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FIG. 1. a) � and ⇡ bonding of 3d transition-metal atom to
one of its nearest neighbours in a tetrahedrally-bonded semi-
conductor along with the relative spatial orientation of the t2

and e orbitals. More lightly shaded orbital lobes have oppo-
site sign amplitudes to the darker shaded lobes. b) Energy
levels and occupation of the Fe3+ ion (with five d electrons)
in GaAs relative to the GaAs semiconductor bands. The e

impurity-like level plays an important role in the physics of
charge transfer; its occupation, i.e. its position relative to the
Fermi level, determines whether the Fe impurity is in its Fe3+

or Fe2+ state. e levels, mid-gap t2 levels and valence-band-
resonant t2 levels are respectively indicated in red, blue and
green.

electrons and one is a 3d electron. The electronic con-
figuration becomes M3+ (dn�1) with n � 1 electrons in
the d-shell. The 3d shell is partially filled and the 4sp3

states form the outermost shell. Fig. 1(b) shows the en-
ergies of the resulting features in the spectrum, with a
dashed black frame around the t2 and e features inves-
tigated in this paper. The di↵erent transition energies
shown in this diagram were determined by optical spec-
troscopy [26, 27].

These t2 and e states are observed in cross-sectional
STM (X-STM) performed at 5K under UHV condi-
tions (5⇥10�11 Torr). Several electrochemically etched
tungsten STM tips were used. The STM was oper-
ated in constant current mode on a clean and atomi-
cally flat GaAs (110) surface obtained by in situ cleav-
age. The molecular beam epitaxy grown sample contains
a 100 nm Fe-doped GaAs layer (nominal concentration
of 2⇥1018 cm�3) and an Fe monolayer incorporated in
GaAs. The growth temperature was 480oC during the
entire growth procedure. The nominal layer structure
consisted of GaAs substrate/100 nm Fe:GaAs/200 nm
GaAs/Fe monolayer/500 nm GaAs. The two Fe-doped
regions are co-doped with C atoms (nominal concentra-
tion of 2⇥1018 cm�3). These shallow acceptors greatly
increase the conductivity at the experiment’s tempera-
ture of 5K, while having little influence on the position
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FIG. 2. a) 7.5 nm⇥7 nm empty states image of a single Fe
impurity. b) dI/dV (x, V ) cross-section taken across the Fe
impurity along the [001] direction. Two peaks are resolved in
the bandgap. The onset of the conduction band is visible at
a voltage of 1.55V. The dI/dV data taken directly on the Fe
center shows two distinct peaks around +0.55V and +1.0V,
which are attributed to two states related to Fe.

of the sample Fermi level (which is in the gap, close to
the top of the valence band).

The empty-states topography image of single sub-
surface Fe impurity shown in Fig. 2(a) presents a bright
and anisotropic contrast. This feature shows a strong
similarity with the contrast reported for the sub-surface
[Mn2++h+] neutral acceptor state [18]. Both contrasts
share common features like their brightness and their
anisotropic shape. The anisotropic shape, clearly visible
at low voltages, fades away at higher voltages as reported
for other acceptors[18]. This evolution is not completely
gradual. Above V=+1.7V, the anisotropic shape disap-
pears for the most part, leaving only a bright localized
contrast, while a clear change in corrugation of the GaAs
surface is observed. This is explained by the contribu-
tion of empty conduction band states above V=+1.7V,
which overwhelms the smaller local density of states of
the mid-gap states .

The bright electronic contrast of the Fe atom is per-
fectly symmetric with respect to the [001] axis and highly
symmetric with respect to the [110] axis. In the case of
Mn atoms in GaAs, it has been shown that the degree of
asymmetry with respect to the [110] axis is related to the
interaction between the Mn state with the asymmetric
buckled surface[28], and similar e↵ects have been identi-
fied for Mn in InAs[29, 30]. Consequently, the symmetry
decreases as the impurities approach closer to the surface.
Similar depth dependence is observed for Fe impurities.
The low Fe concentration achieved in each sample did
not allow for a systematic study of Fe impurities at dif-
ferent depths. Nonetheless, a qualitatively similar depth
dependance to Mn is observed for Fe, even if each impu-
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with an absolute accuracy of better than 2%. At all
temperatures, the susceptibility was found to be in-
dependent of incident power for the nanowatt power
levels used in these measurements. Figure 1 shows
the temperature dependence of the donor dielectric
susceptibility, 4wX(T) - s—es;=»—11.4, of a Si:F
sample with phosphorus donor density n =3.1 & 10'8
cm '. A linear extrapolation to T =0 K, as illustrat-
ed, determines 4mx. The figure also sho~s the tem-
perature dependence of the imaginary part of the sus-
ceptibility 4n X"(T), determined from the transmis-
sion loss of the cavity.
%e confirm the suggestion of earlier work2 4 that

4wx tends to diverge as n approaches n, (Fig. 2).
Our largest value of the dielectric susceptibility, 720,
represents an enhancement by more than two orders
of magnitude over the isolated-donor polarizabili-
ty."4 The solid line is a fit to our data (solid cir-
cles) and that of Ref. 2 (open circles) of the form

INSULATOR

I il I

, ll
l
I
I
l

METAL

10

4
n(90" cm )

FIG. 2. Divergence of the T =0 K donor dielectric sus-
ceptibility 4+X in the insulator tsolid circles, this vrork; open
circles, Ref. 2; solid line, Eq. (1)] and the T =0 K conduc-
tivity a.(0) in the metal [solid circles, Refs. 5 and 6; open
circles, Ref. 7; solid line, Eq. (2)] as a function of phos-
phorus donor density n. Together these results characterize
the metal-insulator transition in a disordered system and in-
dicate a tendency of 4m' to diverge ~ith a critical exponent
assumed to be related to the divergence of the localization
length.

with X«=7.0, and )=1.15. The value of
n, =3.74 & 10'8 cm 3 is determined independently
from measurements' of the zero-temperature conduc-
tivity o (0) shown on the right side of Fig. 2. As n
approaches n, from above, ~(0) approaches 0. The

solid circles in Fig. 2 are obtained from millikelvin
measurements5 6 on samples of varying phosphorus
concentration, while the open circles represent the
response of one sample to uniaxial stress. 7 The solid
line through the o (0} is a fit of the form

with a«=260 (0 cm) ' and v =0.50. Our choice of
the forms of Eqs. (1) and (2) is motivated by the
results of the scaling theoriess ' of the metal-
insulator transition. The effects of the transition can
thus be characterized by measuring X for n & n, and
o (0) for n )n,
The uncertainty in the absolute values of n (+ 5'/o,

from room-temperature resistivities calibrated to nu-
clear decay" of radioactive donors) prevents a deter-
mination of g for n, /n —1 & 5'/o. We have deter-
mined relative n values more accurately by fitting
4m '"(7) [i.e., the conductivity at our measuring fre-
quency o (co, T) ) to the form

o («p, T) = o 0(c», 0) +o t exp[—(T«/T) '/"] . (3)

