
Linear response - DC & AC

The t0–integration and one of the E–integrations can be performed without further knowledge of
the system (Ĥ, v̂x etc.). The result in terms of �xx = jx/Ex reads

�xx(!) =
ih̄e2

V

Z

dEfFD(E)Tr �(E � Ĥ) (13)
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For clarity, we indicate in Eq. (13) which v̂x came from the operator Â and which from the operator
B̂. The two operators v̂x are of course identical. Next, we evaluate the trace by summing over a
and ~k and introducing another unity operator

P

b |bihb| and carry out the last energy integration.
The two terms in the curled braces turn out to be identical up to exchange f(Ea) and f(Eb).
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where Eab = Ea � Eb and vabx = ha,~k|vx|b,~ki. This is the formula, KV thinks, for the interband
AC conductivity of a clean system ("̃ ! 0). Under the assumption that the two bands (a and b)
never cross, for example if |Eab| � Eg (gap energy), and using the fact that Mxx = vabx vbax (see the
note below) is a real number Eq. (14) can be straightforwardly (1/(x + i"̃) = 1/x � i⇡�(x)) split
into real and imaginary parts.
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This formula contains — as compared to Eq. (14) — some hidden assumptions (see Sec. 3.4 for
a somewhat more precise form). In its real part, gab(h̄!) denotes the occupation-dependent joint

density of states (jDOS), i.e. the ”DOS” of a single ”band” Ẽk = Ea(~k)�Eb(~k) at energy Ẽk = h̄!

and for simplicity, we assume only two bands with Ea(~k) > Eb(~k). ”Occupation dependence” is to
say that gab = 0 unless one of the states a, b is occupied and the other empty. Also note that Mxx

includes in fact averaging over ~k (see Sec. 3.4 for details) and that it (may) depend on energies

Ea(~k), Eb(~k). If this is the case, then Mxx should have not been taken out from the sum in the
imaginary part of Eq. (15).

2.1 O↵-diagonal AC conductivity

The derivation is simpler for B̂ = ĵy = �ev̂y/V . In this case, only the second term of Eq. (9)
survives,
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h̄!
v̂y

◆

)

.

The ! ! 0 limit of this result is also known as the Bastin formula (see e.g. Eq. (20) in Ref. [7]).
Owing to the Green’s functions obeying identity
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and a similar one for Ĝ�, the 1/! dependence is removed. The conductivity �yx ⌘ jy/Exe
i!t then
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Kubo formula for AC linear response
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Example: GaAs

For hexagonal wurzite:

G point : kx ¼ 0 ¼ ky ¼ kz ! A point : kx ¼ ky ¼ 0; kz ¼
2p
c
,

G point : kx ¼ 0 ¼ ky ¼ kz ! K point : kx ¼
2p
a
; ky ¼ kz ¼ 0,

a and c are the lattice constants.
The LDA or GGA calculation underestimates the value

of band gap by 30–50%. The GGA+U calculation results
are improving the value of band gaps but in any case still
are not agreeing with experimental value. These calcula-
tions have performed by the Wine2k, this and similar
packages are solving the Kohn–Sham equations for the
ground state density and total energy of a many-electron
system. Since the effect of correlations in the optical
excitations of electronic systems is known to be important
in a large number of systems including semiconductors,
and cannot be addressed within the random-phase
approximation (RPA). Performing the calculation with
optically excited electronic states probably produce more
accurate results. However, the GW calculations results for
semiconductors are in better agreement with experimental.

4. Conclusions

The optical properties of cadmium telluride including
linear optical dielectric function, the refractive index, the
extinction coefficient, the reflectivity and the plasmon
energy are studied by the all-electron full potential
linearized augmented plane wave (LAPW) method. The
calculated results indicated that refractive index (nxx) for
cubic phase have the values of "2.74 (e0 ¼ 7.52) and
for hexagonal phase "2.69 (e0(xx) ¼ 8.26), "2.70
(e0(zz) ¼ 7.29), respectively. Therefore, the CdTe in hex-
agonal structure exhibit anisotropy in two directions (in
basal-plan and z-axis) but the difference is very small in the
static limit. The energy of maximum peak of Im[#e#1(o)]
at 15.0 eV is assigned to the energy of volume plasmon. The
calculated results indicated that although Te-5s and Cd-4d
are overlap but Cd-4d plays an important role in
absorption and reflectivity constants. It has a strong
interband transition near "4.2 eV in cubic phase and

"4.8 eV the direction of a–b plane and "5.51 eV in
direction of c-axis for hexagonal structure. Due to lack of
the experimental data for hexagonal phase most of our
results could not be directly compared with the experiment.

