectrum remains

3Sz|S〉 = 0 and Sz|P 〉 = (Ne/2)|P 〉, therefore 〈P |HMI |S〉 = (Ne/2)−1〈P |SzHMI |S〉 =
(Ne/2)−1〈P |HMISz |S〉 = 0.

4The fully polarized ground state (S = Ne/2, Sz = Ne/2) has also an Sz = 0 counterpart, since the
homogeneous Hamiltonian commutes with spin lowering operator. This state, however, is a highly
excited state at B ≈ BC , since its Zeeman energy is zero.

5Inhomogeneity of this field is not necessary for breaking the symmetry.
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Figure 5.4: Response (of an eight–electron system) to a weak inhomogeneity in perpendicular and
inplane direction (Eq. 5.3). Perpendicular component EMI is the same as in Fig. 5.3. Exponent
four comes from Ne/2, see explanations in the text.

almost unchanged (Fig. 5.4(a)). Only directly at B ≈ BC an anticrossing opens and the
level separation ∆E grows with increasing EIMI (and EMI is kept constant), Fig. 5.4(b).
Even for a quite strong inplane inhomogeneity (of the order of Eg), the level splitting
remains small (� Eg). The reason for this is simple: HIMI couples only states which
differ by ±1 in Sz, since it is a one–particle operator (allowing for only one spin flip at
once). Thus, a coupling of the two ground states occurs for a Ne = 8 system first in the
fourth order of perturbation theory (Ne = 8 implies Sz = 4 for fully polarized system).
This interpretation fully agrees with the finding ∆E ∝ (EIMI)

4 (Fig. 5.4(b)). We can
therefore expect that, for an inhomogeneity of constant strength, the level splitting will
vanish exponentially at N →∞ as long as EIMI is much smaller than the gap at B ≈ BC .

Another view at the crossing for EIMI 6= 0 is presented in Fig. 5.5. If we focus on
the ground state and sweep B through BC , we may observe how 〈Sz〉 (or 〈S〉) of the
ground state smoothly passes from 0 to Ne/2 = 4. The transition observed in this way
(i.e. 〈Sz〉 ≈ 2 = Ne/4) coincides with transition observed in spectrum (the ’anticrossing
region’), Fig. 5.5(a), 5.5(b). The larger EIMI , the smoother the transition and the broader
the range of B in which the transition occurs, Fig. 5.5(c).

So as to conclude: most importantly, an inplane magnetic inhomogeneity (IMI) transforms
the ground state transition into an anticrossing. This effect should fade away for larger
systems (Ne � 1). IMIs also shift the transition point BC to lower fields, Fig. 5.5(c),
but this effect seems to be rather small for inhomogeneity strength not exceeding the
incompressibility gap.
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Figure 5.5: Inplane magnetic inhomogeneity (IMI) turns the crossing between the singlet ground
state and the polarized ground state, Fig. 5.4(a), into an anticrossing. The cross–over between
the two ground states can be observed either in the spectrum or in 〈Sz〉 of the ground state as B
is swept through Bc.

5.2.3 Strong inhomogeneities

Let us again suppress inplane inhomogeneities and let us study stronger perpendicular
inhomogeneities of the form Eq. 5.2.

If the strength of the ’rectangular wave’ impurity becomes comparable to the gap at B ≈
BC , EMI ≈ Eg, the situation at the ’singlet-to-polarized’ transition changes dramatically.
The excitation gap closes and many states of different spin polarizations crowd near to
the ground state. Even at zero temperature and in spite of lack of anticrossings of states
with different Sz (i.e. Sz is a good quantum number again), the transition becomes more
gradual, when measured by Sz of the ground state, Fig. 5.6(c).

Primarily, this is owing to the S = 1 state which profits best from the inhomogeneity.
Keeping in mind its value of k r = (1.07, 0)`−1

0 , this state seems to be a spin density wave
in x–direction pinned by the inhomogeneity potential. However, states with other spins
are very near to it.

This T = 0 transition can be again smoothened by an inplane inhomogeneity, as shown in
Fig. 5.7. Here, the transition Sz = 0→ 1 becomes much more gradual than the transition
Sz = 1→ 4. Reason for this is again that the inplane inhomogeneity couples directly only
states with ∆Sz = ±1. Other quantities than just Sz (e.g. polarization) are shown in Fig.
5.9.

A strong magnetic inhomogeneity has also another quite pronounced consequence: the
singlet-polarized ground state transition BC shifts to higher magnetic fields, Fig. 5.6.
This effect is considerably stronger than the shift to lower fields in case of the inplane
inhomogeneity (Fig. 5.5). Origin of this shift to higher B is the decreasing energy of the
singlet ground state, Fig. 5.6 or Fig. 5.8(d).

