
Free Pascal :
Reference guide.

Reference guide for Free Pascal.
1.4

February 1999

Michaël Van Canneyt

Contents

0.1 About this guide . 8

Notations . 8

Syntax diagrams . 8

I The Pascal language 10

1 Pascal Tokens 11

1.1 Symbols . 11

1.2 Comments . 12

1.3 Reserved words . 12

Turbo Pascal reserved words . 12

Delphi reserved words . 13

Free Pascal reserved words . 13

Modifiers . 13

1.4 Identifiers . 14

1.5 Numbers . 14

1.6 Labels . 15

1.7 Character strings . 15

2 Constants 16

2.1 Ordinary constants . 16

2.2 Typed constants . 17

3 Types 18

3.1 Base types . 18

Ordinal types . 19

Real types . 22

3.2 Character types . 22

Char . 22

Strings . 23

Short strings . 23

Ansistrings . 24

1

CONTENTS CONTENTS

Constant strings . 25

PChar . 26

3.3 Structured Types . 27

Arrays . 27

Record types . 27

Set types . 31

File types . 32

3.4 Pointers . 32

3.5 Procedural types . 34

4 Objects 36

4.1 Declaration . 36

4.2 Fields . 37

4.3 Constructors and destructors . 38

4.4 Methods . 39

4.5 Method invocation . 39

4.6 Visibility . 42

5 Classes 43

5.1 Class definitions . 43

5.2 Class instantiation . 44

5.3 Methods . 44

5.4 Properties . 45

6 Expressions 49

6.1 Expression syntax . 49

6.2 Function calls . 51

6.3 Set constructors . 52

6.4 Value typecasts . 53

6.5 The @ operator . 53

6.6 Operators . 54

Arithmetic operators . 54

Logical operators . 55

Boolean operators . 55

String operators . 56

Set operators . 56

Relational operators . 56

7 Statements 58

7.1 Simple statements . 58

Assignments . 58

2

CONTENTS CONTENTS

Procedure statements . 59

Goto statements . 60

7.2 Structured statements . 60

Compound statements . 61

The Case statement . 61

The If..then..else statement . 62

The For..to/downto..do statement 63

The Repeat..until statement . 64

The While..do statement . 65

The With statement . 65

Exception Statements . 67

7.3 Assembler statements . 67

8 Using functions and procedures 68

8.1 Procedure declaration . 68

8.2 Function declaration . 69

8.3 Parameter lists . 69

Value parameters . 69

var parameters . 70

Const parameters . 70

Open array parameters . 71

8.4 Function overloading . 71

8.5 forward defined functions . 72

8.6 External functions . 73

8.7 Assembler functions . 74

8.8 Modifiers . 74

Public . 74

cdecl . 75

popstack . 75

Export . 75

StdCall . 76

Alias . 76

8.9 Unsupported Turbo Pascal modifiers 76

9 Programs, units, blocks 77

9.1 Programs . 77

9.2 Units . 78

9.3 Blocks . 79

9.4 Scope . 80

Block scope . 80

Record scope . 81

3

CONTENTS CONTENTS

Class scope . 81

Unit scope . 81

9.5 Libraries . 82

10 Exceptions 83

10.1 The raise statement . 83

10.2 The try...except statement . 84

10.3 The try...finally statement . 85

10.4 Exception handling nesting . 85

10.5 Exception classes . 86

11 Using assembler 87

11.1 Assembler statements . 87

11.2 Assembler procedures and functions 87

II Reference : The System unit 89

12 The system unit 90

12.1 Types, Constants and Variables . 90

Types . 90

Constants . 90

Variables . 91

12.2 Functions and Procedures . 91

Abs . 91

Addr . 92

Append . 92

Arctan . 93

Assign . 93

Assigned . 94

BinStr . 94

Blockread . 95

Blockwrite . 95

Chdir . 96

Chr . 96

Close . 96

Concat . 97

Copy . 97

Cos . 98

CSeg . 98

Dec . 99

Delete . 99

4

CONTENTS CONTENTS

Dispose . 100

DSeg . 101

Eof . 101

Eoln . 102

Erase . 102

Exit . 102

Exp . 103

Filepos . 104

Filesize . 105

Fillchar . 105

Fillword . 106

Flush . 106

Frac . 107

Freemem . 107

Getdir . 108

Getmem . 108

Halt . 108

HexStr . 109

Hi . 109

High . 110

Inc . 111

Insert . 111

Int . 112

IOresult . 112

Length . 114

Ln . 114

Lo . 114

LongJmp . 115

Low . 115

Lowercase . 115

Mark . 116

Maxavail . 116

Memavail . 117

Mkdir . 118

Move . 118

New . 118

Odd . 119

Ofs . 119

Ord . 119

Paramcount . 120

5

CONTENTS CONTENTS

Paramstr . 120

Pi . 121

Pos . 121

Power . 122

Pred . 122

Ptr . 123

Random . 123

Randomize . 124

Read . 124

Readln . 125

Release . 125

Rename . 126

Reset . 126

Rewrite . 127

Rmdir . 127

Round . 128

Runerror . 128

Seek . 129

SeekEof . 129

SeekEoln . 130

Seg . 130

SetJmp . 131

SetTextBuf . 132

Sin . 132

SizeOf . 133

Sptr . 133

Sqr . 134

Sqrt . 134

SSeg . 134

Str . 135

Succ . 135

Swap . 136

Trunc . 136

Truncate . 136

Upcase . 137

Val . 138

Write . 138

WriteLn . 139

6

List of Tables

3.1 Predefined ordinal types . 19

3.2 Predefined integer types . 20

3.3 Boolean types . 20

3.4 Supported Real types . 22

3.5 AnsiString memory structure . 24

3.6 PChar pointer arithmetic . 26

3.7 Set Manipulation operators . 32

6.1 Precedence of operators . 49

6.2 Binary arithmetic operators . 55

6.3 Unary arithmetic operators . 55

6.4 Logical operators . 55

6.5 Boolean operators . 56

6.6 Set operators . 56

6.7 Relational operators . 57

7.1 Allowed C constructs in Free Pascal 59

8.1 Unsupported modifiers . 76

7

LIST OF TABLES 0.1. ABOUT THIS GUIDE

0.1 About this guide

This document describes all constants, types, variables, functions and procedures as
they are declared in the system unit. Furthermore, it describes all pascal constructs
supported by Free Pascal, and lists all supported data types. It does not, however,
give a detailed explanation of the pascal language. The aim is to list which Pascal
constructs are supported, and to show where the Free Pascal implementation differs
from the Turbo Pascal implementation.

Notations

Throughout this document, we will refer to functions, types and variables with
typewriter font. Functions and procedures have their own subsections, and for
each function or procedure we have the following topics:

Declaration The exact declaration of the function.

Description What does the procedure exactly do ?

Errors What errors can occur.

See Also Cross references to other related functions/commands.

The cross-references come in two flavours:

• References to other functions in this manual. In the printed copy, a number
will appear after this reference. It refers to the page where this function is
explained. In the on-line help pages, this is a hyperlink, on which you can
click to jump to the declaration.

• References to Unix manual pages. (For linux related things only) they are
printed in typewriter font, and the number after it is the Unix manual section.

Syntax diagrams

All elements of the pascal language are explained in syntax diagrams. Syntax dia-
grams are like flow charts. Reading a syntax diagram means that you must get from
the left side to the right side, following the arrows. When you are at the right of a
syntax diagram, and it ends with a single arrow, this means the syntax diagram is
continued on the next line. If the line ends on 2 arrows pointing to each other, then
the diagram is continued on the next line. syntactical elements are written like this

-- syntactical elements are like this -�

keywords you must type exactly as in the diagram:

-- keywords are like this -�

When you can repeat something there is an arrow around it:

--
6

this can be repeated -�

When there are different possibilities, they are listed in columns:

-- First possibility
Second possibility

-�

8

LIST OF TABLES 0.1. ABOUT THIS GUIDE

Note, that one of the possibilities can be empty:

--

First possibility
Second possibility

-�

This means that both the first or second possibility are optional. Of course, all these
elements can be combined and nested.

9

Part I

The Pascal language

10

Chapter 1

Pascal Tokens

In this chapter we describe all the pascal reserved words, as well as the various ways
to denote strings, numbers identifiers etc.

1.1 Symbols

Free Pascal allows all characters, digits and some special ASCII symbols in a Pascal
source file.

Recognised symbols

-- letter A...Z
a...z

-�

-- digit 0...9 -�

-- hex digit 0...9
A...F
a...f

-�

The following characters have a special meaning:

+ - * / = < > [] . , () : ^ @ { } $ #

and the following character pairs too:

<= >= := += -= *= /= (* *) (. .) //

When used in a range specifier, the character pair (. is equivalent to the left square
bracket [. Likewise, the character pair .) is equivalent to the right square bracket
]. When used for comment delimiters, the character pair (* is equivalent to the left
brace { and the character pair *) is equivalent to the right brace }. These character
pairs retain their normal meaning in string expressions.

11

Pascal Tokens 1.2. COMMENTS

1.2 Comments

Free Pascal supports the use of nested comments. The following constructs are valid
comments:

(* This is an old style comment *)
{ This is a Trubo Pascal comment }
// This is a Delphi comment. All is ignored till the end of the line.

The last line would cause problems when attempting to compile with Delphi or
Turbo Pascal. These compiler would consider the first matching brace } as the end
of the comment delimiter. If you wish to have this behaviour, you can use the -So
switch, and the Free Pascal compiler will act the same way. The following are valid
ways of nesting comments:

{ Comment 1 (* comment 2 *) }
(* Comment 1 { comment 2 } *)
{ comment 1 // Comment 2 }
(* comment 1 // Comment 2 *)
// comment 1 (* comment 2 *)
// comment 1 { comment 2 }

The last two comments must be on one line. The following two will give errors:

// Valid comment { No longer valid comment !!
}

and

// Valid comment (* No longer valid comment !!
*)

The compiler will react with a ’invalid character’ error when it encounters such
constructs, regardless of the -So switch.

1.3 Reserved words

Reserved words are part of the Pascal language, and cannot be redefined. They will
be denoted as this throughout the syntax diagrams. Reserved words can be typed
regardless of case, i.e. Pascal is case insensitive. We make a distinction between
Turbo Pascal and Delphi reserved words, since with the -So switch, only the Turbo
Pascal reserved words are recognised, and the Delphi ones can be redefined. By
default, Free Pascal recognises the Delphi reserved words.

Turbo Pascal reserved words

The following keywords exist in Turbo Pascal mode

absolute
and
array

asm
begin
break

case
const
constructor

continue
destructor
dispose

12

Pascal Tokens 1.3. RESERVED WORDS

div
do
downto
else
end
exit
false
file
for
function
goto
if
implementation

in
inherited
inline
interface
label
mod
new
nil
not
object
of
on
operator

or
packed
procedure
program
record
repeat
self
set
shl
shr
string
then
to

true
try
type
unit
until
uses
var
while
with
xor

Delphi reserved words

The Delphi (II) reserved words are the same as the pascal ones, plus the following
ones:

as
class
except
exports

finalization
finally
initialization
is

library
on
property
raise

try

Free Pascal reserved words

On top of the Turbo Pascal and Delphi reserved words, Free Pascal also considers
the following as reserved words:

dispose
exit

export
false

new
popstack

true

Modifiers

The following is a list of all modifiers. Contrary to Delphi, Free Pascal doesn’t allow
you to redefine these modifiers.

absolute
abstract
alias
assembler
cdecl
default
export

external
far
forward
index
name
near
override

pascal
popstack
private
protected
public
published
read

register
stdcall
virtual
write

Remark that predefined types such as Byte, Boolean and constants such as maxint
are not reserved words. They are identifiers, declared in the system unit. This
means that you can redefine these types. You are, however, not encouraged to do
this, as it will cause a lot of confusion.

13

Pascal Tokens 1.4. IDENTIFIERS

1.4 Identifiers

Identifiers denote constants, types, variables, procedures and functions, units, and
programs. All names of things that you define are identifiers. An identifier consists of
255 significant characters (letters, digits and the underscore character), from which
the first must be an alphanumeric character, or an underscore () The following
diagram gives the basic syntax for identifiers.

Identifiers

-- identifier
letter 6 letter

digit

-�

1.5 Numbers

Numbers are denoted in decimal notation. Real (or decimal) numbers are written
using engeneering notation (e.g. 0.314E1). Free Pascal supports hexadecimal format
the same way as Turbo Pascal does. To specify a constant value in hexadecimal
format, prepend it with a dollar sign ($). Thus, the hexadecimal $FF equals 255
decimal. In addition to the support for hexadecimal notation, Free Pascal also
supports binary notation. You can specify a binary number by preceding it with a
percent sign (%). Thus, 255 can be specified in binary notation as %11111111. The
following diagrams show the syntax for numbers.

Numbers

-- hex digit sequence
6

hex digit -�

-- bin digit sequence
6

1
0

-�

-- digit sequence
6

digit -�

-- unsigned integer digit sequence
$ hex digit sequence
% bin digit sequence

-�

-- sign +
-

-�

-- unsigned real digit sequence
. digit sequence scale factor

-�

-- scale factor E
e sign

digit sequence -�

14

Pascal Tokens 1.6. LABELS

-- unsigned number unsigned real
unsigned integer

-�

-- signed number
sign

unsigned number -�

1.6 Labels

Labels can be digit sequences or identifiers.

Label

-- label digit sequence
identifier

-�

1.7 Character strings

A character string (or string for short) is a sequence of zero or more characters from
the ASCII character set, enclosed by single quotes, and on 1 line of the program
source. A character set with nothing between the quotes (’’) is an empty string.

Character strings

-- character string
6

quoted string
control string

-�

-- quoted string ’
6

string character ’ -�

-- string character Any character except ’ or CR
”

-�

-- control string
6

unsigned integer -�

15

Chapter 2

Constants

Just as in Turbo Pascal, Free Pascal supports both normal and typed constants.

2.1 Ordinary constants

Ordinary constants declarations are no different from the Turbo Pascal or Delphi
implementation.

Constant declaration

-- constant declaration
6

identifier = expression ; -�

The compiler must be able to evaluate the expression in a constant declaration at
compile time. This means that most of the functions in the Run-Time library cannot
be used in a constant declaration. Operators such as +, -, *, /, not, and, or,
div(), mod(), ord(), chr(), sizeof can be used, however. For more inform-
ation on expressions, chapter 6 You can only declare constants of the following
types: Ordinal types, Real types, Char, and String. The following are all valid
constant declarations:
Const

e = 2 . 7182818 ; { Real type c o n s t a n t . }
a = 2 ; { I n t e g e r type c o n s t a n t . }
c = ’4’ ; { C h a r a c t e r type c o n s t a n t . }
s = ’This is a constant string’ ; { S t r i n g type c o n s t a n t .}
s = chr (32)
l s = SizeOf (Long int) ;

Assigning a value to a constant is not permitted. Thus, given the previous declara-
tion, the following will result in a compiler error:

s := ’some other string’ ;

16

Constants 2.2. TYPED CONSTANTS

2.2 Typed constants

Typed constants serve to provide a program with initialized variables. Contrary
to ordinary constants, they may be assigned to at run-time. The difference with
normal variables is that their value is initialised when the program starts, whereas
normal variables must be initialised explicitly.

Typed constant declaration

-- typed constant declaration
6

identifier : type = typed constant ; -

- -�

-- typed constant constant
address constant

array constant
record constant

procedural constant

-�

Given the declaration:
Const

S : Str ing = ’This is a typed constant string’ ;

The following is a valid assignment:
S := ’Result : ’+Func ;

Where Func is a function that returns a String. Typed constants also allow you
to initialize arrays and records. For arrays, the initial elements must be specified,
surrounded by round brackets, and separated by commas. The number of elements
must be exactly the same as number of elements in the declaration of the type. As
an example:
Const

t t : array [1 . . 3] of s t r i n g [20] = (’ikke’ , ’gij’ , ’hij’) ;
t i : array [1 . . 3] of Long int = (1 , 2 , 3) ;

For constant records, you should specify each element of the record, in the form
Field : Value, separated by commas, and surrounded by round brackets. As an
example:
Type

Point = record
X, Y : Real
end ;

Const
O r i g i n : Point = (X: 0 . 0 , Y: 0 . 0) ;

The order of the fields in a constant record needs to be the same as in the type
declaration, otherwise you’ll get a compile-time error.

17

Chapter 3

Types

All variables have a type. Free Pascal supports the same basic types as Turbo
Pascal, with some extra types from Delphi. You can declare your own types, which
is in essence defining an identifier that can be used to denote your custom type when
declaring variables further in the source code.

Type declaration

-- type declaration identifier = type ; -�

There are 7 major type classes :

Types

-- type simple type
string type

structured type
pointer type

procedural type
type identifier

-�

The last class, type identifier, is just a means to give another name to a type. This
gives you a way to make types platform independent, by only using your own types,
and then defining these types for each platform individually. The programmer that
uses your units doesn’t have to worry about type size and so on. It also allows
you to use shortcut names for fully qualified type names. You can e.g. define
system.longint as Olongint and then redefine longint.

3.1 Base types

The base or simple types of Free Pascal are the Delphi types. We will discuss each
separate.

18

Types 3.1. BASE TYPES

Table 3.1: Predefined ordinal types

Name
Integer
Shortint
SmallInt
Longint
Byte
Word
Cardinal
Boolean
ByteBool
LongBool
Char

Simple types

-- simple type ordinal type
real type

-�

-- real type real type identifier -�

Ordinal types

With the exception of Real types, all base types are ordinal types. Ordinal types
have the following characteristics:

1. Ordinal types are countable and ordered, i.e. it is, in principle, possible to
start counting them one bye one, in a specified order. This property allows
the operation of functions as Inc (111), Ord (119), Dec (99) on ordinal types
to be defined.

2. Ordinal values have a smallest possible value. Trying to apply the Pred (122)
function on the smallest possible value will generate a range check error.

3. Ordinal values have a largest possible value. Trying to apply the Succ (135)
function on the larglest possible value will generate a range check error.

Integers

A list of pre-defined ordinal types is presented in table (3.1) The integer types,
and their ranges and sizes, that are predefined in Free Pascal are listed in table (3.2)
. Free Pascal does automatic type conversion in expressions where different kinds
of integer types are used.

Boolean types

Free Pascal supports the Boolean type, with its two pre-defined possible values True
and False, as well as the ByteBool, WordBool and LongBool. These are the only

19

Types 3.1. BASE TYPES

Table 3.2: Predefined integer types

Type Range Size in bytes
Byte 0 .. 255 1
Shortint -127 .. 127 1
Integer -32768 .. 32767 21

Word 0 .. 65535 2
Longint -2147483648 .. 2147483648 4
Cardinal2 0..4294967296 4

Table 3.3: Boolean types

Name Size Ord(True)
Boolean 1 1
ByteBool 1 Any nonzero value
WordBool 2 Any nonzero value
LongBool 4 Any nonzero value

two values that can be assigned to a Boolean type. Of course, any expression that
resolves to a boolean value, can also be assigned to a boolean type. Assuming B
to be of type Boolean, the following are valid assignments:

B := True ;
B := F a l s e ;
B := 1<>2 ; { R e s u l t s in B := True }

Boolean expressions are also used in conditions. Remark: In Free Pascal, boolean
expressions are always evaluated in such a way that when the result is known, the
rest of the expression will no longer be evaluated (Called short-cut evaluation).
In the following example, the function Func will never be called, which may have
strange side-effects.

. . .
B := F a l s e ;
A := B and Func ;

Here Func is a function which returns a Boolean type. Remark: The wordbool,
longbool and bytebool were not supported by Free Pascal until version 0.99.6.

Enumeration types

Enumeration types are supported in Free Pascal. On top of the Turbo Pascal im-
plementation, Free Pascal allows also a C-style extension of the enumeration type,
where a value is assigned to a particular element of the enumeration list.

Enumerated types

-- enumerated type (
6

identifier list
assigned enum list

,

) -�

-- identifier list
6

identifier
,

-�

20

Types 3.1. BASE TYPES

-- assigned enum list
6

identifier := expression
,

-�

(see chapter 6 for how to use expressions) When using assigned enumerated types,
the assigned elements must be in ascending numerical order in the list, or the com-
piler will complain. The expressions used in assigned enumerated elements must be
known at compile time. So the following is a correct enumerated type declaration:
Type

D i r e c t i o n = (North , East , South , West) ;

The C style enumeration type looks as follows:
Type

EnumType = (one , two , t h r e e , f o r t y := 40) ;

As a result, the ordinal number of forty is 40, and not 3, as it would be when the
’:= 40’ wasn’t present. When specifying such an enumeration type, it is important
to keep in mind that you should keep initialized set elements in ascending order. The
following will produce a compiler error:
Type

EnumType = (one , two , t h r e e , f o r t y := 40 , t h i r t y := 30) ;

It is necessary to keep forty and thirty in the correct order. When using enumer-
ation types it is important to keep the following points in mind:

1. You cannot use the Pred and Succ functions on this kind of enumeration types.
If you try to do that, you’ll get a compiler error.

