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povrch vzorku. Napra:ování (Leybold), kde argonové ionty údery do slitiny AuGe vy-
rá>ejí atomy a ty se v:esm6rov6 :í9í ke vzorku. P9i této metod6 je rychlost atom; v6t:í,
pronikají tedy hloub6ji do materiálu a pokr=vají i mírn6 zakryté prostory (nevytvá9ejí
„stíny@). Titanová vrtsva se i v tomto p9ípad6 pouze pa9í.
P9esto>e sou5et v=:ek jednotliv=ch pater sandwiche by m6l b=t 100 nm, na Dektaku

se zm69ila v=:ka reliéfu 73 nm (pa9ení) a 160 nm (prá:ení). P9esto>e se metody sna>í
b=t obdobné, srovnatelné se nezdají b=t. Pro to hovo9í i srovnání morfologie na obrázku
ní>e. Povrch legendárních kontakt; od pana Melichara vykazovaly charakter podobn=
spí:e sou5asnému Leyboldu.

Obrázek 3: Srovnání morfologie ohmick+ch kontakt*. Zleva: napra)ované,
napa(ované, pan Melichar, pan Melichar. Rozdílnost metod je zjevná.
Autor obrázk*: Z. V+born+.

Za>íhání je provád6no v pícce a typické hodnoty jsou 450�C po 2 minuty.
Na tyto ohmické kontakty (tedy kontaktu kov-polovi5, kde nedochází k vytvo9ení

bariéry p9i pr;chodu nosi5; z jednoho materiálu do druhého, tzv. Shottkyho bariéry)
je posléze nanesena dostate5n6 velká plocha :icího kovu (nej5ast6ji zlata), na n6j> lze
p9ipevnit ultrazvukovou fixací st9íbrn= vodi5. V p9ípad6 vyu>ití zlata je t9eba plochu
nejprve pokr=t titanem, kter= zvy:uje adhezi Au.

Obrázek 4: P(íklad kontaktování na zlaté )icí desky. Autor obrázk*: Z. V+born+.
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Obrázek 20: Teplotní pr*b'h vzork* E081#1 a D101#8. Jeho charakter
je dobrou indicií správné funk&nosti vzorku a nakontaktování 2DEGu.

polohách ( 1n25.813 k�, n = 4, 6, 8, . . .), SdHO pom4ry minim le<í v ideálních pozicích.
Z jejich polohy byla ur3ena koncentrace nosi39 nSdHO ⇥ 2.5 � 1011 cm�2. Z Hallovy
sm4rnice potom koncentrace nHall ⇥ 2.4� 1011 cm�2 a s ohledem na rozm4ry hallbaru
(l=1000 µm, d=100 µm) mobilita nosi39 µ ⇥ 1.1 cm2/Vs. V8e odpovídá údaj9m z doby
r9stu waferu.
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Obrázek 21: Magnetotransport pro vzorky E081#1 a D101#8.

Zatímco p7ede8l; vzorek fungoval skv4le, D101#8 se skute3n4 choval nekulturn4 –
signál byl zna3n4 za8um4n;, pravd4podobn4 vlivem neideálního okontaktování (ostré
úzké struktury se objevily poté, co jsem rychle pro8el kolem vodi39. . . ). Oscila3ní cha-
rakter sice dob7e viditeln; je, nicmén4 Hall9v odpor má p7ibli<n4 t7ikrát men8í sm4rnici,
ne< bylo o3ekáváno, zcela neprochází nulou a nevykazuje <ádná plata. Z SdH oscilací
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inset of Fig. 1. The 2DES density in the patterned
sample can be tuned , in situ, from !0:3" 1011 to 2:3"
1011 cm#2 by a low temperature red light-emitting diode
illumination.

In Fig. 1(a), we show the diagonal resistance Rxx and
Hall resistance Rxy traces for this sample over a wide range
of B. Well developed IQHE states are observed at
! ¼ 1; 2; 3; . . . Fig. 1(b) focuses on the Rxx data around
B ¼ 0. Several features are worth emphasizing. First, there
is a positive magnetoresistance around B ¼ 0 and a local
maximum at B! 0:1 T. They have been observed in pre-
vious experiments on quantum antidot array samples, and
can be attributed to magnetic breakdown in the presence of
modulation [23]. Using the value of the magnetic field (Bp)
at the local Rxx maximum and following the standard
analysis [23,24], we estimate a potential modulation
strength of !V ! 1:5 meV in our antidot array sample.
Second, commensurability oscillations (COs) [25] occur at

low magnetic fields, marked by the upward triangles. From
their period in 1=B [Fig. 1(c)] an antidot periodicity of
!380 nm is deduced, which is consistent with the design
value of 350 nm. Third, Shubnikov–de Haas (SdH) oscil-
lations occur at higher B field, marked by the downward
triangles, from which the 2DES density is determined.
Figure 2(a) shows the temperature (T) dependence of

Rxx in high B fields. Over the whole temperature range, the
! ¼ 2 QH state remains strong and its resistance minimum
vanishingly small. On the other hand, the ! ¼ 1 state
shows a very strong temperature dependence, with Rxx

rising from a vanishingly small value at T ¼ 1:2 K to
Rxx ! 2700 " at 2.3 K. Figure 2(b) shows the activation
plot for the Rxx minimum at ! ¼ 1 and an energy gap of
!19 K is deduced from the linear fit to the data points.
We have carried out a systematic density dependent

study of the ! ¼ 1 energy gap. The electron density was
continuously tuned by applying different doses of light-
emitting diode illumination. Figure 3(a) shows the energy
gap as a function of the ED. The effective disorder is

FIG. 2 (color online). (a) Temperature dependence of Rxx.
(b) Activation plot for the Rxx minimum at ! ¼ 1. The line is
a linear fit to the data points.

FIG. 1 (color online). (a) Rxx and Rxy in a quantum antidot
array sample. The IQHE states at ! ¼ 1, 2, 3 are marked. The
inset shows an SEM picture of the device. (b) Rxx around B ¼ 0.
The arrows mark the B field positions where Rxx reaches a local
maximum. The downward triangles mark the Shubnikov–
de Haas (SdH) oscillations, and the upward triangles the com-
mensurate oscillations (COs). (c) Fan diagram for the SdH
oscillations and COs. From the slope of their linear fits, the
electron density and the period of the electronic potential modu-
lation can be deduced. N denotes the Landau level filling factor
in the case of the SdH oscillations and an integer value assigned
to the Rxx minimum in the case of the COs.