Let us look at this issue more closely. Increasing EMI , there is no apparent transition
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Figure 5.6: Stronger MI’s bring another ground state into play (Sz = 1) and the transition from
the singlet to the polarized ground state becomes more gradual.
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(crossing) in the ground state of the Sz = 0 sector. However, the total spin of the ground
state increases from zero and saturates around S ≈ 1.6 for EMI ≈ 0.02, Fig. 5.8(d). No
later than at this point, the label ’singlet ground state’ becomes inappropriate. At such
values of EMI , the polarization achieves the maximum variation between zero and one,
Fig. 5.8(a). The eight electrons, four with spin up, four with spin down, split into two
nearly independent groups: the spin up (down) electrons gather in the region where g1(x)
is positive (negative), see Eq. 5.2. Such a state where e.g. no spin up electrons occur in
the ’wrong region’ (yellow line in Fig. 5.8(c)) is obviously no longer even remotely related
to the homogeneous incompressible state, even though it has Sz = 0. Rather, we could
interpret it as two ν = 1

3
systems living next to each other: one with spin up, another

with spin down. The strong spatial variation of density in this system, Fig. 5.8(b),
indicates that electrons try to avoid the ’interface region’; an alternative way to see this
is to compare the ’spin–down domain region’ (seen in the polarization, Fig. 5.8(a)) with
the density of spin down electrons, Fig. 5.8(c). However, we must always be aware that
we investigate only a finite system which are too small to observe the ’inside’ of a domain
where we expect the density to be constant (in a sufficiently large system, the maximum in
Fig. 5.8(c) should spread into a plateau). Therefore, also conclusions about the interface
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Figure 5.8: Destruction of the singlet state by very strong magnetic inhomogeneities: the system
splits into two domains, one with spin up, another with spin down and the electrons avoid the
’interface region’ (minima in the density).

region must be accepted with caution.

5.2.4 Quantities to observe

Polarization is the most natural quantity to study when we are looking for domains of
polarized and singlet states. Nevertheless, it could be useful to search for other observables
as they might bring some more information on what is happening in the states.

Here, I suggest to study the local expectation values (or densities) of otherwise ’global’
operators such as Sz or S2. These are defined by

Sx,z(r ) = Sx,z ⊗ n(r ) , S2(r ) = S2 ⊗ n(r ) , where n(r ) =

Ne∑

i=1

δ(r − r i)

and they should be plotted in the form Sz(r )/n(r ). Their meaning is the following: Imagine
an n–electron state which is an equal–weight superposition of two states: one localized in
the region 0 < x < a/2 which is fully spin polarized (S1 = n/2) and another localized in
a/2 < x < a which is a spin singlet. This state is Sz = n/4, yet its Sz(x)/n(x) is equal to
n/2 or 0 in the two respective regions.

What these quantities reveal is demonstrated in the case of a strong magnetic inhomo-
geneity, both perpendicular and inplane, Fig. 5.9. The low–energy part of the spectrum
does not change considerably, Fig. 5.9(a), even though the singlet state was separated
almost completely into a spin–up and a spin–down domain by the inhomogeneity (seen in
the polarization, Fig. 5.9(b)). Note that again the states near the transition have smaller
variations in the polarization than the ’inhomogeneous singlet–state’.

The lower two plots of Fig. 5.9(b) show Sz(x)/n(x) and Sx(x)/n(x). Obviously, Sz stays
quite constant with x, at least on the scale ranging from Sz = 0 (singlet) to Sz = 4 (fully
polarized). Albeit polarization (or relative density of spin down electrons) varies strongly,
Sz(x) ≈ const. This indicates that the state does not really separate into domains of locally
different Sz. Observation of the quantity S2(x) (not shown) suggests the same conclusion.
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Figure 5.9: Response to strong inhomogeneity of the form in Eq. 5.3. EMI = 0.02, EIMI = 0.005.

Local expectation values of Sx indicate that states near the transition are more susceptible
to inplane inhomogeneities. At any B, this response is much stronger than for perpendicu-
lar inhomogeneities. This is understandable: if we imagine a ’classical’ spin vector pointing
in z–direction and accept that it fluctuates by a small angle ∆ϕ, then Sz ∝ cos ∆ϕ ≈ 1
whereas Sx ∝ sin ∆ϕ ≈ ∆ϕ.

5.2.5 Different geometries of the inhomogeneity

Disregarding entropy, it is unlikely that a domain state will be the ground state in a
homogeneous system. If it is an excitation we can hope to favour it energetically by
including a suitable inhomogeneity like HMI in Eq. 5.2. We do not a priori know, however,
what ’suitable’ means. So far, we divided the system into two equal parts by HMI .

How the singlet state responds to inhomogeneities of different forms is shown in Fig. 5.10.
Different lines correspond to the ’rectangular wave’ inhomogeneities with different ratios
of the ’plus’ and ’minus’ parts. All these inhomogeneities are thus a single stripe (per
elementary cell) parallel to y of different width.

Also, response to HMI consisting of two stripes is shown (i.e. ’rectangular wave’ with half
period).

Responses are basically very similar to each other and it seems that having focused on HMI

of the form of Eq. 5.2 we did not choose a particularly clumsy one. One particularly inter-
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Figure 5.10: Response of the singlet to various weak magnetic inhomogeneities. The inhomogene-
ity is similar to the one in Eq. 5.2 but it divides the system into two areas (stripes) of various
ratios (6 : 6 through 2 : 10) or it consists of two stripes with size 3 : 3 : 3 : 3.

esting information which can be extracted from Figure 5.10 is that polarization response
is always at least an order of magnitude larger than in density (10% against 0.3% in the
present case). This only confirms the conclusion of Subsection 4.3.2 : even though singlet
incompressible states try to maintain constant density, they can be fairly easily polarized.

A pronounced example of the influence of the form of the inhomogeneity are the half-
polarized states, Fig. 5.11. The lowest level in the S = 2 sector is six–fold degenerate
(factor of three from the centre-of-mass and factor of two from the relative part). The two
states are mirror images of each other with respect to the diagonal of the elementary cell.
We split them into two groups J = 2, 6, 10 and J = 0, 4, 8 (within each group the states
differ only by the center-of-mass part) and subject each group to one-stripe and two-stripe
inhomogeneities (stripes are always along y, Fig. 5.10(c)).