2. Enumeration types are by default stored in 4 bytes. You can change this
behaviour with the {$PACKENUM n} compiler directive, which tells the compiler
the minimal number of bytes to be used for enumeration types. For instance

Type
LargeEnum = (BigOne , BigTwo , BigThree) ;

{$PACKENUM 1}
SmallEnum = (one , two , t h r e e) ;

Var S : SmallEnum ;
L : LargeEnum ;

begin
WriteLn (’Small enum : ’ , S izeOf (S)) ;
WriteLn (’Large enum : ’ , S izeOf (L)) ;

end .

will, when run, print the following:

Small enum : 1
Large enum : 4

More information can be found in the Programmers’ guide, in the compiler directives
section.

Subrange types

A subrange type is a range of values from an ordinal type (the host type). To define
a subrange type, one must specify it’s limiting values: the highest and lowest value
of the type.

21

Types 3.2. CHARACTER TYPES

Table 3.4: Supported Real types

Type Range Significant digits Size3

Single 1.5E-45 .. 3.4E38 7-8 4
Real 5.0E-324 .. 1.7E308 15-16 8
Double 5.0E-324 .. 1.7E308 15-16 8
Extended 1.9E-4951 .. 1.1E4932 19-20 10
Comp4 -2E64+1 .. 2E63-1 19-20 8

Subrange types

-- subrange type constant .. constant -�

Some of the predefined integer types are defined as subrange types:
Type

Long int = $80000000 . . $ 7 f f f f f f f ;
I n t e g e r = −32768 . . 32767 ;
s h o r t i n t = −128 . . 127 ;
byte = 0 . . 255 ;
Word = 0 . . 65535 ;

But you can also define subrange types of enumeration types:
Type

Days = (monday , tuesday , wednesday , t h u r s d a y , f r i d a y ,
s a t u r d a y , sunday) ;

WorkDays = monday . . f r i d a y ;
WeekEnd = Saturday . . Sunday ;

Real types

Free Pascal uses the math coprocessor (or an emulation) for all its floating-point
calculations. The Real native type is processor dependant, but it is either Single or
Double. Only the IEEE floating point types are supported, and these depend on the
target processor and emulation options. The true Turbo Pascal compatible types
are listed in table (3.4) . Until version 0.9.1 of the compiler, all the Real types
are mapped to type Double, meaning that they all have size 8. The SizeOf (133)
function is your friend here. The Real type of turbo pascal is automatically mapped
to Double. The Comp type is, in effect, a 64-bit integer.

3.2 Character types

Char

Free Pascal supports the type Char. A Char is exactly 1 byte in size, and contains
one character. You can specify a character constant by enclosing the character in
single quotes, as follows : ’a’ or ’A’ are both character constants. You can also
specify a character by their ASCII value, by preceding the ASCII value with the

22

Types 3.2. CHARACTER TYPES

number symbol (#). For example specifying #65 would be the same as ’A’. Also,
the caret character (^) can be used in combination with a letter to specify a character
with ASCII value less than 27. Thus ^G equals #7 (G is the seventh letter in the
alphabet.) If you want to represent the single quote character, type it two times
successively, thus ’’’’ represents the single quote character.

Strings

Free Pascal supports the String type as it is defined in Turbo Pascal and it supports
ansistrings as in Delphi. To declare a variable as a string, use the following type
specification:

ShortString

-- string type string
[unsigned integer]

-�

The meaning of a string declaration statement is interpreted differently depending
on the {$H} switch. The above declaration can declare an ansistrng or a short string.

Whatever the actual type, ansistrings and short strings can be used interchangeably.
The compile always takes care of the necessary type coversions. Note, however, that
the result of an expression that contains ansstrings snd short strings will always be
an ansistring.

Short strings

A string declaration declares a short string in the following cases:

1. If the switch is off: {$H-}, the string declaration will always be a short string
declaration.

2. If the switch is on {$H+}, and there is a length specifier, the declaration is a
short string declaration.

The predefined type ShortString is defined as a string of length 255:
S h o r t S t r i n g = Str ing [255] ;

For short strings Free Pascal reserves Size+1 bytes for the string S, and in the
zeroeth element of the string (S[0]) it will store the length of the variable. If you
don’t specify the size of the string, 255 is taken as a default. For example in
{$H−}

Type
NameString = Str ing [10] ;
S t r e e t S t r i n g = Str ing ;

NameString can contain maximum 10 characters. While StreetString can contain
255 characters. The sizes of these variables are, respectively, 11 and 256 bytes.

23

Types 3.2. CHARACTER TYPES

Table 3.5: AnsiString memory structure

Offset Contains
-12 Longint with maximum string size.
-8 Longint with actual string size.
-4 Longint with reference count.
0 Actual string, null-terminated.

Ansistrings

If the {$H} switch is on, then a string definition that doesn’t contain a length specifier,
will be regarded as an ansistring.

Ansistrings are strings that have no length limit. They are reference counted. In-
ternally, an ansistring is treated as a pointer.

If the string is empty (’’), then the pointer is nil. If the string is not empty, then
the pointer points to a structure in heap memory that looks as in seetansistrings.

Because of this structure, it is possible to typecast an ansistring to a pchar. If
the string is empty (so the pointer is nil) then the compiler makes sure that the
typecasted pchar will point to a null byte.

AnsiStrings can be unlimited in length. Since the length is stored, the length of an
ansistring is available immediatly, providing for fast access.

Assigning one ansistring to another doesn’t involve moving the actual string. A
statement

S2:=S1 ;

results in the reference count of S2 being decreased by one, The referece count of S1
is increased by one, and finally S1 (as a pointer) is copied to S2. This is a significant
speed-up in your code.

If a reference count reaches zero, then the memory occupied by the string is deal-
located automatically, so no memory leaks arise.

When an ansistring is declared, the Free Pascal compiler initially allocates just
memory for a pointer, not more. This pinter is guaranteed to be nil, meaning that
the string is initially empty. This is true for local, global or part of a structure
(arrays, records or objects).

This does introduce an overhead. For instance, declaring
Var

A : Array [1 . . 100000] of s t r i n g ;

Will copy 1000000 times nil into A. When A goes out of scope, then the 100000
strings will be dereferenced one by one. All this happens invisibly for the program-
mer, but when considering performance issues, this is important.

Memory will be allocated only when the string is assigned a value. If the string goes
out of scope, then it is automatically dereferenced.

If you assign a value to a character of a string that has a reference count greater
than 1, such as in the following statements:

S:=T; { r e f e r e n c e count f o r S and T i s now 2 }
S [I] := ’@’ ;

then a copy of the string is created before the assignment. This is known as copy-

24

Types 3.2. CHARACTER TYPES

on-write semantics.

It is impossible to access the length of an ansistring by referring to the zeroeth
character. The following statement will generate a compiler error if S is an ansistring:

Len :=S [0] ;

Instead, you must use the Length (??)unction to get the length of a string.

To set the length of an ansistring, you can use the SetLength (??)unction. Constant
ansistrings have a reference count of -1 and are treated specially.

Ansistrings are converted to short strings by the compiler if needed, this means that
you can mix the use of ansistrings ans short strings without problems.

You can typecast ansistrings to PChar or Pointer types:
Var P : P o i n t e r ;

PC : PChar ;
S : A n s i S t r i n g ;

begin
S := ’This is an ansistring’ ;
PC:= Pchar (S) ;
P := P o i n t e r (S) ;

There is a difference between the two typecasts. If you typecast an empty string to
a pointer, the pointer wil be Nil. If you typecast an empty ansistring to a PChar,
then the result will be a pointer to a zero byte (an empty string).

The result of such a typecast must be use with care. In general, it is best to consider
the result of such a typecast as read-only, i.e. suitable for passing to a procedure
that needs a constant pchar argument.

It is therefore NOT advisable to typecast one of the following:

1. expressions.

2. strings that have reference count¿0. (call uniquestring if you want to ensure
a string has reference count 1)

Constant strings

To specify a constant string, you enclose the string in single-quotes, just as a Char
type, only now you can have more than one character. Given that S is of type
String, the following are valid assignments:
S := ’This is a string.’ ;
S := ’One’+’, Two’+’, Three’ ;
S := ’This isn’’t difficult !’ ;
S := ’This is a weird character : ’#145 ’ !’ ;

As you can see, the single quote character is represented by 2 single-quote characters
next to each other. Strange characters can be specified by their ASCII value. The
example shows also that you can add two strings. The resulting string is just the
concatenation of the first with the second string, without spaces in between them.
Strings can not be substracted, however.

Whether the constant string is stored as an ansistring or a short string depends on
the settings of the {$H} switch.

25

Types 3.2. CHARACTER TYPES

Table 3.6: PChar pointer arithmetic

Operation Result
P + I Adds I to the address pointed to by P.
I + P Adds I to the address pointed to by P.
P - I Substracts I from the address pointed to by P.
P - Q Returns, as an integer, the distance between 2 addresses

(or the number of characters between P and Q)

PChar

Free Pascal supports the Delphi implementation of the PChar type. PChar is defined
as a pointer to a Char type, but allows additional operations. The PChar type can
be understood best as the Pascal equivalent of a C-style null-terminated string, i.e.
a variable of type PChar is a pointer that points to an array of type Char, which
is ended by a null-character (#0). Free Pascal supports initializing of PChar typed
constants, or a direct assignment. For example, the following pieces of code are
equivalent:
program one ;
var p : PChar ;
begin

P := ’This is a null−terminated string.’ ;
WriteLn (P) ;

end .

Results in the same as
program two ;
const P : PChar = ’This is a null−terminated string.’
begin

WriteLn (P) ;
end .

These examples also show that it is possible to write the contents of the string to a
file of type Text. The strings unit contains procedures and functions that manipulate
the PChar type as you can do it in C. Since it is equivalent to a pointer to a type
Char variable, it is also possible to do the following:
Program t h r e e ;
Var S : Str ing [30] ;

P : PChar ;
begin

S := ’This is a null−terminated string.’#0 ;
P := @S[1] ;
WriteLn (P) ;

end .

This will have the same result as the previous two examples. You cannot add
null-terminated strings as you can do with normal Pascal strings. If you want to
concatenate two PChar strings, you will need to use the unit strings. However, it
is possible to do some pointer arithmetic. You can use the operators + and - to do
operations on PChar pointers. In table (3.6) , P and Q are of type PChar, and I is of
type Longint.

26

Types 3.3. STRUCTURED TYPES

3.3 Structured Types

A structured type is a type that can hold multiple values in one variable. Stuctured
types can be nested to unlimited levels.

Structured Types

-- structured type array type
record type
class type

class reference type
set type
file type

-�

Unlike Delphi, Free Pascal does not support the keyword Packed for all structured
types, as can be seen in the syntax diagram. It will be mentioned when a type
supports the packed keyword. In the following, each of the possible structured
types is discussed.

Arrays

Free Pascal supports arrays as in Turbo Pascal, multi-dimensional arrays and packed
arrays are also supported:

Array types

-- array type
packed

array [
6

ordinal type
,

] of type -�

The following is a valid array declaration:
Type

Rea lAr ray = Array [1 . . 100] of Real ;

As in Turbo Pascal, if the array component type is in itself an array, it is possible to
combine the two arrays into one multi-dimensional array. The following declaration:
Type

APoints = array [1 . . 100] of Array [1 . . 3] of Real ;

is equivalent to the following declaration:
Type

APoints = array [1 . . 100 , 1 . . 3] of Real ;

The functions High (110) and Low (115) return the high and low bounds of the
leftmost index type of the array. In the above case, this would be 100 and 1.

Record types

Free Pascal supports fixed records and records with variant parts. The syntax
diagram for a record type is

27

Types 3.3. STRUCTURED TYPES

Record types

-- record type
packed

record
field list

end -�

-- field list fixed fields

fixed fields ;
variant part ;

-�

-- fixed fields
6

identifier list : type
;

-�

-- variant part case
identifier :

ordinal type identifier of -

-
6

variant
;

-�

-- variant
6

constant , : (
field list

) -�

So the following are valid record types declarations:
Type

Point = Record
X, Y, Z : Real ;
end ;

RPoint = Record
Case Boolean of
F a l s e : (X, Y, Z : Real) ;
True : (R, theta , phi : Real) ;
end ;

B e t t e r R P o i n t = Record
Case UsePolar : Boolean of
F a l s e : (X, Y, Z : Real) ;
True : (R, theta , phi : Real) ;
end ;

The variant part must be last in the record. The optional identifier in the case
statement serves to access the tag field value, which otherwise would be invisible
to the programmer. It can be used to see which variant is active at a certain time.
In effect, it introduces a new field in the record. Remark that it is possible to nest
variant parts, as in:
Type

MyRec = Record
X : Long int ;
Case byte of

2 : (Y : Long int ;
case byte of
3 : (Z : Long int) ;
) ;

end ;

The size of a record is the sum of the sizes of its fields, each size of a field is rounded
up to two. If the record contains a variant part, the size of the variant part is the

28

Types 3.3. STRUCTURED TYPES

size of the biggest variant, plus the size of the tag field type if an identifier was
declared for it. Here also, the size of each part is first rounded up to two. So in
the above example, SizeOf (133) would return 24 for Point, 24 for RPoint and
26 for BetterRPoint. For MyRec, the value would be 12. If you want to read a
typed file with records, produced by a Turbo Pascal program, then chances are
that you will not succeed in reading that file correctly. The reason for this is that
by default, elements of a record are aligned at 2-byte boundaries, for performance
reasons. This default behaviour can be changed with the {$PackRecords n} switch.
Possible values for n are 1, 2, 4, 16 or Default. This switch tells the compiler to
align elements of a record or object or class that have size larger than n on n byte
boundaries. Elements that have size smaller or equal than n are aligned on natural
boundaries, i.e. to the first power of two that is larger than or equal to the size of
the record element. The keyword Default selects the default value for the platform
you’re working on (currently, this is 2 on all platforms) Take a look at the following
program:
Program PackRecordsDemo ;
type
{ $PackRecords 2}

Trec1 = Record
A : byte ;
B : Word ;

end ;

{ $PackRecords 1}
Trec2 = Record

A : Byte ;
B : Word ;
end ;

{ $PackRecords 2}
Trec3 = Record

A, B : byte ;
end ;

{ $PackRecords 1}
Trec4 = Record

A, B : Byte ;
end ;

{ $PackRecords 4}
Trec5 = Record

A : Byte ;
B : Array [1 . . 3] of byte ;
C : byte ;

end ;

{ $PackRecords 8}
Trec6 = Record

A : Byte ;
B : Array [1 . . 3] of byte ;
C : byte ;
end ;

{ $PackRecords 4}
Trec7 = Record

A : Byte ;

29

Types 3.3. STRUCTURED TYPES

B : Array [1 . . 7] of byte ;
C : byte ;

end ;

{ $PackRecords 8}
Trec8 = Record

A : Byte ;
B : Array [1 . . 7] of byte ;
C : byte ;
end ;

Var rec1 : Trec1 ;
rec2 : Trec2 ;
rec3 : TRec3 ;
rec4 : TRec4 ;
rec5 : Trec5 ;
rec6 : TRec6 ;
rec7 : TRec7 ;
rec8 : TRec8 ;

begin
Write (’Size Trec1 : ’ , S izeOf (Trec1)) ;
W r i t e l n (’ Offset B : ’ , Long int (@rec1 . B)−Long int (@rec1)) ;
Write (’Size Trec2 : ’ , S izeOf (Trec2)) ;
W r i t e l n (’ Offset B : ’ , Long int (@rec2 . B)−Long int (@rec2)) ;
Write (’Size Trec3 : ’ , S izeOf (Trec3)) ;
W r i t e l n (’ Offset B : ’ , Long int (@rec3 . B)−Long int (@rec3)) ;
Write (’Size Trec4 : ’ , S izeOf (Trec4)) ;
W r i t e l n (’ Offset B : ’ , Long int (@rec4 . B)−Long int (@rec4)) ;
Write (’Size Trec5 : ’ , S izeOf (Trec5)) ;
W r i t e l n (’ Offset B : ’ , Long int (@rec5 . B)−Long int (@rec5) ,

’ Offset C : ’ , Long int (@rec5 . C)−Long int (@rec5)) ;
Write (’Size Trec6 : ’ , S izeOf (Trec6)) ;
W r i t e l n (’ Offset B : ’ , Long int (@rec6 . B)−Long int (@rec6) ,

’ Offset C : ’ , Long int (@rec6 . C)−Long int (@rec6)) ;
Write (’Size Trec7 : ’ , S izeOf (Trec7)) ;
W r i t e l n (’ Offset B : ’ , Long int (@rec7 . B)−Long int (@rec7) ,

’ Offset C : ’ , Long int (@rec7 . C)−Long int (@rec7)) ;
Write (’Size Trec8 : ’ , S izeOf (Trec8)) ;
W r i t e l n (’ Offset B : ’ , Long int (@rec8 . B)−Long int (@rec8) ,

’ Offset C : ’ , Long int (@rec8 . C)−Long int (@rec8)) ;
end .

The output of this program will be :
S i z e Trec1 : 4 O f f s e t B : 2
S i z e Trec2 : 3 O f f s e t B : 1
S i z e Trec3 : 2 O f f s e t B : 1
S i z e Trec4 : 2 O f f s e t B : 1
S i z e Trec5 : 8 O f f s e t B : 4 O f f s e t C : 7
S i z e Trec6 : 8 O f f s e t B : 4 O f f s e t C : 7
S i z e Trec7 : 12 O f f s e t B : 4 O f f s e t C : 11
S i z e Trec8 : 16 O f f s e t B : 8 O f f s e t C : 15

And this is as expected. In Trec1, since B has size 2, it is aligned on a 2 byte
boundary, thus leaving an empty byte between A and B, and making the total size

30

Types 3.3. STRUCTURED TYPES

4. In Trec2, B is aligned on a 1-byte boundary, right after A, hence, the total size of
the record is 3. For Trec3, the sizes of A,B are 1, and hence they are aligned on 1
byte boundaries. The same is true for Trec4. For Trec5, since the size of B – 3 – is
smaller than 4, B will be on a 4-byte boundary, as this is the first power of two that
is larger than it’s size. The same holds for Trec6. For Trec7, B is aligned on a 4
byte boundary, since it’s size – 7 – is larger than 4. However, in Trec8, it is aligned
on a 8-byte boundary, since 8 is the first power of two that is greater than 7, thus
making the total size of the record 16. As from version 0.9.3, Free Pascal supports
also the ’packed record’, this is a record where all the elements are byte-aligned.
Thus the two following declarations are equivalent:

{ $PackRecords 1}
Trec2 = Record

A : Byte ;
B : Word ;
end ;

{ $PackRecords 2}

and
Trec2 = Packed Record

A : Byte ;
B : Word ;
end ;

Note the {$PackRecords 2} after the first declaration !

Set types

Free Pascal supports the set types as in Turbo Pascal. The prototype of a set
declaration is:

Set Types

-- set type set of ordinal type -�

Each of the elements of SetType must be of type TargetType. TargetType can be
any ordinal type with a range between 0 and 255. A set can contain maximally 255
elements. The following are valid set declaration:
Type

Junk = Set of Char ;

Days = (Mon, Tue , Wed, Thu , F r i , Sat , Sun) ;
WorkDays : Set of days ;

Given this set declarations, the following assignment is legal:
WorkDays : = [Mon, Tue , Wed, Thu , F r i] ;

The operators and functions for manipulations of sets are listed in table (3.7) . You
can compare two sets with the <> and = operators, but not (yet) with the < and >
operators. As of compiler version 0.9.5, the compiler stores small sets (less than 32
elements) in a Longint, if the type range allows it. This allows for faster processing
and decreases program size. Otherwise, sets are stored in 32 bytes.

31

Types 3.4. POINTERS

Table 3.7: Set Manipulation operators

Operation Operator
Union +
Difference -
Intersection *
Add element include
Delete element exclude

File types

File types are types that store a sequence of some base type, which can be any
type except another file type. It can contain (in principle) an infinite number of
elements. File types are used commonly to store data on disk. Nothing stops you,
however, from writing a file driver that stores it’s data in memory. Here is the type
declaration for a file type:

File types

-- file type file
of type

-�

If no type identifier is given, then the file is an untyped file; it can be considered as
equivalent to a file of bytes. Untyped files require special commands to act on them
(see Blockread (95), Blockwrite (95)). The following declaration declares a file of
records:
Type

Point = Record
X, Y, Z : r e a l ;
end ;

P o i n t F i l e = Fi le of Point ;

Internally, files are represented by the FileRec record. See chapter 12 for it’s
declaration.

A special file type is the Text file type, represented by the TextRec record. A file
of type Text uses special input-output routines.

3.4 Pointers

Free Pascal supports the use of pointers. A variable of the pointer type contains an
address in memory, where the data of another variable may be stored.

Pointer types

-- pointer type ˆ type identifier -�

32

Types 3.4. POINTERS

As can be seen from this diagram, pointers are typed, which means that they point
to a particular kind of data. The type of this data must be known at compile time.
Dereferencing the pointer (denoted by adding ^ after the variable name) behaves
then like a variable. This variable has the type declared in the pointer declaration,
and the variable is stored in the address that is pointed to by the pointer variable.
Consider the following example:
Program p o i n t e r s ;
type

B u f f e r = Str ing [255] ;
BufPtr = ˆ B u f f e r ;

Var B : B u f f e r ;
BP : BufPtr ;
PP : P o i n t e r ;

etc . .