FIG. 3 (color online). (a) The ! ¼ 1 energy gap as a function
of effective disorder, defined as Bp=n. (b) Illustration of the
strength of the effective disorder in a quantum antidot device.
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FIG. 1. p~ and p~ as a function of 8. The numbers and
the arrows above the p~ maxima refer to the Landau quan-
tum number and the spin polarization of the levels.
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maximum possible width as determined from the
midpoints of the two neighboring steps at T=50 mK
and, by extrapolation, approaches at least -97'/o as
T~0 The transi. tion at n = 1t occurs in -3'/o of the
plateau width at T=50 rnK and possibly extrapolates
to infinitely sharp at T=0,
At T & 1.2 K, p is known to vanish in the Hall

plateau regions, 6 while at the SdH peaks p increases
with decreasing T. %e find at lower T that p de-
creases with decreasing Teven at the SdH peaks.
This is particularly clear for the n = 1 t peak, which
decreases below our resolution at 50 mK. Previously,
Kawaji and %akabayashi' reported the vanishing of
the lowest-spin- and valley-split peak in Si-
MOSFET's. However, the quantized plateau was not
observed in their experiment.
Figure 2 shows the Tdependence of the diagonal

conductivity rr at fixed values of 8 at several p
peaks. It is obtained from p and p~ through
a =p /(p2 +p~2), ' In general, a for all Landau
levels is smaller than that predicted by Ando and
Uemuras for short-range scattering. Except for thc
n = 1t level, the peak value of a increases with de-
creasing T in the interval from -10 to 1 K as expect-
ed for Thigher than the Dingle scattering tempera-
ture, while the small increase for T & 10 K is not un-
derstood at present. Below 50 rnK, g shows satura-

FIG. 2. p~ at half-filled Landau levels as a function of T.

tion probably caused by electron heating. In the
range of T from -50 to -300 mK, the data for the
quantum levels n «4 from both samples show a
logarithmic dependence of Tgiven by Acr
= (0.9 +0.05) x 10 'lnT, with units in siemens and
degrees Kelvin. This result is similar to that ob-
served in Si-MOSFET's at 8 =0 in the weak localiza-
tion limit. 9 It can be explained by the effect of
Coulomb interaction in 2D systems in the high-8
limit, as recently treated by Girvin et al. '
The stronger- Tdependence for o- peaks of the

lower Landau levels is morc clearly demonstrated in
Fig. 3 where the data of Fig, 2 is replottcd on loga-
rithmic a and inverse Tscales. Both the n = I )
and 1t levels show thermally activated a . For our
lower mobility sample this activated behavior was
even more evident at the n =0j peak, observed at
8 =87.5 ko with an activation energy of -2.2 K.
Several recent papers discussed theoretical models

for the quantized Hall effect. The model by Baraff
and Tsui' explains the effect in GaAs-Al„Gai „As
heterojunctions observed at 4.2 K. In this model the
donor impurities in Al„Gai „As act as an electron
reservoir to keep the relative motion of EF continu-
ous through the energy gaps between Landau levels.
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The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are

divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of

the QHE states and the electrostatic Coulomb interaction. Local probing of these submicrometer features,

however, is challenging due to the buried 2DEG structures. Using a newly developed microwave

impedance microscope, we demonstrate the real-space conductivity mapping of the edge and bulk states.

The sizes, positions, and field dependence of the edge strips around the sample perimeter agree

quantitatively with the self-consistent electrostatic picture. The evolution of microwave images as a

function of magnetic fields provides rich microscopic information around the ! ¼ 2 QHE state.

DOI: 10.1103/PhysRevLett.107.176809 PACS numbers: 73.43."f, 07.79.Fc, 73.22."f, 84.40.Dc

The quantum Hall effect (QHE) is among the few
textbook examples where the experimental results are in-
sensitive to imperfections in real materials and solely
determined by fundamental physics constants. After deca-
des of research, the exact quantization of the Hall resist-
ance in a two-dimensional electron gas (2DEG) system
under strong magnetic (B) fields is now understood by the
localization of electronic states when the bulk of the 2DEG
is close to integer or fractional Landau level (LL) filling
factors (!) [1]. Near the sample edges, however, the LLs
bend up in energy due to the confining potential and
intersect with the Fermi energy, resulting in alternating
compressible (metal-like) and incompressible (insulator-
like) strips [2–4]. In macroscopic samples, carriers prop-
agating along the metallic edge channels are free from
backscattering when scattered by impurities or inelastic
events and, therefore, responsible for the topological ro-
bustness of the QHE [5]. The crucial role of edge states in
the quantumHall regimewas recognized immediately after
the proposal [2–5] and has continued to attract research
interest in recent years [6,7].

Spatially resolved studies of the edge channels are usu-
ally challenging because most high mobility 2DEGs are
located tens or even hundreds of nanometers below the
surface of semiconductor heterostructures. Nevertheless, a
number of novel designs, such as scanning gate micros-
copy [8–10], scanning single-electron transistor [11–13],
and scanning charge accumulation microscopy [14–16],
have shown compelling evidence of such edge modes by
providing information on charge motion, surface potential,
or local compressibility. Thorough studies of the local
conductivity and the sizes of these edge channels, however,
have not been achieved. In this Letter, we demonstrate the
conductivity mapping of the bulk and edge states in a
GaAs=AlGaAs 2DEG using a cryogenic microwave im-
pedance microscope (MIM) [17–19]. Narrow strips with

either metallic or insulating screening properties are ob-
served along edges of the sample as the system enters the
QHE state. The evolution of the local conductivity distri-
bution through the bulk filling factor !b ¼ 2 agrees with
the self-consistent electrostatic calculation [3]. The imag-
ing was performed without dc electrodes, vividly manifest-
ing that the QHE edges are equilibrium states and do not
depend on externally supplied currents.
The schematic setup of the variable-temperature (T)

microwave microscope is shown in Fig. 1(a). An excitation
power of 0:1–1 "W at 1 GHz is delivered to the shielded
cantilever probe [20]. The reflected microwave is amplified
by a cryogenic high electron mobility transistor (HEMT)

FIG. 1 (color online). (a) Schematic setup of the microwave
microscope and the 3D rendered image of the sample surface.
The reflected 1 GHz microwave from the cantilever tip is
amplified and demodulated to form imaginary (MIM-Im) and
real (MIM-Re) parts of the impedance maps. (b) A line profile of
the surface topography through three dots. The 2DEG located
30 nm below the surface is indicated in the plot.
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changes as a function of local !xx can be computed by the
finite-element analysis [18–20], as shown in Fig. 2(f). As
detailed in the Supplemental Material [21], the MIM re-
sponse is a weighted average of the complex dielectric
constant in a volume probed by the rf electric fields, which
localize well underneath the tip for conducting 2DEG and
extend up to several hundred nanometers for insulating
2DEG. We can therefore use simple 2D axisymmetric
simulation to interpret the data for the wide etched region,
the metallic edge, and the bulk. For an insulating strip as
narrow as !100 nm sandwiched between conducting re-
gions, the full 3D modeling is required. Using Fig. 2(f) as a
guide, the nonmonotonic conductivity distribution near the
2DEG edge is readily captured. First, the halo and the dark
border near the physical boundary of the dot in Fig. 2(c) are
topographic artifacts as the tip approaches and climbs up
the 40 nm step edge (see the Supplemental Material [21]).
The effect is less problematic when the tip moves toward
the interior for a distance close to the tip size, which
coincides with the nominal depletion width. The MIM-
Im signal then rises to a high value and stays for!300 nm
before dropping slightly into the bulk [22]. The high MIM-
Im and low MIM-Re signals here indicate a high local
!xx > 1" 10#4 !#1 of this band. The bulk conductivity

!1" 10#5 !#1 is also determined by the lower MIM-Im
and slightly higher MIM-Re signals than the metallic edge.
Interestingly, in between these two regions, a narrow bright
strip appears in the MIM-Re image, which can only be
explained by the presence of a highly resistive channel
with!xx in the order of 10

#7–10#8 !#1 [14]. This feature,
which is also confirmed by 3D simulation with the tip
scanning across a strip with fixed !xx, is not well resolved
at higher T or near "b ¼ 4 (see the Supplemental Material
[21]), presumably due to the lower resistivity of the strip
under those conditions. Using standard edge detection
schemes, boundaries of different regions are determined
by the midpoints of the rising and falling edges, e.g.,
arrows in Fig. 2(e). We then construct an idealized con-
ductivity map in Fig. 2(g), which vividly demonstrates the
nontrivial physics of the QHE edge states.
The microwave images [23] around "b ¼ 2 are shown in