One group (J = 2, 6, 10) responds strongly to the two-stripe HMI and is left almost un-
changed by the one-stripe HMI , upper row in Fig. 5.11(b). Nearly the opposite is true for
the other group. This gives a clear picture of the structure of these states. They are spin
density waves with two periods in one direction and one period in another direction. This
is fully in agreement with the spin–spin correlation functions (not shown). This conclusion
is also underlined by the markedly lowered energy of the J = 2 state when it is addressed
by the two-stripe inhomogeneity, Fig. 5.11(a). This is a practical demonstration of one
spin-density-wave state selected by an impurity from a degenerate manifold.

5.2.6 Transition at nonzero temperature

Regardless of how intensely we try to help an eventual domain state to become the ground
state, it may still be, that it is hidden among the excitations. Therefore we may try to
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Figure 5.11: The half–polarized states (S = 2) and their response to a magnetic inhomogeneity
of the form of one or two stripes.

take the excited states into account by means of thermal averaging.

The strong impurity mode (EMI = 0.02) was chosen for this study. Three–fold degeneracy
(in center-of-mass) of the incompressible ground states is lifted but the level splitting is
still smaller than the incompressibility gap (cf. the black and blue points in the upper plot
of Fig. 5.9(a) around B = 10 T).

Various temperatures were considered: kT � Eg means than we do not average even over
all states of the originally degenerate triple. Knowing that Eg means the gap energy at
B → 0 or B →∞, other temperatures shown in Fig. 5.12 are self-explaining.

Judging by polarization n↓(x)/n(x), the state at the transition approaches a situation
which we could call ’domain’. In the middle (x/a ≈ 0.5), the polarization drops to zero
and only spin up electrons are present. In the other region (x/a ≈ 0 ≡ 1), polarization is
about 0.5, meaning that the number of spin up as spin down electrons in this area is the
same.

We should note though that an inhomogeneity which is strong enough to produce such
nice ’domains’ is also strong enough to change the originally incompressible singlet state
completely, Fig. 5.12a. In other words, the response of the system at the transition is still
weaker than the response of the singlet state. This manifests that spontaneous build-up of
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domains is not very likely within this model.

In the following Section we will try to suggest slightly different models which may put
us on the trace of states which exhibit nontrivial behaviour at the transition between the
incompressible singlet and polarized ground states.

5.3 Systems with short range interaction

As far as the transition between singlet and polarized ground state is concerned, the most
obvious feature of the ν = 2

3
Coulomb–interacting systems is the energy ’gap’ which sep-

arates the two degenerate ground states from excited ones even at the very crossing, Fig.
5.13(a) (or also 5.1). In the previous section we demonstrated that this picture may change
when fairly strong magnetic inhomogeneities are applied, Fig. 5.6. It also completely
changes if we replace Coulomb by short–range interaction, Fig. 5.13(b).

Let us first concentrate on the calculated spectrum of the homogeneous system with short–
range interaction, Fig. 5.13(b). Again, we observe a gapped ground state with maximum
spin and zero spin in the limit of B → ∞ and B → 0, respectively. In between, however,
states with different spins become the absolute ground states. Aforemost, it is the half–
polarized state (S = 2), although states with other spins (S = 1 and 3) are not very far.
Alternatively, this can be expressed by the B–dependence of the spin of the ground state,
Fig. 5.14(a).

The half–polarized states have been extensively discussed in Sec. 4.1 where they were
studied as ’zero–temperature candidates’ for the ground state in homogeneous systems.
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Figure 5.13: Spectrum of a homogeneous system with Zeeman splitting (8 electrons, ν = 2
3).
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Figure 5.14: Spectrum and the expectation value of the spin in the ground state in short–range
interacting systems (eight electrons).

However, since inhomogeneities couple the ground state to the excited states, the properties
of the lowest–lying state will not be determined solely by the those of the ground state.

Spectral properties of the short–range interacting (SRI) system subjected to a ’perpen-
dicular’ magnetic inhomogeneity (Eq. 5.2) are summarized in Fig. 5.14. In a similar
fashion as for the Coulomb–interacting systems, states with other spins become the abso-
lute ground state in some range of the magnetic field (cf. Fig. 5.6). This is also manifested
in the expectation value of spin (or Sz) of the system even at nonzero temperatures: most
significant is, however, still the ’half–polarized’ plateau Sz(B) ≈ 2, Fig. 5.14(d).

After this introduction let us look at the inhomogeneous states themselves. Their prop-
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erties are highlighted especially in comparison to the Coulomb interacting (CI) states.
When subjected to a ’rectangular cosine’ magnetic impurity, those (CI) states showed a
smooth monotonous transition from the singlet to the polarized state. The singlet was
most strongly affected by the inhomogeneity, the polarized state was not affected at all (it
was ’frozen’ by its symmetry6) and the transition state was just in the middle. This is the
finding both at T = 0, Fig. 5.3(b), and at temperature low enough to average only over
the three states which were degenerated in the homogeneous system, Fig. 5.15(a).

The SRI systems give a different view: the response to the inhomogeneity is slightly
stronger at the transition than in the singlet state, Fig. 5.15(a) (note the inset: the
blue curve has a little bit larger amplitude than the red one). This is not very surpris-
ing given that there are quite many states near the ground state in the transition region.
At slightly higher temperature (where we average over about 10 states in the singlet and
polarized limit), this distinction between Coulomb and short–range interacting systems
weakens, Fig. 5.15(b).