The constant a «(c«, 0) increases monotonically as n
approaches n, . The second term assumes the form of
variable range hopping' at the lowest temperatures
with the characteristic hopping temperature To. Con-
sistent with our results, we assume that To scales
linearly with (n, /n 1), s—o that we can eliminate n,
as a parameter in determining f. Equation (3) is fit-
ted to the data over the lowest decade in tempera-
ture, except for the sample closest to n, whose high
conductivity restricts the fit to T & 50 mK.
As shown in Fig. 3, we plot (4n X) '/"5 versus the

fitted value of To. The good fit shown by the straight
line indicates that X~ Tq" —' and so, assuming
T«a: (n, /n I), we -have )=1.15+0.15 in agreement
with previous results'" at larger n, /n I For the-.
sample closest to the transition (It,/n 1&0.01},—the
small but finite measuring frequency probably makes
4mX=720 an underestimate. %e have indicated the
uncertainty involved in extrapolating to ao =0 by the
vertical error bar in Fig. 3. %e believe the uncertain-
ty in this extrapolation is insignificant except for the
sample nearest to the critical density.
The scaling theory of localization "predicts-

a (0) ~ I/g, where the scale length near n, has the
critical form g=g«(n/n, —1) ". McMillan, '«using
scaling arguments for quantum diffusion, predicts
g cc g'~ '~, and thus f = v(g—1), where 1 (g (3.
Other arguments"'" suggest that g = 2v. If we
combine our value of g with results for a (0) at
n ) n„herwe v =0.48 +0.07, we have g/v=2.3 + 0.5.
Vfithin McMillan's formulation, we obtain
q=3.3+0.5, implying that the system is near the
limit of no Coulomb interactions where q =3. How-
ever, a variety of measurements' ' in similar sys-

S. V. KRAVCHENKO et al.

For each sample we observed the same p(T, n,,) charac-
teristics independent of contact configuration. Samples
were mounted with a weak thermal link to the mixing
chamber (via a stainless steel rod) allowing a change in
the temperature from 0.2 to 7.5 K during the experiment.
We controlled the temperature using two calibrated resis-
tance thermometers placed in good thermal contact with
the sample.
Figure 1 shows the resistivity (in units of h/e ) as a

function of electron density. for Si-12b for several tem-
peratures. One can see that all curves cross at some re-
sistivity p 2h/e and electron density n,, = 0.96 x
10 cm, which corresponds to a mobility of about
10 cm /V s. At densities below this point, the resistivity
is higher for lower temperatures, behavior which is char-
acteristic of an insulating state. In contrast, for n, ) n,
the lower the temperature, the lower the resistance, be-
havior which is characteristic of a metallic state. The
data, including p, for other samples are identical except
n varies (see also Ref. 12). This behavior, particularly
the existence of a single crossing point, is qualitatively
identical to the behavior of the @HE to insulator transi-
tion (see Figs. 2 and 4 in Ref. 6 and Fig. 3 in Ref. 8).
To see the temperature dependence of resistivity, in

Fig. 3 we replot p data as a function of temperature for
30 difFerent electron densities varying from 7.12 x 10 to
13.7x 10 cm . At low densities, the curves grow mono-
tonically as the temperature decreases, behavior char-
acteristic of an insulator. However, for n, & n, the
temperature behavior of p becomes nonmonotonic: resis-
tivity increases at T + 2 K and decreases as the temper-
ature is decreased; this behavior is "insulating" at higher
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T and "metallic" at lower T. At still higher n„resistiv-
ity is almost constant at T & 4 K but falls by an order
of magnitude at lower temperatures showing a strongly
metallic behavior as T -+ 0.
A striking feature of the p(T) dependencies for differ-

ent n, is that they can be made to overlap by scaling
them along the T axis. In other words, resistivity can
be represented as a function of T/Te with To depending
only on n, . This was possible for quite a wide range
of electron densities (typically n,, —2.5 x 10 + n,,
n, + 2.5 x 10~o cm 2) and in the temperature interval
0.2—3 K. The results of this scaling are shown in Fig. 4
where p is represented as a function of T/To. One can
see that the data dramatically collapse into two sepa-
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FIG. 3. Temperature dependencies of the resistivity (sam-
ple Si-12b) for different electron densities (designated by dif-
ferent symbols) at B = 0.
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FIG. 4. Resistivity vs T/To (a) and scaling parameter Tp vs
electron density (b) for Si-12a. Open symbols correspond to
the insulating side of the transition and closed to the metallic
one.
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In terms of conductivity, this can be written, at sufficient-
ly low temperature, as

proceedings edited by Nagaoka and Fukuyama (1982) and
in the papers by Fukuyama (1984), Altshuler and Aronov
(1984), and Bergmann (1984).

o.( T)=o p A—opT", (l. lb)

where o.o is the residual conductivity due to impurity
scattering. As the temperature is raised, the amount of
scattering usually increases due to the excitation of pho-
nons or electron-electron collisions, so that 3 is positive
and n is a positive integer usually greater than or equal to
two (n=2 if electron-electron scattering dominates). On
the other hand, if the disorder is strong, as in the case of
alloys where two types of atoms randomly occupy lattice
sites, the traditional approach is to force some average
periodicity on the system and then apply the familiar con-
cepts of ordered systems. The coherent-potential approxi-
mation (CPA) (Elliott, Krumhansl, and Leath, 1974) is an
example of this approach.
In the past few years there has been a growing realiza-

tion that disordered materials cannot be understood by
evading the issue and forcing them into the mold of or-
dered systems. Instead, new concepts must be introduced
which treat the disorder from the beginning. One conse-
quence of the recent advances is that today we know, both
experimentally and theoretically, that even in the weak-
disorder limit, basically all aspects of the Boltzmann
description of Eq. (1.1) are wrong. The coefficient A may
be positive or negative, and n is typicaHy —, for three-
dimensional systems. A certain universality is also
emerging in that if the proper questions are asked, the
behavior of granular metals or Si-MOSFET (metal-
oxide-semiconductor field-effect transistor) inversion
layers are the same, even though their electron density
may differ by several orders of magnitude.
The new understanding is based on advances in two dif-

ferent areas of the problem. The first is the problem of
Anderson localization, which deals with the nature of the
wave function of a single electron in the presence of a
random potential. A scaling description of the Anderson
localization problem is now available that has greatly
deepened our understanding. The second aspect of the
problem is the interaction among electrons in the presence-
of a random potential. It turns out that the simple fact
that electrons are diffusive instead of freely propagating
leads to a profound modification of the traditional view
based on the Fermi-liquid theory of metals.
In this paper we shall review the progress made on

these two aspects of the problem. The bulk of the paper
will deal with the weak-disorder limit, where the theory is
on firm ground and quantitative comparison with experi-
ments can be made. We try to emphasize the physical
concepts involved, at the expense of technical details and
completeness in our references. The strongly disordered
regime is discussed qualitatively, with a view towards
raising more questions rather than providing answers.
Our coverage of the experimental situation is brief„and
the reader is referred to a forthcoming article by Bishop
and Dynes for a more detailed treatment. Other excellent
reviews can be found in the Taniguchi symposium

B. Basic concepts of Anderson
localization and the mobility edge

NARRA m R

(a) (b)

FIG. 1. Typical wave functions of (a) extended state with mean
free path l; lb) localized state with localization length g.