Figs. 3(b)–3(l), with the corresponding B fields labeled on
the transport data [Fig. 3(a)]. The conducting edge in
MIM-Im and the resistive strip in MIM-Re are visible at
"b ¼ 2:60 [Fig. 3(b)] and grow in width toward "b ¼ 2
[Figs. 3(c) and 3(d)]. Discernible MIM-Re ‘‘patch’’ signals
are seen at "b ¼ 2:12 [Fig. 3(e)] in the bulk, indicative of
the decrease of bulk conductivity here. Near the integer

FIG. 3 (color online). (a) Longitudinal and Hall resistivity as a function of B or " at 2 K. The corresponding B fields in (b)–(l) are
labeled in the #xx trace. (b)–(l) Counterclockwise from top left to top right, MIM images at T ¼ 2:3 K as the B field increases from
4.8 T ("b ¼ 2:6) to 7.3 T ("b ¼ 1:7). All scale bars are 1 $m. The full color scales (not shown) are the same as Figs. 2(c) and 2(d).
(m) From left to right, schematic density profiles across the center of the dots at "b ¼ 2:2, 2.0, 1.8, and 1.7, respectively. The shaded
areas are sketches of the localized band.
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amplifier and demodulated by a room-temperature quad-
rature mixer. The two output signals are directly propor-
tional to the imaginary (MIM-Im) and real (MIM-Re) parts
of the tip-sample admittance (inverse impedance) during
the scan. The electronics in this experiment were set such
that a 1 aF admittance change corresponds to 14 mV in the
output. The spatial resolution !100 nm is limited by the
tip diameter rather than the wavelength of the microwave
[17]. In order to create physical boundaries, the 2DEG
sample was patterned into isolated dots, each with a di-
ameter of 6–7 !m. As shown in the atomic-force micro-
scope line profile in Fig. 1(b), the 2DEG in the
GaAs=AlGaAs interface (30 nm below the surface)
was etched away between the dots. The bulk electron
density (nb ¼ 3# 1011 cm$2) and mobility (! ¼
5# 105 cm2=V s) at T ¼ 2 K were measured by dc trans-
port on an unpatterned piece from the same wafer. We note
that only the local diagonal conductivity "xx is responsible
for screening the in-plane radial microwave electric fields
from the tip. The tangential current proportional to the Hall
conductivity "xy is irrelevant since it does not contribute to
the screening.

The origin of quantum Hall edge states is strictly quan-
tum mechanical in nature. A semiclassical toy model,
which intuitively suggests a conducting edge due to the
cycloidal ‘‘skipping-orbit’’ motion, completely misses the
essential physics of the QHE. The noninteracting one-
electron picture is also inadequate here because it leads

to abrupt changes in density, prohibited by strong Coulomb
penalty, where the Fermi level crosses a LL. When the
electrostatic interaction is included [3], the density in
real devices is depleted to zero near the sample edge
by the confining potential, and rises smoothly toward nb
with a length scale determined by the depletion width (L).
The Landau quantization "N ¼ ðN þ 1=2Þ@!C, whereN is
the LL index and @!C the cyclotron energy, gives rise
to narrow constant-density regions with integer #’s.
These highly resistive strips subdivide the edge into re-
gions of different LL occupancy, commonly referred to as
‘‘edge states.’’ The above scenario, including both the
density profile and the energy diagram, is depicted in
Figs. 2(a) and 2(b) using the actual sample parameters at
#b ¼ 2:31. The depletion width L ¼ "VG=$nbe!
110 nm sets the density profile at the edge [3], where "
is the dielectric constant of GaAs, VG the band gap, and e
the electron charge. The N ¼ 0 incompressible strip,
which scales with ðaBLÞ1=2 and aB ! 10 nm being the
effective Bohr radius in GaAs, is narrower than the com-
pressible edge, whose width scales with L. Because of the
small spin splitting in GaAs, each LL is twofold degenerate
at this temperature so the # ¼ 1 incompressible strip is
ignored.
Figures 2(c) and 2(d) show the MIM images at #b ¼

2:31 (B ¼ 5:4 T) and T ¼ 2:3 K, with a typical line cut
plotted in Fig. 2(e). In the extreme near-field regime, the
tip-sample interaction is quasistatic and the impedance

FIG. 2 (color online). (a) Density profile and (b) energy diagram near the sample edge at the bulk filling factor #b ¼ 2:31. The
etched area (I), depletion region (II), metallic (III) and insulating (IV) strips, and the bulk (V) are labeled in the plot. The circles in the
energy diagram (filled, half filled, and empty) show the level occupancy. (c) MIM-Im and (d) MIM-Re images at B ¼ 5:4 T and
T ¼ 2:3 K. The full color scale corresponds to 0.2 V in MIM-Im and 0.03 V in MIM-Re. The scale bars are 1 !m. (e) Line cuts of the
microwave data, labeled in (c). The vertical scales are 40 mV for the MIM-Im (solid line) and 4 mV for the MIM-Re data (dashed line).
Rising and falling edges are indicated by arrows. (f) Results of the finite-element modeling, including the 2D axisymmetric analysis
(thick solid and dashed lines) for the metallic edge and the bulk and the full 3D simulation (thin solid and dashed lines) for the
insulating strip. (g) Idealized conductivity map combining the MIM images and the simulation.
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pressure s 6 T is equal to the sum of surface tension and 
gravitational forces (s is the density of the entropy of 
the helium). The temperature rise 6 T is established from 
the balance between the heat dissipated in the 2 D E G  
and that lost by evaporation of helium. Estimates show 
that temperature differences of the order of 10 ~tK lead 
to observable drop heights of 10 gm [8]. The minimum 
dissipated power which could be observed was of the 
order of 5 g Watts which caused a drop of about 50 gm 
in diameter, comparable to the optical resolution of our 
set-up. 

Fig. 1. Top: Sample image with zero current. The large area is 
the 2 DEG structure with voltage-probe leads on both sides. At 
the top and bottom of each photograph one sees the boundaries 
of the AuGeNi current contacts and the silver paint (black) used 
to attach the wires. The voltage-probe leads also end in AuGeNi 
contact-pads. Bottom: Same as top but with the current 80 gA. 
Note the two helium drops which are visible in the upper right 
and lower left of the bottom panel (circles). They indicate that 
heat is dissipated in two corners of the sample. Landau-level filling 
factor was 2 and the ambient temperature was 1.0 K for both im- 
ages. Reversing the current direction did not change position and 
size of the drops 

As samples we used GaAs/A1GaAs heterostructures 
with a carrier density and a mobility of 3.9 x 1011 cm -z  
and 700,000 cm 2 V-  1 s-  1, respectively. Care was taken 
to choose sample material which did not, even under 
continuous illumination, show a measurable conduc- 
tance parallel to the 2 DEG. Hall-bar structures measur- 
ing 3 mm in length and 2.5 mm in width were then pre- 
pared by etching. There were two voltage-probe leads 
on each side with a width of 100 gm each. Photographs 
of the structure can be seen, e.g. in Fig. 1. Contacts to 
the 2 D E G  were made by diffusing AuGeNi  films into 
the GaAs. Electrical wires were connected to the Au- 
GeNi films by silver paint. 

The samples were mounted in a magnet cryostat ca- 
pable of reaching fields of 15 T. Temperatures down to 
1 K were accessible by pumping a helium bath. The sam- 
ple itself was contained in a vacuum-tight tube inserted 
into this bath. In this sample tube the helium level could 
be adjusted independently of the level of the pumped 
helium. The top of this tube was sealed with a window 
through which the sample could be viewed with a TV 
camera. The sample was illuminated through the same 
window with an expanded HeNe laser beam. Optical 
power density was 5 ~tW/cm 2 at the sample. 