In this example, BP is a pointer to a Buffer type; while B is a variable of type
Buffer. B takes 256 bytes memory, and BP only takes 4 bytes of memory (enough
to keep an adress in memory). Remark: Free Pascal treats pointers much the same
way as C does. This means that you can treat a pointer to some type as being an
array of this type. The pointer then points to the zeroeth element of this array.
Thus the following pointer declaration
Var p : ˆ Long int ;

Can be considered equivalent to the following array declaration:
Var p : array [0 . . I n f i n i t y] of Long int ;

The difference is that the former declaration allocates memory for the pointer only
(not for the array), and the second declaration allocates memory for the entire ar-
ray. If you use the former, you must allocate memory yourself, using the Getmem
(108) function. The reference P^ is then the same as p[0]. The following program
illustrates this maybe more clear:
program P o i n t e r A r r a y ;
var i : Long int ;

p : ˆ Long int ;
pp : array [0 . . 100] of Long int ;

begin
for i := 0 to 100 do pp [i] : = i ; { F i l l a r r a y }
p := @pp [0] ; { Let p p o i n t to pp }
for i := 0 to 100 do

i f p [i]<>pp [i] then
WriteLn (’Ohoh, problem !’)

end .

Free Pascal supports pointer arithmetic as C does. This means that, if P is a typed
pointer, the instructions
Inc (P) ;
Dec (P) ;

Will increase, respectively descrease the address the pointer points to with the size
of the type P is a pointer to. For example
Var P : ˆ Long int ;
. . .

Inc (p) ;

33

Types 3.5. PROCEDURAL TYPES

will increase P with 4. You can also use normal arithmetic operators on pointers,
that is, the following are valid pointer arithmetic operations:
var p1 , p2 : ˆ Long int ;

L : Long int ;
begin

P1 := @P2;
P2 := @L;
L := P1−P2 ;
P1 := P1−4 ;
P2 := P2+4 ;

end .

Here, the value that is added or substracted is not multiplied by the size of the type
the pointer points to.

3.5 Procedural types

Free Pascal has support for procedural types, although it differs a little from the
Turbo Pascal implementation of them. The type declaration remains the same, as
can be seen in the following syntax diagram:

Procedural types

-- procedural type function header
procedure header of object

-

-

; call modifiers

-�

-- function header function formal parameter list : result type -�

-- procedure header procedure formal parameter list -�

-- call modifiers register
cdecl
pascal
stdcall

popstack

-�

For a description of formal parameter lists, see chapter 8. The two following ex-
amples are valid type declarations:
Type TOneArg = Procedure (Var X : i n t e g e r) ;

TNoArg = Function : Real ;
var proc : TOneArg ;

func : TNoArg ;

One can assign the following values to a procedural type variable:

1. Nil, for both normal procedure pointers and method pointers.

2. A variable reference of a procedural type, i.e. another variable of the same
type.

34

Types 3.5. PROCEDURAL TYPES

3. A global procedure or function address, with matching function or procedure
header and calling convention.

4. A method address.

Given these declarations, the following assignments are valid:
Procedure p r i n t i t (Var X : I n t e g e r) ;
begin

WriteLn (x) ;
end ;
. . .
P := @ p r i n t i t ;
Func := @Pi ;

From this example, the difference with Turbo Pascal is clear: In Turbo Pascal it isn’t
necessary to use the address operator (@) when assigning a procedural type variable,
whereas in Free Pascal it is required (unless you use the -So switch, in which case
you can drop the address operator.) Remark that the modifiers concerning the
calling conventions (cdecl, pascal, stdcall and popstack stick to the declaration;
i.e. the following code would give an error:
Type TOneArgCcal l = Procedure (Var X : i n t e g e r) ; c d e c l ;
var proc : TOneArgCcal l ;
Procedure p r i n t i t (Var X : I n t e g e r) ;
begin

WriteLn (x) ;
end ;
begin
P := @ p r i n t i t ;
end .

Because the TOneArgCcall type is a procedure that uses the cdecl calling convention.
At the moment, the method procedural pointers (i.e. pointers that point to methods
of objects, distinguished by the of object keywords in the declaration) are still in
an experimental stage.

35

Chapter 4

Objects

4.1 Declaration

Free Pascal supports object oriented programming. In fact, most of the compiler is
written using objects. Here we present some technical questions regarding object
oriented programming in Free Pascal. Objects should be treated as a special kind of
record. The record contains all the fields that are declared in the objects definition,
and pointers to the methods that are associated to the objects’ type. An object
is declared just as you would declare a record; except that you can now declare
procedures and fuctions as if they were part of the record. Objects can ”inherit”
fields and methods from ”parent” objects. This means that you can use these fields
and methods as if they were included in the objects you declared as a ”child” object.
Furthermore, you can declare fields, procedures and functions as public or private.
By default, fields and methods are public, and are exported outside the current unit.
Fields or methods that are declared private are only accessible in the current unit.
The prototype declaration of an object is as follows:

object types

--

packed
object

heritage
6

component list
object visibility specifier

end

-

- -�

-- heritage (object type identifier) -�

-- component list

6
field definition

6
method definition

-�

-- field definition identifier list : type ; -�

-- method definition function header
procedure header

constructor header
desctuctor header

; method directives -�

-- method directives
virtual ; call modifiers ;

-

-

abstract ;

-�

36

Objects 4.2. FIELDS

-- object visibility specifier private
public

-�

As you can see, you can repeat as many private and public blocks as you want.
Method definitions are normal function or procedure declarations. You cannot
put fields after methods in the same block, i.e. the following will generate an error
when compiling:
Type MyObj = Object

Procedure Doit ;
F i e l d : Long int ;

end ;

But the following will be accepted:
Type MyObj = Object

P u b l i c
Procedure Doit ;

P r i v a t e
F i e l d : Long int ;

end ;

because the field is in a different section. Remark: Free Pascal also supports the
packed object. This is the same as an object, only the elements (fields) of the object
are byte-aligned, just as in the packed record. The declaration of a packed object
is similar to the declaration of a packed record :
Type

TObj = packed object ;
Constructor i n i t ;
. . .
end ;

Pobj = ˆ TObj ;
Var PP : Pobj ;

Similarly, the {$PackRecords } directive acts on objects as well.

4.2 Fields

Object Fields are like record fields. They are accessed in the same way as you would
access a record field : by using a qualified identifier. Given the following declaration:
Type TAnObject = Object

AFie ld : Long int ;
Procedure AMethod ;
end ;

Var AnObject : TAnObject ;

then the following would be a valid assignment:
AnObject . AFie ld := 0 ;

Inside methods, fields can be accessed using the short identifier:
Procedure TAnObject . AMethod ;
begin

. . .
AF ie ld := 0 ;

37

Objects 4.3. CONSTRUCTORS AND DESTRUCTORS

. . .
end ;

Or, one can use the self identifier. The self identifier refers to the current instance
of the object:
Procedure TAnObject . AMethod ;
begin

. . .
S e l f . AF ie ld := 0 ;
. . .

end ;

You cannot access fields that are in a private section of an object from outside the
objects’ methods. If you do, the compiler will complain about an unknown identifier.
It is also possible to use the with statement with an object instance:
With AnObject do

begin
A f i e l d := 12 ;
AMethod ;
end ;

In this example, between the begin and end, it is as if AnObject was prepended to
the Afield and Amethod identifiers. More about this in section 7.2

4.3 Constructors and destructors

As can be seen in the syntax diagram for an object declaration, Free Pascal supports
constructors and destructors. You are responsible for calling the constructor and
the destructor explicitly when using objects. The declaration of a constructor or
destructor is as follows:

Constructors and destructors

-- constructor declaration constructor header ; subroutine block -�

-- destructor declaration destructor header ; subroutine block -�

-- constructor header constructor identifier
qualified method identifier

-

- formal parameter list -�

-- desctructor header destructor identifier
qualified method identifier

-

- formal parameter list -�

A constructor/destructor pair is required if you use virtual methods. In the declar-
ation of the object type, you should use a simple identifier for the name of the con-
stuctor or destructor. When you implement the constructor or destructor, you should
use a qulified method identifier, i.e. an identifier of the form objectidentifier.methodidentifier.
Free Pascal supports also the extended syntax of the New and Dispose procedures.
In case you want to allocate a dynamic variable of an object type, you can specify the
constructor’s name in the call to New. The New is implemented as a function which
returns a pointer to the instantiated object. Consider the following declarations:

38

Objects 4.4. METHODS

Type
TObj = object ;

Constructor i n i t ;
. . .
end ;

Pobj = ˆ TObj ;
Var PP : Pobj ;

Then the following 3 calls are equivalent:
pp := new (Pobj , I n i t) ;

and
new (pp , i n i t) ;

and also
new (pp) ;
pp ˆ. i n i t ;

In the last case, the compiler will issue a warning that you should use the extended
syntax of new and dispose to generate instances of an object. You can ignore this
warning, but it’s better programming practice to use the extended syntax to create
instances of an object. Similarly, the Dispose procedure accepts the name of a
destructor. The destructor will then be called, before removing the object from the
heap. In view of the compiler warning remark, the now following Delphi approach
may be considered a more natural way of object-oriented programming.

4.4 Methods

Object methods are just like ordinary procedures or functions, only they have an
implicit extra parameter : self. Self points to the object with which the method
was invoked. When implementing methods, the fully qualified identifier must be
given in the function header. When declaring methods, a normal identifier must be
given.

4.5 Method invocation

Methods are called just as normal procedures are called, only they have a object
instance identifier prepended to them (see also chapter 7). To determine which
method is called, it is necessary to know the type of the method. We treat the
different types in what follows.

Static methods

Static methods are methods that have been declared without a abstract or virtual
keyword. When calling a static method, the declared (i.e. compile time) method of
the object is used. For example, consider the following declarations:
Type

TParent = Object
. . .
procedure Doit ;
. . .

39

Objects 4.5. METHOD INVOCATION

end ;
PParent = ˆ TParent ;
TChi ld = Object (TParent)

. . .
procedure Doit ;
. . .
end ;

PChi ld = ˆ TChild ;

As it is visible, both the parent and child objects have a method called Doit. Con-
sider now the following declarations and calls:
Var ParentA , ParentB : PParent ;

C h i l d : PChi ld ;
ParentA := New(PParent , I n i t) ;
ParentB := New(PChi ld , I n i t) ;
C h i l d := New(PChi ld , I n i t) ;
ParentA ˆ. Doit ;
ParentB ˆ. Doit ;
C h i l d ˆ. Doit ;

Of the three invocations of Doit, only the last one will call TChild.Doit, the other
two calls will call TParent.Doit. This is because for static methods, the compiler
determines at compile time which method should be called. Since ParentB is of
type TParent, the compiler decides that it must be called with TParent.Doit, even
though it will be created as a TChild. There may be times when you want the
method that is actually called to depend on the actual type of the object at run-
time. If so, the method cannot be a static method, but must be a virtual method.

Virtual methods

To remedy the situation in the previous section, virtual methods are created. This
is simply done by appending the method declaration with the virtual modifier.
Going back to the previous example, consider the following alternative declaration:
Type

TParent = Object
. . .
procedure Doit ; v i r t u a l ;
. . .
end ;

PParent = ˆ TParent ;
TChi ld = Object (TParent)

. . .
procedure Doit ; v i r t u a l ;
. . .
end ;

PChi ld = ˆ TChild ;

As it is visible, both the parent and child objects have a method called Draw. Con-
sider now the following declarations and calls :
Var ParentA , ParentB : PParent ;

C h i l d : PChi ld ;
ParentA := New(PParent , I n i t) ;
ParentB := New(PChi ld , I n i t) ;
C h i l d := New(PChi ld , I n i t) ;

40

Objects 4.5. METHOD INVOCATION

ParentA ˆ. Doit ;
ParentB ˆ. Doit ;
C h i l d ˆ. Doit ;

Now, different methods will be called, depending on the actual run-time type of the
object. For ParentA, nothing changes, since it is created as a TParent instance. For
Child, the situation also doesn’t change: it is again created as an instance of TChild.
For ParentB however, the situation does change: Even though it was declared as
a TParent, it is created as an instance of TChild. Now, when the program runs,
before calling Doit, the program checks what the actual type of ParentB is, and only
then decides which method must be called. Seeing that ParentB is of type TChild,
TChild.Doit will be called. The code for this run-time checking of the actual type
of an object is inserted by the compiler at compile time. The TChild.Doit is said
to override the TParent.Doit. It is possible to acces the TParent.Doit from within
the varTChild.Doit, with the inherited keyword:
Procedure TChild . Doit ;
begin

i n h e r i t e d Doit ;
. . .

end ;

In the above example, when TChild.Doit is called, the first thing it does is call
TParent.Doit. You cannot use the inherited keyword on static methods, only on
virtual methods.

Abstract methods

An abstract method is a special kind of virtual method. A method can not be
abstract if it is not virtual (this is not obvious from the syntax diagram). You
cannot create an instance of an object that has an abstract method. The reason is
obvious: there is no method where the compiler could jump to ! A method that is
declared abstract does not have an implementation for this method. It is up to
inherited objects to override and implement this method. Continuing our example,
take a look at this:
Type

TParent = Object
. . .
procedure Doit ; v i r t u a l ; a b s t r a c t ;
. . .
end ;

PParent =ˆTParent ;
TChi ld = Object (TParent)

. . .
procedure Doit ; v i r t u a l ;
. . .
end ;

PChi ld = ˆ TChild ;

As it is visible, both the parent and child objects have a method called Draw. Con-
sider now the following declarations and calls :
Var ParentA , ParentB : PParent ;

C h i l d : PChi ld ;
ParentA := New(PParent , I n i t) ;
ParentB := New(PChi ld , I n i t) ;

41

Objects 4.6. VISIBILITY

C h i l d := New(PChi ld , I n i t) ;
ParentA ˆ. Doit ;
ParentB ˆ. Doit ;
C h i l d ˆ. Doit ;

First of all, Line 4 will generate a compiler error, stating that you cannot generate
instances of objects with abstract methods: The compiler has detected that PParent
points to an object which has an abstract method. Commenting line 4 would allow
compilation of the program. Remark that if you override an abstract method, you
cannot call the parent method with inherited, since there is no parent method;
The compiler will detect this, and complain about it, like this:

testo.pp(32,3) Error: Abstract methods can’t be called directly

If, through some mechanism, an abstract method is called at run-time, then a run-
time error will occur. (run-time error 211, to be precise)

4.6 Visibility

For objects, only 2 visibility specifiers exist : private and public. If you don’t spe-
cify a visibility specifier, public is assumed. Both methods and fields can be hidden
from a programmer by putting them in a private section. The exact visibility rule
is as follows:

Private All fields and methods that are in a private block, can only be accessed
in the module (i.e. unit or program) that contains the object definition. They
can be accessed from inside the object’s methods or from outside them e.g.
from other objects’ methods, or global functions.

Public sections are always accessible, from everywhere. Fields and metods in a
public section behave as though they were part of an ordinary record type.

42

Chapter 5

Classes

In the Delphi approach to Object Oriented Programming, everything revolves around
the concept of ’Classes’. A class can be seen as a pointer to an object, or a pointer
to a record. In order to use classes, it is necessary to put the objpas unit in the uses
clause of your unit or program. This unit contains the basic definitions of TObject
and TClass, as well as some auxiliary methods for using classes.

5.1 Class definitions

The prototype declaration of a class is as follows :

Class types

--

packed
class

heritage
6

component list
class visibility specifier

end

-�

-- heritage (class type identifier) -�

-- component list

6
field definition

6
method definition
property definition

-�

-- field definition identifier list : type ; -�

-- method definition
class

function header
procedure header

constructor header
desctuctor header

; -

-

virtual ; call modifiers ; abstract ;

-�

-- class visibility specifier private
protected

public
published

-�

43

Classes 5.2. CLASS INSTANTIATION

Again, You can repeat as many private, protected, published and public blocks
as you want. Methods are normal function or procedure declarations. As you can
see, the declaration of a class is almost identical to the declaration of an object.
The real difference between objects and classes is in the way they are created (see
further in this chapter). The visibility of the different sections is as follows:

Private All fields and methods that are in a private block, can only be accessed in
the module (i.e. unit) that contains the class definition. They can be accessed
from inside the classes’ methods or from outside them (e.g. from other classes’
methods)

Protected Is the same as Private, except that the members of a Protected
section are also accessible to descendent types, even if they are implemented
in other modules.

Public sections are always accessible.

Published Is the same as a Public section, but the compiler generates also type
information that is needed for automatic streaming of these classes. Fields
defined in a published section must be of class type. Array peroperties cannot
be in a published section.

5.2 Class instantiation

Classes must be created using their constructor. Remember that a class is a pointer
to an object, so when you declare a variable of some class, the compiler just allocates
a pointer, not the entire object. The constructor of a class returns a pointer to an
initialized instance of the object. So, to initialize an instance of some class, you
would do the following :

ClassVar := ClassType . ConstructorName ;

You cannot use the extended syntax of new and dispose to instantiate and destroy
class instances. That construct is reserved for use with objects only. Calling the
constructor will provoke a call to getmem, to allocate enough space to hold the class
instance data. After that, the constuctor’s code is executed. The constructor has a
pointer to it’s data, in self. Remark :

• The {$PackRecords } directive also affects classes. i.e. the alignment in
memory of the different fields depends on the value of the {$PackRecords }
directive.

• Just as for objects and records, you can declare a packed class. This has the
same effect as on an object, or record, namely that the elements are aligned
on 1-byte boundaries. i.e. as close as possible.

• SizeOf(class) will return 4, since a class is but a pointer to an object. To
get the size of the class instance data, use the TObject.InstanceSize method.

5.3 Methods

Method invocation for classes is no different than for objects. The following is a
valid method invocation:

44

Classes 5.4. PROPERTIES

Var AnObject : TAnObject ;
begin

AnObject := TAnObject . Create ;
ANobject . AMethod ;

5.4 Properties

Classes can contain properties as part of their fields list. A property acts like a
normal field, i.e. you can get or set it’s value, but allows to redirect the access
of the field through functions and procedures. They provide a means to assiciate
an action with an assignment of or a reading from a class ’field’. This allows for
e.g. checking that a value is valid when assigning, or, when reading, it allows to
construct the value on the fly. Moreover, properties can be read-only or write only.
The prototype declaration of a property is as follows:

Properties

-- property definition property identifier
property interface

-

- property specifiers -�

-- property interface
property parameter list

: type identifier -

-

index integerconstant

-�

-- property parameter list [
6

parameter declaration
;

] -�

-- property specifiers
read specifier write specifier

-

-

default specifier

-�

-- read specifier read field or method -�

-- write specifier write field or method -�

-- default specifier default
constant

nodefault

-�

-- field or method field identifier
method identifier

-�

A read specifier is either the name of a field that contains the property, or the
name of a method function that has the same return type as the property type. In the
case of a simple type, this function must not accept an argument. A read specifier is
optional, making the property write-only. A write specifier is optional: If there
is no write specifier, the property is read-only. A write specifier is either the name of
a field, or the name of a method procedure that accepts as a sole argument a variable
of the same type as the property. The section (private, published in which the
specified function or procedure resides is irrelevant. Usually, however, this will be
a protected or private method. Example: Given the following declaration:

45

Classes 5.4. PROPERTIES

Type
MyClass = C l a s s

P r i v a t e
F i e l d 1 : Long int ;
F i e l d 2 : Long int ;
F i e l d 3 : Long int ;
Procedure Sety (v a l u e : Long int) ;
Function Gety : Long int ;
Function Getz : Long int ;
P u b l i c
Proper ty X : Long int Read F i e l d 1 w r i t e F i e l d 2 ;
Proper ty Y : Long int Read GetY Write Sety ;
Proper ty Z : Long int Read GetZ ;
end ;

Var MyClass : TMyClass ;

The following are valid statements:
WriteLn (’X : ’ , MyClass . X) ;
WriteLn (’Y : ’ , MyClass . Y) ;
WriteLn (’Z : ’ , MyClass . Z) ;
MyClass . X := 0 ;
MyClass . Y := 0 ;

But the following would generate an error:
MyClass . Z := 0 ;

because Z is a read-only property. What happens in the above statements is that
when a value needs to be read, the compiler inserts a call to the various getNNN
methods of the object, and the result of this call is used. When an assignment is
made, the compiler passes the value that must be assigned as a paramater to the
various setNNN methods. Because of this mechanism, properties cannot be passed
as var arguments to a function or procedure, since there is no known address of the
property (at least, not always). If the property definition contains an index, then
the read and write specifiers must be a function and a procedure. Moreover, these
functions require an additional parameter : An integer parameter. This allows to
read or write several properties with the same function. For this, the properties
must have the same type. The following is an example of a property with an index:
uses ob jpas ;
Type TPoint = C l a s s (TObject)

P r i v a t e
FX, FY : Long int ;
Function GetCoord (Index : I n t e g e r) : Long int ;
Procedure SetCoord (Index : I n t e g e r ; Value : l o n g i n t) ;
P u b l i c
Proper ty X : Long int index 1 read GetCoord Write SetCoord ;
Proper ty Y : Long int index 2 read GetCoord Write SetCoord ;
Proper ty Coords [Index : I n t e g e r] Read GetCoord ;
end ;

Procedure TPoint . SetCoord (Index : I n t e g e r ; Value : Long int) ;
begin

Case Index of
1 : FX := Value ;
2 : FY := Value ;

end ;

46

Classes 5.4. PROPERTIES

end ;
Function TPoint . GetCoord (INdex : I n t e g e r) : Long int ;
begin

Case Index of
1 : R e s u l t := FX;
2 : R e s u l t := FY;

end ;
end ;
Var P : TPoint ;
begin

P := TPoint . c r e a t e ;
P. X := 2 ;
P. Y := 3 ;
With P do

WriteLn (’X=’ , X, ’ Y=’ , Y) ;
end .