In this section we briefly review the basic concept of lo-
calization introduced by Anderson in 1958 (Anderson,
1958) and the concept of the mobility edge and metal-
insulator transition. Prior to the development of the scal-
ing theory to be described later, a substantial literature
had developed on this problem, and there exist excellent
reviews by Mott and Davis (1979) and Thouless (1979).
In 1958, Anderson pointed out that the electric wave

function in a random potential may be profoundly altered
if the randomness is sufficiently strong. The traditional
view had been that scattering by the random potential
causes the Bloch waves to lose phase coherence on the
length scale of the mean free path l. Nevertheless, the
wave function remains extended throughout the sample.
Anderson pointed out that if the disorder is very strong,
the wave function may become localized, in that the en-
velope of the wave function decays exponentially from
some point in space, i.e.,

~
g(r)

~

-exp(
~

r—rp
~
/g ), (1.2)

and g is the localization length. This is illustrated in Fig.
1. The existence of the localized state is easily understood
if we go to the limit of very strong disorder. Then a
zeroth-order description of the eigenstate would be a
bound state or a localized orbital bound by deep fluctua-
tion in the random potential. We could then consider the
admixture between different orbitals as a perturbation.
The main point is that such admixtures will not produce
an extended state composed of linear combinations of in-
finitely many localized orbitals. The reason is that orbi-
tals that are nearby in space, so that the wave functions
overlap significantly, are in general very different in ener-
gy, so that the admixture is small because of the large en-
ergy denominator. Qn the other hand, states that are
nearly degenerate are in general very far apart in space, so
that the overlap is exponentially small. Thus, in the
strongly disordered limit, the wave function will be ex-
ponentially localized. Indeed, it is easier to establish the
existence of localized states than to establish that of ex-
tended ones. For example, in one dimension it can be
shown rigorously that all states are localized, no matter
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In this section we briefly review the basic concept of lo-
calization introduced by Anderson in 1958 (Anderson,
1958) and the concept of the mobility edge and metal-
insulator transition. Prior to the development of the scal-
ing theory to be described later, a substantial literature
had developed on this problem, and there exist excellent
reviews by Mott and Davis (1979) and Thouless (1979).
In 1958, Anderson pointed out that the electric wave

function in a random potential may be profoundly altered
if the randomness is sufficiently strong. The traditional
view had been that scattering by the random potential
causes the Bloch waves to lose phase coherence on the
length scale of the mean free path l. Nevertheless, the
wave function remains extended throughout the sample.
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velope of the wave function decays exponentially from
some point in space, i.e.,
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and g is the localization length. This is illustrated in Fig.
1. The existence of the localized state is easily understood
if we go to the limit of very strong disorder. Then a
zeroth-order description of the eigenstate would be a
bound state or a localized orbital bound by deep fluctua-
tion in the random potential. We could then consider the
admixture between different orbitals as a perturbation.
The main point is that such admixtures will not produce
an extended state composed of linear combinations of in-
finitely many localized orbitals. The reason is that orbi-
tals that are nearby in space, so that the wave functions
overlap significantly, are in general very different in ener-
gy, so that the admixture is small because of the large en-
ergy denominator. Qn the other hand, states that are
nearly degenerate are in general very far apart in space, so
that the overlap is exponentially small. Thus, in the
strongly disordered limit, the wave function will be ex-
ponentially localized. Indeed, it is easier to establish the
existence of localized states than to establish that of ex-
tended ones. For example, in one dimension it can be
shown rigorously that all states are localized, no matter
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Such a picture is suggested by thinking about the energy
levels of a block (2L) in terms of the energy levels of the
2" constituent blocks with dimension L. The energy lev-
els of the former differ from those of the latter, due for
example to interfacial perturbation caused by putting the
blocks together .If this is the principal effect, it then ap-
pears plausible that sensitivity to boundary perturbations
for the larger block, i.e., the Thouless ratio (bE/oW)2I,
is a function of (bE/5 W)I . Using the association of this
ratio with conductance, a scaling behavior for the latter is
indicated. While the initial formulation of the scaling
theory relied on this suggestive though tenuous line of ar-
gument, it has received further support from perturbation
theory (Anderson, Abrahams, and Ramakrishnan, 1979;
Abrahams and Ramakrishnan, 1980; Gor'kov, Larkin,
and Khmel'nitskii, 1979) as well as the renormalization
group analysis of an equivalent field theory (Wegner,
1979).

2. Scaling function

For an electron gas (Fermi gas with spin- —,' particles),
a =g, =(rr ). p(g) is thus always less than its Ohm's-
law value, so that conduction in a disordered electronic
system is never quite Ohmic. The conductance always in-
creases more slowly with scale size than is suggested by
Eq. (2.3).
The scaling curve can be constructed using the form

Eq. (2.7) for large g and Eq. (2.6) for small g, and the as-
sumptions that p(g) is continuous and monotonic. p(g) is
expected to be continuous because it describes how the
conductance of a finite system evolves as a function of
scale size. As g decreases, one tends to a more localized
behavior, so the conductance should decrease more
strongly with increasing scale size. The monotonic
behavior appears quite plausible, even though we shall
later encounter exceptions to this. The scaling functions
P(g) constructed this way for d =3, 2, and 1 are shown in
Fig. 3 as a function of conductance g. Their implications
for conductivity behavior of disordered systems at T=O
are discussed below.

We now discuss the scaling function p(g) for various
regimes.

a. Large conductance g »gc

3. Consequences of scaling theory

a. Three dimensions

Here g, is a characteristic dimensionless conductance
that turns out to be of order m . In this regime, Ohm's
law, i.e., Eq. (2.3), is valid for the conductance. ' This
leads to the asymptotic form

P(g) =(d —2) (2.5)

b Small cond. uctance g «gc

for g »g, . In two dimensions, p(g} tends to zero; this re-
flects the fact that g and o. have the same physical dimen-
sion for a planar system, i.e., the conductance of a square
does not depend on its size.

Since p(g) starts at a positive value equal to unity,
moves downwards for large g, and is negative for very
small g (localized regime), it must pass through zero at a
certain conductance, say g3. Suppose the state of micro-
scopic disorder in the system is such that the conductance
go at the microscopic cutoff length I is larger than g3.
One thus starts somewhere on the positive part of the p
curve, the exact location depending on the value of go.
On slightly increasing the length scale from I, g increases,
and one moves up a little on the p(g) curve. Continuing
this, at asymptotically large length scales the limit
p(g)=1 is reached, i.e., the system is an Ohm's-law con-

Electronic states are localized, so that the scale depen-
dence of g(L} is described by Eq (2.4). T. his means that
P(g) is given by

P = dgn(g) /dgn(L)

P(g) =ln(g/g, ) (2.6) g=G/(eath)

independent of dimensionality. p(g) is negative, corre-
sponding to a decrease in g as length scale increases. .

c. Perturbati ve regime

P(g) =(d —2)—a/g . (2.7)

For weak disorder, i.e., for (kFl) ' « 1, it is possible to
calculate corrections to the Boltzmann transport theory
result for o. using diagrammatic perturbation theory (Sec.
II.C). It turns out that to higher order in (kFI) ' there
are significant scale-dependent corrections to conductivity
arising from singular backscattering. These terms contri-
bute a correction going as g ', so that for large g 'FIG. 3. The scaling function P(g} vs the dimensionless conduc-

tance g for different dimensions. If o. ;„exists in 2D, the
behavior of f3 is shown by the dashed lines.
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rameter T0 is given in the inset I of Fig. 3(b), showing
exponential decrease with x.

For the highest Sr concentration x ! 0:15, !ab"T# does
not follow Eq. (2) well with " ! 1=2, but better fits are
obtained with a smaller value of the exponent " ! 1=3
over a decade of T (5 K–65 K), as shown in Fig. 3(a). The
fit gives T0 ! 8:8$ 103 K. This value of the hopping
exponent " is consistent with two-dimensional (2D)
transport, within the Mott VRH picture [20]. Because
our system has essentially a quasi 2D electronic structure
with large anisotropy !c=!ab % 103 in the insulating
phase, 2D hopping seems a natural choice.