In Fig. 1 we show two photographs corresponding 
to zero and 80 gA transport current, respectively. The 
magnetic field was 7.3 T. At this field a quantized Hall 
resistance was observed (filling factor i=  2). Two helium 
drops are visible in the bot tom photograph which are 
absent in the top one. The drops are located in the upper 
right and lower left corner of the sample, exactly where 
the edges of the 2 D E G  intersect the areas covered by 
the AuGeNi  film. The position of the drops is about 
where one would expect them from the simple Hall angle 
argument. The two drops in the figure have diameters 
of about  120 lain each. The smallest current at which 
drops just became visible was 30 gA. The drop diameter 
in that case was of the order of 50 gm. From the equilib- 
rium between surface tension and fountain pressure one 
can estimate the diameter of the area where heat is actu- 
ally dissipated to be 30 gm at most. The Hall-voltage 
was 0.39 V, thus the field in the corners was at least 
13 kV/m. The Hall field at breakdown of the QHE under 
similar condition was measured to be about 10 kV/m 
[3], in good agreement with the field in the corners. 
A thermalisation length of 30 ~tm is smaller than the 
equilibration length between different edge channels 
which were recently measured at lower temperatures and 
smaller current using "nonideal"  current sources and 
voltage probes [9]. 

It is noteworthy that nearly all electrical power is 
dissipated in the corners. We make this conclusion from 
the observation that the power dissipated in them is 
about  the same as the one necessary to form two similar 
drops in a test experiment using a standard heater. 

Reversing the magnetic field caused the drops to ap- 
pear in the other two corners. On varying the magnetic 
field strength from 0.1 to 15 T it was found that the 
overall shape and location of the helium drops remained 
unchanged. Their diameter, however, depended on the 
filling factor. In Fig. 2 the power necessary to form a 
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sitions revealed ! ! 2:3. The discrepancy is attributed to
quantum tunneling between classically localized drift
states [6,7]. Tunneling connections are indeed visible in
our data spreading over an energy range of 5 meV. As an
example, the red (yellow) arrows in Figs. 2(c) and 2(e)
mark the same connection point at Vs ¼ #104:4 mV and
#99:2 mV. LDOS is faintly visible at both positions in
both images and sharply rotates by about 90$ between the
images. The reason is simply that the tunneling intercon-
nection mediates between valley states at low energies and
between hill states at high energies, which are connected
via two nearly orthogonal lines. Such weak links are
reproduced by the calculation as marked by red arrows in
Fig. 2(i) (see also Fig. S3 of [14]). Note that the intrinsic
energy resolution of the experiment is 0.1 meV [16], while
peaks in the LL fan diagram exhibit a FWHM of 2.5 meV
probably due to lifetime effects. Thus, broadening due to
the energy resolution can hardly account for intensity at the
saddles within an energy range of 5 meV. Another intrigu-
ing observation is the LDOS areas larger than rc around the
saddles. They are again visible in experiment [crosses in
Fig. 2(d)] and calculation [crosses in Fig. 2(i)] and are
probably due to the flat potential at the saddles leading to
slow drift speed and, thus, extended LDOS intensity.
Notice that the spreading of LDOS intensity at the saddles
in energy and position is consistent with previous quantum
mechanical calculations [6,7].

Finally, we discuss the possible influence of the tip. It is
known that a mismatch of tip and surface potential leads to
band bending within the sample [17,18]. To avoid this, we
used only W tips exhibiting a minimum of tip-induced
band bending. By analyzing the dI=dV data at B ¼ 0 T

with and without adsorbates, we can safely rule out a work
function mismatch between tip and sample larger than
15 meV [14,17,18]. The applied Vs leads to an additional
tip-induced band bending with a lever arm of 10 as deter-
mined from experiments described in [14]. Thus, we get an
additional band bending of less than 12 meV. The influence
of such small band bendings is tested by the theoretical
calculations of a disordered 2DES in B field [14,23,24].
The tip-induced potential is added to the disorder potential
of the 2DES as a Gaussian with 50 nm FWHM and
amplitude jVtipj< 20 meV [17,18]. The LDOS is calcu-
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FIG. 3 (color online). (a) Calculated LDOS ðE; xÞ at B ¼ 6 T;
Vtip ¼ 0 and '20 meV as marked; m(=me :¼ 0:02, jgj :¼ 28
[23] (b), (c) Measured dI=dVðVs; xÞ at B ¼ 6 and 12 T; x: lateral
position along straight line; Istab ¼ 0:13 nA, Vstab ¼ 150 mV,
Vmod ¼ 1:3 mV (b), 0.9 mV (c). (d),(e) Calculated LDOS ðE; xÞ
at B ¼ 6 and 12 T; Vtip ¼ 0 meV.
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FIG. 2 (color). LDOS of lowest LL. (a)–(g) Measured dI=dV ðx; yÞ; B ¼ 12 T, Vs ¼ #116:3 mV (a), #111:2 mV (b),
#104:4 mV (c), #100:9 mV (d), #99:2 mV (e), #92:4 mV (f), #89:0 mV (g), Istab ¼ 0:1 nA, Vstab ¼ 150 mV, Vmod ¼ 1:0 mV;
same dI=dV color scale in each image; white (green) arrows in (a), (b), (f), and (g) mark drift states encircling potential minima
(maxima); red, yellow arrows in (c) and (e) mark tunneling connections existing at identical positions; crosses in (d) mark extended
LDOS areas at saddle points. (h) Spatially averaged dI=dV curve with circles at the Vs used in (a)–(g). (i) Calculated LDOS at the
center of LL0 # at B ¼ 12 T; red arrows mark tunneling connections at the saddle points; white crosses mark extended areas. ( j) dI=dV
image close to the center of LL0 " at B ¼ 6 T, Vs ¼ #99 mV; image includes the area of (a)–(g) within the marked rectangle.
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holding for a graphene stripe with a zigzag !z=1" and
armchair !z=−1" edges oriented along the x direction.
Fourier transforming along the x direction gives

H = − t #
k,n,!

$ei"!#/#0"n$!1+z"/2%a!
†!k,n"b!!k,n"

+ e−i"!#/#0"neikaa!
†!k,n"b!„k,n − !1 − z"/2…

+ ei"!#/#0"n$!z−1"/2%a!
†!k,n"b!!k,n − z" + H.c.% .

We now consider the case of zigzag edges. The eigen-
problem can be rewritten in terms of Harper’s equations
!Harper, 1955", and for zigzag edges we obtain !Rammal,
1985"

E$,k%!k,n" = − t&eika/22 cos'"
#

#0
n −

ka
2
(&!k,n"

+ &!k,n − 1") , !114"

E$,k&!k,n" = − t&e−ika/22 cos'"
#

#0
n −

ka
2
(%!k,n"

+ %!k,n + 1") , !115"

where the coefficients %!k ,n" and &!k ,n" show up in
Hamiltonian’s eigenfunction *'!k"+ written in terms of
lattice-position-state states as

*'!k"+ = #
n,!

$%!k,n"*a ;k,n,!+ + &!k,n"*b ;k,n,!+% .