Regarding the Figure 5.15, I would like to stress once again, that the ’transition states’ for
the Coulomb and the short–range interaction are completely different. In the former case,
this state is basically a superposition of the singlet and the polarized states, whereas it is
a half–polarized state (Sz = Ne/4) for the SRI.

It seems we are on the track of the domain build-up here. In an ideal case, we would expect:
negligibly affected singlet and polarized states while the polarization of the transition state
varies between 0 (polarized domain) and 0.5 (singlet domain). Back in reality, however, we
are still very far from such behaviour as the difference between polarizations of the singlet
and transition state is quite small. Nevertheless, the direction seems correct, contrary to
the Coulomb interacting systems. We may therefore conclude:

• if nontrivial effects at the transition are expected, there must be more states involved
than just the singlet and polarized ground states;

• it is likely that the half–polarized states play a major role;

• at low temperatures inhomogeneous states as in Fig. 5.15(b) can be observed simul-
taneously with a plateau in Sz(B), Fig. 5.14(d).

The last point is a consequence of the fact that not only the ground state but also the
lowest excited states have Sz = 2 in a part of the transition region, Fig. 5.13(b).

6The polarized state has all spins up, Sz = Ne/2. Since magnetic inhomogeneity of the form in Eq. 5.2
preserves Sz , it does not couple the polarized state with any states which contain spin down electrons,
since such a state must have Sz < Ne/2.
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Figure 5.15: Short–range interacting system with strong inhomogeneity (Eq. 5.2, EMI = 0.02):
polarization in the singlet sector, around the transition and in the polarized sector; cf. spectrum
in Fig. 5.14(c). Insets show how polarizations fluctuate around anticipated mean values (0.5,
0.25 and 0 for the singlet, transition and polarized state).

5.3.1 Comments on the form of the short–range interaction

For a short–range interaction, I chose the form described in Subsect. 3.3.6, Fig. 3.7b. The
basic idea there was to keep the pseudopotentials7 V0 and V1 at their normal values while
setting the others to zero. Reasons for doing so were given in Sect. 3.3.

As far as incompressible liquid states are concerned, not much happens during such ’pseu-
dopotential engineering’: the best measure for this are directly the density–density corre-
lation functions, Fig. 4.12. The good match between correlation functions of Coulomb–
and short–range–interacting states agrees with the common claim that their energy is de-
termined mostly by effects occurring at short distances. Also excitation energies remain
essentially unchanged as long as ’zero momentum’ states are considered (as opposed to
charge or spin density waves).

What strongly changes is the energy difference between the polarized and singlet state: it
is 0.0632 for Coulomb and 0.3693 for short–range interaction (in an eight–electron system,
with zero Zeeman energy). This happens because the average Coulomb potentials felt by
electrons in a singlet state and in a spin polarized state differ: roughly, we take the average
over set {V0, V1, 0, 0, . . .} in the former case (all m’s allowed) and over {V1, 0, 0, . . .} in the
latter case (only odd m’s allowed). This is a fundamental problem: requirement of equal
averages is not compatible with preserving the ratio of V0 and V1 as in a Coulomb interacting
system8. Therefore, with short–range interactions, we must be very cautious whenever we

7V0 and V1 give the energy of two interacting particles in the state with angular momentum 0 and 1.
These are the states with smallest and second smallest interparticle separation possible and only the
latter one is accessible if the particles have the same spin (relative wavefunction corresponding to V0

is symmetric).
8We would have to use higher Haldane potentials to achieve this, losing thereby the simplicity of the
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compare absolute energies of states with different spins (and thus parity properties of the
wavefunction). Namely, position of the singlet-polarized transition depends directly on the
energy difference of the singlet and polarized ground state (see Sec. 5.1).

This warning applies to spectra in this subsection (Fig. 5.14, Fig. 5.13(b)). However,
the polarizations in Fig. 5.15 do not suffer from this, provided that half–polarized states
indeed become the absolute ground state somewhere around the transition.

5.4 Systems with an oblong elementary cell

In this Chapter, we only considered square elementary cells a by a so far. If we somehow
(e.g. by means of a magnetic inhomogeneity) manage to split such a system into two equally
large domains, their size will be a/2 by a, cf. Fig. 5.10(c). Consequently, the spin singlet
and spin polarized states which we expect to appear in these domains would necessarily
have to be deformed as in a cell of aspect ratio 1 : 2. In principle, this could even suppress
the formation of such domains or at least shift them among higher excited states9. In the
following Section we will investigate systems in a rectangular cell with aspect ratio 2 : 1
which have the possibility of splitting into two square domains. All results in this Section
refer to Coulomb interacting systems.

5.4.1 Overview of the transition: which states play a role

Going from square elementary cell to aspect ratio 1 : 2, the overall view of the transition
changes. The crossing between singlet and polarized incompressible states is no longer well
separated from excited states, Fig. 5.16.

Similarly, as for short–range interaction, states with different spin appear near the transi-
tion: most prominently S = 1 and S = 2. Again (cf. Figs. 5.6, 5.14) and these states are
promoted by the ’rectangular wave’ perpendicular magnetic inhomogeneities, Fig. 5.17.
A consequence of this is a gradual change of the spin in the ground state as we sweep
magnetic field (or simply increase Zeeman energy). Here, I would like to point out the
difference of the present case to the Coulomb interacting system in a square elementary
cell (Fig. 5.6): for an oblique elementary cell, (i) the S = 1 state becomes the absolute
ground state near the transition even in homogeneous systems and (ii) a much weaker
inhomogeneity is needed to make the S = 2 state the absolute ground state in some range
of the magnetic field10.

definition of short–range interaction (in other words, the Laughlin state would not have zero energy
any more).