Origin of hopping transport. Generally, in the process
of carrier doping in conventional semiconductors such as
Si and Ge, the evolution of the transport behavior from
simple activation to Efros-Shklovskii (ES) VRH (Eq. (2)
with " ! 1=2) and finally to Mott VRH has been ob-
served, as the localized states fill in the band gap [21]. The
Mott VRH, observed at x ! 0:15 for a decade of T,
usually appears when the system has a localized band
with a nearly constant density of states (DOS) #""#
around "F. The low temperature CP=T for x ! 0:15 is
well described by $& %T2 with the same Debye tem-

perature !D ! 410 K as Ca2RuO4 (411 K) and Sr2RuO4

(410 K) (inset II of Fig. 2). The electronic contribution $
is about 1:5' 0:5 mJ=molK2. The extra entropy release of
0:36 J=mol K due to the increase in CP=T below 14 K is
much smaller than R ln3 ! 9:13 J=mol K expected for
S ! 1 moment at each Ru site, and is attributable to the
freezing of the uncorrelated spins induced by disorder.
Therefore, the $ value above should give an appropriate
estimate of #""F# at T > 14 K. For 2D Mott VRH, the
localization length & can be estimated using the formula
kBT0 ’ 8:6=#""F#&2d, where d is interlayer spacing. Our
results yield a reasonable value of & % 25 "A, that is
several times the Ru-Ru interatomic spacing ( % 3:8 "A).

In contrast, ES VRH usually appears when the long-
range Coulomb interaction between localized electrons is
important, forming the so-called Coulomb gap (CG) with
#""# / j"( "Fj in 2D [21]. This leads to VRH with " !
1=2 and kBT0 ’ e2='&, where ' is a dielectric constant.
However, T0 observed in our system (inset I of Fig. 3(b)] is
too large for long-range Coulomb interaction. In fact,
assuming ' % 100 as in Ca2RuO4 [10], we obtain & of
the order of 0.03 Å for x ! 0:06, which is not physically
meaningful. Correspondingly, the energy scale of fitting
regions (T ) 150 K) is also much too high in comparison
with the ordinary size of CG (10–100 K) [21]. It is there-
fore unlikely that the emergence of the Coulomb gap is
the physical origin of the apparent ES-like behavior.

What could then lie at the origin of the observed VRH
with " % 1=2? To answer this question, we note that the
gap-type structure in the DOS is essential for the expo-
nent " ! 1=2. The standard Mott VRH picture assumes
an energy-independent DOS, leading to a small hopping
exponent " ! 1=3 in 2D, while the formation of the CG
gives a strongly energy-dependent DOS, which in turn
produces a larger hopping exponent " ! 1=2. However,
we have seen that the CG is too small to account for our
observations. Instead, given the large energy scale of both
the fitting region and T0, the energy gap has to be 0:1(
1 eV, which actually fits well in the range of the Mott gap.
Since the insulating phase of our system is a Mott insu-
lator, we propose that the disorder-modified Mott gap lies
at the origin of the VRH with " % 1=2, as a new mecha-
nism distinct from the ES scenario.

Materials near a first-order transition separating two
competing ground states are generally fragile against
phase separation; moderate randomness can create coex-
isting clusters of competing ordered states [1]. In our case,
the first-order MI transition separates the Mott insulating
phase and the paramagnetic metallic phase. The statisti-
cal distribution of Ca-Sr inevitably creates (although
small) the locally Sr-rich region with a broader local
bandwidth. This statistical distribution of the local band-
width should create extended tails of both UHB and LHB
at their edges, which are easily localized. As the system
approaches the metallic phase, the band-tails extend

FIG. 3 (color online). (a) ln! vs 1=T1=2 and 1=T1=3 for the
insulating phase of Ca2(xSrxRuO4. The results for x ) 0:09 are
plotted against the lower horizontal axis 1=T1=2, while these for
x ! 0:15 are plotted against both 1=T1=2 and the upper axis
1=T1=3. Straight lines indicate a fitting result to Eq. (2).
(b) Corresponding plot for theoretical predictions. The results
for W ! 0:02 and 0.08 eV are plotted against the lower axis
1=T1=2, while these for W ! 0:16 eV are plotted against both
1=T1=2 and the upper axis 1=T1=3. Inset I: T0 obtained by fitting
of !"T# to Eq. (2) with " ! 1=2 for Ca2(xSrxRuO4 (solid
circle) as a function of x (lower axis), and for theory (open
circle) as a function of W (upper axis). Inset II: Model band
structure used in our calculation. As the disorder increases
(WãÑ 0:02 eV ! 0:16 eV), the band-tails gradually fill in the
Mott gap, producing a soft gap similar to that predicted by
Efros and Shklovskii, but on a much larger energy scale.
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is first-order. This is due to the first-order structural
transition that occurs simultaneously with the MI tran-
sition [5]. Reflecting the quasi-2D electronic structure,
the anisotropy !c!T"=!ab!T" in the insulating phase
reaches the value of the order of 103 # 104 (not shown).
As illustrated in Fig. 1(a) and 1(b), !ab in the metallic
phase and TM#I both rapidly decrease with x, and the
system becomes fully metallic at x $ 0:2.

In the insulating phase, an antiferromagnetic (AF)
ordering appears as in Ca2RuO4. Figure 2 shows the T
dependence of the in-plane component of the susceptibil-
ity "!T" measured in a field-cooled sequence. The distinct
increase in "!T" at low T arises from canted AF, as
clarified by neutron diffraction measurements [5]. The
AF transitions are different in nature in the following two
regions: in 0 % x < 0:1, the AF ordering occurs at T <
TM#I without any hystersis, while in 0:1 % x % 0:15, it
coincides with the MI transition. In fact, as for x $ 0:06
and 0.09, the MI transition is reflected in the susceptibil-
ity hysteresis in the paramagnetic state (see the inset I of
Fig. 2). The decrease of the paramagnetic " at TM#I is
attributable to the disappearance of Pauli component in
the insulating phase. However, at x $ 0:15, a large hys-
teresis is observed at TAF, indicating that both MI and AF
transitions at x $ 0:15 occurs concomitantly with the
first-order structural transition.

Here, we note two important facts that confirm the
Mott insulating ground state in 0 % x < 0:2. First, the
AF ordering occurs only in the insulating phase. Second,
!!T" does not show any anomaly at TAF for x $ 0:06 and
0.09. These facts agree well with the significant feature of
Mott insulators: the separation between charge and spin
degrees of freedom due to a large charge (Mott-Hubbard)
gap compared to low energy spin excitations.

Observation of hopping transport. In order to elucidate
the electronic state in the insulating phase, we analyze

!ab!T" shown in Fig. 1(a). The result of Ca2RuO4 (x $ 0)
fits well to activation-type insulating behavior

!ab!T" $ Aexp!EG=2kBT" (1)

below 250 K to the lowest T measured, giving EG ’
4500 K, consistent with the gap observed by the optical
conductivity measurements [14,19]. Since Ca2RuO4 is a
Mott insulator, EG should give the gap size between the
upper and lower Hubbard bands (UHB and LHB).

Variable-range hopping (VRH) conduction

!ab!T" $ Aexp!T0=T"# (2)

with # $ 1=2 also describes the T dependence over al-
most the same T region in agreement with Ref. [10]. VRH
is usually observed in systems with strongly localized
states near "F. However, fitting of the resistivity in a
limited region alone does not give conclusive evidence
for the presence of localized electronic states. In the case
of Ca2RuO4, we measured the specific heat CP!T" and
found the electronic specific heat coefficient $ to be 0&
0:5 mJ=molK2, as shown in the inset II of Fig. 2. Most
likely there are no localized states near "F and activation-
type behavior is the consistent interpretation of the low T
transport in Ca2RuO4.