!116"

Equations !114" and !115" hold in the bulk. Considering
that the zigzag ribbon has N unit cells along its width,
from n=0 to n=N−1, the boundary conditions at the
edges are obtained from Eqs. !114" and !115", and read

E$,k%!k,0" = − teika/22 cos'ka
2
(&!k,0" , !117"

E$,k&!k,N − 1" = − 2te−ika/2 cos&"
#

#0
!N − 1" −

ka
2 )

(%!k,N − 1" . !118"

Similar equations hold for a graphene ribbon with arm-
chair edges.

In Fig. 21, we show 14 energy levels, around zero en-
ergy, for both the zigzag and armchair cases. The forma-
tion of the Landau levels is signaled by the presence of
flat energy bands, following the bulk energy spectrum.
From Fig. 21, it is straightforward to obtain the value of
the Hall conductivity in the quantum Hall effect regime.
We assume that the chemical potential is in between two
Landau levels at positive energies, shown by the dashed
line in Fig. 21. The Landau level structure shows two
zero-energy modes; one of them is electronlike !hole-
like", since close to the edge of the sample its energy is
shifted upwards !downwards". The other Landau levels
are doubly degenerate. The determination of the values
for the Hall conductivity is done by counting how many
energy levels !of electronlike nature" are below the
chemical potential. This counting produces the value
2N+1, with N=0,1 ,2 , . . . !for the case of Fig. 21 one has

FIG. 20. !Color online" Quantum Hall effect in graphene as a
function of charge-carrier concentration. The peak at n=0
shows that in high magnetic fields there appears a Landau level
at zero energy where no states exist in zero field. The field
draws electronic states for this level from both conduction and
valence bands. The dashed lines indicate plateaus in !xy de-
scribed by Eq. !111". Adapted from Novoselov, Geim, Moro-
zov, et al., 2005.
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FIG. 21. !Color online" Fourteen energy levels of tight-binding
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panels are zoom-in images of the top ones. The dashed line
represents the chemical potential $.
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Berry phase manifestation in Landau level offset

graphene

• ‘half-integer’ IQHE 
• Berry phase = ⇡

Figure 1: Schematic dependence of the longitudinal resistivity ρxx

(normalized to the zero-field resistivity) and of the Hall resistivity ρxy = RH

(normalized to h/2e2) on the reciprocal filling factor ν−1 = 2eB/hnel (for
gs = 2 and gv = 1). Deviations from the quasiclassical result occur in strong
B field, in the form of Shubnikov-de Haas oscillations in ρxx and quantized
plateaus in ρxy.
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Ω

µ

FIG. 1. (Color online) Rxx and Rxy in the magnetic field range
of 5–14 T at T = 26 mK. Representative fractions are marked by
arrows.

due to the competition between a FQHE phase and a nearby
insulating phase [19].

To further confirm the FQHE states at 4/11 and other filling
factors, we compare in Fig. 2 Rxx and B × dRxy/dB. Here
dRxy/dB is the derivative of the Rxy data with respect to
B, obtained digitally from the Rxy trace in Fig. 1. Overall,
in the whole B-field range, Rxx and B × dRxy/dB look very
similar [20–22]. Strong minima are also seen in B × dRxy/dB
at ν = 5/13, 3/8, and 4/11. Moreover, the relative strength
of the minima in B × dRxy/dB also mimics that in Rxx .
These observations from the comparison between Rxx and
B × dRxy/dB, again, are consistent with the FQHE states at
ν = 4/11, 3/8, and 5/13.

Figure 3(a) shows Rxx traces at three selected temperatures
of 15, 22, and 30 mK. It is clearly seen that the 4/11 state
is activated. Its resistance increases with increasing tempera-
tures. Rxx at other filling factors ν = 5/13, 3/8, and 6/17, on
the other hand, deceases with increasing temperatures, as seen
in the past for fragile FQHE states (e.g., the 5/2 state [2])
when they were first observed. We believe that these states
will eventually become activated with further improvement in

µ

FIG. 2. (Color online) Rxx and B × dRxy/dB in the regime of
3/7 > ν > 1/3.

Ω

ν
∆

FIG. 3. (Color online) (a) T dependence of Rxx between 2/5 >

ν > 1/3. Three traces are shown at T = 15, 22, and 30 mK.
(b) Arrhenius plot for the Rxx minimum at ν = 4/11. The linear
fit to the data points yields an energy gap of ∼7 mK.

sample quality. In Fig. 3(b), we show the Rxx value at ν = 4/11
as a function of 1/T in a semilog plot. From the linear fit to
the data, though within a very limited range, an energy gap of
∼7 mK is obtained.

We notice that the measured activation energy gap is much
smaller than the numerical calculations, where the energy gap
for a (partially) spin polarized 4/11 state has been estimated
[14,17] to be (0.001) 0.002 × e2/εlB , or (0.18) 0.37 K. Here,
e is the electron charge, ε the dielectric constant of GaAs,
lB = (!/eB)1/2 the magnetic length, ! the reduced Planck
constant. This larger discrepancy is not unexpected and has
been observed at many fragile FQHE states, for example at ν =
5/2 [3]. The exact origin of this large discrepancy is still under
debate. Nevertheless, it is widely accepted that the sample
disorder plays an important role. In order to estimate disorder
broadening (#), we first use the so-called transport scattering
time of ∼440 ps, deduced from the zero-field mobility of
11.6 × 106 cm2/V s and effective mass of m∗ = 0.067me (me

is the free electron mass). The so obtained # is merely
∼10 mK, much smaller than the theoretical calculated vales.
On the other hand, if the quantum lifetime of ∼8 ps, obtained
from the onset of Shubnikov–de Haas oscillations, is used,
a disorder broadening # ∼ 0.5 K is obtained, which is larger
than the theoretically calculated ones. These two estimations
show that the energy gap reduction at 4/11 is probably not
related to either the transport scattering time or quantum
lifetime of electrons. In view of this, we note that in a recent
publication [23] the high-temperature resistance of the 5/2
state (at which the 5/2 state is supposed to be a Fermi sea
state) was used as a criterion for judging the FQHE features
in the second Landau level. Following this same line of
thought, we calculate the disorder broadening using the CF
transport scattering time, which was estimated to be ∼50 ps.
With this value, a disorder broadening of ∼80 mK is obtained.
This brings the theoretical values to (0.1) 0.25 K. The finite
thickness of the 2DES in our sample will further reduce the
energy gap to (0.05) 0.12 K. Further reduction of the theoretical
gap due to Landau level mixing [24–33] is expected to bring
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Spin flip excitations in fractional quantum Hall systems
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Flipping spin of a quasiparticle� costs Zeeman energy�may reduce the interaction         
(Coulomb) energy
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�lowest excitations contain spin flips not only for filling factor 1/3 but also 2/3, 2/5
theory:     more than one spin flip in a clean system (analogy of skyrmions at 1/3)
experiment: spin flips possible but not their number uncertain

�simplified model of disorder: single charged impurity displaced by d from 2DEG
single value of d can explain gap onsets at different filling factors
finite width of the 2DEG has to be considered
basic mechanism of gap collapse: comparing the magnetic length to some fixed  

 disorder-related length scale
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occur first at B as low as 1 T. These fields are far too low for
the FQHE to be observed, so the only spin-flip excitations
likely to be experimentally observed at !=1/3 are the QEr
and ASky!1".