9We know that energy of any of the two incompressible ground states depends on aspect ratio (the
stronger the smaller the system is), Subsect. 4.4.1. There is no reason to expect that energy of a
domain wall between two such states is constant.

10Fig. 5.17(c) shows that EMI = 0.004 is sufficient for this to happen in a 2 : 1 system, while EMI = 0.02
is not strong enough for a square elementary cell, Fig. 5.6(c).
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Figure 5.16: Spectra of homogeneous eight electron systems (with Zeeman splitting) for square
and oblong elementary cell.

asp. 1 : 1, hmg. asp. 2 : 1, hmg. asp. 2 : 1,
EMI = 0.004

Sz = 0 GS 0.713 0.976
Sz = Ne/2 GS 0.750 0.9996

Table 5.1: Incompressible ground states (polarized and singlet) in an eight–electron system.
Overlaps between states in a square elementary cell, oblong elementary cell and oblong elementary
cell with intermediate magnetic inhomogeneity.

By changing the elementary cell geometry we support eventual domain states, but it is
adequate to ask how much the incompressible singlet and polarized states are affected by
this procedure. The inner structure of these states under elementary cell variations was
addressed in Subsect. 4.4.1 and we saw indications that the states are liquid like (and
very similar to the original states from square elementary cell) even at aspect ratio 1 : 2.
However, overlaps between the square–cell and deformed states are noticeably below unity
and hence their behaviour is not representative if we are interested in infinite homogeneous
systems. Recall, that the square–cell polarized state is extremely close to the Laughlin state
(overlaps ≈ 99%).
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Figure 5.17: Spectra and Sz of the ground state in a system with oblique rectangular elementary
cell (aspect ratio 2 : 1, eight electrons). Magnetic inhomogeneities (Eq. 5.2) of different strengths
are considered.

5.4.2 States at the transition

Here, I present the central result of investigations on systems with aspect ratio 2 : 1. The
low–energy states near the transition (S = 1 and S = 2 in Fig. 5.17) respond very strongly
to a ’rectangular cosine’ magnetic inhomogeneity, Fig. 5.18 (blue and magenta lines). Al-
ready for intermediate strength of the inhomogeneity (15% of the singlet incompressibility
gap in a square cell), polarization varies between ≈ 0.5 and ≈ 0.05, Fig. 5.18(a) (remember
that values of 0.5 and 0 would mean a state with Sz = 0 and Sz = Ne/2, respectively).
Equivalently, Fig. 5.18(b) shows that (a) the density of spin down electrons drops below
25% of its average value in the spin polarized region and (b) spin up and spin down den-
sities are balanced up to 10% variations in the ’spin singlet region’. At the same time,
variations of the total density remain small (less than 5%), but there is a clear deficit of
electrons in the ’polarized region’, Fig. 5.18(c).

As a check that the inhomogeneity is not too strong (’destructive’) compared to the
Coulomb interaction responsible for the formation of the incompressible ground states
(far away from Bc), we should observe the incompressible states (red and green lines in
Fig. 5.18). For both of them, responses are much weaker than for the transition states.

Let us now concentrate only on the half–polarized states and try to analyze their nature.
Observe first the homogeneous system near the transition, Fig. 5.19 and focus on the
half–polarized sector (Sz = Ne/4 = 2) with one particular value of J (Subsect. 3.5.2). The
low lying states show pronounced spin structures and, moreover, several distinct types of
spin structures appear in the low energy part of the spectrum. This is heralded by different
values of k r which is (0, 0), (±1, 0) and (2, 0) for the lowest three states (st01,st02+st03,
st04, the middle pair is degenerate) and the different spin structures can be best seen in
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Figure 5.18: ’Domains’ imprinted by a magnetic inhomogeneity of type ’rectangular wave’ into
a system with oblong rectangular elementary cell (aspect ratio 2 : 1). The strength of the
inhomogeneity is about 20 % of the gap in the limit B → 0 (in particular EMI = 0.004). Plotted
quantities are averaged over the three states which were degenerate in the homogeneous system
(in the center-of-mass part).

the density–density correlation of minority spin11, g↓↓(r ), Fig. 5.20. The lowest state looks
isotropic (as far as the rectangular elementary cell allows), the other two (st02+st03 and
st04) are different kinds of spin density waves in the ’long direction’ (x). Keeping in mind
that these states are energetically close to each other (compared to incompressibility gaps
at ν = 2

3
in a square elementary cell, for example), we can indeed expect strongly modulated

polarization in response to suitable not very strong inhomogeneities. Polarizations in Fig.
5.18 were a good demonstration of this prediction.

Now, a natural question arises: what types of spin structures can be imprinted into these
states? Are they completely ’soft’ or are some particular structures preferred? An answer12

is given by polarizations in response to various types of inhomogeneities, Fig. 5.21. Briefly
summarized: a variety of spin structures is possible but ’periodic’ structures are preferred.
Among the ’periodic’ structures, the largest period available is preferred (one stripe, i.e.
just the ’domains’ as in Fig. 5.18). By ’periodic’ we mean commensurate with the ele-
mentary cell period, for instance a ’rectangular wave’ in contrast to a delta peak (since
otherwise, any structure is periodic in our system due to periodic boundary conditions).