To obtain the systematic estimate of EG, we also try to
fit the !!T" curve for each x to Eq. (1). However, the well
fitted region becomes rapidly narrower with x, indicating
that the Sr substituted region does not obey activated
behavior. In contrast, as in Fig. 3(a), the VRH widely
describes the insulating behavior. Equation (2) with # $
1=2 describes !ab!T" for x $ 0:06 and 0.09 over a respect-
able temperature range: 236 K–150 K (x $ 0), 155 K–
46 K (0.06), 152 K–14.0 K (0.09), and 21 K–7.3 K (0.15).
It should be noted that !ab!T" obeys VRH with # $ 1=2
over a decade of T for x $ 0:09 and over a comparable
range for x $ 0:06. The x dependence of the fitting pa-
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FIG. 2 (color online). T-dependence of the in-plane suscep-
tibility for Ca2#xSrxRuO4 with x $ 0:06, 0.09, and 0.15. All
curves were measured in a field-cooled sequence. The solid and
open symbols indicate the results measured on cooling and
heating, respectively. Inset I: thermal hystereses observed in
the paramagnetic phase for x $ 0:06 and 0.09. Inset II: CP=T vs
T2 for x $ 0 and 0.15. The solid lines represent linear fit.
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FIG. 1 (color online). (a) T-dependence of the in-plane resis-
tivity !ab!T" measured on cooling for Ca2#xSrxRuO4. Vertical
broken lines are guides to the eye. (b) Phase diagram for the
region 0 % x % 0:2 with three different phases: paramagnetic
metal (top), paramagnetic insulator (middle), and antiferro-
magnetic insulator (bottom). TM#I and TAF are the MI and AF
transition temperatures determined on cooling. Thick and thin
lines indicate the first and second order transitions.
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FIG. 1. (Color online) Magnetotransport in a Bi2Te2Se nanoribbon with a thickness of 98 nm. (a) Temperature dependence of the resistance.
The left inset shows the AFM image of the sample and the right inset shows a schematic diagram of the measurement configuration. (b) Low-field
magnetoresistance (MR) at various temperatures. The positive MR is a consequence of weak antilocalization (WAL). (c) The MR curves at
θ = 0◦ and 90°, with WAL at low fields and universal conductance fluctuations at high fields. (d) The sheet conductance ("G!) as a function
of the perpendicular component of the magnetic field, measured at T = 2 K for various angles θ . All the curves coincide with each other. The
solid curve is a fit to Eq. (1).

Figure 1(c) shows the MR curves for θ = 0◦ and 90°,
respectively, where θ is the angle between the field and the unit
vector normal to the film. Recognizing that the surface states
(SSs) are largely insensitive to in-plane fields, we ascribe the
MR contribution at θ = 90◦ to bulk carriers. In doing so, we
neglect the SS contribution to the parallel-field MR, which is
nonzero due to the BSC. Likewise, we neglect the dependence
of the bulk contribution on the field direction, which arises due
to the BSC as well as due to the finite thickness of the ribbons.
These approximations are justified because our nanoribbons
are not thin compared to the bulk phase relaxation length [22].

In Fig. 1(d), we have subtracted the bulk (θ = 90◦) contri-
bution from the magnetoconductance (MC) obtained at other
angles [27]. Upon this subtraction, all MC curves coincide
with each other when plotted as a function of the perpendicular
component of the magnetic field. The two-dimensional (2D)
nature of the WAL is thus demonstrated [28]. Accordingly, we
fit the MC curves of Fig. 1(d) to the Hikami-Larkin-Nagaoka
(HLN) formula [29],

"G!(B) = α
e2

2π2!

[

ln

(
!

4eL2
φ,SSB

)

−ψ

(
1
2

+ !
4eL2

φ,SSB

)]

,

(1)

where "G!(B) = G!(B) − G!(0) and G! = G·(L/W ).
Here, G = 1/R is the conductance of the ribbon, R is its
resistance, W is the ribbon width, and L is its length. Also,
Lφ,SS is the phase relaxation length of SSs, ψ(x) is the

digamma function, and α is a coefficient that reflects the
number of independent conduction channels on the surfaces
of the film [9,16]. For sample S9, the best fit yields α = 0.28
and a surface phase relaxation length of Lφ,SS = 141 nm. The
bulk phase relaxation length of Lφ,B = 66 nm is also obtained
by analyzing the MR at θ = 90◦ [22].

Figure 2(a) shows the phase relaxation length as a function
of sample thickness across different samples. All of the values
of Lφ,B are scattered around 60 nm and are much smaller
than Lφ,SS. Figure 2(b) shows that α ≈ 0.5 when H ! Lφ,B

and α ≈ 0.25 when H > Lφ,B . Because the bulk contribution
has already been subtracted, the abrupt thickness-dependent
change in α is interpreted as a change in the number of inde-
pendent surface conduction channels. The value of α is affected
by any phase-coherent coupling that may exist between them.
A single, isolated TSS leads to α = 0.5 (WAL) regardless
of the band parameters. In contrast, the contribution from a
single and isolated trivial 2D electron gas (2DEG) can range
between α = −1 [weak localization (WL)] for weak spin-orbit
coupling and α = 0.5 (WAL) for strong spin-orbit coupling.
The fact that α ≈ 0.5 for the thinnest films suggests a strong
and phase-coherent intersurface coupling therein. In addition,
the observation of α < 0.5 for the thicker films reveals the
existence of at least one topologically trivial surface 2DEG. As
an alternative check, we have performed quantum oscillation
measurements that suggest the existence of one topologically
trivial 2DEG [22]. A similar observation has also been made
in Ref. [30]. In order to have α < 0.5, the trivial 2DEG must

041401-2
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26 MAGNETORESISTANCE IN Si MOSFET's: EVIDENCE OF WEAK. . . 775
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FIG. 1. Magnetoresistance of a Si(111)MOSFET in
a perpendicular magnetic field at 0.1 K. Electron densi-
ty is 1.2&10' cm

the two samples with the extreme mobilities
( & 1000 and & 25 000). A preliminary report on
some of these measurements has been reported else-
where. ' Earlier measurements in the low-field re-
gime have also been reported by Kawaguchi and
Kawaji, ' Wheeler, ' and by Davies et al' . Our
measurements were performed in a He- He dilu-
tion refrigerator on four terminal Si MOSFET de-
vices. These were similar devices to those studied
earlier in which the logarithmic temperature
dependence of the conductivity was demonstrated.
Magnetic fields were applied via a superconducting
solenoid capable of 50 ko. The resistances were
measured using an ac resistance bridge operating at
500 Hz. The amplitude of the voltage modulation
used to measure the resistance was always less than
2 mV/cm with substantially lower fields used at
the lower temperatures. This was done in an effort
to keep electron heating effects to a minimum.
The devices were 1.0-mm long and 0.25-mm wide
with potential probes separated by 0.25 mm.
A trace of the magnetoresistance in perpendicu-

lar field at 0.10 K is shown in Fig. 1 for a low-
mobility (111)sample. As a function of H, the
resistivity is seen to first decrease rather sharply
and then at higher fields increase again. The de-
crease at low fields is due to the suppression of lo-
calization effects [the third term in (5)], while the
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FIG. 2. Low-field magnetoresistance of a Si(111)
MOSFET in a perpendicular field for various tempera-
tures. Electron density is 4.52&& 10' cm

increase is due to the Zeeman term [the last term
in (5)]. This rise has a logarithmic dependence on
H as predicted in (5) in the limit pgH ~~kT. This
negative magnetoresistance in low fields was first
observed by Eisele and Dorda. ' A more detailed
measurement in the low-field region yields the set
of data shown in Fig. 2 for an electron density of
4.52& 10' cm . Here we show the temperature
and magnetic field dependence of the resistance
due to localization effects. It can be seen that for
this low-mobility device (p = 1000), these effects
persist out to a few kilogauss. If we adopt the in-
terpretation that localization effects should begin
to "turn off" when the first Landau orbit becomes
comparable in size to the inelastic scattering length
we obtain a critical field II, given by