Once a neutral pair of quasiparticles Sky!KS" and
ASky!KA" has been created, they behave similarly to a mag-
netoexciton. In a magnetic field, the magnetoexciton has a
constant linear momentum k which is proportional to the
mutual distance "x between the quasiparticles. We would
expect its energy to be E!"x"#1/"x with proportionality
constant determined by the charges of the two constituent
quasiparticles. Such modes can be calculated within the
single-mode approximation35 or starting with the Hamil-
tonian theory of composite fermions36 but they can also be
directly identified in the exact diagonalization spectra !Fig.
5". They are usually called the magnetoroton branch EMR!k"
for QE+QH and the spin wave !SW" ESW!k" for QEr+QH.
The limiting values for k→$ are the energies necessary to
create a QE+QH !QEr+QH" pair and to separate them far
from each other. These are the quantities commonly used for
comparison to the transport activation gaps, because the SW
!MR" is the lowest excitation !at k%1.0!−1" among all states
with total spin S=N /2−1 !S=N /2", i.e., with one !no" spin
flip.

It is remarkable how much EMR!k" calculated on a sphere
and on a torus differ, on a quantitative level !Fig. 5". Even
though the positions of the magnetoroton minimum match
well in both geometries !k!0#1.4", the sphere gives seem-
ingly a higher energy of the minimum by as much as 20%. A
careful extrapolation to infinite systems !solid line in Fig. 5",
however, matches excellently the results obtained on a torus.
This is not surprising, given the magnetoexcitonic character
of the MR. The MR of "x comparable to the radius of the
sphere will have the QE and the QH located near the oppo-
site poles. This situation is not compatible with a picture of a
plane wave of k="x /!0

2 propagating along the equator. On
the other hand, with increasing radius of the sphere R this
becomes a finite-size effect if R&"x. Based on Fig. 5, we
believe finite-system data from the torus are more suitable to
give quantitative estimates for magnetoroton and spin wave
energies.

For a Sky!KS"−ASky!KA" pair, we take ESW!k" with k
→$ and add the creation energies of Sky!KS" and of
ASky!KA". Instead of one system, as was the case for study-
ing the QEr+QH pair, we thus have to exactly diagonalize
three different systems: one for the quasiparticle-separation
procedure, one for the Sky, and one for the ASky. This more
complicated procedure suffers possibly less from finite-size
effects, since skyrmions are rather extended objects, in par-
ticular more extended than a bare QH or QEr. Recall that the
sizes of the Sky and ASky need not be the same.

B. Finite thickness, LL mixing, disorder

Aiming at the description of experiments under realistic
conditions, three ever valid facts should not be left unno-
ticed: the sample is actually three dimensional !finite extent
of the wave function perpendicular to the 2DEG", the mag-
netic field is finite !mixing between Landau levels", and the
system is never perfectly homogeneous !disorder".

Nonzero thickness w of the 2DEG can be effectively in-
corporated into the Haldane pseudopotentials25 which com-
pletely determine the Hamiltonian of the lowest LL. Quali-
tatively, the larger the effective thickness w /!0, the more
softened becomes the effective electron-electron interaction
at the shortest distances.

Quantitative effects of the presence of the third dimension
have been studied since the early times of the FQHE, both
with the Laughlin state37 and the activation gap.38 In a het-
erostructure, electrons are confined to a nearly triangular po-
tential well. A standard choice for the wave function in the
growth direction is then the Fang-Howard trial wave
function,39 'FH!z"= !b3 /2"1/2ze−bz/2. We will mostly stay with
this choice, even though we are aware of other options for
'!z" which may lead to slightly lower subband energies !Sec.
V in Morf et al.40". Differences originating from these differ-
ent choices of '!z" should be smaller than the uncertainty in
the variational parameter b !or the thickness of the 2DEG"
relevant for our experiments. This has been checked with
'QW!z"=cos az, $z$() /2a, relevant for symmetric quantum
wells. Taking 'FH!z" instead of *!z" is equivalent38 to using a
nontrivial form factor F!q" in the 2D Fourier transforms V!q"
of the Coulomb interaction,

V!q" =
F!q"

q
, F!q" =

8 + 9!q/b" + 3!q/b"2

!2 + 2q/b"3 . !3"

The quantity V!q" then enters the Coulomb matrix elements
in !1" as given in standard references.23,41 These can be in
turn reexpressed in terms of the Haldane pseudopotentials42

Vm. For reasonable values of b, only V0 changes appreciably;
it decreases by 25% for b−1=0.3!0.

The spatial extent of the wave function along z defined as
the full width at half maximum !FWHM" is w#4.9/b for
'FH and w= 2

3 /a for 'QW. The wave function parameter b
depends on the form !steepness" of the triangular well poten-
tial and therefore it is not constant but it changes with the
applied gate voltage. This leads to38,39

FIG. 5. !Color online" The spin wave !SW" and the magnetoro-
ton branch !MR" seen in the ED spectra of ideal !=1/3 systems of
different sizes and geometries. In the legend, t stands for torus, s for
sphere, and the number indicates the number of electrons. The lines
!solid and dotted" were obtained from the 1/N→0 extrapolation of
the data !MR and SW" on the sphere.

TRANSPORT GAP IN A !=1/3 QUANTUM HALL SYSTEM:… PHYSICAL REVIEW B 74, 195324 !2006"

195324-5

3.4 Quantum Hall effects

Quantum Hall effects (QHE) are explained in PS’s notes. Here, only some additional remarks
follow.

When Fermi level lies in a gap (where it is pinned to localized states), we find ourselves in an
unusual situation where both (longitudinal) resistivity and conductivity are zero. Indeed,

σ = ...ρ = (0, B/ne;−B/ne, 0) (13)

Theoretically, the zero on diagonal of σ can be understood based on Eq. (12) and the off-diagonal
term using Kubo-Středa formula

where ∂n/∂B = νe/h as long as the Fermi level does not leave the gap between Landau levels. This
brings us to the issue of the origin of the gap: zero resistivity observed in experiments at integer
values of ν can be attributed to the energy gap between LLs which are found in the spectrum of
a single electron confined to a plane and subject to magnetic field. However, where can possibly
the gap come from at fractional fillings?

The answer (proposed probably by Robert B. Laughlin) is — from electron-electron interac-
tions. Full many-body Hamiltonian of Ne electrons in magnetic field reads

H =
1

2m

Ne
∑

i=1

(

p⃗i − qA⃗(r⃗i)
)2

+
e2

4πε

∑

i<j

1

|r⃗i − r⃗j |
(14)

where ε is the material permittivity (e.g. ≈ 12.7ε0 in GaAs). While the second term makes any
hope for exact solution of Schrödinger equation almost equal to zero (but not quite), we will argue
below that it is indeed responsible for the occurence of a gapped ground state at fractional filling
factor ν = 1/3.

Before we do that, let us first consider scaling of eigenvalues of this H with magnetic field.
Consider fixed filling factor ν. While the first term will be still varying ∝ B (just as individual
LLs), the second term will be proportional to

√
n and that is in turn ∝ ℓ0 ∝

√
B. We can therefore

expect that in very strong magnetic fields the basic structure of spectrum will be composed of
Landau levels whose macroscopic degeneracy will, however, be lifted. On the other hand, if the
first term of (14) is not much larger than the interactions (which occurs for weaker magnetic fields)
LLs will completely disappear and we obtain a complicated interaction-dominated spectrum. This
situation is called (strong) “LL mixing”.