When the compiler encounters an assignment to X, then SetCoord is called with
as first parameter the index (1 in the above case) and with as a second parameter
the value to be set. Conversely, when reading the value of X, the compiler calls
GetCoord and passes it index 1. Indexes can only be integer values. You can also
have array properties. These are properties that accept an index, just as an array
does. Only now the index doesn’t have to be an ordinal type, but can be any type.
A read specifier for an array property is the name method function that has the
same return type as the property type. The function must accept as a sole arguent
a variable of the same type as the index type. For an array property, you cannot
specify fields as read specifiers. A write specifier for an array property is the
name of a method procedure that accepts two arguments: The first argument has
the same type as the index, and the second argument is a parameter of the same
type as the property type. As an example, see the following declaration:
Type T I n t L i s t = C l a s s

P r i v a t e
Function G e t I n t (I : Long int) : l o n g i n t ;
Function G e t A s S t r i n g (A : Str ing) : Str ing ;
Procedure S e t I n t (I : Long int ; Value : Long int ;) ;
Procedure S e t A s S t r i n g (A : Str ing ; Value : Str ing) ;
P u b l i c
Proper ty Items [i : Long int] : Long int Read G e t I n t

Write S e t I n t ;
Proper ty S t r I t e m s [S : Str ing] : Str ing Read G e t A s S t r i n g

Write S e t A s s t r i n g ;
end ;

Var A I n t L i s t : T I n t L i s t ;

Then the following statements would be valid:
A I n t L i s t . I tems [26] : = 1 ;
A I n t L i s t . S t r I t e m s [’twenty−five’] : = ’zero’ ;
WriteLn (’Item 26 : ’ , A I n t L i s t . I tems [26]) ;
WriteLn (’Item 25 : ’ , A I n t L i s t . S t r I t e m s [’twenty−five’]) ;

While the following statements would generate errors:
A I n t L i s t . I tems [’twenty−five’] : = 1 ;
A I n t L i s t . S t r I t e m s [26] : = ’zero’ ;

47

Classes 5.4. PROPERTIES

Because the index types are wrong. Array properties can be declared as default
properties. This means that it is not necessary to specify the property name when
assigning or reading it. If, in the previous example, the definition of the items
property would have been

Proper ty Items [i : Long int] : Long int Read G e t I n t
Write S e t I n t ; D e f a u l t ;

Then the assignment
A I n t L i s t . I tems [26] : = 1 ;

Would be equivalent to the following abbreviation.
A I n t L i s t [26] : = 1 ;

You can have only one default property per class, and descendent classes cannot
redeclare the default property.

48

Chapter 6

Expressions

Expressions occur in assignments or in tests. Expressions produce a value, of a
certain type. Expressions are built with two components: Operators and their
operands. Usually an operator is binary, i.e. it requires 2 operands. Binary operators
occur always between the operands (as in X/Y). Sometimes an operator is unary, i.e.
it requires only one argument. A unary operator occurs always before the operand,
as in -X.

When using multiple operands in an expression, the precedence rules of table (6.1)
are used. When determining the precedence, te compiler uses the following rules:

1. Operations with equal precedence are executed from left to right.

2. In operations with unequal precedence the operands belong to the operater with
the highest precedence. For example, in 5*3+7, the multiplication is higher in
precedence than the addition, so it is executed first. The result would be 22.

3. If parentheses are used in an epression, their contents is evaluated first. Thus,
5*(3+7) would result in 50.

An expression is a sequence of terms and factors. A factor is an operand of a
multiplication operator. A term is an operand of an adding operator.

6.1 Expression syntax

An expression applies relational operators to simple expressions. Simple expressions
are a series of terms, joined by adding operators.

Table 6.1: Precedence of operators

Operator Precedence Category
Not, @ Highest Unary operators
* / div mod and shl shr as Second Multiplying operators
+ - or xor Third Adding operators
< <> < > <= >= in is Lowest (Fourth) relational operators

49

Expressions 6.1. EXPRESSION SYNTAX

Expressions

-- expression simple expression
*

<=

>

>=

=

<>

in

is

simple expression

-�

-- simple expression
6

term
+
-

or
xor

-�

The following are valid expressions:
GraphResu l t<>g r E r r o r
(DoItToday=Yes) and (DoItTomorrow=No) ;
Day in Weekend

And here are some simple expressions:
A + B
−Pi
ToBe or Not ToBe

Terms consist of factors, connected by multiplication operators.

Terms

-- term
6

factor
*

/

div
mod
and
shl
shr
as

-�

Here are some valid terms:
2 ∗ Pi
A Div B
(DoItToday=Yes) and (DoItTomorrow=No) ;

Factors are all other constructions:

Factors

50

Expressions 6.2. FUNCTION CALLS

-- factor (expression)
variable reference

function call
unsigned constant

not factor
sign factor

set constructor
value typecast
address factor

-�

-- unsigned constant unsigned number
character string

constant identifier
Nil

-�

6.2 Function calls

Function calls are part of expressions (although, using extended syntax, they can be
statements too). They are constructed as follows:

Function calls

-- function call function identifier
method designator

qualified method designator
variable reference

actual parameter list

-

- -�

-- actual parameter list (

6
actual parameter

,

) -�

-- actual parameter expression
variable reference

-�

The variable reference must be a procedural type variable referce. A method
designator can only be used in side the method of an object. A qualified method
designator can be used outside object methods too. The function that will get called
is the function with a declared parameter list that matches the actual parameter list.
This means that

1. The number of actual parameters must equal the number of declared paramet-
ers.

2. The types of the parameters must be compatible. For varriable reference
parameters, the parameter types must be exactly the same.

If no matching function is found, then the compiler will generate an error. Depending
on the fact of the function is overloaded (i.e. multiple functions with the same name,
but different parameter lists) the error will be different. There are cases when the
compiler will not execute the function call in an expression. This is the case when
you are assigning a value to a procedural type variable, as in the following example:

51

Expressions 6.3. SET CONSTRUCTORS

Type
FuncType = Function : I n t e g e r ;

Var A : I n t e g e r ;
Function AddOne : I n t e g e r ;
begin

A := A+1 ;
AddOne := A;

end ;
Var F : FuncType ;

N : I n t e g e r ;
begin

A := 0 ;
F := AddOne ; { Ass ign AddOne to F , Don ’ t c a l l AddOne}
N := AddOne ; { N := 1 ! ! }

end .

In the above listing, the assigment to F will not cause the function AddOne to be
called. The assignment to N, however, will call AddOne. A problem with this syntax
is the following construction:
I f F = AddOne Then

DoSometh ingHorr ib le ;

Should the compiler compare the addresses of F and AddOne, or should it call both
functions, and compare the result ? Free Pascal solves this by deciding that a
procedural variable is equivalent to a pointer. Thus the compiler will give a type
mismatch error, since AddOne is considered a call to a function with integer result,
and F is a pointer, Hence a type mismatch occurs. How then, should one compare
whether F points to the function AddOne ? To do this, one should use the address
operator @:
I f F = @AddOne Then

WriteLn (’Functions are equal’) ;

The left hand side of the boolean expression is an address. The right hand side also,
and so the compiler compares 2 addresses. How to compare the values that both
functions return ? By adding an empty parameter list:

I f F()= Addone then
WriteLn (’Functions return same values ’) ;

Remark that this behaviour is not compatible with Delphi syntax.

6.3 Set constructors

When you want to enter a set-type constant in an expression, you must give a set
constructor. In essence this is the same thing as when you define a set type, only you
have no identifier to identify the set with. A set constructor is a comma separated
list of expressions, enclosed in square brackets.

Set constructors

-- set constructor [

6
set group

,

] -�

52

Expressions 6.4. VALUE TYPECASTS

-- set group expression
.. expression

-�

All set groups and set elements must be of the same ordinal type. The empty set
is denoted by [], and it can be assigned to any type of set. A set group with a
range [A..Z] makes all values in the range a set element. If the first range specifier
has a bigger ordinal value than the second the set is empty, e.g., [Z..A] denotes an
empty set. The following are valid set constructors:
[today , tomorrow]
[Monday . . F r i d a y , Sunday]
[2 , 3∗2 , 6∗2 , 9∗2]
[’A’ . . ’Z’ , ’a’ . . ’z’ , ’0’ . . ’9’]

6.4 Value typecasts

Sometimes it is necessary to change the type of an expression, or a part of the
expression, to be able to be assignment compatible. This is done through a value
typecast. The syntax diagram for a value typecast is as follows:

Typecasts

-- value typecast type identifier (expression) -�

Value typecasts cannot be used on the left side of assignments, as variable typecasts.
Here are some valid typecasts:
Byte (’A’)
Char (48)
boo lean (1)
l o n g i n t (@Buffer)

The type size of the expression and the size of the type cast must be the same. That
is, the following doesn’t work:
I n t e g e r (’A’)
Char (4875)
boo lean (100)
Word(@Buffer)

6.5 The @ operator

The address operator @ returns the address of a variable, procedure or function. It
is used as follows:

Address factor

53

Expressions 6.6. OPERATORS

-- addressfactor @ variable reference
procedure identifier
function identifier

qualified method identifier

-�

The @ operator returns a typed pointer if the $T switch is on. If the $T switch
is off then the address operator returns an untyped pointer, which is assigment
compatible with all pointer types. The type of the pointer is ^T, where T is the type
of the variable reference. For example, the following will compile
Program t c a s t ;
{$T−} { @ r e t u r n s untyped p o i n t e r }

Type a r t = Array [1 . . 100] of byte ;
Var B u f f e r : l o n g i n t ;

PLargeBuf fe r : ˆ a r t ;

begin
PLargeBuf fe r := @Buffer ;

end .

Changing the {$T-} to {$T+} will prevent the compiler from compiling this. It will
give a type mismatch error. By default, the address operator returns an untyped
pointer. Applying the address operator to a function, method, or procedure identifier
will give a pointer to the entry point of that function. The result is an untyped
pointer. By default, you must use the address operator if you want to assign a value
to a procedural type variable. This behaviour can be avoided by using the -So or
-S2 switches, which result in a more compatible Delphi or Turbo Pascal syntax.

6.6 Operators

Operators can be classified according to the type of expression they operate on. We
will discuss them type by type.

Arithmetic operators

Arithmetic operators occur in arithmetic operations, i.e. in expressions that contain
integers or reals. There are 2 kinds of operators : Binary and unary arithmetic
operators. Binary operators are listed in table (6.2) , unary operators are listed in
table (6.3) . With the exception of Div and Mod, which accept only integer expres-
sions as operands, all operators accept real and integer expressions as operands. For
binary operators, the result type will be integer if both operands are integer type
expressions. If one of the operands is a real type expression, then the result is real.
As an exception : division (/) results always in real values. For unary operators,
the result type is always equal to the expression type. The division (/) and Mod
operator will cause run-time errors if the second argument is zero. The sign of the
result of a Mod operator is the same as the sign of the left side operand of the Mod
operator. In fact, the Mod operator is equivalent to the following operation :

I mod J = I − (I div J) ∗ J

but it executes faster than the right hand side expression.

54

Expressions 6.6. OPERATORS

Table 6.2: Binary arithmetic operators

Operator Operation
+ Addition
- Subtraction
* Multiplication
/ Division
Div Integer division
Mod Remainder

Table 6.3: Unary arithmetic operators

Operator Operation
+ Sign identity
- Sign inversion

Logical operators

Logical operators act on the individual bits of ordinal expressions. Logical operators
require operands that are of an integer type, and produce an integer type result. The
possible logical operators are listed in table (6.4) . The following are valid logical
expressions:
A shr 1 { same as A d iv 2 , but f a s t e r }
Not 1 { e q u a l s −2 }
Not 0 { e q u a l s −1 }
Not −1 { e q u a l s 0 }
B shl 2 { same as B ∗ 2 f o r i n t e g e r s }
1 or 2 { e q u a l s 3 }
3 xor 1 { e q u a l s 2 }

Boolean operators

Boolean operators can be considered logical operations on a type with 1 bit size.
Therefore the shl and shr operations have little sense. Boolean operators can only
have boolean type operands, and the resulting type is always boolean. The possible
operators are listed in table (6.5) Remark that boolean expressions are ALWAYS
evaluated with short-circuit evaluation. This means that from the moment the result
of the complete expression is known, evaluation is stopped and the result is returned.

Table 6.4: Logical operators

Operator Operation
not Bitwise negation (unary)
and Bitwise and
or Bitwise or
xor Bitwise xor
shl Bitwise shift to the left
shr Bitwise shift to the right

55

Expressions 6.6. OPERATORS

Table 6.5: Boolean operators

Operator Operation
not logical negation (unary)
and logical and
or logical or
xor logical xor

Table 6.6: Set operators

Operator Action
+ Union
- Difference
* Intersection

For instance, in the following expression:
B := True or MaybeTrue ;

The compiler will never look at the value of MaybeTrue, since it is obvious that
the expression will always be true. As a result of this strategy, if MaybeTrue is
a function, it will not get called ! (This can have surprising effects when used in
conjunction with properties)

String operators

There is only one string operator : +. It’s action is to concatenate the contents of
the two strings (or characters) it stands between. You cannot use + to concatenate
null-terminated (PChar) strings. The following are valid string operations:

’This is ’ + ’VERY ’ + ’easy !’
Dirname+’\’

The following is not:
Var Dirname = Pchar ;
. . .

Dirname := Dirname+’\’ ;

Because Dirname is a null-terminated string.

Set operators

The following operations on sets can be performed with operators: Union, difference
and intersection. The operators needed for this are listed in table (6.6) . The set
type of the operands must be the same, or an error will be generated by the compiler.

Relational operators

The relational operators are listed in table (6.7) Left and right operands must be
of the same type. You can only mix integer and real types in relational expressions.
Comparing strings is done on the basis of their ASCII code representation. When

56

Expressions 6.6. OPERATORS

Table 6.7: Relational operators

Operator Action
= Equal
<> Not equal
< Stricty less than
> Strictly greater than
<= Less than or equal
>= Greater than or equal
in Element of

comparing pointers, the addresses to which they point are compared. This also is
true for PChar type pointers. If you want to compare the strings the Pchar points
to, you must use the StrComp function from the strings unit. The in returns True
if the left operand (which must have the same ordinal type as the set type) is an
element of the set which is the right operand, otherwise it returns False

57

Chapter 7

Statements

The heart of each algorithm are the actions it takes. These actions are contained in
the statements of your program or unit. You can label your statements, and jump to
them (within certain limits) with Goto statements. This can be seen in the following
syntax diagram:

Statements

-- statement
label : simple statement

structured statement
asm statement

-�

A label can be an identifier or an integer digit.

7.1 Simple statements

A simple statement cannot be decomposed in separate statements. There are basic-
ally 4 kinds of simple statements:

Simple statements

-- siple statement assignment statement
procedure statement

goto statement
raise statement

-�

Of these statements, the raise statement will be explained in the chapter on Excep-
tions (chapter 10)

Assignments

Assignments give a value to a variable, replacing any previous value the observable
might have had:

58

Statements 7.1. SIMPLE STATEMENTS

Table 7.1: Allowed C constructs in Free Pascal

Assignment Result
a += b Adds b to a, and stores the result in a.
a -= b Substracts b from a, and stores the result in a.
a *= b Multiplies a with b, and stores the result in a.
a /= b Divides a through b, and stores the result in a.

Assignments

-- assignment statement variable reference
function identifier

:=
+=
-=
*=
/=

expression -�

In addition to the standard Pascal assignment operator (:=), which simply re-
places the value of the varable with the value resulting from the expression on the
right of the := operator, Free Pascal supports some c-style constructions. All
available constructs are listed in table (7.1) . For these constructs to work, you
should specify the -Sc command-line switch. Remark: These constructions are just
for typing convenience, they don’t generate different code. Here are some examples
of valid assignment statements:
X := X+Y;
X+=Y; { Same as X := X+Y, needs −Sc command l i n e s w i t c h }
X/=2 ; { Same as X := X/2 , needs −Sc command l i n e s w i t c h }
Done := F a l s e ;
Weather := Good ;
MyPi := 4 ∗ Tan(1) ;

Procedure statements

Procedure statements are calls to subroutines. There are different possibilities for
procedure calls: A normal procedure call, an object method call (qualified or not)
, or even a call to a procedural type variable. All types are present in the following
diagram.

Procedure statements

-- procedure statement procedure identifier
method identifier

qualified method identifier
variable reference

-

-

actual parameter list

-�

59

Statements 7.2. STRUCTURED STATEMENTS

The Free Pascal compiler will look for a procedure with the same name as given in
the procedure statement, and with a declared parameter list that matches the actual
parameter list. The following are valid procedure statements:
Usage ;
WriteLn (’Pascal is an easy language !’) ;
Doit () ;

Goto statements

Free Pascal supports the goto jump statement. Its prototype syntax is

Goto statement

-- goto statement goto label -�

When using goto statements, you must keep the following in mind:

1. The jump label must be defined in the same block as the Goto statement.

2. Jumping from outside a loop to the inside of a loop or vice versa can have
strange effects.

3. To be able to use the Goto statement, you need to specify the -Sg compiler
switch.

Goto statements are considered bad practice and should be avoided as much as
possible. It is always possible to replace a goto statement by a construction that
doesn’t need a goto, although this construction may not be as clear as a goto
statement. For instance, the following is an allowed goto statement:
l abe l

jumpto ;
. . .
Jumpto :

Statement ;
. . .
Goto jumpto ;
. . .

7.2 Structured statements

Structured statements can be broken into smaller simple statements, which should
be executed repeatedly, conditionally or sequentially:

Structured statements

-- structured statement compound statement
repetitive statement

conditional statement
exception statement

with statement

-�

60

Statements 7.2. STRUCTURED STATEMENTS

Conditional statements come in 2 flavours :

Conditional statements

-- conditional statement if statement
case statement

-�

Repetitive statements come in 3 flavours:

Repetitive statements

-- repetitive statement for statament
repeat statement
while statement

-�

The following sections deal with each of these statements.

Compound statements

Compound statements are a group of statements, separated by semicolons, that are
surrounded by the keywords Begin and End. The Last statement doesn’t need to
be followed by a semicolon, although it is allowed. A compound statement is a way
of grouping statements together, executing the statements sequentially. They are
treated as one statement in cases where Pascal syntax expects 1 statement, such as
in if ... then statements.