AcH, =
2el;l,

For the data at T =0.1 K shown in Fig. 2 and the
estimate of l; described below, this corresponds to
a magnetic field of -30 G. Thus as the various
Landau orbits become smaller than the inelastic
length there is a rapid drop in R beginning at rath-
er low fields. A detailed fit to (5) can be made and
in the low-field region only the orbital term contri-
butes. From this fit the parameters a and the in-
elastic scattering time ~; can be extracted. The
quality of the low-field fit for different values of a
is shown in Fig. 3. The curves are fit at 0=0 and
2.0 kG and ~; determined. It can be seen clearly
that +=1.0+0.05 yields the best fit resulting in an
inelastic scattering time for this temperature and
electron density of 3.75& 10 "sec. Similar quali-
ty fits have been made for the data set in Fig. 2
and for various other electron densities on this par-
ticular device and it is found that the best fit oc-
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counter-propagating waves is the same, 
the interference is constructive, and the 
probability of backscattering is doubled by 
the interference contribution. This increases 
the localization of the carriers and, therefore, 
the resistivity of the sample.

In early studies of weak localization, 
physicists were already intrigued by the role 
of spin and spin–orbit coupling on coherent 
transport1. The spin–orbit interaction can be 
viewed as a momentum-dependent Zeeman 
coupling of an effective magnetic field Beff 
to the electron spin. During each scattering 
event, Beff changes its direction, causing the 
spin to precess. The constructive interference 
(and weak localization) persists only for 
weak spin–orbit coupling; in that case, the 
spin–orbit coupling time, τso ~1/Beff, is much 
larger than the spin dephasing time, τi, due 
to inelastic scattering. Naively, for a strong 
spin–orbit coupling for which τso << τi, you 
might expect that the random rotation angles 
of the carrier spin would add a random phase 
factor that destroys the interference effect. 
However, the spin–orbit coupling does not 
break time-reversal symmetry. Therefore, 
independent of the details of disorder, the 
time-reversed paths have the same sequence 
of momentum changes but with the opposite 
sign, implying precisely opposite spin 
rotations. When averaging over all spin 
rotation angles for an arbitrary closed path 
in two dimensions, a destructive interference 
contribution prevails1. Strong spin–orbit 
coupling does not cause a complete 
dephasing of time-reversed backscattered 
waves, but changes the net interference 
contribution from weak localization to 
weak anti-localization (Fig. 1b), that is, it 
suppresses the resistivity of the conductor.

An external magnetic field Bp applied 
perpendicular to the plane of the conductor 
couples to the orbital part of the electron’s 
wavefunction. Because the magnetic field 
breaks time-reversal symmetry, it diminishes 
the interference of the time-reversed paths 
beyond its characteristic timescale τB ~1/Bp. 
Spin–orbit coupling then plays a negligible 
role when τso >> τB. With decreasing Bp, 
the constructive interference contribution 
strengthens, resulting in an increase of 
the measured resistance. When, however, 
τB >> τso at small Bp, weak anti-localization 
takes over and the resistance drops. The 
resulting maximum in the resistance at 
τB ≈ τso, marking the crossover from weak 
localization to weak anti-localization, 
has traditionally provided the means for 
inferring the approximate strength of the 
spin–orbit coupling1.

Nitta and colleagues carried out an 
experiment in which the interference 
contribution to electron transport can 
provide not just an approximate scale of the 

spin–orbit coupling, but also an accurate 
measurement of its momentum-dependent 
direction in different semiconductor 
quantum structures. Unexpectedly, weak 
anti-localization plays no role in these 
experiments. Indeed, in structures with 
strong spin–orbit coupling, the researchers 
could rely solely on weak localization, and 
on tuning its contribution to transport 
by controlling the dephasing, following a 
concept previously proposed by the group3.

The researchers studied transport in a 
two-dimensional (2D) electron gas in an 
InGaAs-based heterostructure by patterning 
microwires with widths smaller than the 
characteristic spin-precession length in the 
spin–orbit field. This quasi-1D character 
of transport implies that the carrier spins 
experience only the spin–orbit-field 
component given by the momentum 
component along the wire. Backscattering 
in this geometry changes the sign of the 
spin–orbit field, but does not rotate its 
spin-precession axis. The randomization of 

spin rotations is suppressed in the quasi-1D 
wire and the interference contribution 
to transport has the weak localization 
form, despite the strong spin–orbit 
coupling (Fig. 1c).

The researchers applied an in-plane 
magnetic field Bin, which couples to the 
carrier spin. Because this momentum-
independent Zeeman coupling breaks 
time-reversal symmetry, the spin-precession 
axis given by Beff + Bin rotates when the 
carrier is scattered in the quasi-1D channel, 
and the resulting dephasing suppresses 
weak localization (Fig. 1d). The dephasing is 
maximized when Bin is orthogonal to Beff and 
minimized when the two fields are parallel.

The researchers studied a semiconductor 
heterostructure in which the momentum-
dependent spin–orbit field has two types of 
spin–orbit coupling with different symmetry, 
called Rashba and Dresselhaus. The direction 
of the total Rashba–Dresselhaus field is 
determined by the ratio of their respective 
strengths, α and β. These can be tuned 
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Figure 1 | Interference transport effects in 2D and 1D spin–orbit-coupled systems. a, Constructive 
interference of backscattered electron waves (ψ+ and ψ-) passing along time-reversed 2D paths leads to 
weak localization (WL) in the absence of spin–orbit coupling. Red and blue arrows represent scattering 
events of the two waves. The inset is a zoom-in of the interference occurring at the scattering site. b, Left: 
Spins randomly precess when scattered in the presence of the momentum-dependent spin–orbit field 
Beff. The spin–orbit coupling leads to a prevailing destructive interference of backscattered electron waves 
passing along a time-reversed 2D path and to the weak anti-localization (WAL). Right: The electron 
spin (light blue arrow) precesses around the effective field Beff. The direction of Beff in momentum space 
kx–ky is also shown. c, The variation of the direction of Beff is quenched in 1D wires (the direction of Beff in 
momentum space depends only on ky; right) restoring the constructive interference and weak localization 
despite the presence of spin–orbit coupling. d, Right: Adding a Zeeman coupling of an in-plane magnetic 
field Bin breaks time-reversal and introduces a change in the direction of the net spin-precession axis 
Beff + Bin when the carrier scatters. Left: The resulting dephasing (Deph.) of backscattered waves 
suppresses weak localization.
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FIG. 2. Dimensionless conductance vs magnetic field at
three gate voltages, for the inversion layer segment indicat-
ed in Fig. 1, showing aperiodic conductance variations of or-
der e~/h.

conductance (G), a root-mean-square deviation SG,
and a conductance correlation function4 C that
depends on magnetic field displacement 58 and gate-
voltage displacement 4 VG. The function C sums
products of deviations, computed here with respect to
the average value for each magnetic field trace. This
isolates random interference phenomena from average
dependences of the conductance on gate voltage. Fig-
ure 3 shows the correlation function (normalized to
the variance) for a set that includes the data tn Fig. 2,
with (G) =11.7e /h, and SG =0.65e2/h. The correla-
tion function has half-widths 8, = 0.48 T and
VG, =0.22 V. These correspond respectively to a
magnetic flux of 3.5h/e in the area of the segment,
and to a chemical-potential change in the inversion
layer of p,, =1.6 meV=4. 5kaT.
In order to compare such experimental results with

theory, it is necessary to consider the phase coherence
within the device. In the absence of magnetic impurity
scattering, the length scale for destruction of phase in-
formation is set by the inelastic diffusion length
L = (D7 )'lz, where D = vFl/d is the diffusion con-
stant for dimensionality d with respect to the mean
free path l, and 7;„is the inelastic scattering time. For
two-dimensional electron-electron scattering, ~;„is
proportional to D/T and D is proportional to the aver-
age conductance of a square (g~) = (G) L/W(e /h).
Weak-localization experiments on large MOSFETs'8
and parallel arrays of long, narrow MOSFET chan-
nels'9 2' agree (to better than a factor of 2) with

L;,=15(go) (T/[1 K]) '~' nm.