Exact diagonalization (+condition B > 5 T).
Reasons that led Laughlin to guessing his WF.
Chern-Simons approach (that eventually evolved into Jain’s CF picture)
Quasiparticles with fractional charge.
Note about fractions beyond Jain series and the Pfaffian in particular.
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Finally, Johnson-Nyquist noise measurements for different
temperatures at fixed conductance in the fractional regime
provide an absolute calibration as in [24].
The results of a series of current noise power measure-

ments versus backscattering current IB at Q � 25 mK is
shown in Fig. 2. The noise measured in the 4 8 KHz fre-
quency range is white. The background noise �5.32 3
10228 A2⌅Hz is due to the circuit noise. The error bars
represent the statistical accuracy expected for 1500 s ac-
quisition time. IB can be varied by changing either the
dc bias Vds or the tunnel coupling with gate voltage. In
order to keep dI⌅dVds � Gdiff constant and follow the
path A shown in Figs. 1(b) and 1(c) both the bias (40
to 78 mV ) and the gate voltage (2170.5 to 2178.5 mV)
are varied. The backscattering current is obtained within
5% accuracy by measuring the dc voltage VB � V3,2 or
V5,6 across the QPC, using IB � ⇥2VB 2 Vds⇤e2⌅3h. The
“reflexion coefficient” R � IB3h⌅e2Vds is kept small for
weak backscattering. It increases with IB from 4% to
35%. The linear variation of the noise with IB tells us
that we do observe shot noise associated with backscat-
tering. We can compare the rate of noise variation with
that given by Eq. (1) (dashed line). The agreement with
the prediction of Laughlin quasiparticle tunneling is ex-
cellent. Electron tunneling would have given a very dif-
ferent result (dotted line). Electron shot noise is found for
similar conductance G � 0.32e2⌅h at a lower field in the
integer quantum Hall regime (nL � 4 in the leads), inset

FIG. 2. Tunneling noise at n � 1⌅3 (nL � 2⌅3) when fol-
lowing path A and plotted versus IB � ⇥e2⌅3h⇤Vds 2 I (filled
circles) and IB⇥1 2 R⇤ (open circles). The slopes for e⌅3
quasiparticles (dashed line) and electrons (dotted line) are
shown. Q � 25 mK. Inset: data in same units showing elec-
tron tunneling for similar G � 0.32e2⌅h but in the IQHE
regime (nL � 4). The expected slope for electrons 2eIB⇥1 2
R⇤ [R � 0.68, IB � ⇥e2⌅h⇤Vds 2 I] is shown. Q � 42 mK.

of Fig. 2. The data agree with the electron theory for a
lowest Landau level transmission 0.32 [26].
How is this remarkable result robust against parameter

changes? Figure 3(a) shows the current noise versus IB
for two different Gdiff (path B and C). The noise also
compares well with that expected for e⌅3 charges except
for the points at high bias where the backscattering is no
longer weak and less noise is found. A good agreement
is also found for a different tunneling regime obtained
by detuning a resonance [Fig. 1(d), path D: Vds � 78 to
175 mV and gate voltage 2161 to 2177 mV]. The result
is also robust against temperature change as shown by
the series E corresponding to the tunneling conditions of
Fig. 1(b) but at Q � 150 mK. Finally, room temperature
thermal cycling changes the resonance shape but not the
noise results.
How to take into account the deviations for large R? As

long as electron tunneling does not start to compete with
quasiparticle tunneling, we may expect a decrease of noise
when R increases. Indeed, the tunneling events are no
longer Poissonian as the exclusion statistics and the inter-
actions correlate the quasiparticles. If they were fermions
a noise reduction ⇥1 2 R⇤would occur [24,26,27]. It is not
legitimate [21], but nevertheless tempting to plot the noise
data as a function of IB⇥1 2 R⇤ (open circles of Figs. 2 and
3). Within experimental accuracy, the simple ⇥1 2 R⇤ re-
duction factor accounts well for the data but slightly over-
estimates ep. The least squares linear fit gives ep � 0.38,
0.36, 0.35, and 0.36 for A, B, C, and D.
The final check to confirm our observation of e⌅3

Laughlin quasiparticles is the crossover from Johnson-
Nyquist to shot noise at epVds⌅2 � kBQ. Figure 4 shows
measurements at Q � 134 mK and low bias. Here, the
bias voltage Vds varies from 13 to 140 mV and Gdiff �
0.26e2⌅h. The nearly linear noise variation at high bias,
consistent with Eq. (1), saturates at low bias. The arrow,
indicating when epVds � 2kBQ, is well in the crossover
region. Comparison with Eq. (2) (solid curves) shows

FIG. 3. Filled circles: Shot noise measured at 25 mK versus
IB corresponding to the paths B, C, and D of Fig. 1, and to
a series of measurements (E) at 150 mK. Open circles: same
data versus IB⇥1 2 R⇤.

2528

shot noise, the ‘‘low frequency’’ spectral density is propor-
tional to the dc excitation current and to the charge of the
quasiparticles. In multiple channel transport, only the par-
titioned channel carries noise, which is independent of the
presence of other channels that are fully transmitted or are
fully reflected. Indeed, in previous measurements, the as-
sumption of mutually independent propagating modes was
found to strictly hold [20–22].

Two GaAs-AlGaAs heterostructures, with embedded
high mobility 2DEG, were used. One (labeled A) had a
low temperature mobility in excess of 6! 106 cm2=Vs
and an electron density 8:8! 1010 cm"2, and another
(labeled B) had a mobility 4:3! 106 cm2=Vs and an
electron density 10! 1010 cm"2. Four different structures
had been fabricated (different processes and different QPC
configurations, with three of them on the higher mobility
2DEG). The QPCs were made either by top metallic split-
gate or via ‘‘mesa-side-gates’’ [23]—these two methods
provide very different confining potentials for the constric-
tions. The data taken in all samples were found to be
quantitatively very similar. The measurements, unless spe-
cifically mentioned, were carried out in a dilution refrig-
erator at an electron temperature of 10 mK (as deduced
from shot noise measurements).

The configuration of the device is shown in Fig. 1. A
split gate, with 400 nm gap, was deposited on the surface of
the heterojunction, forming upon biasing a controlled con-
striction in the 2DEG. The multiterminal configuration
ensures a constant output resistance at the drain at a Hall
plateau (being Hall resistance)—independent of the trans-
mission of the constriction, thus allowing subtracting the
contribution of the ‘‘current noise’’ of the preamplifier
[24]. The fluctuations in the drain voltage were IdRq,
with Id the current fluctuations and Rq the quantum resis-

tance for bulk filling factor v. The drain voltage was
filtered by a resonant circuit tuned to #800 KHz with a
bandwidth of some 30 kHz, and subsequently amplified by
a homemade, low-noise, cryogenic preamplifier (cooled to

4.2 K, with voltage noise #800 pVHz"1=2 and current

noise #10 fAHz"1=2). The output of this preamplifier

was fed to a room temperature amplifier followed by a
spectrum analyzer. Note that the central frequency was
chosen to be far above the 1=f noise knee of the sample,
with the 1=f noise contribution (which is quadratic with
the current) much smaller than the shot noise and the
thermal noise. All measurements in the fractional regime
were preceded by charge measurements in the integer
regime, verifying that an electron charge is being
measured.
The spectral density of a partitioned current due to

stochastic back scattering at a finite temperature is de-
scribed well by the analytic expression [8–10]:

SIð0Þ ¼ 2eIimptð1" tÞ½cothðe(V=2kBTÞ " 2kBT=e
(V);

(1)

where the impinging current Iimp ¼ Vgq with gq ¼
ð2=3Þe2=h for bulk filling factor v ¼ 2=3, t the constric-
tion’s transmission coefficient (assuming energy indepen-
dence), e( the quasiparticle charge, and T the electron
temperature. When t depends weakly on the current, its dif-
ferential value as function of current was used. Figure 2(a)
shows a plot of the transmission, deduced from the two
terminal linear conductance g, as function of the applied

DS
AC

FIG. 1 (color online). Schematic of the noise measurement
setup (see text for details).

split-gate voltage, Vg (volts)

FIG. 2 (color online). Conductance and spectral density at
electron temperature 10 mK. (a) Conductance g and transmis-
sion t of the constriction as a function of split-gate voltage. Note
the appearance of a prominent plateau at g ¼ e2=3h (t ¼ 1=2).
(b) Upper panel—dependence of the transmission (zero bias t ¼
1=2, split-gate voltage Vg ¼ "0:3 V) on injected electron en-
ergy. Lower panel—spectral density SI at this value of trans-
mission. The blue dots are the measured data points. Shown is
the expected spectral density for transmission t ¼ 1=2, tempera-
ture T ¼ 10 mK, and quasiparticle charge e( ¼ e (cyan solid
line), ð2=3Þe (red dashed line), and e=3 (olive dotted line). For
comparison, we also show (purple stars) the noise measured
when !b ¼ 2=5 and !C ¼ 1=3.

