Kubo formula for AC linear response

$$
\begin{gathered}
\sigma_{x x}(\omega)=-\frac{i \hbar e^{2}}{V} \sum_{\vec{k}, a, b}\left(f\left(E_{a}\right)-f\left(E_{b}\right)\right) \frac{v_{x}^{a b} v_{x}^{b a}}{\left(E_{a b}+i \tilde{\varepsilon}\right)\left(E_{a b}-\hbar \omega+i \tilde{\varepsilon}\right)} \\
\sigma=\sigma_{\text {intra }}+\sigma_{\text {inter }} \\
\sigma_{x x, \text { intra }}(\omega)=\frac{i \hbar e^{2} / V}{\hbar \omega+i \Gamma} \sum_{\vec{k}, a}\left(-\frac{\partial f}{\partial E}\right)\left|v_{x}^{a a}\right|^{2} \\
\sigma_{x x, \text { inter }}(\omega)=\pi \hbar e^{2} M_{x x} \frac{g_{a b}(\hbar \omega)}{\hbar \omega}-\frac{i \hbar e^{2} M_{x x}}{V} \sum_{\vec{k}, a<b} \frac{f_{a}-f_{b}}{E_{a b}} \frac{2 \hbar \omega}{E_{a b}^{2}-(\hbar \omega)^{2}}
\end{gathered}
$$

Example: GaAs

Brillouin zone

Example: GaAs

Say, n-doped...

- interband transitions above the gap $\hbar \omega$
- Drude peak at low
- transparency window in between
- intraband: from plasma frequency - $\sigma_{0}=\omega_{p}^{2} \epsilon \tau$
- interband: from joint density of states - $g_{a b}(\hbar \omega)$

Geometrical magnetoresistance (MR)