For completeness we note that a different diffusion
length LT= (hD/ka T) 'l2 governs the process by
which simultaneously diffusing waves at different en-
ergies retain phase information but tend to get "out of
step. " In our MOSFETs, unlike most metals, we have
L;„&LT, allowing us to ignore the latter effect in the

0 0.5
aB (tesla)

FIG. 3. Normalized correlation function vs. displace-
ments of magnetic field and gate voltage, for data set includ-
ing data of Fig. 2.

Sg= [max(L;„,W)/L]'l'[L;„/L],
p, , = min(n 2t/~;„, several ka T),
8, = (2.4h/e)/[L;„min( O',L;„)].

(2)

(3)
(4)

For the data set corresponding to Fig. 3, L;„=0.25
p, m, so that W'& L;„&L. Thus the segment consists
of slightly more than one quantum subunit, and the
measured quantities are in excellent agreement with
these predictions.
Figure 4 compares Eq. (2) with the measured Sg for

many dozens of data sets, limited to 8 & 2 T so that
weak localization effects are small. The various trian-
gles and squares represent data sets from a compre-
hensive survey of device segments at three different
widths (0.06, 0.1, and 0.25 p.m), three different
lengths (0.15, 0.3, and 0.45 p,m), two different tem-

discussion and equations that follow. 22
In our case, if one or more dimensions of the sys-

tem being studied exceed L;„,then the appropriate
length L or width W'can be divided into N= L/L;„or
M= W/L;„phase-coherent subunits. These subunits,
differing by typically SGt = e2/h, can be combined with
use of classical series-parallel addition23 to yield a com-
bined fluctuation of relative size (MN) 'l2 and abso-
lute size SG =M' 2N 2e2/h. The magnetic field
change 8, characterizing the phase correlation of the
random interference then corresponds to putting
several flux quanta h/e in the area of each phase-
coherent subunit. (Reference 4 finds that the charac-
teristic flux is =2.4h/e for a strip longer than it is
wide. ) The chemical potential change p, , characteriz-
ing the energy correlation of the interference corre-
sponds to the lesser of E, =~2k/r;„and several kaT,
with the latter case applying in all of our devices. 22
Experimentally, L and W'are measured from elec-

tron micrographs of the devices, and L;„is determined
from Eq. (1) and the average conductance of each data
set. In terms of L, IV, and L;„,the 1D and 2D
theoretical predictions described above (for the
relevant case L;„&LT) reduce to
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tron heating and other nonlinearities. 5

A question raised by the data of Fig. 1 is whether
the oscillations are the result of an energy shift of the
electronic eigenstates or, instead, are caused by a
change in the phase of the wave functions. The first
of these effects would result if, for example, structure
in the density of states were moved past the Fermi en-
ergy, EF, by the magnetic field. For Shubnikov —de
Haas oscillations, this structure is caused by the mag-
netic field7; the case in which the structure is caused
by the small size of the sample is discussed by Dingle. 3
To explore this possibility, we measured the depen-
dence of the resistance and the magnetoresistance on
gate voltage in more detail.
In Fig. 2 is a plot of resistance as a function of vG at

zero magnetic field. On this expanded scale, oscilla-
tions are observed which are comparable in size
(—I'lo) to those in the magnetoresistance. Such
features have been ascribed by Wheeler, Choi, and
Wisnieffs and Skocpol et al. 9 to one-dimensional sub-
band structure in the density of states which modifies
the weak localization and interaction effects. The
spacing of this structure in gate voltage, 100—200 mV,
corresponds to a change of EF by AEF =0.3—0.6 meV.
To explore whether field-induced energy shifts of the
density of states could be the origin of the structure in
the magnetoresistance, we measured the magne-
toresistance at closely spaced values of VG near 8 V.
The results are shown in Fig. 3. If the effect of the
magentic field were to shift the energies of states rela-
tive to EF, continuously with VG, then, in a corre-
sponding way, small changes in VG should cause the
structure in the magnetoresistance to shift in field, at
least for such small variations of VG as used in Fig. 3.
On the contrary, for small 5 VG, the oscillations retain
their phase from one VG to another, while for larger
5 VG, the phase becomes uncorrelated. One cannot ob-
serve any consistent pattern of gradual shifts of the os-
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cillations with VG. This provides strong evidence that
the magnetoresistance oscillations do not result from
energy shifts of the eigenstates.
Instead, they must result from field-induced

changes in the phase of the electronic wave functions,
resulting in modulation of the current. One way in
which such modulation might arise is if there were, in
the channel, closed-loop conduction paths. These
would give rise to quantum interference or "Bohm-
Aharonov" effects which cause the overall resistance
of the loop to be a periodic function of the magnetic
flux enclosed. Such an effect with period hc/2e was
predicted by Al'tshuler, Aronov, and Spivak'o and ob-
served by Sharvin and Sharvin. " A second effect with
period hc/e has been predicted by several groups'2 and
observed by Webb et al. '3
The closed-loop paths required for the Bohm-

Aharonov explanation could only arise from macro-
scopic heterogeneities (MH) in the inversion layer.
Such heterogeneities might be caused by long-range
potential fluctuations resulting in multiply connected
preferred conduction paths. Two observations favor
such a MH model. First, as seen in Fig. 1, the typical
period of the oscillations is —1 kOe, corresponding
to a flux quantum penetrating an area hc/2eFI—(W/2)2, where IV is the width of the channel,
which is reasonable. Second, the temperature depen-
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FIG. 2. Resistance vs VG at H=O. The overall decrease
of R with V~ results from the increase of electron density.

FIG. 3. Magnetoresistance at closely spaced values of VG.
Channel resistance —50 kA.
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Finally, Johnson-Nyquist noise measurements for different
temperatures at fixed conductance in the fractional regime
provide an absolute calibration as in [24].
The results of a series of current noise power measure-

ments versus backscattering current IB at Q � 25 mK is
shown in Fig. 2. The noise measured in the 4 8 KHz fre-
quency range is white. The background noise �5.32 3
10228 A2⌅Hz is due to the circuit noise. The error bars
represent the statistical accuracy expected for 1500 s ac-
quisition time. IB can be varied by changing either the
dc bias Vds or the tunnel coupling with gate voltage. In
order to keep dI⌅dVds � Gdiff constant and follow the
path A shown in Figs. 1(b) and 1(c) both the bias (40
to 78 mV ) and the gate voltage (2170.5 to 2178.5 mV)
are varied. The backscattering current is obtained within
5% accuracy by measuring the dc voltage VB � V3,2 or
V5,6 across the QPC, using IB � ⇥2VB 2 Vds⇤e2⌅3h. The
“reflexion coefficient” R � IB3h⌅e2Vds is kept small for
weak backscattering. It increases with IB from 4% to
35%. The linear variation of the noise with IB tells us
that we do observe shot noise associated with backscat-
tering. We can compare the rate of noise variation with
that given by Eq. (1) (dashed line). The agreement with
the prediction of Laughlin quasiparticle tunneling is ex-
cellent. Electron tunneling would have given a very dif-
ferent result (dotted line). Electron shot noise is found for
similar conductance G � 0.32e2⌅h at a lower field in the
integer quantum Hall regime (nL � 4 in the leads), inset