Compound statements

-- compound statement begin
6

statement
;

end -�

The Case statement

Free Pascal supports the case statement. Its syntax diagram is

Case statement

-- case statement case expression of
6
case
; else part ;

-

- end -�

-- case
6

constant
.. constant
,

: statement -�

61

Statements 7.2. STRUCTURED STATEMENTS

-- else part else statement -�

The constants appearing in the various case parts must be known at compile-time,
and can be of the following types : enumeration types, Ordinal types (except
boolean), and chars. The expression must be also of this type, or an compiler
error will occur. All case constants must have the same type. The compiler will
evaluate the expression. If one of the case constants values matches the value of
the expression, the statement that containing this constant is executed. After that,
the program continues after the final end. If none of the case constants match the
expression value, the statement after the else keyword is executed. This can be an
empty statement. If no else part is present, and no case constant matches the ex-
pression value, program flow continues after the final end. The case statements can
be compound statements (i.e. a begin..End block). Remark: Contrary to Turbo
Pascal, duplicate case labels are not allowed in Free Pascal, so the following code
will generate an error when compiling:
Var i : i n t e g e r ;
. . .
Case i of

3 : DoSomething ;
1 . . 5 : DoSomethingElse ;

end ;

The compiler will generate a Duplicate case label error when compiling this,
because the 3 also appears (implicitly) in the range 1..5. This is similar to Delhpi
syntax. The following are valid case statements: ’b’ : WriteLn (’B pressed’);
Case C of
’a’ : WriteLn (’A pressed’) ;
’c’ : WriteLn (’C pressed’) ;

e lse
WriteLn (’unknown letter pressed : ’ , C) ;

end ;

Or ’b’ : WriteLn (’B pressed’);
Case C of
’a’ , ’e’ , ’i’ , ’o’ , ’u’ : WriteLn (’vowel pressed’) ;
’y’ : WriteLn (’This one depends on the language’) ;

e lse
WriteLn (’Consonant pressed’) ;

end ;

Case Number of
1 . . 10 : WriteLn (’Small number’) ;
11 . . 100 : WriteLn (’Normal, medium number’) ;

e lse
WriteLn (’HUGE number’) ;

end ;

The If..then..else statement

The If .. then .. else.. protottype syntax is

62

Statements 7.2. STRUCTURED STATEMENTS

If then statements

-- if statement if expression then statement
else statement

-

- -�

The expression between the if and then keywords must have a boolean return type.
If the expression evaluates to True then the statement followingthen is executed. If
the expression evaluates to False, then the statement following else is executed,
if it is present. Be aware of the fact that the boolean expression will be short-cut
evaluated. (Meaning that the evaluation will be stopped at the point where the
outcome is known with certainty) Also, before the else keyword, no semicolon (;)
is allowed, but all statements can be compound statements. In nested If.. then
.. else constructs, some ambiguity may araise as to which else statement paits
with which if statement. The rule is that the else keyword matches the first if
keyword not already matched by an else keyword. For example:
I f exp1 Then

I f exp2 then
Stat1

e lse
s t a t 2 ;

Despite it’s appreance, the statement is syntactically equivalent to
I f exp1 Then

begin
I f exp2 then

Stat1
e lse

s t a t 2
end ;

and not to
{ NOT EQUIVALENT }
I f exp1 Then

begin
I f exp2 then

Stat1
end

else
s t a t 2

If it is this latter construct you want, you must explicitly put the begin and end
keywords. When in doubt, add them, they don’t hurt. The following is a valid
statement:
I f Today in [Monday . . F r i d a y] then

WriteLn (’Must work harder’)
e lse

WriteLn (’Take a day off.’) ;

The For..to/downto..do statement

Free Pascal supports the For loop construction. A for loop is used in case one wants
to calculated something a fixed number of times. The prototype syntax is as follows:

63

Statements 7.2. STRUCTURED STATEMENTS

For statement

-- for statement for control variable := initial value to
downto

-

- final value do statement -�

-- control variable variable identifier -�

-- initial value expression -�

-- final value expression -�

Statement can be a compound statement. When this statement is encountered, the
control variable is initialized with the initial value, and is compared with the final
value. What happens next depends on whether to or downto is used:

1. In the case To is used, if the initial value larger than the final value then
Statement will never be executed.

2. In the case DownTo is used, if the initial value larger than the final value then
Statement will never be executed.

After this check, the statement after Do is executed. After the execution of the state-
ment, the control variable is increased or decreased with 1, depending on whether
To or Downto is used. The control variable must be an ordinal type, no other types
can be used as counters in a loop. Remark: Contrary to ANSI pascal specifications,
Free Pascal first initializes the counter variable, and only then calculates the upper
bound. The following are valid loops:
For Day := Monday to F r i d a y do Work ;
For I := 100 downto 1 do

WriteLn (’Counting down : ’ , i) ;
For I := 1 to 7∗ dwarfs do KissDwarf (i) ;

The Repeat..until statement

The repeat statement is used to execute a statement until a certain condition is
reached. The statement will be executed at least once. The prototype syntax of the
Repeat..until statement is

Repeat statement

-- repeat statement repeat
6

statement
;

until expression -�

This will execute the statements between repeat and until up to the moment when
Expression evaluates to True. Since the expression is evaluated after the execu-
tion of the statements, they are executed at least once. Be aware of the fact that
the boolean expression Expression will be short-cut evaluated. (Meaning that the
evaluation will be stopped at the point where the outcome is known with certainty)
The following are valid repeat statements

64

Statements 7.2. STRUCTURED STATEMENTS

repeat
WriteLn (’I =’ , i) ;
I := I +2 ;

u n t i l I>100 ;
repeat

X := X/2
u n t i l x<10e−3

The While..do statement

A while statement is used to execute a statement as long as a certain condition
holds. This may imply that the statement is never executed. The prototype syntax
of the While..do statement is

While statements

-- while statement while expression do statement -�

This will execute Statement as long as Expression evaluates to True. Since
Expression is evaluated before the execution of Statement, it is possible that
Statement isn’t executed at all. Statement can be a compound statement. Be
aware of the fact that the boolean expression Expression will be short-cut evalu-
ated. (Meaning that the evaluation will be stopped at the point where the outcome
is known with certainty) The following are valid while statements:
I := I +2 ;
while i<=100 do

begin
WriteLn (’I =’ , i) ;
I := I +2 ;
end ;

X := X/2 ;
while x>=10e−3 do

X := X/2 ;

They correspond to the example loops for the repeat statements.

The With statement

The with statement serves to access the elements of a record1 or object or class,
without having to specify the name of the each time. The syntax for a with statement
is

With statement

-- with statement
6

variable reference
,

do statement -�

1The with statement does not work correctly when used with objects or classes until version
0.99.6

65

Statements 7.2. STRUCTURED STATEMENTS

The variable reference must be a variable of a record, object or class type. In the
with statement, any variable reference, or method reference is checked to see if it is
a field or method of the record or object or class. If so, then that field is accessed,
or that method is called. Given the declaration:
Type Passenger = Record

Name : Str ing [30] ;
F l i g h t : Str ing [10] ;
end ;

Var TheCustomer : Passenger ;

The following statements are completely equivalent:
TheCustomer . Name := ’Michael’ ;
TheCustomer . F l i g h t := ’PS901’ ;

and
With TheCustomer do

begin
Name := ’Michael’ ;
F l i g h t := ’PS901’ ;
end ;

The statement
With A, B, C, D do Statement ;

is equivalent to
With A do

With B do
With C do

With D do Statement ;

This also is a clear example of the fact that the variables are tried last to first, i.e.,
when the compiler encounters a variable reference, it will first check if it is a field
or method of the last variable. If not, then it will check the last-but-one, and so on.
The following example shows this;
Program testw ;
Type AR = record

X, Y : Long int ;
end ;

Var S , T : Ar ;
begin

S . X := 1 ; S . Y := 1 ;
T. X := 2 ; T. Y := 2 ;
With S , T do

WriteLn (X, ’ ’ , Y) ;
end .

The output of this program is

2 2

Showing thus that the X,Y in the WriteLn statement match the T record variable.

66

Statements 7.3. ASSEMBLER STATEMENTS

Exception Statements

As of version 0.99.7, Free Pascal supports exceptions. Exceptions provide a conveni-
ent way to program error and error-recovery mechanisms, and are closely related to
classes. Exception support is explained in chapter 10

7.3 Assembler statements

An assembler statement allows you to insert assembler code right in your pascal
code.

Assembler statements

-- asm statement asm assembler code end
registerlist

-�

-- registerlist [
6

stringconstant
,

] -�

More information about assembler blocks can be found in the Programmers’ guide.
The register list is used to indicate the registers that are modified by an assembler
statement in your code. The compiler stores certain results in the registers. If you
modify the registers in an assembler statement, the compiler should, sometimes, be
told about it. The registers are denoted with their Intel names for the I386 processor,
i.e., ’EAX’, ’ESI’ etc... As an example, consider the following assembler code:
asm

Movl $1 ,% ebx
Movl $0 ,% eax
addl %eax ,% ebx

end ; [’EAX’ , ’EBX’] ;

This will tell the compiler that it should save and restore the contents of the EAX
and EBX registers when it encounters this asm statement.

67

Chapter 8

Using functions and
procedures

Free Pascal supports the use of functions and procedures, but with some extras:
Function overloading is supported, as well as Const parameters and open arrays.
remark: In many of the subsequent paragraphs the word procedure and function
will be used interchangeably. The statements made are valid for both, except when
indicated otherwise.

8.1 Procedure declaration

A procedure declaration defines an identifier and associates it with a block of code.
The procedure can then be called with a procedure statement.

Procedure declaration

-- procedure declaration procedure header ; subroutine block ; -�

-- procedure header procedure identifier
qualified method identifier

-

- formal parameter list
modifiers

-�

-- subroutine block block
external directive

asm block
forward

-�

section 8.3 for the list of parameters. A procedure declaration that is followed by a
block implements the action of the procedure in that block. The following is a valid
procedure :
Procedure DoSomething (Para : Str ing) ;
begin

W r i t e l n (’Got parameter : ’ , Para) ;
W r i t e l n (’Parameter in upper case : ’ , Upper (Para)) ;

end ;

68

Using functions and procedures 8.2. FUNCTION DECLARATION

Note that it is possible that a procedure calls itself.

8.2 Function declaration

A function declaration defines an identifier and associates it with a block of code.
The block of code will return a result. The function can then be called inside an
expression, or with a procedure statement.

Function declaration

-- function declaration function header ; subroutine block ; -�

-- function header function identifier
qualified method identifier

-

- formal parameter list : result type
string modifiers

-�

-- subroutine block block
external directive

asm block
forward

-�

8.3 Parameter lists

When you need to pass arguments to a function or procedure, these parameters
must be declared in the formal parameter list of that function or procedure. The
parameter list is a declaration of identifiers that can be referred to only in that
procedure or function’s block.

Parameters

-- formal parameter list (
6

parameter declaration
;

) -�

-- parameter declaration value parameter
variable parameter
constant parameter

-�

const parameters and var parameters can also be untyped parameters if they have
no type identifier.

Value parameters

Value parameters are declared as follows:

Value parameters

69

Using functions and procedures 8.3. PARAMETER LISTS

-- value parameter identifier list :
array of

parameter type -�

When you declare parameters as value parameters, the procedure gets a copy of the
parameters that the calling block passes. Any modifications to these parameters
are purely local to the procedure’s block, and do not propagate back to the calling
block. A block that wishes to call a procedure with value parameters must pass
assignment compatible parameters to the procedure. This means that the types
should not match exactly, but can be converted (conversion code is inserted by the
compiler itself) Take care that using value parameters makes heavy use of the stack,
especially if you pass large parameters. The total size of all parameters in the formal
parameter list should be below 32K for portability’s sake (the Intel version limits
this to 64K). You can pass open arrays as value parameters. See section 8.3 for
more information on using open arrays.

var parameters

Variable parameters are declared as follows:

Variable parameters

-- variable parameter var identifier list
:

array of
parameter type

-

- -�

When you declare parameters as variable parameters, the procedure or function
accesses immediatly the variable that the calling block passed in its parameter list.
The procedure gets a pointer to the variable that was passed, and uses this pointer
to access the variable’s value. From this, it follows that any changes that you make
to the parameter, will proagate back to the calling block. This mechanism can be
used to pass values back in procedures. Because of this, the calling block must pass
a parameter of exactly the same type as the declared parameter’s type. If it does
not, the compiler will generate an error. Variable parameters can be untyped. In
that case the variable has no type, and hence is incompatible with all othertypes.
However, you can use the address operator on it, or you can pass it to a function
that has also an untyped parameter. If you want to use an untyped parameter in an
assigment, or you want to assign to it, you must use a typecast. File type variables
must always be passed as variable parameters. You can pass open arrays as variable
parameters. See section 8.3 for more information on using open arrays.

Const parameters

In addition to variable parameters and value parameters Free Pascal also supports
Const parameters. You can specify a Const parameter as follows:

Constant parameters

70

Using functions and procedures 8.4. FUNCTION OVERLOADING

-- constant parameter const identifier list -
-

:
array of

parameter type

-�

A constant argument is passed by reference if it’s size is larger than a longint. It
is passed by value if the size equals 4 or less. This means that the function or
procedure receives a pointer to the passed argument, but you are not allowed to
assign to it, this will result in a compiler error. Likewise, you cannot pass a const
parameter on to another function that requires a variable parameter. The main use
for this is reducing the stack size, hence improving performance, and still retaining
the semantics of passing by value... Constant parameters can also be untyped. See
section 8.3 for more information about untyped parameters. You can pass open
arrays as constant parameters. See section 8.3 for more information on using open
arrays.

Open array parameters

Free Pascal supports the passing of open arrays, i.e. you can declare a procedure with
an array of unspecified length as a parameter, as in Delphi. Open array parameters
can be accessed in the procedure or function as an array that is declared with
starting starting index 0, and last element index High(paremeter). For example,
the parameter
Row : Array of I n t e g e r ;

would be equivalent to
Row : Array [1 . . N−1] of I n t e g e r ;

Where N would be the actual size of the array that is passed to the function. N-1 can
be calculated as High(Row). Open parameters can be passed by value, by reference
or as a constant parameter. In the latter cases the procedure receives a pointer to
the actual array. In the former case,it receives a copy of the array. In a function or
procedure, you can pass open arrays only to functions which are also declared with
open arrays as parameters, not to functions or procedures which accept arrays of
fixed length. The following is an example of a function using an open array:
Function Average (Row : Array of i n t e g e r) : Real ;
Var I : l o n g i n t ;

Temp : Real ;
begin

Temp := Row[0] ;
For I := 1 to High (Row) do

Temp := Temp + Row[i] ;
Average := Temp / (High (Row)+1) ;

end ;

8.4 Function overloading

Function overloading simply means that you can define the same function more than
once, but each time with a different formal parameter list. The parameter lists must
differ at least in one of it’s elements type. When the compiler encounters a function
call, it will look at the function parameters to decide which od the defined function

71

Using functions and procedures 8.5. FORWARD DEFINED FUNCTIONS

This can be useful if you want to define the same function for different types. For
example, if the RTL, the Dec procedure is is defined as:
. . .
Dec (Var I : Long int ; decrement : Long int) ;
Dec (Var I : Long int) ;
Dec (Var I : Byte ; decrement : Long int) ;
Dec (Var I : Byte) ;
. . .

When the compiler encounters a call to the dec function, it wil first search which
function it should use. It therefore checks the parameters in your function call, and
looks if there is a function definition which maches the specified parameter list. If the
compiler finds such a function, a call is inserted to that function. If no such function
is found, a compiler error is generated. You cannot have overloaded functions that
have a cdecl or export modifier (Technically, because these two modifiers prevent
the mangling of the function name by the compiler)

8.5 forward defined functions

You can define a function without having it followed by it’s implementation, by
having it followed by the forward procedure. The effective implementation of that
function must follow later in the module. The function can be used after a forward
declaration as if it had been implemented already. The following is an example of a
forward declaration.
Program t e s t f o r w a r d ;
Procedure F i r s t (n : l o n g i n t) ; fo rward ;
Procedure Second ;
begin

WriteLn (’In second. Calling first...’) ;
F i r s t (1) ;

end ;
Procedure F i r s t (n : l o n g i n t) ;
begin

WriteLn (’First received : ’ , n) ;
end ;
begin

Second ;
end .

You cannot define a function twice as forward (nor is there any reason why you
would want to do that). Likewise, in units, you cannot have a forward declared
function of a function that has been declared in the interface part. The interface
declaration counts as a forward declaration. The following unit will give an error
when compiled:
Unit t e s t f o r w a r d ;
i n t e r f a c e
Procedure F i r s t (n : l o n g i n t) ;
Procedure Second ;
implementation
Procedure F i r s t (n : l o n g i n t) ; fo rward ;
Procedure Second ;
begin

WriteLn (’In second. Calling first...’) ;

72

Using functions and procedures 8.6. EXTERNAL FUNCTIONS

F i r s t (1) ;
end ;
Procedure F i r s t (n : l o n g i n t) ;
begin

WriteLn (’First received : ’ , n) ;
end ;
end .

8.6 External functions

The external modifier can be used to declare a function that resides in an external
object file. It allows you to use the function in your code, and at linking time, you
must link the object file containing the implementation of the function or procedure.

External directive

-- external directive external
string constant

name string constant
index integer constant

-

- -�

It replaces, in effect, the function or procedure code block. As such, it can be present
only in an implementation block of a unit, or in a program. As an example:
program CmodDemo;
{ $ L i n k l i b c}
Const P : PChar = ’This is fun !’ ;
Function s t r l e n (P : PChar) : Long int ; c d e c l ; e x t e r n a l ;
begin

WriteLn (’Length of (’ , p , ’) : ’ , s t r l e n (p))
end .

Remark The parameters in our declaration of the external function should match
exactly the ones in the declaration in the object file. If the external modifier is
followed by a string constant:
e x t e r n a l ’lname’ ;

Then this tells the compiler that the function resides in library ’lname’. The compiler
will the automatically link this library to your program.

You can also specify the name that the function has in the library:
e x t e r n a l ’lname’ name Fname ;

This tells the compiler that the function resides in library ’lname’, but with name
’Fname’. The compiler will the automatically link this library to your program, and
use the correct name for the function. Under Windows and os/2, you can also use
the following form:
e x t e r n a l ’lname’ Index Ind ;

This tells the compiler that the function resides in library ’lname’, but with index
Ind. The compiler will the automatically link this library to your program, and use
the correct index for the function.

73

Using functions and procedures 8.7. ASSEMBLER FUNCTIONS

8.7 Assembler functions

Functions and procedures can be completely implemented in assembly language. To
indicate this, you use the assembler keyword:

Assembler functions

-- asm block assembler ; declaration part asm statement -�

Contrary to Delphi, the assembler keyword must be present to indicate an assembler
function. For more information about assembler functions, see the chapter on using
assembler in the Programmers’ guide.

8.8 Modifiers

A function or procedure declaration can contain modifiers. Here we list the various
possibilities:

Modifiers

-- modifiers
6
; public

alias string constant
interrupt

call modifiers

-�

-- call modifiers register
pascal
cdecl

stdcall
popstack

-�

Free Pascal doesn’t support all Turbo Pascal modifiers, but does support a number
of additional modifiers. They are used mainly for assembler and reference to C
object files. More on the use of modifiers can be found in Programmers’ guide.

Public

The Public keyword is used to declare a function globally in a unit. This is useful
if you don’t want a function to be accessible from the unit file, but you do want the
function to be accessible from the object file. as an example:
Unit someunit ;
i n t e r f a c e
Function F i r s t : Real ;
Implementation
Function F i r s t : Real ;
begin

74

Using functions and procedures 8.8. MODIFIERS

F i r s t := 0 ;
end ;
Function Second : Real ; [P u b l i c] ;
begin

Second := 1 ;
end ;
end .

If another program or unit uses this unit, it will not be able to use the function
Second, since it isn’t declared in the interface part. However, it will be possible
to access the function Second at the assembly-language level, by using it’s mangled
name (Programmers’ guide).

cdecl

The cdecl modifier can be used to declare a function that uses a C type calling
convention. This must be used if you wish to acces functions in an object file
generated by a C compiler. It allows you to use the function in your code, and at
linking time, you must link the object file containing the C implementation of the
function or procedure. As an example:
program CmodDemo;
{$LINKLIB c}
Const P : PChar = ’This is fun !’ ;
Function s t r l e n (P : PChar) : Long int ; c d e c l ; e x t e r n a l ;
begin

WriteLn (’Length of (’ , p , ’) : ’ , s t r l e n (p))
end .

When compiling this, and linking to the C-library, you will be able to call the strlen
function throughout your program. The external directive tells the compiler that
the function resides in an external object filebrary (see 8.6). Remark The parameters
in our declaration of the C function should match exactly the ones in the declaration
in C. Since C is case sensitive, this means also that the name of the function must be
exactly the same. the Free Pascal compiler will use the name exactly as it is typed
in the declaration.

popstack

Popstack does the same as cdecl, namely it tells the Free Pascal compiler that a
function uses the C calling convention. In difference with the cdecl modifier, it still
mangles the name of the function as it would for a normal pascal function. With
popstack you could access functions by their pascal names in a library.

Export

Sometimes you must provide a callback function for a C library, or you want your
routines to be callable from a C program. Since Free Pascal and C use different
calling schemes for functions and procedures1, the compiler must be told to generate
code that can be called from a C routine. This is where the Export modifier comes
in. Contrary to the other modifiers, it must be specified separately, as follows:

1More techically: In C the calling procedure must clear the stack. In Free Pascal, the subroutine
clears the stack.

75

Using functions and procedures8.9. UNSUPPORTED TURBO PASCAL MODIFIERS

Table 8.1: Unsupported modifiers

Modifier Why not supported ?
Near Free Pascal is a 32-bit compiler.
Far Free Pascal is a 32-bit compiler.

funct ion DoSquare (X : Long int) : Long int ; e x p o r t ;
begin
. . .
end ;

The square brackets around the modifier are not allowed in this case. Remark: as of
version 0.9.8, Free Pascal supports the Delphi cdecl modifier. This modifier works
in the same way as the export modifier. More information about these modifiers
can be found in the Programmers’ guide, in the section on the calling mechanism
and the chapter on linking.

StdCall

As of version 0.9.8, Free Pascal supports the Delphi stdcall modifier. This modifier
does actually nothing, since the Free Pascal compiler by default pushes parameters
from right to left on the stack, which is what the modifier does under Delphi (which
pushes parameters on the stack from left to right). More information about this
modifier can be found in the Programmers’ guide, in the section on the calling
mechanism and the chapter on linking.

Alias

The Alias modifier allows you to specify a different name for a procedure or func-
tion. This is mostly useful for referring to this procedure from assembly language
constructs. As an example, consider the following program:
Program A l i a s e s ;
Procedure P r i n t i t ; [A l i a s : ’DOIT’] ;
begin

WriteLn (’In Printit (alias : "DOIT")’) ;
end ;
begin

asm
c a l l DOIT
end ;

end .

Remark: the specified alias is inserted straight into the assembly code, thus it is
case sensitive. The Alias modifier, combined with the Public modifier, make a
powerful tool for making externally accessible object files.

8.9 Unsupported Turbo Pascal modifiers

The modifiers that exist in Turbo pascal, but aren’t supported by Free Pascal, are
listed in table (8.1) .

76

Chapter 9

Programs, units, blocks

A Pascal program consists of modules called units. A unit can be used to group
pieces of code together, or to give someone code without giving the sources. Both
programs and units consist of code blocks, which are mixtures of statements, pro-
cedures, and variable or type declarations.

9.1 Programs

A pascal program consists of the program header, followed possibly by a ’uses’
clause, and a block.

