Electrons in 2D subject to perpendicular magnetic field

Landau levels: $\quad E_{n}=\hbar \omega_{c}\left(n+\frac{1}{2}\right)$
filling factor:

$$
\nu=\frac{n}{e B / h}=\frac{N_{e}}{N_{q}}
$$

Extreme quantum limit

SdH

IQHE

Plain 2DEG

E081\#1

$$
\hat{\rho}=\left(\begin{array}{cc}
0 & \rho_{n} \\
-\rho_{n} & 0
\end{array}\right)
$$

$$
\rho_{x y}=\frac{2 \pi \hbar}{e^{2} \nu} \quad \sigma_{x y}=2 n \frac{e^{2}}{2 \pi \hbar}
$$

$$
\equiv 1 / \rho_{n}
$$

Hall bar geometry

Courtesy of L. Nádvorník (MFF/FZU AV)

Activated transport (IQHE)

Edge states

Dissipation of energy in a Hall bar (IQHE)

current off

current on

Percolation picture of IQHE

Berry phase manifestation in Landau level offset

graphene

- 'half-integer' IQHE
- Berry phase $=\pi$

2DEG

- true IQHE
- Berry phase $=0$

Quantum Hall Effect (fractional)

Two-Dimensional Magnetotransport in the Extreme Quantum Limit

D. C. Tsui, ${ }^{(a),(b)}$ H. L. Stormer, ${ }^{(a)}$ and A. C. Gossard

Bell Laboratories, Murray Hill, New Jersey 07974
(Received 5 March 1982)

FIG. 1. $\rho_{x y}$ and $\rho_{x x}$ vs B, taken from a GaAs $-\mathrm{Al}_{0.3^{-}}$ $\mathrm{Ga}_{0.7}$ As sample with $n=1.23 \times 10^{11} / \mathrm{cm}^{2}, \mu=90000 \mathrm{~cm}^{2} /$ V sec, using $I=1 \mu \mathrm{~A}$. The Landau level filling factor is defined by $\nu=n h / e B$.

Activated transport (FQHE)

Excitation spectrum in the 1/3 Laughlin state

$$
H=\frac{1}{2 m} \sum_{i=1}^{N_{e}}\left(\vec{p}_{i}-q \vec{A}\left(\vec{r}_{i}\right)\right)^{2}+\frac{e^{2}}{4 \pi \varepsilon} \sum_{i<j} \frac{1}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}
$$

FIG. 5. (Color online) The spin wave (SW) and the magnetoroton branch (MR) seen in the ED spectra of ideal $\nu=1 / 3$ systems of different sizes and geometries. In the legend, t stands for torus, s for sphere, and the number indicates the number of electrons. The lines (solid and dotted) were obtained from the $1 / N \rightarrow 0$ extrapolation of the data (MR and SW) on the sphere.

Shot noise in FQHE regime

$$
S_{I}=e \cdot I
$$

$$
\nu=1 / 3
$$

FIG. 1 (color online). Schematic of the noise measurement setup (see text for details).

Liquids: density-density correlation

water

$$
g(\vec{r}) \propto\left\langle\sum_{i \neq j} \delta\left(\vec{r}_{i}-\vec{r}_{j}-\vec{r}\right)\right\rangle
$$