FIG. 2. Tunneling noise at n � 1⌅3 (nL � 2⌅3) when fol-
lowing path A and plotted versus IB � ⇥e2⌅3h⇤Vds 2 I (filled
circles) and IB⇥1 2 R⇤ (open circles). The slopes for e⌅3
quasiparticles (dashed line) and electrons (dotted line) are
shown. Q � 25 mK. Inset: data in same units showing elec-
tron tunneling for similar G � 0.32e2⌅h but in the IQHE
regime (nL � 4). The expected slope for electrons 2eIB⇥1 2
R⇤ [R � 0.68, IB � ⇥e2⌅h⇤Vds 2 I] is shown. Q � 42 mK.

of Fig. 2. The data agree with the electron theory for a
lowest Landau level transmission 0.32 [26].
How is this remarkable result robust against parameter

changes? Figure 3(a) shows the current noise versus IB
for two different Gdiff (path B and C). The noise also
compares well with that expected for e⌅3 charges except
for the points at high bias where the backscattering is no
longer weak and less noise is found. A good agreement
is also found for a different tunneling regime obtained
by detuning a resonance [Fig. 1(d), path D: Vds � 78 to
175 mV and gate voltage 2161 to 2177 mV]. The result
is also robust against temperature change as shown by
the series E corresponding to the tunneling conditions of
Fig. 1(b) but at Q � 150 mK. Finally, room temperature
thermal cycling changes the resonance shape but not the
noise results.
How to take into account the deviations for large R? As

long as electron tunneling does not start to compete with
quasiparticle tunneling, we may expect a decrease of noise
when R increases. Indeed, the tunneling events are no
longer Poissonian as the exclusion statistics and the inter-
actions correlate the quasiparticles. If they were fermions
a noise reduction ⇥1 2 R⇤would occur [24,26,27]. It is not
legitimate [21], but nevertheless tempting to plot the noise
data as a function of IB⇥1 2 R⇤ (open circles of Figs. 2 and
3). Within experimental accuracy, the simple ⇥1 2 R⇤ re-
duction factor accounts well for the data but slightly over-
estimates ep. The least squares linear fit gives ep � 0.38,
0.36, 0.35, and 0.36 for A, B, C, and D.
The final check to confirm our observation of e⌅3

Laughlin quasiparticles is the crossover from Johnson-
Nyquist to shot noise at epVds⌅2 � kBQ. Figure 4 shows
measurements at Q � 134 mK and low bias. Here, the
bias voltage Vds varies from 13 to 140 mV and Gdiff �
0.26e2⌅h. The nearly linear noise variation at high bias,
consistent with Eq. (1), saturates at low bias. The arrow,
indicating when epVds � 2kBQ, is well in the crossover
region. Comparison with Eq. (2) (solid curves) shows

FIG. 3. Filled circles: Shot noise measured at 25 mK versus
IB corresponding to the paths B, C, and D of Fig. 1, and to
a series of measurements (E) at 150 mK. Open circles: same
data versus IB⇥1 2 R⇤.
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shot noise, the ‘‘low frequency’’ spectral density is propor-
tional to the dc excitation current and to the charge of the
quasiparticles. In multiple channel transport, only the par-
titioned channel carries noise, which is independent of the
presence of other channels that are fully transmitted or are
fully reflected. Indeed, in previous measurements, the as-
sumption of mutually independent propagating modes was
found to strictly hold [20–22].

Two GaAs-AlGaAs heterostructures, with embedded
high mobility 2DEG, were used. One (labeled A) had a
low temperature mobility in excess of 6! 106 cm2=Vs
and an electron density 8:8! 1010 cm"2, and another
(labeled B) had a mobility 4:3! 106 cm2=Vs and an
electron density 10! 1010 cm"2. Four different structures
had been fabricated (different processes and different QPC
configurations, with three of them on the higher mobility
2DEG). The QPCs were made either by top metallic split-
gate or via ‘‘mesa-side-gates’’ [23]—these two methods
provide very different confining potentials for the constric-
tions. The data taken in all samples were found to be
quantitatively very similar. The measurements, unless spe-
cifically mentioned, were carried out in a dilution refrig-
erator at an electron temperature of 10 mK (as deduced
from shot noise measurements).

The configuration of the device is shown in Fig. 1. A
split gate, with 400 nm gap, was deposited on the surface of
the heterojunction, forming upon biasing a controlled con-
striction in the 2DEG. The multiterminal configuration
ensures a constant output resistance at the drain at a Hall
plateau (being Hall resistance)—independent of the trans-
mission of the constriction, thus allowing subtracting the
contribution of the ‘‘current noise’’ of the preamplifier
[24]. The fluctuations in the drain voltage were IdRq,
with Id the current fluctuations and Rq the quantum resis-

tance for bulk filling factor v. The drain voltage was
filtered by a resonant circuit tuned to #800 KHz with a
bandwidth of some 30 kHz, and subsequently amplified by
a homemade, low-noise, cryogenic preamplifier (cooled to

4.2 K, with voltage noise #800 pVHz"1=2 and current

noise #10 fAHz"1=2). The output of this preamplifier

was fed to a room temperature amplifier followed by a
spectrum analyzer. Note that the central frequency was
chosen to be far above the 1=f noise knee of the sample,
with the 1=f noise contribution (which is quadratic with
the current) much smaller than the shot noise and the
thermal noise. All measurements in the fractional regime
were preceded by charge measurements in the integer
regime, verifying that an electron charge is being
measured.
The spectral density of a partitioned current due to

stochastic back scattering at a finite temperature is de-
scribed well by the analytic expression [8–10]:

SIð0Þ ¼ 2eIimptð1" tÞ½cothðe(V=2kBTÞ " 2kBT=e
(V);

(1)

where the impinging current Iimp ¼ Vgq with gq ¼
ð2=3Þe2=h for bulk filling factor v ¼ 2=3, t the constric-
tion’s transmission coefficient (assuming energy indepen-
dence), e( the quasiparticle charge, and T the electron
temperature. When t depends weakly on the current, its dif-
ferential value as function of current was used. Figure 2(a)
shows a plot of the transmission, deduced from the two
terminal linear conductance g, as function of the applied
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FIG. 1 (color online). Schematic of the noise measurement
setup (see text for details).

split-gate voltage, Vg (volts)

FIG. 2 (color online). Conductance and spectral density at
electron temperature 10 mK. (a) Conductance g and transmis-
sion t of the constriction as a function of split-gate voltage. Note
the appearance of a prominent plateau at g ¼ e2=3h (t ¼ 1=2).
(b) Upper panel—dependence of the transmission (zero bias t ¼
1=2, split-gate voltage Vg ¼ "0:3 V) on injected electron en-
ergy. Lower panel—spectral density SI at this value of trans-
mission. The blue dots are the measured data points. Shown is
the expected spectral density for transmission t ¼ 1=2, tempera-
ture T ¼ 10 mK, and quasiparticle charge e( ¼ e (cyan solid
line), ð2=3Þe (red dashed line), and e=3 (olive dotted line). For
comparison, we also show (purple stars) the noise measured
when !b ¼ 2=5 and !C ¼ 1=3.
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SI = e · I