Programs

-- program program header ;
uses clause

block . -�

-- program header program identifier
(program parameters)

-

- -�

-- program parameters identifier list -�

-- uses clause uses
6

identifier
,

-�

The program header is provided for backwards compatibility, and is ignored by
the compiler. The uses clause serves to identify all units that are needed by the
program. The system unit doesn’t have to be in this list, since it is always loaded
by the compiler. The order in which the units appear is significant, it determines
in which order they are initialized. Units are initialized in the same order as they
appear in the uses clause. Identifiers are searched in the opposite order, i.e. when
the compiler searches for an identifier, then it looks first in the last unit in the uses
clause, then the last but one, and so on. This is important in case two units declare
different types with the same identifier. When the compiler looks for unit files, it
adds the extension .ppu (.ppw for Windows NT) to the name of the unit. On
linux, unit names are converted to all lowercase when looking for a unit. If a unit
name is longer than 8 characters, the compiler will first look for a unit name with
this length, and then it will truncate the name to 8 characters and look for it again.

77

Programs, units, blocks 9.2. UNITS

9.2 Units

A unit contains a set of declarations, procedures and functions that can be used by
a program or another unit. The syntax for a unit is as follows:

Units

-- unit unit header interface part implementation part -
-

initialization part
end . -�

-- unit header unit unit identifier ; -�

-- interface part
6 constant declaration part

type declaration part
procedure headers part

-�

-- procedure headers part procedure header
function header

;
call modifiers ;

-

- -�

-- implementation part implementation
uses clause

-

- declaration part -�

-- initialization part begin
6

statement
;

-�

The interface part declares all identifiers that must be exported from the unit. This
can be constant, type or variable identifiers, and also procedure or function identifier
declarations. Declarations inside the implementationpart are not accessible outside
the unit. The implementation must contain a function declaration for each function
or procedure that is declared in the interface part. If a function is declared in the
interface part, but no declaration of that function is present in the implementation
section is present, then the compiler will give an error. When a program uses a unit
(say unitA) and this units uses a second unit, say unitB, then the program depends
indirectly also on unitB. This means that the compiler must have access to unitB
when trying to compile the program. If the unit is not present at compile time,
an error occurs. Note that the identifiers from a unit on which a program depends
indirectly, are not accessible to the program. To have access to the identifiers of a
unit, you must put that unit in the uses clause of the program or unit where you want
to yuse the identifier. Units can be mutually dependent, that is, they can reference
each other in their uses clauses. This is allowed, on the condition that at least one
of the references is in the implementation section of the unit. This also holds for
indirect mutually dependent units. If it is possible to start from one interface uses
clause of a unit, and to return there via uses clauses of interfaces only, then there is
circular unit dependence, and the compiler will generate an error. As and example
: the following is not allowed:
Unit UnitA ;
i n t e r f a c e
Uses UnitB ;

78

Programs, units, blocks 9.3. BLOCKS

implementation
end .
Unit UnitB
Uses UnitA ;
implementation
end .

But this is allowed :
Unit UnitA ;
i n t e r f a c e
Uses UnitB ;
implementation
end .
Unit UnitB
implementation
Uses UnitA ;
end .

Because UnitB uses UnitA only in it’s implentation section. In general, it is a bad
idea to have circular unit dependencies, even if it is only in implementation sections.

9.3 Blocks

Units and programs are made of blocks. A block is made of declarations of labels,
constants, types variables and functions or procedures. Blocks can be nested in
certain ways, i.e., a procedure or function declaration can have blocks in themselves.
A block looks like the following:

Blocks

-- block declaration part statement part -�

-- declaration part
6 label declaration part

constant declaration part
type declaration part

variable declaration part
procedure/function declaration part

-�

-- label declaration part label
6

label
,

; -�

-- constant declaration part const
6

constant declaration
typed constant declaration

-�

-- type declaration part type
6

type declaration -�

-- variable declaration part var
6

variable declaration -�

79

Programs, units, blocks 9.4. SCOPE

-- procedure/function declaration part
6

procedure declaration
function declaration

constructor declaration
destructor declaration

-�

-- statement part compound statement -�

Labels that can be used to identify statements in a block are declared in the label
declaration part of that block. Each label can only identify one statement. Constants
that are to be used only in one block should be declared in that block’s constant
declaration part. Variables that are to be used only in one block should be declared
in that block’s constant declaration part. Types that are to be used only in one block
should be declared in that block’s constant declaration part. Lastly, functions and
procedures that will be used in that block can be declared in the procedure/function
declaration part. After the different declaration parts comes the statement part. This
contains any actions that the block should execute. All identifiers declared before
the statement part can be used in that statement part.

9.4 Scope

Identifiers are valid from the point of their declaration until the end of the block in
which the declaration occurred. The range where the identifier is known is the scope
of the identifier. The exact scope of an identifier depends on the way it was defined.

Block scope

The scope of a variable declared in the declaration part of a block, is valid from the
point of declaration until the end of the block. If a block contains a second block, in
which the identfier is redeclared, then inside this block, the second declaration will
be valid. Upon leaving the inner block, the first declaration is valid again. Consider
the following example:
Program Demo;
Var X : Real ;
{ X i s r e a l v a r i a b l e }
Procedure NewDec larat ion
Var X : I n t e g e r ; { R e d e c l a r e X as i n t e g e r }
begin

/ / X := 1 . 234 ; {would g i v e an e r r o r when t r y i n g to compi le }
X := 10 ; { C o r r e c t ass igment }

end ;
{ From here on , X i s Real aga in }
begin

X := 2 . 468 ;
end .

In this example, inside the procedure, X denotes an integer variable. It has it’s own
storage space, independent of the variable X outside the procedure.

80

Programs, units, blocks 9.4. SCOPE

Record scope

The field identifiers inside a record definition are valid in the following places:

1. to the end of the record definition.

2. field designators of a variable of the given record type.

3. identifiers inside a With statement that operates on a variable of the given
record type.

Class scope

A component identifier is valid in the following places:

1. From the point of declaration to the end of the class definition.

2. In all descendent types of this class.

3. In all method declaration blocks of this class and descendent classes.

4. In a with statement that operators on a variable of the given class’s definition.

Note that method designators are also considered identifiers.

Unit scope

All identifiers in the interface part of a unit are valid from the point of declaration,
until the end of the unit. Furthermore, the identifiers are known in programs or
units that have the unit in their uses clause. Identifiers from indirectly dependent
units are not available. Identifiers declared in the implementation part of a unit
are valid from the point of declaration to the end of the unit. The system unit is
automatically used in all units and programs. It’s identifiers are therefore always
known, in each program or unit you make. The rules of unit scope implie that you
can redefine an identifier of a unit. To have access to an identifier of another unit
that was redeclared in the current unit, precede it with that other units name, as in
the following example:
unit unitA ;
i n t e r f a c e
Type

MyType = Real ;
implementation
end .
Program prog ;
Uses UnitA ;

{ R e d e c l a r a t i o n of MyType}
Type MyType = I n t e g e r ;
Var A : Mytype ; { W i l l be I n t e g e r }

B : UnitA . MyType { W i l l be r e a l }
begin
end .

This is especially useful if you redeclare the system unit’s identifiers.

81

Programs, units, blocks 9.5. LIBRARIES

9.5 Libraries

Free Pascal supports making of dynamic libraries (DLLs under Windows) trough
the use of the Library keyword.

A Library is just like a unit or a program:

Libraries

-- library library header ;
uses clause

block . -�

-- library header library identifier -�

By default, functions and procedures that are declared and implemented in library
are not available to a programmer that wishes to use your library.

In order to make functions or procedures available from the library, you must export
them in an export clause:

Exports clause

-- exports clause exports exports list ; -�

-- exports list
6

exports entry
,

-�

-- exports entry identifier
index integer constant

-

-

name string constant

-�

Under Windows NT, an index clause can be added to an exports entry. an index
entry must be a positive number larger or equal than 1. It is best to use low index
values, although nothing forces you to do this.

Optionally, an exports entry can have a name specifier. If present, the name specifier
gives the exavt name (case sensitive) of the function in the library.

If neither of these constructs is present, the functions or procedures are exported
with the exact names as specified in the exports clause.

82

Chapter 10

Exceptions

As of version 0.99.7, Free Pascal supports exceptions. Exceptions provide a conveni-
ent way to program error and error-recovery mechanisms, and are closely related to
classes. Exception support is based on 3 constructs:

Raise statements. To raise an exeption. This is usually done to signal an error
condition.

Try ... Except blocks. These block serve to catch exceptions raised within the
scope of the block, and to provide exception-recovery code.

Try ... Finally blocks. These block serve to force code to be executed irrespective
of an exception occurrence or not. They generally serve to clean up memory
or close files in case an exception occurs. code.

10.1 The raise statement

The raise statement is as follows:

Raise statement

-- raise statement
exception instance

at address expression

-�

This statement will raise an exception. If it is specified, the exception instance must
be an initialized instance of a class, which is the raise type. The address exception
is optional. If itis not specified, the compiler will provide the address by itself.
If the exception instance is omitted, then the current exception is re-raised. This
construct can only be used in an exception handling block (see further). Remark that
control never returns after an exception block. The control is transferred to the first
try...finally or try...except statement that is encountered when unwinding
the stack. If no such statement is found, the Free Pascal Run-Time Library will
generate a run-time error 217 (see also section 10.5). As an example: The following
division checks whether the denominator is zero, and if so, raises an exception of
type EDivException

83

Exceptions 10.2. THE TRY...EXCEPT STATEMENT

Type EDivExcept ion = C l a s s (E x c e p t i o n) ;
Function DoDiv (X, Y : Long int) : I n t e g e r ;
begin

I f Y=0 then
Raise EDivExcept ion . Create (’Division by Zero would occur’) ;

R e s u l t := X Div Y;
end ;

The class Exception is defined in the Sysutils unit of the rtl. (section 10.5)

10.2 The try...except statement

A try...except exception handling block is of the following form :

Try..except statement

-- try statement try statement list except exception handling statements end -�

-- statement list
6

statement
;

-�

-- exception handling statements
6

exception handler
; else statement list

statement list -

- -�

-- on
identifier :

class type identifier do statement -�

If no exception is raised during the execution of the statement list, then all state-
ments in the list will be executed sequentially, and the except block will be skipped,
transferring program flow to the statement after the final end. If an exception occurs
during the execution of the statement list, the program flow fill be transferred
to the except block. Statements in the statement list between the place where the
exception was raised and the exception block are ignored. In the exception handling
block, the type of the exception is checked, and if there is an exception handler where
the class type matches the exception object type, or is a parent type of the exception
object type, then the statement following the corresponding Do will be executed. The
first matching type is used. After the Do block was executed, the program continues
after the End statement. The identifier in an exception handling statement is op-
tional, and declares an exception object. It can be used to manipulate the exception
object in the exception handling code. The scope of this declaration is the statement
block foillowing the Do keyword. If none of the On handlers matches the exception
object type, then the Default exception handler is executed. If no such default
handler is found, then the exception is automatically re-raised. This process allows
to nest try...except blocks. If, on the other hand, the exception was caught, then
the exception object is destroyed at the end of the exception handling block, before
program flow continues. The exception is destroyed through a call to the object’s
Destroy destructor. As an example, given the previous declaration of the DoDiv
function, consider the following
Try

Z := DoDiv (X, Y) ;
Except

84

Exceptions 10.3. THE TRY...FINALLY STATEMENT

On EDivExcept ion do Z := 0 ;
end ;

If Y happens to be zero, then the DoDiv function code will raise an exception.
When this happens, program flow is transferred to the except statement, where the
Exception handler will set the value of Z to zero. If no exception is raised, then
program flow continues past the last end statement. To allow error recovery, the
Try ... Finally block is supported. A Try...Finally block ensures that the
statements following the Finally keyword are guaranteed to be executed, even if
an exception occurs.

10.3 The try...finally statement

A Try..Finally statement has the following form:

Try...finally statement

-- trystatement try statement list finally statement list end -�

-- statement list
6

statement
;

-�

If no exception occurs inside the statement List, then the program runs as if the
Try, Finally and End keywords were not present. If, however, an exception occurs,
the program flow is immediatly transferred from the point where the excepion was
raised to the first statement of the Finally statements. All statements after the
finally kayword will be executed, and then the exception will be automatically re-
raised. Any statements between the place where the exception was raised and the
first statement of the Finally Statements are skipped. As an example consider
the following routine:
Procedure Doit (Name : s t r i n g) ;
Var F : Text ;
begin

Try
Ass ign (F , Name) ;
Rewr i te (name) ;
. . . Fi le h a n d l i n g . . .

F i n a l l y
C lose (F) ;

end ;

If during the execution of the file handling an excption occurs, then program flow
will continue at the close(F) statement, skipping any file operations that might
follow between the place where the exception was raised, and the Close statement.
If no exception occurred, all file operations will be executed, and the file will be
closed at the end.

10.4 Exception handling nesting

It is possible to nest Try...Except blocks with Try...Finally blocks. Program
flow will be done according to a lifo (last in, first out) principle: The code of

85

Exceptions 10.5. EXCEPTION CLASSES

the last encountered Try...Except or Try...Finally block will be executed first.
If the exception is not caught, or it was a finally statement, program flow will we
transferred to the last but-one block, ad infinitum. If an exception occurs, and there
is no exception handler present, then a runerror 217 will be generated. If you use
the sysutils unit, a default handler is installed which ioll show the exception object
message, and the address where the exception occurred, after which the program
will exit with a Halt instruction.

10.5 Exception classes

The sysutils unit contains a great deal of exception handling. It defines the following
exception types:

E x c e p t i o n = c l a s s (TObject)
p r i v a t e

fmessage : s t r i n g ;
f h e l p c o n t e x t : l o n g i n t ;

p u b l i c
constructor c r e a t e (const msg : s t r i n g) ;
constructor c r e a t e r e s (i n d e n t : l o n g i n t) ;
p r o p e r t y h e l p c o n t e x t : l o n g i n t read f h e l p c o n t e x t w r i t e f h e l p c o n t e x t ;
p r o p e r t y message : s t r i n g read fmessage w r i t e fmessage ;

end ;
E x c e p t C l a s s = C l a s s of E x c e p t i o n ;
{ mathemat ica l e x c e p t i o n s }
E I n t E r r o r = c l a s s (E x c e p t i o n) ;
EDivByZero = c l a s s (E I n t E r r o r) ;
ERangeError = c l a s s (E I n t E r r o r) ;
E I n t O v e r f l o w = c l a s s (E I n t E r r o r) ;
EMathError = c l a s s (E x c e p t i o n) ;

The sysutils unit also installs an exception handler. If an exception is unhandled
by any exception handling block, this handler is called by the Run-Time library.
Basically, it prints the exception address, and it prints the message of the Exception
object, and exits with a exit code of 217. If the exception object is not a descendent
object of the Exception object, then the class name is printed instead of the excep-
tion message. It is recommended to use the Exception object or a descendant class
for all raise statemnts, since then you can use the message field of the exception
object.

86

Chapter 11

Using assembler

Free Pascal supports the use of assembler in your code, but not inline assembler
macros. To have more information on the processor specific assembler syntax and
its limitations, see the Programmers’ guide.

11.1 Assembler statements

The following is an example of assembler inclusion in your code.
. . .
Statements ;
. . .
Asm

your asm code here
. . .

end ;
. . .
Statements ;

The assembler instructions between the Asm and end keywords will be inserted in
the assembler generated by the compiler. You can still use conditionals in your
assembler, the compiler will recognise it, and treat it as any other conditionals.
Remark: Before version 0.99.1, Free Pascal did not support reference to variables
by their names in the assembler parts of your code.

11.2 Assembler procedures and functions

Assembler procedures and functions are declared using the Assembler directive.
The Assembler keyword is supported as of version 0.9.7. This permits the code
generator to make a number of code generation optimizations. The code generator
does not generate any stack frame (entry and exit code for the routine) if it contains
no local variables and no parameters. In the case of functions, ordinal values must
be returned in the accumulator. In the case of floating point values, these depend on
the target processor and emulation options. Remark: Before version 0.99.1, Free
Pascal did not support reference to variables by their names in the assembler parts
of your code. Remark: From version 0.99.1 to 0.99.5 (excluding FPC 0.99.5a),
the Assembler directive did not have the same effect as in Turbo Pascal, so beware!
The stack frame would be omitted if there were no local variables, in this case if the

87

Using assembler 11.2. ASSEMBLER PROCEDURES AND FUNCTIONS

assembly routine had any parameters, they would be referenced directly via the stack
pointer. This was NOT like Turbo Pascal where the stack frame is only omitted
if there are no parameters and no local variables. As stated earlier, starting from
version 0.99.5a, Free Pascal now has the same behaviour as Turbo Pascal.

88

Part II

Reference : The System unit

89

Chapter 12

The system unit

The system unit contains the standard supported functions of Free Pascal. It is the
same for all platforms. Basically it is the same as the system unit provided with
Borland or Turbo Pascal. Functions are listed in alphabetical order. Arguments
to functions or procedures that are optional are put between square brackets. The
pre-defined constants and variables are listed in the first section. The second section
contains the supported functions and procedures.

12.1 Types, Constants and Variables

Types

The following integer types are defined in the System unit:
s h o r t i n t = −128 . . 127 ;
Long int = $80000000 . . $ 7 f f f f f f f ;
i n t e g e r = −32768 . . 32767 ;
byte = 0 . . 255 ;
word = 0 . . 65535 ;

And the following pointer types:
PChar = ˆ char ;
pPChar = ˆ PChar ;

For the SetJmp (131) and LongJmp (115) calls, the following jump bufer type is
defined (for the I386 processor):

jmp buf = record
ebx , e s i , e d i : Long int ;
bp , sp , pc : P o i n t e r ;
end ;

PJmp buf = ˆ jmp buf ;

Constants

The following constants for file-handling are defined in the system unit:
Const

fmc losed = $D7B0 ;
fminput = $D7B1 ;

90

The system unit 12.2. FUNCTIONS AND PROCEDURES

fmoutput = $D7B2 ;
fminout = $D7B3 ;
fmappend = $D7B4 ;
f i l e m o d e : byte = 2 ;

Further, the following non processor specific general-purpose constants are also
defined:
const

e r r o r a d d r : p o i n t e r = n i l ;
e r r o r c o d e : word = 0 ;
{ max l e v e l in dumping on e r r o r }

max frame dump : word = 20 ;

Remark: Processor specific global constants are named Testxxxx where xxxx
represents the processor number (such as Test8086, Test68000), and are used to
determine on what generation of processor the program is running on.

Variables

The following variables are defined and initialized in the system unit:
var

output , i n p u t , s t d e r r : t e x t ;
e x i t p r o c : p o i n t e r ;
e x i t c o d e : word ;
stackbottom : Long int ;
l o w e s t s t a c k : Long int ;

The variables ExitProc, exitcode are used in the Free Pascal exit scheme. It works
similarly to the on in Turbo Pascal: When a program halts (be it through the call of
the Halt function or Exit or through a run-time error), the exit mechanism checks
the value of ExitProc. If this one is non-Nil, it is set to Nil, and the procedure
is called. If the exit procedure exits, the value of ExitProc is checked again. If it
is non-Nil then the above steps are repeated. So if you want to install your exit
procedure, you should save the old value of ExitProc (may be non-Nil, since other
units could have set it before you did). In your exit procedure you then restore the
value of ExitProc, such that if it was non-Nil the exit-procedure can be called. The
ErrorAddr and ExitCode can be used to check for error-conditions. If ErrorAddr is
non-Nil, a run-time error has occurred. If so, ExitCode contains the error code. If
ErrorAddr is Nil, then ExitCode contains the argument to Halt or 0 if the program
terminated normally. ExitCode is always passed to the operating system as the
exit-code of your process. Under GO32, the following constants are also defined :
const

seg0040 = $0040 ;
segA000 = $A000 ;
segB000 = $B000 ;
segB800 = $B800 ;

These constants allow easy access to the bios/screen segment via mem/absolute.

12.2 Functions and Procedures

Abs

Declaration: Function Abs (X : Every numerical type) : Every numerical type;

91

The system unit 12.2. FUNCTIONS AND PROCEDURES

Description: Abs returns the absolute value of a variable. The result of the function has the
same type as its argument, which can be any numerical type.

Errors: None.

See also: Round (128)

Program Example1 ;

{ Program to demonstrate the Abs f u n c t i o n . }

Var
r : r e a l ;
i : i n t e g e r ;

begin
r := abs (−1 . 0) ; { r :=1 . 0 }
i := abs (−21) ; { i := 21 }

end .

Addr

Declaration: Function Addr (X : Any type) : Pointer;

Description: Addr returns a pointer to its argument, which can be any type, or a function or
procedure name. The returned pointer isn’t typed. The same result can be obtained
by the @ operator, which can return a typed pointer (Programmers’ guide).

Errors: None

See also: SizeOf (133)

Program Example2 ;

{ Program to demonstrate the Addr f u n c t i o n . }

Const Zero : i n t e g e r = 0 ;

Var p : p o i n t e r ;
i : I n t e g e r ;

begin
p:= Addr (p) ; { P p o i n t s to i t s e l f }
p:= Addr (I) ; { P p o i n t s to I }
p:= Addr (Zero) ; { P p o i n t s to ’ Zero ’ }

end .

Append

Declaration: Procedure Append (Var F : Text);

Description: Append opens an existing file in append mode. Any data written to F will be
appended to the file. If the file didn’t exist, it will be created, contrary to the Turbo
Pascal implementation of Append, where a file needed to exist in order to be opened
by append. Only text files can be opened in append mode.

92

The system unit 12.2. FUNCTIONS AND PROCEDURES

Errors: If the file can’t be created, a run-time error will be generated.

