Electrons in 2D subject to perpendicular magnetic field

Landau levels: $E_n = \hbar \omega_c (n + \frac{1}{2})$

filling factor:

$$\nu = \frac{n}{eB/h} = \frac{N_e}{N_q}$$

Activated transport (IQHE)

Edge states

(d)

(f)

Dissipation of energy in a Hall bar (IQHE) current off

Percolation picture of IQHE

LDOS measured

Berry phase manifestation in Landau level offset

graphene

- 'half-integer' IQHE
- Berry phase = π

- true IQHE
- Berry phase = 0

Quantum Hall Effect (fractional)

VOLUME 48, NUMBER 22

PHYSICAL REVIEW LETTERS

31 May 1982

Two-Dimensional Magnetotransport in the Extreme Quantum Limit

D. C. Tsui,^{(a), (b)} H. L. Stormer,^(a) and A. C. Gossard Bell Laboratories, Murray Hill, New Jersey 07974

(Received 5 March 1982)

Ga_{0.7}As sample with $n = 1.23 \times 10^{11}/\text{cm}^2$, $\mu = 90\,000 \text{ cm}^2/\text{V}$ sec, using $I = 1 \,\mu\text{A}$. The Landau level filling factor is defined by $\nu = nh/eB$.

Activated transport (FQHE)

Excitation spectrum in the 1/3 Laughlin state

$$H = \frac{1}{2m} \sum_{i=1}^{N_e} \left(\vec{p}_i - q\vec{A}(\vec{r}_i) \right)^2 + \frac{e^2}{4\pi\varepsilon} \sum_{i< j} \frac{1}{|\vec{r}_i - \vec{r}_j|}$$

FIG. 5. (Color online) The spin wave (SW) and the magnetoroton branch (MR) seen in the ED spectra of ideal $\nu = 1/3$ systems of different sizes and geometries. In the legend, *t* stands for torus, *s* for sphere, and the number indicates the number of electrons. The lines (solid and dotted) were obtained from the $1/N \rightarrow 0$ extrapolation of the data (MR and SW) on the sphere.

Shot noise in FQHE regime

FIG. 1 (color online). Schematic of the noise measurement setup (see text for details).

Liquids: density-density correlation

water

FQHE at 1/3