Looking only at polarizations, Fig. 5.21(a), responses to all types of inhomogeneities
considered seem to be the same (in strength) within a factor of two. However, a closer look
reveals some marked differences between those which are ’periodic’ and the others, Fig.
5.21(b). The one–stripe and two–stripe inhomogeneities mix mostly only the lowest four
states: (sum of squares of) projections of the inhomogeneous state to states st01–st04

11Half–polarized states contain 6 spins up and two spins down here, which we choose to call majority and
minority spins respectively.

12Free of ambition to be complete.
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Figure 5.20: Density–density correlations (g↓↓, i.e. minority spin) in the lowest half–polarized
states. Coulomb interaction, a homogeneous system, aspect ratio 2 : 1.

give in these cases ≥ 90%. It seems that a one–stripe structure, or domain state in Fig.
5.18, stems from the k r = (±1, 0) states (st02+st03) and the two–stripe structure comes
from the k r = (2, 0) state (st04); in both cases, however, projections to the lowest state
(st01) remain high.

A different situation occurs for ’non–periodic’ structures like a delta peak. Inhomogeneous
states are then ’constructed’ largely from states which were originally energetically higher
in a homogeneous system. Such states (e.g. with a delta peak in the polarization) only

158



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.2  0.4  0.6  0.8  1

P
ol

ar
iz

at
io

n

x/a

one stripe
two stripes

delta
narrow stripe

(a) Polarization. Impurity
types are the same as in Fig.
5.10.

State hmg. one stripe two stripes δ–peak
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cummul. Σ(〈·|·〉)2 1 0.98 0.90 0.41

(b) Projections of the inhomogeneous ground states to the lowest four
homogeneous states (in Fig. 5.20).

Figure 5.21: Half–polarized state and different forms of inhomogeneity. Strength of the inhomo-
geneity is the same in all cases, EMI = 0.004.

have a strong projection to the k r = (2, 0) state (st04), but still more than 50% of weight
comes from higher states, Fig. 5.21(b).

This scheme, ’periodic–welcome, others–less welcome’, is confirmed also in terms of energy.
While the ’periodic’ states (one– and two–stripes) profit energetically from the inhomo-
geneity, the delta–peak state is shifted to higher energy, Fig. 5.21(b).

Finally, the following conclusion about the ν = 2
3

system near the transition seems to be
possible. The softening against magnetic inhomogeneities of different forms (as observed
in Fig. 5.18(a)) stems not only from the spectral properties of the system (small level
spacing, Fig. 5.19) but also from the fact that more different (inner) spin structures occur
among the low lying states. States belonging to a single value13 of S (e.g. S = Ne/4) are
capable of generating a response as shown in Fig. 5.18(a).

5.4.3 What is inside the domains?

We will now only consider the ’one–stripe’ inhomogeneity, in sense of Fig. 5.10, which has
lead us to the states with polarization varying almost between zero and one half, Fig. 5.18.
In other words, we could distinguish two domains of about equal areas in that state: one,
where there were only spin up electrons and another where there were as many spin up as
spin down electrons, whereby the total density was spatially nearly constant. Now, we are
interested in the inner structure of these domains. One of the aims of this thesis was to find
side-by-side domains comprising of the incompressible singlet and incompressible polarized
states. Unfortunately, results presented in this Subsection cannot give a conclusive answer
on whether the states discussed in the previous Subsection are of this type or not. Also,

13In the calculations presented here, this constraint is implied by the symmetry of the considered impurities
(no inplane component, EIMI = 0).
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it would be surprising if they could, given how small systems (eight electrons) we study14

Nevertheless, these results provide at least some basis for comparing the inside of the
domains to the incompressible states and, in particular, highlight some differences between
these two.

As a probing tool I chose density–density correlation functions. As we are dealing with
inhomogeneous states, we must use g(r , r 0) ∝ 〈δ(r 1 − r )δ(r 2 − r 0)〉 rather than g(r ) ∝
〈δ(r 1− r 2− r )〉. The former quantity is the conditional probability to find an electron at r

given there is an electron at r 0 and we will separately address the cases when both electrons
have spin up or when they both have spin down. By convention, majority electrons are
spin up (expected to be present in both domains) and minority electrons are spin down
(absent in the fully polarized domain).

Roughly, we can say that the eight electrons are organized in four vertical stripes: two
in the polarized and two in the unpolarized domain. For instance, if we catch a majority
spin electron in the left stripe in the polarized domain, we will see another quite sharply
localized (majority spin) electron in the same stripe and two delocalized electrons in the
other stripe of the polarized domain, Fig. 5.22(c). In the unpolarized domain, we will see
the two majority electrons distributed nearly equally into the two stripes.

Similarly, if we pin a majority spin electron in one stripe of the unpolarized domain, Fig.
5.22(a), we find another (majority spin) electron in the same stripe. Four electrons in the
polarized domain are distributed homogeneously into the two stripes. We will see almost
the same picture with minority spin electrons, if we catch a minority spin electron at the
same place. Naturally, we will see almost nothing in the polarized domain, Fig. 5.22(b).

Summary. In eight electron systems, the domain states comprise of four vertical stripes
(i.e. parallel to the short side of elementary cell), each occupied by two electrons. In the
polarized domain, each stripe contains two electrons separated by b/2, and the two stripes
can ’freely slide’ besides each other. Stripes of the unpolarized domain are preferentially
occupied by electrons of the same spin and both spins (majority and minority) seem to
be equivalent: schematically 〈↑↑ |L〈↓↓ |R + 〈↓↓ |L〈↑↑ |R. The domains seem to be rather
independent: for instance, regardless of where, within the unpolarized domain, we pin
the majority spin electron, the density of electrons seen in the polarized domain does not
change much.