PRL 103, 236802 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

4 DECEMBER 2009

236802-2

SI = e · I

Shot noise in FQHE regime
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ν = 1
3 ν = 2

5 Water

Figure 4.3: Left and middle: Correlation functions of the ground states of 50-60 particles at
filling factors 1

3 and 2
5 of the principal Jain’s sequence, ν = p/(2p + 1) (cf. Subsect. 3.4.2).

The wavefunctions (WF) predicted by composite fermion theory were taken (for ν = 1/3 this is
identical with the Laughlin WF) and g(r) was calculated by a Monte Carlo method. Taken from
Ref. [49]. Right: correlation function between oxygen atoms in liquid water as an example of a
density–density correlation function in a well–known liquid (see text on p. 75). Results of both
numerical simulation and experiments are shown, see the original paper by Allesch et al. [12] for
details.

ΨL is indeed the ground state or a good approximation to it, e.g. for Coulomb–interacting
electrons. Note also that Figs. 4.4 refer to electrons on torus whereas Fig. 4.3 refers to
the disc geometry (see Subsect. 3.5.3). The fact that correlation functions are very similar
in both geometries (compare Fig. 4.4(b) and Fig. 4.3) supports the hypothesis that the
corresponding states are universal and hence basically the same as the ground state in an
infinite 2D system.

Several points should be mentioned here.

(i) The correlation function g(r ) in Fig. 4.4 is rather isotropic, at least on distances
smaller than a/2. This distinguishes the Laughlin state from a Wigner crystal (Sub-
sect. 4.4.1) or a unidirectional charge density wave (Subsect. 4.1.3) in which some
special directions exist. This fact motivates also the ’incompressible liquid’ terminol-
ogy4.

(ii) The first maximum in g(r) occurs at r1 ≈ 4.4ℓ0 (Fig. 4.4(b)) and this separation
can be taken as a typical interparticle distance in the Laughlin state5. After r1,

4Liquids and gases differ in the strength of interparticle interaction. Whereas negligible in gases, the
interaction in liquids is strong compared to kinetic energy. In the lowest Landau level, kinetic energy
is zero (or constant, more precisely, Subsect. 3.2.1).

5It is an interesting fact that this distance lies close to the mean interparticle distance determined by
the filling factor, rmean/ℓ0 =

√
2π/ν ≈ 4.35 (cf. Eq. 3.6). This quite precise match between ’pure

geometry’ (rmean) and a property of ΨL (r1) probably considerably contributes to the exceptional
stability of the Laughlin state.
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is the total angular momentum. Since I. and E are con-
stants of the motion, their fluctuations vanish, leaving
MP——M1———1.
This general result implies that, for any liquid ground

state in the lowest Landau level, s(k)-
~
k

~
. Hence any

liquid state automatically satisfies the SMA gap condition
b,(0)&0 discussed above. Interpreting s(k) as the mean-
square density fluctuation at wave vector k, the condition
s(k)-

~
k

~
is a statement of the lack of density fluctua-

tions or the incompressibility of the quantum system at
long wavelengths. This is the source of the finite gap.
Within the SMA the existence of a gap for hquid

ground states appears to be the rule rather than the excep-
tion. The interesting question of whether or not liquid
ground states must have a rational filling factor is an en-
tirely separate issue, about which nothing has been proved
by these arguments.
Within the SMA, gapless excitations can occur only as

Goldstone modes in systems with broken translational
symmetry (which therefore violate our assumption of a
liquid ground state). It is worth noting in this connection
that the SMA analog of Eq. (4.19) yields the correct trans-
verse magneto-phonon dispersion curve for the Wigner
crystal.
We can shed additional light on the meaning of Eq.

(4.21) and (4.22) by considering the specific case of the
Laughlin ground state. Invoking the analogy with the
two-dimensional one-component plasma (2DOCP) 6' '
we see that Mo ———1 is the charge-neutrality sum rule
and Mi ———1 is the perfect screening sum rule for the
2DOCP. ' ' Making use of the 2DOCP compressibility
sum rule, ' ' we obtain M& and hence the exact leading
term in s(k),

0.25

0.00

-0.25
C

-1.00

0.5

0.0

-0.5—

-1.0

v=1/3

u= I/5

s(k)= ik i +1—v 4
Sv

(4.29)

This result emphasizes the profound importance of the ex-
istence of long-range forces in the 2DOCP analog system.
These long-range forces are responsible for the charge-
neutrality and perfect screening sum rules. From these it
follows that there is (within the SMA) a finite excitation
gap at k=0 and from these also follows the exactness of
the fractional charge +v of the Laughlin quasiparticles.

V. STATIC STRUCTURE FACTOR

In order to go beyond the small-k limit in evaluating
Eq. (4.19), we need to have s(k) for finite k. Lacking the
experimental structure factor that was available for the
case of He, we are forced to adopt a specific model for
the ground state. %e have chosen to use the Laughlin
ground-state wave function since it appears to be quite
accurate' ' and because the static structure factor is
available through the 2DOCP analogy. ' '
The static structure factor for the 2DOCP has been

computed by both Monte Carlo' ' (MC) and
hypernetted-chain' ' (HNC} methods. The MC results
for g(r) used in Ref. 7 are shown in Fig. 1. Recall from
Eq. (2.8} that we need to Fourier-transform g (r) to obtain
s(k). This is most easily accomplished by transforming
an analytic function which has been fitted to the MC
data. Fortunately, we can take advantage of the known

FIG. 1. Crosses are Monte Carlo data for h(r)=g(r) —1.
Solid 1ine is analytic flt of Eq. (5.1) to the data. (a) v= 3; (b)

1

analytic form of g (r) for any liquid ground state,

g(r)=1—e ' ~ + g' (r /4)~c~e
1 m!

(5.1)

where the c are unknown coefficients and the prime on
the sum indicates that it is restricted to odd m only. The
latter is a reflection of the Fermi statistics, which requires
that pairs of (spin-polarized) particles have odd relative
angular momentum. For the Mth Laughlin state
(v= 1/Mj the coefficients c are constrained by the
2DOCP charge-neutrality, perfect screening, and
compressibility sum rules' ' to obey
g' c =(1—M)/4,
m=1

(5.2)

g' (m +1)c~=(1—M}/8,
m=1

(5.3)

g' (m +2)(m +1)c =(1—M)2/8 .
NI =1

(5 4)

We flt a finite number (27) of the coefficients to the MC
data subject to the constraints (5.2)—(5.4). The best-fit
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