See also: Rewrite (127), Append (92), Reset (126)

Program Example3 ;

{ Program to demonstrate the Append f u n c t i o n . }

Var f : t e x t ;

begin
Ass ign (f , ’test.txt’) ;
Rewr i te (f) ; { f i l e i s opened f o r w r i t e , and emptied }
W r i t e l n (F , ’This is the first line of text.txt’) ;
c l o s e (f) ;
Append (f) ; { f i l e i s opened f o r w r i t e , but NOT emptied .

any t e x t w r i t t e n to i t i s appended .}
W r i t e l n (f , ’This is the second line of text.txt’) ;
c l o s e (f) ;

end .

Arctan

Declaration: Function Arctan (X : Real) : Real;

Description: Arctan returns the Arctangent of X, which can be any Real type. The resulting
angle is in radial units.

Errors: None

See also: Sin (132), Cos (98)

Program Example4 ;

{ Program to demonstrate the ArcTan f u n c t i o n . }

Var R : Real ;

begin
R:= ArcTan (0) ; { R:=0 }
R:= ArcTan (1)/ p i ; { R:=0 . 25 }

end .

Assign

Declaration: Procedure Assign (Var F; Name : String);

Description: Assign assigns a name to F, which can be any file type. This call doesn’t open the
file, it just assigns a name to a file variable, and marks the file as closed.

Errors: None.

See also: Reset (126), Rewrite (127), Append (92)

93

The system unit 12.2. FUNCTIONS AND PROCEDURES

Program Example5 ;

{ Program to demonstrate the Ass ign f u n c t i o n . }

Var F : t e x t ;

begin
Ass ign (F , ’’) ;
Rewr i te (f) ;
{ The f o l l o w i n g can be put in any f i l e by r e d i r e c t i n g i t

from the command l i n e .}
W r i t e l n (f , ’This goes to standard output !’) ;
C lose (f) ;
Ass ign (F , ’Test.txt’) ;
r e w r i t e (f) ;
w r i t e l n (f , ’This doesn’’t go to standard output !’) ;
c l o s e (f) ;

end .

Assigned

Declaration: Function Assigned (P : Pointer) : Boolean;

Description: Assigned returns True if P is non-nil and retuns False of P is nil. The main use
of Assigned it that Procedural variables and class-type variables also can be passed
to Assigned.

Errors: None

See also:

BinStr

Declaration: Function BinStr Value : longint; cnt : byte) : String;

Description: BinStr returns a string with the binary representation of Value. The string has
at most cnt characters. (i.e. only the cnt rightmost bits are taken into account)
To have a complete representation of any longint-type value, you need 32 bits, i.e.
cnt=32

Errors: None.

See also: Str (135),seepVal, HexStr (109)

Program example81 ;

{ Program to demonstrate the BinStr f u n c t i o n }

Const Value = 45678 ;

Var I : l o n g i n t ;

begin
For I :=8 to 20 do

W r i t e l n (BinStr (Value , I) : 20) ;
end .

94

The system unit 12.2. FUNCTIONS AND PROCEDURES

Blockread

Declaration: Procedure Blockread (Var F : File; Var Buffer; Var Count : Longint [;
var Result : Longint]);

Description: Blockread reads count or less records from file F. The result is placed in Buffer,
which must contain enough room for Count records. The function cannot read
partial records. If Result is specified, it contains the number of records actually
read. If Result isn’t specified, and less than Count records were read, a run-time
error is generated. This behavior can be controlled by the {$i} switch.

Errors: If Result isn’t specified, then a run-time error is generated if less than count
records were read.

See also: Blockwrite (95), Close (96), Reset (126), Assign (93)

Program Example6 ;

{ Program to demonstrate the BlockRead and BlockWrite f u n c t i o n s . }

Var Fin , fout : Fi le ;
NumRead , NumWritten : Word ;
Buf : Array [1 . . 2048] of byte ;
Tota l : Long int ;

begin
Ass ign (Fin , Paramstr (1)) ;
Ass ign (Fout , Paramstr (2)) ;
Reset (Fin , 1) ;
Rewr i te (Fout , 1) ;
Tota l :=0 ;
Repeat

BlockRead (Fin , buf , S i z e o f (buf) , NumRead) ;
BlockWrite (Fout , Buf , NumRead , NumWritten) ;
i n c (Tota l , NumWritten) ;

Unti l (NumRead=0) or (NumWritten<>NumRead) ;
Write (’Copied ’ , Tota l , ’ bytes from file ’ , paramstr (1)) ;
W r i t e l n (’ to file ’ , paramstr (2)) ;
c l o s e (f i n) ;
c l o s e (fout) ;

end .

Blockwrite

Declaration: Procedure Blockwrite (Var F : File; Var Buffer; Var Count : Longint);

Description: BlockWrite writes count records from buffer to the file F. If the records couldn’t
be written to disk, a run-time error is generated. This behavior can be controlled
by the {$i} switch.

Errors: A run-time error is generated if, for some reason, the records couldn’t be written
to disk.

See also: Blockread (95), Close (96), Rewrite (127), Assign (93)

For the example, see Blockread (95).

95

The system unit 12.2. FUNCTIONS AND PROCEDURES

Chdir

Declaration: Procedure Chdir (const S : string);

Description: Chdir changes the working directory of the process to S.

Errors: If the directory S doesn’t exist, a run-time error is generated.

See also: Mkdir (118), Rmdir (127)

Program Example7 ;

{ Program to demonstrate the ChDir f u n c t i o n . }

begin
{ $I−}
ChDir (ParamStr (1)) ;
i f I O r e s u l t<>0 then

W r i t e l n (’Cannot change to directory : ’ , paramstr (1)) ;
end .

Chr

Declaration: Function Chr (X : byte) : Char;

Description: Chr returns the character which has ASCII value X.

Errors: None.

See also: Ord (119), Str (135)

Program Example8 ;

{ Program to demonstrate the Chr f u n c t i o n . }

begin
Write (chr (10) , chr (13)) ; { The same e f f e c t as W r i t e l n ; }

end .

Close

Declaration: Procedure Close (Var F : Anyfiletype);

Description: Close flushes the buffer of the file F and closes F. After a call to Close, data can
no longer be read from or written to F. To reopen a file closed with Close, it isn’t
necessary to assign the file again. A call to Reset (126) or Rewrite (127) is sufficient.

Errors: None.

See also: Assign (93), Reset (126), Rewrite (127)

96

The system unit 12.2. FUNCTIONS AND PROCEDURES

Program Example9 ;

{ Program to demonstrate the Close f u n c t i o n . }

Var F : t e x t ;

begin
Ass ign (f , ’Test.txt’) ;
ReWrite (F) ;
W r i t e l n (F , ’Some text written to Test.txt’) ;
c l o s e (f) ; { F l u s h e s c o n t e n t s of b u f f e r to d i s k ,

c l o s e s the f i l e . Omitt ing t h i s may
cause data NOT to be w r i t t e n to d i s k .}

end .

Concat

Declaration: Function Concat (S1,S2 [,S3, ... ,Sn]) : String;

Description: Concat concatenates the strings S1,S2 etc. to one long string. The resulting string
is truncated at a length of 255 bytes. The same operation can be performed with
the + operation.

Errors: None.

See also: Copy (97), Delete (99), Insert (111), Pos (121), Length (114)

Program Example10 ;

{ Program to demonstrate the Concat f u n c t i o n . }
Var

S : Str ing ;

begin
S:= Concat (’This can be done’ , ’ Easier ’ , ’with the + operator !’) ;

end .

Copy

Declaration: Function Copy (Const S : String;Index : Integer;Count : Byte) : String;

Description: Copy returns a string which is a copy if the Count characters in S, starting at
position Index. If Count is larger than the length of the string S, the result is
truncated. If Index is larger than the length of the string S, then an empty string
is returned.

Errors: None.

See also: Delete (99), Insert (111), Pos (121)

Program Example11 ;

{ Program to demonstrate the Copy f u n c t i o n . }

97

The system unit 12.2. FUNCTIONS AND PROCEDURES

Var S , T : Str ing ;

begin
T:=’1234567’ ;
S:=Copy (T, 1 , 2) ; { S :=’ 12 ’ }
S:=Copy (T, 4 , 2) ; { S :=’ 45 ’ }
S:=Copy (T, 4 , 8) ; { S :=’ 4567 ’ }

end .

Cos

Declaration: Function Cos (X : Real) : Real;

Description: Cos returns the cosine of X, where X is an angle, in radians.

Errors: None.

See also: Arctan (93), Sin (132)

Program Example12 ;

{ Program to demonstrate the Cos f u n c t i o n . }

Var R : Real ;

begin
R:= Cos (Pi) ; { R:=−1 }
R:= Cos (Pi /2) ; { R:=0 }
R:= Cos (0) ; { R:=1 }

end .

CSeg

Declaration: Function CSeg : Word;

Description: CSeg returns the Code segment register. In Free Pascal, it returns always a zero,
since Free Pascal is a 32 bit compiler.

Errors: None.

See also: DSeg (101), Seg (130), Ofs (119), Ptr (123)

Program Example13 ;

{ Program to demonstrate the CSeg f u n c t i o n . }

var W : word ;

begin
W:=CSeg ; {W:=0 , p r o v i d e d f o r c o m p p a t i b i l i t y ,

FPC i s 32 b i t .}
end .

98

The system unit 12.2. FUNCTIONS AND PROCEDURES

Dec

Declaration: Procedure Dec (Var X : Any ordinal type[; Decrement : Longint]);

Description: Dec decreases the value of X with Decrement. If Decrement isn’t specified, then 1
is taken as a default.

Errors: A range check can occur, or an underflow error, if you try to decrease X below its
minimum value.

See also: Inc (111)

Program Example14 ;

{ Program to demonstrate the Dec f u n c t i o n . }

Var
I : I n t e g e r ;
L : Long int ;
W : Word ;
B : Byte ;
Si : S h o r t I n t ;

begin
I :=1 ;
L:=2 ;
W:=3 ;
B:=4 ;
Si :=5 ;
Dec (i) ; { i :=0 }
Dec (L , 2) ; { L:=0 }
Dec (W, 2) ; { W:=1 }
Dec (B,−2) ; { B:=6 }
Dec (Si , 0) ; { Si :=5 }

end .

Delete

Declaration: Procedure Delete (var S : string;Index : Integer;Count : Integer);

Description: Delete removes Count characters from string S, starting at position Index. All
remaining characters are shifted Count positions to the left, and the length of the
string is adjusted.

Errors: None.

See also: Copy (97), Pos (121), Insert (111)

Program Example15 ;

{ Program to demonstrate the De le te f u n c t i o n . }

Var
S : Str ing ;

begin

99

The system unit 12.2. FUNCTIONS AND PROCEDURES

S:=’This is not easy !’ ;
De le te (S , 9 , 4) ; { S :=’ This i s easy ! ’ }

end .

Dispose

Declaration: Procedure Dispose (P : pointer);

Description: Dispose releases the memory allocated with a call to New (118). The pointer P
must be typed. The released memory is returned to the heap.

Errors: An error will occur if the pointer doesn’t point to a location in the heap.

See also: New (118), Getmem (108), Freemem (107)

Program Example16 ;

{ Program to demonstrate the Dispose and New f u n c t i o n s . }

Type SS = Str ing [20] ;

AnObj = Object
I : i n t e g e r ;
Constructor I n i t ;
Destructor Done ;
end ;

Var
P : ˆ SS ;
T : ˆ AnObj ;

Constructor Anobj . I n i t ;

begin
W r i t e l n (’Initializing an instance of AnObj !’) ;

end ;

Destructor AnObj . Done ;

begin
W r i t e l n (’Destroying an instance of AnObj !’) ;

end ;

begin
New (P) ;
Pˆ:=’Hello, World !’ ;
D ispose (P) ;
{ P i s u n d e f i n e d from here on !}
New(T, I n i t) ;
Tˆ. i :=0 ;
Dispose (T, Done) ;

end .

100

The system unit 12.2. FUNCTIONS AND PROCEDURES

DSeg

Declaration: Function DSeg : Word;

Description: DSeg returns the data segment register. In Free Pascal, it returns always a zero,
since Free Pascal is a 32 bit compiler.

Errors: None.

See also: CSeg (98), Seg (130), Ofs (119), Ptr (123)

Program Example17 ;

{ Program to demonstrate the DSeg f u n c t i o n . }

Var
W : Word ;

begin
W:=DSeg ; {W:=0 , This f u n c t i o n i s p r o v i d e d f o r c o m p a t i b i l i t y ,

FPC i s a 32 b i t c o m i l e r .}
end .

Eof

Declaration: Function Eof [(F : Any file type)] : Boolean;

Description: Eof returns True if the file-pointer has reached the end of the file, or if the file is
empty. In all other cases Eof returns False. If no file F is specified, standard input
is assumed.

Errors: None.

See also: Eoln (102), Assign (93), Reset (126), Rewrite (127)

Program Example18 ;

{ Program to demonstrate the Eof f u n c t i o n . }

Var T1, T2 : t e x t ;
C : Char ;

begin
{ Set f i l e to read from . Empty means from s t a n d a r d i n p u t .}
a s s i g n (t1 , paramstr (1)) ;
r e s e t (t1) ;
{ Set f i l e to w r i t e to . Empty means to s t a n d a r d output . }
a s s i g n (t2 , paramstr (2)) ;
r e w r i t e (t2) ;
While not eof (t1) do

begin
read (t1 , C) ;
w r i t e (t2 , C) ;
end ;

C lose (t1) ;
C lose (t2) ;

end .

101

The system unit 12.2. FUNCTIONS AND PROCEDURES

Eoln

Declaration: Function Eoln [(F : Text)] : Boolean;

Description: Eof returns True if the file pointer has reached the end of a line, which is demarcated
by a line-feed character (ASCII value 10), or if the end of the file is reached. In all
other cases Eof returns False. If no file F is specified, standard input is assumed.
It can only be used on files of type Text.

Errors: None.

See also: Eof (101), Assign (93), Reset (126), Rewrite (127)

Program Example19 ;

{ Program to demonstrate the Eoln f u n c t i o n . }

begin
{ This program w a i t s f o r keyboard i n p u t . }
{ I t w i l l p r i n t True when an empty l i n e i s put in ,

and f a l s e when you type a non−empty l i n e .
I t w i l l on ly stop when you p r e s s e n t e r .}

W r i t e l n (eo ln) ;
end .

Erase

Declaration: Procedure Erase (Var F : Any file type);

Description: Erase removes an unopened file from disk. The file should be assigned with Assign,
but not opened with Reset or Rewrite

Errors: A run-time error will be generated if the specified file doesn’t exist.

See also: Assign (93)

Program Example20 ;

{ Program to demonstrate the Erase f u n c t i o n . }

Var F : Text ;

begin
{ Create a f i l e with a l i n e of t e x t in i t }
Ass ign (F , ’test.txt’) ;
Rewr i te (F) ;
W r i t e l n (F , ’Try and find this when I’’m finished !’) ;
c l o s e (f) ;
{ Now remove the f i l e }
Erase (f) ;

end .

Exit

Declaration: Procedure Exit ([Var X : return type)];

102

The system unit 12.2. FUNCTIONS AND PROCEDURES

Description: Exit exits the current subroutine, and returns control to the calling routine. If
invoked in the main program routine, exit stops the program. The optional argument
X allows to specify a return value, in the case Exit is invoked in a function. The
function result will then be equal to X.

Errors: None.

See also: Halt (108)

Program Example21 ;

{ Program to demonstrate the E x i t f u n c t i o n . }

Procedure DoAnExit (Yes : Boolean) ;

{ This p r o c e d u r e demonst ra tes the normal E x i t }

begin
W r i t e l n (’Hello from DoAnExit !’) ;
I f Yes then

begin
W r i t e l n (’Bailing out early.’) ;
e x i t ;
end ;

W r i t e l n (’Continuing to the end.’) ;
end ;

Function P o s i t i v e (Which : I n t e g e r) : Boolean ;

{ This f u n c t i o n demonst ra tes the e x t r a FPC f e a t u r e of E x i t :
You can s p e c i f y a r e t u r n v a l u e f o r the f u n c t i o n }

begin
i f Which>0 then

e x i t (True)
e lse

e x i t (F a l s e) ;
end ;

begin
{ This c a l l w i l l go to the end }
DoAnExit (F a l s e) ;
{ This c a l l w i l l b a i l out e a r l y }
DoAnExit (True) ;
i f P o s i t i v e (− 1) then

W r i t e l n (’The compiler is nuts, −1 is not positive .’)
e lse

W r i t e l n (’The compiler is not so bad, −1 seems to be negative .’) ;
end .

Exp

Declaration: Function Exp (Var X : Real) : Real;

103

The system unit 12.2. FUNCTIONS AND PROCEDURES

Description: Exp returns the exponent of X, i.e. the number e to the power X.

Errors: None.

See also: Ln (114), Power (122)

Program Example22 ;

{ Program to demonstrate the Exp f u n c t i o n . }

begin
W r i t e l n (Exp (1) : 8 : 2) ; { Should p r i n t 2 . 72 }

end .

Filepos

Declaration: Function Filepos (Var F : Any file type) : Longint;

Description: Filepos returns the current record position of the file-pointer in file F. It cannot
be invoked with a file of type Text.

Errors: None.

See also: Filesize (105)

Program Example23 ;

{ Program to demonstrate the F i l e P o s f u n c t i o n . }

Var F : Fi le of Long int ;
L , FP : l o n g i n t ;

begin
{ F i l l a f i l e with data :

Each p o s i t i o n c o n t a i n s the p o s i t i o n ! }
Ass ign (F , ’test.dat’) ;
Rewr i te (F) ;
For L:=0 to 100 do

begin
FP:= F i l e P o s (F) ;
Write (F , FP) ;
end ;

C lose (F) ;
Reset (F) ;
{ I f l l goes w e l l , noth ing i s d i s p l a y e d here . }
While not (Eof (F)) do

begin
FP:= F i l e P o s (F) ;
Read (F , L) ;
i f L<>FP then

W r i t e l n (’Something is wrong here ! : Got ’ , l , ’ on pos ’ , FP) ;
end ;

C lose (F) ;
Erase (f) ;

end .

104

The system unit 12.2. FUNCTIONS AND PROCEDURES

Filesize

Declaration: Function Filesize (Var F : Any file type) : Longint;

Description: Filepos returns the total number of records in file F. It cannot be invoked with a
file of type Text. (under linux, this also means that it cannot be invoked on pipes.)
If F is empty, 0 is returned.

Errors: None.

See also: Filepos (104)

Program Example24 ;

{ Program to demonstrate the F i l e S i z e f u n c t i o n . }

Var F : Fi le Of byte ;
L : Fi le Of Long int ;

begin
Ass ign (F , paramstr (1)) ;
Reset (F) ;
W r i t e l n (’File size in bytes : ’ , F i l e S i z e (F)) ;
C lose (F) ;
Ass ign (L , paramstr (1)) ;
Reset (L) ;
W r i t e l n (’File size in Longints : ’ , F i l e S i z e (L)) ;
C lose (f) ;

end .

Fillchar

Declaration: Procedure Fillchar (Var X;Count : Longint;Value : char or byte);;

Description: Fillchar fills the memory starting at X with Count bytes or characters with value
equal to Value.

Errors: No checking on the size of X is done.

See also: Fillword (106), Move (118)

Program Example25 ;

{ Program to demonstrate the F i l l C h a r f u n c t i o n . }

Var S : Str ing [10] ;
I : Byte ;

begin
For i := 10 downto 0 do

begin
{ F i l l S with i spaces }
F i l l C h a r (S , S izeOf (S) , ’ ’) ;
{ Set Length }
S [0]:= chr (i) ;
W r i t e l n (s , ’∗’) ;

105

The system unit 12.2. FUNCTIONS AND PROCEDURES

end ;
end .

Fillword

Declaration: Procedure Fillword (Var X;Count : Longint;Value : Word);;

Description: Fillword fills the memory starting at X with Count words with value equal to
Value.

Errors: No checking on the size of X is done.

See also: Fillword (106), Move (118)

Program Example76 ;

{ Program to demonstrate the F i l l W o r d f u n c t i o n . }

Var W : Array [1 . . 100] of Word ;

begin
{ Quick i n i t i a l i z a t i o n of a r r a y W }
F i l l W o r d (W, 100 , 0) ;

end .

Flush

Declaration: Procedure Flush (Var F : Text);

Description: Flush empties the internal buffer of file F and writes the contents to disk. The file
is not closed as a result of this call.

Errors: If the disk is full, a run-time error will be generated.

See also: Close (96)

Program Example26 ;

{ Program to demonstrate the Flush f u n c t i o n . }

Var F : Text ;

begin
{ Ass ign F to s t a n d a r d output }
Ass ign (F , ’’) ;
Rewr i te (F) ;
W r i t e l n (F , ’This line is written first, but appears later !’) ;
{ At t h i s p o i n t the t e x t i s in the i n t e r n a l p a s c a l b u f f e r ,

and not yet w r i t t e n to s t a n d a r d output }
W r i t e l n (’This line appears first, but is written later !’) ;
{ A w r i t e l n to ’ output ’ a lways causes a f l u s h − so t h i s t e x t i s

w r i t t e n to s c r e e n }
Flush (f) ;
{ At t h i s p o i n t , the t e x t w r i t t e n to F i s w r i t t e n to s c r e e n . }

106

The system unit 12.2. FUNCTIONS AND PROCEDURES

Write (F , ’Finishing ’) ;
C lose (f) ; { C l o s i n g a f i l e a lways causes a f l u s h f i r s t }
W r i t e l n (’off.’) ;

end .