I should like to stress that although the stripe structure is well pronounced in conditional
probabilities, the density varies only weakly, Fig. 5.18(c). But, even so, it contains indi-
cations of the four stripes. This structure suggests that the interior of any of the domains
is rather anisotropic and this is quite distinct from the liquid states at ν = 2

3
(polarized

and singlet, Figs. 4.5, 4.6) where at least the first maximum in g(r ) occurs for all r with
|r | = r1 (Subsect. 4.1.1) and not only in the x– or y–direction. The study of finite size
effects comparing the averaged and non–averaged correlation functions (Fig. 4.17, Subsect.
4.1.4) suggests that for liquid states, the anisotropy of non–averaged correlation functions

14One of the reasons why studies of finite systems on a torus or on a sphere were so successful was that
these models contain no edges. On contrary, there are ’edges’ in the state with ’domains’: the domain
walls.
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Figure 5.22: Half–polarized state with intermediate magnetic inhomogeneity (’rectangular wave’,
EMI = 0.004), non–averaged density–density correlation functions.

should be much smaller than what we observe in Fig. 5.22. On the other hand, the results
shown in Fig. 5.22 refer to a state which is inhomogeneous and which is strongly influenced
by the aspect ratio being far from unity. A more thorough study of the non–averaged cor-
relation functions in systems of various aspect ratios and comparison to systems of different
sizes is therefore necessary to allow for more definite conclusions.
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5.4.4 Comment on homogeneous half–polarized states

It is worth of emphasis that the half–polarized state we study here is not the same as the
half–polarized states studied from the state discussed in Sect. 4.2.

The lowest state here, in an elongated elementary cell, has k r = (0, 0), whereas the half–
polarized ground state in a square cell has k r = (2, 2) (see Sec. 4.2). These are the two
inequivalent points of the highest symmetry.

In the present system (aspect ratio 2 : 1) all low lying half-polarized states belong to the
k r

y = 0 sector. States with other values of k r
y lie well above the four discussed states

st01–st04, the lowest of these other states has an energy of −4.240, cf. the spectrum
on the left in Fig. 5.19. Being interested in the states low in energy we may therefore
stay restricted to the sector k r

y = 0. This is a pleasant fact since there is then no need to
consider inhomogeneities of very low symmetry (implying handling larger Hilbert spaces).

Also note that a spatially fixed inhomogeneity couples the relative and center-of-mass (CM)
coordinates. At filling ν = 2

3
there are three possible CM states on a torus, which however

remain mutually decoupled owing to the high symmetry of the inhomogeneity. The chosen
sector J = 0 corresponds to a combination of k r

y = 0 sector and the one CM state, which
leads to the lowest energy. Differences to other CM states are, however, not too large.

5.5 Summary of studies on the inhomogeneous systems

Perhaps the most important conclusion of this Chapter is that the two incompressible
ground states at ν = 2

3
, the polarized and the singlet one, are alone not enough to create

a state with ’domains’, i.e. regions of polarization15 zero existing side-by-side with regions
of polarization one. We have demonstrated this in Subsection 5.2: when a ’domain–
inducing’ magnetic inhomogeneity is applied, the singlet ground state is more strongly
affected than states near the transition. This claim remained true for different types of
magnetic inhomogeneities, for different quantities used to detect the domains (apart from
the polarization, also for Sz(x), Sx(x), etc.) and also for non–zero temperature.

Different conclusions apply when more than just the polarized and the singlet ground states
are present in the low–energy sector. We have demonstrated, that near the transition, the
gap could actually close in several different situations. In the present study, this happens
for very strong magnetic inhomogeneities (Subsect. 5.2.3), for systems with an elongated
elementary cell (Sect. 5.4) and for short–range interacting systems (Sect. 5.3). The states
which closed the gap always belong to an intermediate value of spin, most prominent are
those with S = 1 and S = 2 and since we considered only eight–electron systems, the
latter value of spin corresponds to the half–polarized sector S = Ne/4. These states are
considerably softer against magnetic inhomogeneities than the incompressible singlet and
polarized states. On one hand, this fact follows from a small level spacing in the low energy
sector when the gap closes. However, the magnetic inhomogeneities were also found to have

15Just for the moment here, the singlet state has a polarization equal to zero.
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large (∼ 0.1) matrix elements between most of the low lying states.

The states with the strongest tendency to form domains (i.e. the ’softest’ ones) were found
in systems with Coulomb interaction and an elongated elementary cell. Near the transition,
even a moderately strong magnetic inhomogeneity (weaker than the incompressibility gap)
was enough to make the polarization approach the values corresponding to the singlet and
polarized states inside the domains. For these domain states, we have investigated the
’inside’ of the domains by means of non-averaged correlation functions (Subsect. 5.4.3).
We could not yet confirm that the domains comprise of an incompressible liquid, however,
this system deserves a more detailed study. Especially in this case, a comparison with
larger systems would be very helpful.
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6 Conclusions

Fractional quantum Hall systems at filling factors ν = 2
3

and 2
5

have been studied nu-
merically by means of exact diagonalization techniques on a torus. In both systems, the
existence of two different ground states is well established: one is fully spin polarized,
another is a spin singlet and they are both strongly correlated. All four states can be
visualised as composite fermion systems at integer filling factor (νCF = 2). A transition
between these two ground states can be induced by changing the Zeeman energy while
keeping the filling factor constant (Sect. 2.2 and Sect. 5.1).