Acknowledgments

The author is grateful to Professor P. Blaha (at Vienna
University of Technology Austria) for his technical
assistance in the use of Wien2k codes and to G.A. Gehring
for helpful discussions and also for a critical reading of the
manuscript and also thanks to Professor David Mowbray
head of Department of Physics and Astronomy, University
of Sheffield, UK, for the hospitality during my stay.

References

[1] P. Capper (Ed.), Properties of Narrow Gap Cadmium-Based
Compound, GEC Marconi Infra-Red Ltd., Southampton, UK,
ISBN 0-85296-880-9, 1994.

[2] D.W. Palmer, Properties of the II–VI Compound Semiconductors,
/www.semiconductors.co.ukS, June 2002.

[3] National Renewable Energy Laboratory (NREL). Cadmium Use in
Photovoltaic, /www.nrel.govS.

[4] Environment CdTe Technology, /www.firstsolar.com/environment_
cdte.phpS.

[5] S.K. Pandeya, U. Tiwaria, R. Ramana, C. Prakasha, V. Krishnab, V.
Duttab, K. Zimikc, Growth of cubic and hexagonal CdTe thin films
by pulsed laser deposition, Thin Solid Films 473 (2005) 54.

[6] A.E. Merad, M.B. Kanoun, G. Merad, J. Cibert, H. Aourag, Full-
potential investigation of the electronic and optical properties of
stressed CdTe and ZnTe, Mater. Chem. Phys. 92 (2005) 333.

[7] M.-Z. Huang, W.Y. Ching, Calculation of optical excitations in cubic
semiconductors. I. Electronic structure and linear response, Phys.
Rev. B 47 (1993) 9449.

[8] E. Deligoz, K. Colakoglu, Y. Ciftci, Elastic, electronic, and lattice
dynamical properties of CdS, CdSe and CdTe, Physica B 373 (2006)
124.

[9] M. Taniguchi, L. Ley, R.L. Johnson, J. Ghijsen, M. Cardona,
Synchrotron radiation study of Cd1#xMnxTe (0pxp0.65), Phys.
Rev. B 33 (1986) 1206.

[10] R. Markowski, M. Podgorny, Optical absorption in Cd: d-core
transition, J. Phys.: Condens. Matter 3 (1991) 9041.

[11] M. Alouani, L. Brey, N.E. Christensen, Calculated optical properties
of semiconductors, Phys. Rev. B 37 (1988) 1167.

[12] M. Cardona, D.L. Greenaway, Fundamental reflectivity and band
structure of ZnTe, CdTe, and HgTe, Phys. Rev. 131 (1963) 98.

ARTICLE IN PRESS

Fig. 11. The Brillouin zone for the CdTe: (a) cubic zinc-blende and (b) the hexagonal wurzite phases.

S.M. Hosseini / Physica B 403 (2008) 1907–19151914
Brillouin zone



Example: GaAs

GaAs atom  0    size 0.02

L Γ X K Γ

E F 

En
er

gy
 (e

V
)

  0.0

 -5.0

-10.0

EF

Say, n-doped…

conduction band

valence bands

~!

• intraband: from plasma 
 frequency -  

• interband: from joint 
 density of states -

�0 = !2
p✏⌧

gab(~!)

 0

 5

 10

 15

 20

 0  2  4  6  8  10  12

 0.1
 1

 10
 100

 1000
 10000

 0  6

~! [eV]

Im
"/
" 0

• interband transitions above 
 the gap 

• Drude peak at low 
• transparency window in between

the gap

~!

http : //wien2k.at



Geometrical magnetoresistance (MR)Geometrical MR

three red lines - current,   other lines - equipotentials