At the beginning of Chapter 4, we investigated the polarized and the singlet incompressible
ground states in terms of their density–density correlation functions. First, we highlighted
the fact that — even if these states were exactly described by some composite fermion
model — the inner structures of the ground states at ν = 2

3
and 2

5
differ strongly from

the inner structure of a state comprising of two fully occupied Landau levels. In other
words: in a composite–fermion state (e.g. νCF = 2), the correlations between the electrons
are different than in a corresponding electronic state (ν = 2). A more important result is,
however, that the electronic correlations differ strongly also between the ν = 2

3
and 2

5
states

themselves. This is surprising, since both filling factors map to the same filling factor of
composite fermions (νCF = 2) and only the orientation of the effective field is different.
Study of the correlation functions allowed to suggest a new interpretation of the singlet
ν = 2

3
ground state: the electrons move along in pairs of opposite spins and the pairs form

a state equivalent to a fully occupied lowest Landau level. This conclusion does not apply
to the ν = 2

5
singlet ground state.

The central focus of the present work was on the low–energy states occurring near the
transition between the singlet and the polarized ground states. Some experimental results
indicate that another ground state distinct from the two ground states already mentioned
could exist near the transition (Sect. 2.4). In Sections 5.5 and 4.2 we found several argu-
ments in favour of a half–polarized state (S = Ne/4) becoming the absolute ground state
in a narrow range of the magnetic field. The systems available to exact diagonalization
were however too small to allow for an unswerving prediction. Two candidates for the half–
polarized ground state were identified. In Section 4.2 we concentrated on the ’isotropic
candidate’. A study of its inner structure (correlation functions) combined with an inves-
tigation of the response to probing magnetic inhomogeneities (Sect. 4.3) produced results
resembling both the singlet and polarized incompressible ground state. A hypothesis that
both these states coexist within the half–polarized state has been presented.

Calculations with elongated rectangular elementary cells (Sect. 4.4) suggested another
candidate for the half–polarized ground state: a spin–density wave along the longer side
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of the elementary cell. A comparison between two systems of different size indicated that
this state has the shortest period allowed by the finite size of the considered system (e.g.
one third of the length of the cell for a state which contains three minority spins). Based
on the present calculations it is not possible to decide which of the two candidates (if any)
evolves into the ground state of an infinite system.

At ν = 2
5
, no obvious analogue to the half–polarized state at ν = 2

3
was found.

Employing magnetic inhomogeneities to enforce domains of different spin polarization near
the transition at ν = 2

3
(Chapter 5) we found that no signs of domain formation occur unless

the energy gap closes. The loss of incompressibility could however still be compatible with
the experimental observation of a plateau of polarization one half during the transition: it
is enough if there are many states with S = Ne/4 and no (or only few) states with other
values of S in the low–energy sector (Sect. 5.3).

The ’best’ candidates for domain states were found to appear in systems with an elongated
rectangular cell. The fundamental idea here was that the elementary cell with aspect ratio
2 : 1 is divided by the inhomogeneity into two square parts which could be more convenient
for the formation of isotropic states (the singlet and the polarized incompressible liquid).
Examination of the domain state however showed that the inside of the domains does not
resemble the incompressible ground states at ν = 2

3
. Nevertheless, a more detailed study is

necessary here, since systems with aspect ratio far from unity can suffer more from finite
size effects than what was demonstrated in Sect. 4.1.

It took me a noticeable amount of time to conceive the final sentence of this thesis. After a
thorough consideration, I decided for the following: All conclusions presented above should
be verified in larger systems.
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[98] A. Wójs and J.J. Quinn. Phys. Rev. B., 66:045323, 2002.

[99] X.G. Wu, G. Dev, and J.K. Jain. Phys. Rev. B., 71:153, 1993.

[100] Jingbo Xia. Commun. Math. Phys., 204:189, 1999.

[101] D. Yoshioka. Phys. Rev. B., 29:6833, 1984.

[102] D. Yoshioka. The Quantum Hall Effect. Springer, Berlin, 2002.

[103] D. Yoshioka, B.I. Halperin, and P.A. Lee. Phys. Rev. Lett., 50:1219, 1983.

[104] D. Yoshioka, B.I. Halperin, and P.A. Lee. Surf. Sci., 142:155, 1984.

[105] D. Yoshioka and N. Shibata. Physica E, 12:43, 2002.

[106] J. Zak. Phys. Rev., 134:A1602, 1964.

172



[107] J. Zak. Phys. Rev., 134:A1607, 1964.

[108] F.C. Zhang and T. Chakraborty. Phys. Rev. B., 30:7320, 1984.

[109] F.C. Zhang, V.Z. Vulovic, Y. Guo, and S. Das Sarma. Phys. Rev. B., 32:6920, 1985.

173



At the very end. . .

. . . I would like to say thank you. I should mention many people at this place, but, unfor-
tunately, I was told that this thesis should not exceed two hundred pages. At least at the
last page, I shall therefore try to be brief. I hope I will not hurt anybody’s feelings.

First of all, many thanks to Daniela Pfannkuche, my supervisor, for that the door of her
office was always open to me, for her restless effort at reading the concept of this thesis
and many very helpful comments. Instead of enumerating all the other good things I
could enjoy while staying in her group, let me simply say: thank you for giving me good
conditions to work on my thesis.

I appreciate the company of Bernhard Wunsch with whom I shared the office nearly three
and half years. Bernhard and other members of our group — and also some members of
other groups — they all contributed to a pleasant atmosphere where it was a joy to work.
Thank you, Michael, Frank & Frank, Stefan, Christian, Moritz, Maxim, Eros, Riccardo,
Andreas, Daniel, Alex, it was my pleasure.

174