Frac

Declaration: Function Frac (X : Real) : Real;

Description: Frac returns the non-integer part of X.

Errors: None.

See also: Round (128), Int (112)

Program Example27 ;

{ Program to demonstrate the Frac f u n c t i o n . }

Var R : Real ;

begin
W r i t e l n (Frac (123 . 456) : 0 : 3) ; { P r i n t s O. 456 }
W r i t e l n (Frac (− 123 . 456) : 0 : 3) ; { P r i n t s −O. 456 }

end .

Freemem

Declaration: Procedure Freemem (Var P : pointer; Count : Longint);

Description: Freemem releases the memory occupied by the pointer P, of size Count, and returns
it to the heap. P should point to the memory allocated to a dynamical variable.

Errors: An error will occur when P doesn’t point to the heap.

See also: Getmem (108), New (118), Dispose (100)

Program Example28 ;

{ Program to demonstrate the FreeMem and GetMem f u n c t i o n s . }

Var P : P o i n t e r ;
MM : Long int ;

begin
{ Get memory f o r P }
MM:= MemAvail ;
W r i t e l n (’Memory available before GetMem : ’ , MemAvail) ;
GetMem (P, 80) ;
MM:=MM−Memavail ;
Write (’Memory available after GetMem : ’ , MemAvail) ;
W r i t e l n (’ or ’ ,MM, ’ bytes less than before the call.’) ;
{ f i l l i t with spaces }
F i l l C h a r (Pˆ, 80 , ’ ’) ;

107

The system unit 12.2. FUNCTIONS AND PROCEDURES

{ Free the memory aga in }
FreeMem (P, 80) ;
W r i t e l n (’Memory available after FreeMem : ’ , MemAvail) ;

end .

Getdir

Declaration: Procedure Getdir (drivenr : byte;var dir : string);

Description: Getdir returns in dir the current directory on the drive drivenr, where drivenr
is 1 for the first floppy drive, 3 for the first hard disk etc. A value of 0 returns the
directory on the current disk. On linux, drivenr is ignored, as there is only one
directory tree.

Errors: An error is returned under dos, if the drive requested isn’t ready.

See also: Chdir (96)

Program Example29 ;

{ Program to demonstrate the GetDir f u n c t i o n . }

Var S : Str ing ;

begin
GetDir (0 , S) ;
W r i t e l n (’Current directory is : ’ , S) ;

end .

Getmem

Declaration: Procedure Getmem (var p : pointer;size : Longint);

Description: Getmem reserves Size bytes memory on the heap, and returns a pointer to this
memory in p. If no more memory is available, nil is returned.

Errors: None.

See also: Freemem (107), Dispose (100), New (118)

For an example, see Freemem (107).

Halt

Declaration: Procedure Halt [(Errnum : byte];

Description: Halt stops program execution and returns control to the calling program. The
optional argument Errnum specifies an exit value. If omitted, zero is returned.

Errors: None.

See also: Exit (102)

108

The system unit 12.2. FUNCTIONS AND PROCEDURES

Program Example30 ;

{ Program to demonstrate the Halt f u n c t i o n . }

begin
W r i t e l n (’Before Halt.’) ;
Halt (1) ; { Stop with e x i t code 1 }
W r i t e l n (’After Halt doesn’’t get executed .’) ;

end .

HexStr

Declaration: Function HexStr Value : longint; cnt : byte) : String;

Description: HexStr returns a string with the hexadecimal representation of Value. The string
has at most cnt charaters. (i.e. only the cnt rightmost nibbles are taken into
account) To have a complete representation of a Longint-type value, you need 8
nibbles, i.e. cnt=8.

Errors: None.

See also: Str (135),seepVal, BinStr (94)

Program example81 ;

{ Program to demonstrate the HexStr f u n c t i o n }

Const Value = 45678 ;

Var I : l o n g i n t ;

begin
For I :=1 to 10 do

W r i t e l n (HexStr (Value , I)) ;
end .

Hi

Declaration: Function Hi (X : Ordinal type) : Word or byte;

Description: Hi returns the high byte or word from X, depending on the size of X. If the size of
X is 4, then the high word is returned. If the size is 2 then the high byte is retuned.
hi cannot be invoked on types of size 1, such as byte or char.

Errors: None

See also: Lo (114)

Program Example31 ;

{ Program to demonstrate the Hi f u n c t i o n . }

var
L : Long int ;

109

The system unit 12.2. FUNCTIONS AND PROCEDURES

W : Word ;

begin
L:=1 Shl 16 ; { = $10000 }
W:=1 Shl 8 ; { = $100 }
W r i t e l n (Hi (L)) ; { P r i n t s 1 }
W r i t e l n (Hi (W)) ; { P r i n t s 1 }

end .

High

Declaration: Function High (Type identifier or variable reference) : Longint;

Description: The return value of High depends on it’s argument:

1.If the argument is an ordinal type, High returns the lowest value in the range
of the given ordinal type when it gets.

2.If the argument is an array type or an array type variable then High returns
the highest possible value of it’s index.

3.If the argument is an open array identifier in a function or procedure, then
High returns the highest index of the array, as if the array has a zero-based
index.

Errors: None.

See also: High (110), Ord (119), Pred (122), Succ (135)

Program example80 ;

{ Example to demonstrate the High and Low f u n c t i o n s . }

Type TEnum = (North , East , South , West) ;
TRange = 14 . . 55 ;
TArray = Array [2 . . 10] of Long int ;

Function Average (Row : Array of Long int) : Real ;

Var I : l o n g i n t ;
Temp : Real ;

begin
Temp := Row[0] ;
For I := 1 to High (Row) do

Temp := Temp + Row[i] ;
Average := Temp / (High (Row)+1) ;

end ;

Var A : TEnum;
B : TRange ;
C : TArray ;
I : l o n g i n t ;

begin

110

The system unit 12.2. FUNCTIONS AND PROCEDURES

W r i t e l n (’TEnum goes from : ’ , Ord (Low(TEnum)) , ’ to ’ , Ord (high (TEnum)) , ’.’) ;
W r i t e l n (’A goes from : ’ , Ord (Low(A)) , ’ to ’ , Ord (high (A)) , ’.’) ;
W r i t e l n (’TRange goes from : ’ , Ord (Low(TRange)) , ’ to ’ , Ord (high (TRange)) , ’.’) ;
W r i t e l n (’B goes from : ’ , Ord (Low(B)) , ’ to ’ , Ord (high (B)) , ’.’) ;
W r i t e l n (’TArray index goes from : ’ , Ord (Low(TArray)) , ’ to ’ , Ord (high (TArray)) , ’.’) ;
W r i t e l n (’C index goes from : ’ , Low(C) , ’ to ’ , h igh (C) , ’.’) ;
For I :=Low(C) to High (C) do

C[i] := I ;
W r i t e l n (’Average :’ , Average (c)) ;

end .

Inc

Declaration: Procedure Inc (Var X : Any ordinal type[; Increment : Longint]);

Description: Inc increases the value of X with Increment. If Increment isn’t specified, then 1
is taken as a default.

Errors: A range check can occur, or an overflow error, if you try to increase X over its
maximum value.

See also: Dec (99)

Program Example32 ;

{ Program to demonstrate the Inc f u n c t i o n . }

Const
C : C a r d i n a l = 1 ;
L : Long int = 1 ;
I : I n t e g e r = 1 ;
W : Word = 1 ;
B : Byte = 1 ;
SI : S h o r t I n t = 1 ;
CH : Char = ’A’ ;

begin
Inc (C) ; { C:=2 }
Inc (L , 5) ; { L:=6 }
Inc (I ,−3) ; { I :=−2 }
Inc (W, 3) ; { W:=4 }
Inc (B, 100) ; { B:= 101 }
Inc (SI ,−3) ; { Si :=−2 }
Inc (CH, 1) ; { ch :=’ B’ }

end .

Insert

Declaration: Procedure Insert (Const Source : String;var S : String;Index : integer);

Description: Insert inserts string Source in string S, at position Index, shifting all characters
after Index to the right. The resulting string is truncated at 255 characters, if
needed.

111

The system unit 12.2. FUNCTIONS AND PROCEDURES

Errors: None.

See also: Delete (99), Copy (97), Pos (121)

Program Example33 ;

{ Program to demonstrate the I n s e r t f u n c t i o n . }

Var S : Str ing ;

begin
S:=’Free Pascal is difficult to use !’ ;
I n s e r t (’NOT ’ , S , pos (’difficult’ , S)) ;
w r i t e l n (s) ;

end .

Int

Declaration: Function Int (X : Real) : Real;

Description: Int returns the integer part of any Real X, as a Real.

Errors: None.

See also: Frac (107), Round (128)

Program Example34 ;

{ Program to demonstrate the I n t f u n c t i o n . }

begin
W r i t e l n (I n t (123 . 456) : 0 : 1) ; { P r i n t s 123 . 0 }
W r i t e l n (I n t (−123 . 456) : 0 : 1) ; { P r i n t s −123 . 0 }

end .

IOresult

Declaration: Function IOresult : Word;

Description: IOresult contains the result of any input/output call, when the {$i-} compiler
directive is active, and IO checking is disabled. When the flag is read, it is reset
to zero. If IOresult is zero, the operation completed successfully. If non-zero, an
error occurred. The following errors can occur: dos errors :

2 File not found.

3 Path not found.

4 Too many open files.

5 Access denied.

6 Invalid file handle.

12 Invalid file-access mode.

15 Invalid disk number.

16 Cannot remove current directory.

112

The system unit 12.2. FUNCTIONS AND PROCEDURES

17 Cannot rename across volumes.

I/O errors :

100 Error when reading from disk.

101 Error when writing to disk.

102 File not assigned.

103 File not open.

104 File not opened for input.

105 File not opened for output.

106 Invalid number.

Fatal errors :

150 Disk is write protected.

151 Unknown device.

152 Drive not ready.

153 Unknown command.

154 CRC check failed.

155 Invalid drive specified..

156 Seek error on disk.

157 Invalid media type.

158 Sector not found.

159 Printer out of paper.

160 Error when writing to device.

161 Error when reading from device.

162 Hardware failure.

Errors: None.

See also: All I/O functions.

Program Example35 ;

{ Program to demonstrate the I O R e s u l t f u n c t i o n . }

Var F : t e x t ;

begin
Ass ign (f , paramstr (1)) ;
{ $ i−}
Reset (f) ;
{ $ i +}
I f I O r e s u l t<>0 then

w r i t e l n (’File ’ , paramstr (1) , ’ doesn’’t exist’)
e lse

w r i t e l n (’File ’ , paramstr (1) , ’ exists’) ;
end .

113

The system unit 12.2. FUNCTIONS AND PROCEDURES

Length

Declaration: Function Length (S : String) : Byte;

Description: Length returns the length of the string S, which is limited to 255. If the strings S
is empty, 0 is returned. Note: The length of the string S is stored in S[0].

Errors: None.

See also: Pos (121)

Program Example36 ;

{ Program to demonstrate the Length f u n c t i o n . }

Var S : Str ing ;
I : I n t e g e r ;

begin
S:=’’ ;
for i :=1 to 10 do

begin
S:=S+’∗’ ;
W r i t e l n (Length (S) : 2 , ’ : ’ , s) ;
end ;

end .

Ln

Declaration: Function Ln (X : Real) : Real;

Description: Ln returns the natural logarithm of the Real parameter X. X must be positive.

Errors: An run-time error will occur when X is negative.

See also: Exp (103), Power (122)

Program Example37 ;

{ Program to demonstrate the Ln f u n c t i o n . }

begin
W r i t e l n (Ln (1)) ; { P r i n t s 0 }
W r i t e l n (Ln (Exp (1))) ; { P r i n t s 1 }

end .

Lo

Declaration: Function Lo (O : Word or Longint) : Byte or Word;

Description: Lo returns the low byte of its argument if this is of type Integer or Word. It returns
the low word of its argument if this is of type Longint or Cardinal.

Errors: None.

See also: Ord (119), Chr (96)

114

The system unit 12.2. FUNCTIONS AND PROCEDURES

Program Example38 ;

{ Program to demonstrate the Lo f u n c t i o n . }

Var L : Long int ;
W : Word ;

begin
L:=(1 Shl 16) + (1 Shl 4) ; { $10010 }
W r i t e l n (Lo (L)) ; { P r i n t s 16 }
W:=(1 Shl 8) + (1 Shl 4) ; { $110 }
W r i t e l n (Lo (W)) ; { P r i n t s 16 }

end .

LongJmp

Declaration: Procedure LongJmp (Var env : Jmp Buf; Value : Longint);

Description: LongJmp jumps to the adress in the env jmp buf, and resores the registers that
were stored in it at the corresponding SetJmp (131) call. In effect, program flow
will continue at the SetJmp call, which will return value instead of 0. If you pas a
value equal to zero, it will be converted to 1 before passing it on. The call will not
return, so it must be used with extreme care. This can be used for error recovery,
for instance when a segmentation fault occurred.

Errors: None.

See also: SetJmp (131)

For an example, see SetJmp (131)

Low

Declaration: Function Low (Type identifier or variable reference) : Longint;

Description: The return value of Low depends on it’s argument:

1.If the argument is an ordinal type, Low returns the lowest value in the range of
the given ordinal type when it gets.

2.If the argument is an array type or an array type variable then Low returns the
lowest possible value of it’s index.

Errors: None.

See also: High (110), Ord (119), Pred (122), Succ (135)

for an example, see High (110).

Lowercase

Declaration: Function Lowercase (C : Char or String) : Char or String;

Description: Lowercase returns the lowercase version of its argument C. If its argument is a
string, then the complete string is converted to lowercase. The type of the returned
value is the same as the type of the argument.

115

The system unit 12.2. FUNCTIONS AND PROCEDURES

Errors: None.

See also: Upcase (137)

Program Example73 ;

{ Program to demonstrate the Lowercase f u n c t i o n . }

Var I : Long int ;

begin
For i := ord (’A’) to ord (’Z’) do

w r i t e (l o w e r c a s e (chr (i))) ;
W r i t e l n ;
W r i t e l n (Lowercase (’ABCDEFGHIJKLMNOPQRSTUVWXYZ ’)) ;

end .

Mark

Declaration: Procedure Mark (Var P : Pointer);

Description: Mark copies the current heap-pointer to P.

Errors: None.

See also: Getmem (108), Freemem (107), New (118), Dispose (100), Maxavail (116)

Program Example39 ;

{ Program to demonstrate the Mark and R e l e a s e f u n c t i o n s . }

Var P, PP, PPP,MM : P o i n t e r ;

begin
Getmem (P, 100) ;
Mark (MM) ;
W r i t e l n (’Getmem 100 : Memory available : ’ , MemAvail , ’ (marked)’) ;
GetMem (PP, 1000) ;
W r i t e l n (’Getmem 1000 : Memory available : ’ , MemAvail) ;
GetMem (PPP, 100000) ;
W r i t e l n (’Getmem 10000 : Memory available : ’ , MemAvail) ;
R e l e a s e (MM) ;
W r i t e l n (’Released : Memory available : ’ , MemAvail) ;
{ At t h i s p o i n t , PP and PPP are i n v a l i d ! }

end .

Maxavail

Declaration: Function Maxavail : Longint;

Description: Maxavail returns the size, in bytes, of the biggest free memory block in the heap.
Remark: The heap grows dynamically if more memory is needed than is available.

Errors: None.

116

The system unit 12.2. FUNCTIONS AND PROCEDURES

See also: Release (125), Memavail (117), Freemem (107), Getmem (108)

Program Example40 ;

{ Program to demonstrate the MaxAvail f u n c t i o n . }

Var
P : P o i n t e r ;
I : l o n g i n t ;

begin
{ This w i l l a l l o c a t e memory u n t i l t h e r e i s no more memory}
I :=0 ;
While MaxAvail>=1000 do

begin
Inc (I) ;
GetMem (P, 1000) ;
end ;

{ D e f a u l t 4MB heap i s a l l o c a t e d , so 4000 b l o c k s
shou ld be a l l o c a t e d .
When compi led with the −Ch10000 s w i t c h , the program
w i l l be a b l e to a l l o c a t e 10 b lock }

W r i t e l n (’Allocated ’ , i , ’ blocks of 1000 bytes’) ;
end .

Memavail

Declaration: Function Memavail : Longint;

Description: Memavail returns the size, in bytes, of the free heap memory. Remark: The heap
grows dynamically if more memory is needed than is available.

Errors: None.

See also: Maxavail (116), Freemem (107), Getmem (108)

Program Example41 ;

{ Program to demonstrate the MemAvail f u n c t i o n . }

Var
P , PP : P o i n t e r ;

begin
GetMem (P, 100) ;
GetMem (PP, 10000) ;
FreeMem (P, 100) ;
{ Due to the heap f r a g m e n t a t i o n i n t r o d u c e d

By the p r e v i o u s c a l l s , the maximum amount of memory
i s n ’ t equa l to the maximum block s i z e a v a i l a b l e . }

W r i t e l n (’Total heap available (Bytes) : ’ , MemAvail) ;
W r i t e l n (’Largest block available (Bytes) : ’ , MaxAvail) ;

end .

117

The system unit 12.2. FUNCTIONS AND PROCEDURES

Mkdir

Declaration: Procedure Mkdir (const S : string);

Description: Chdir creates a new directory S.

Errors: If a parent-directory of directory S doesn’t exist, a run-time error is generated.

See also: Chdir (96), Rmdir (127)

For an example, see Rmdir (127).

Move

Declaration: Procedure Move (var Source,Dest;Count : Longint);

Description: Move moves Count bytes from Source to Dest.

Errors: If either Dest or Source is outside the accessible memory for the process, then a run-
time error will be generated. With older versions of the compiler, a segmentation-
fault will occur.

See also: Fillword (106), Fillchar (105)

Program Example42 ;

{ Program to demonstrate the Move f u n c t i o n . }

Var S1 , S2 : Str ing [30] ;

begin
S1:=’Hello World !’ ;
S2:=’Bye, bye !’ ;
Move (S1 , S2 , S i z e o f (S1)) ;
W r i t e l n (S2) ;

end .

New

Declaration: Procedure New (Var P : Pointer[, Constructor]);

Description: New allocates a new instance of the type pointed to by P, and puts the address in
P. If P is an object, then it is possible to specify the name of the constructor with
which the instance will be created.

Errors: If not enough memory is available, Nil will be returned.

See also: Dispose (100), Freemem (107), Getmem (108), Memavail (117), Maxavail (116)

For an example, see Dispose (100).

118

The system unit 12.2. FUNCTIONS AND PROCEDURES

Odd

Declaration: Function Odd (X : Longint) : Boolean;

Description: Odd returns True if X is odd, or False otherwise.

Errors: None.

See also: Abs (91), Ord (119)

Program Example43 ;

{ Program to demonstrate the Odd f u n c t i o n . }

begin
I f Odd(1) Then

W r i t e l n (’Everything OK with 1 !’) ;
I f Not Odd(2) Then

W r i t e l n (’Everything OK with 2 !’) ;
end .

Ofs

Declaration: Function Ofs Var X : Longint;

Description: Ofs returns the offset of the address of a variable. This function is only supported
for compatibility. In Free Pascal, it returns always the complete address of the
variable, since Free Pascal is a 32 bit compiler.

Errors: None.

See also: DSeg (101), CSeg (98), Seg (130), Ptr (123)

Program Example44 ;

{ Program to demonstrate the Ofs f u n c t i o n . }

Var W : P o i n t e r ;

begin
W:= P o i n t e r (Ofs (W)) ; { W c o n t a i n s i t s own o f f s e t . }

end .

Ord

Declaration: Function Ord (X : Any ordinal type) : Longint;

Description: Ord returns the Ordinal value of a ordinal-type variable X.

Errors: None.

See also: Chr (96), Ord (119), Pred (122), High (110), Low (115)

119

The system unit 12.2. FUNCTIONS AND PROCEDURES

Program Example45 ;

{ Program to demonstrate the Ord , Pred , Succ f u n c t i o n s . }

Type
TEnum = (Zero , One , Two , Three , Four) ;

Var
X : Long int ;
Y : TEnum;

begin
X:= 125 ;
W r i t e l n (Ord (X)) ; { P r i n t s 125 }
X:= Pred (X) ;
W r i t e l n (Ord (X)) ; { p r i n t s 124 }
Y:= One ;
W r i t e l n (Ord (y)) ; { P r i n t s 1 }
Y:= Succ (Y) ;
W r i t e l n (Ord (Y)) ; { P r i n t s 2}

end .

Paramcount

Declaration: Function Paramcount : Longint;

Description: Paramcount returns the number of command-line arguments. If no arguments were
given to the running program, 0 is returned.

Errors: None.

See also: Paramstr (120)

Program Example46 ;

{ Program to demonstrate the ParamCount and ParamStr f u n c t i o n s . }
Var

I : Long int ;

begin
W r i t e l n (paramstr (0) , ’ : Got ’ , ParamCount , ’ command−line parameters : ’) ;
For i :=1 to ParamCount do

W r i t e l n (ParamStr (i)) ;
end .

Paramstr

Declaration: Function Paramstr (L : Longint) : String;

Description: Paramstr returns the L-th command-line argument. L must be between 0 and
Paramcount, these values included. The zeroth argument is the name with which
the program was started.

120

The system unit 12.2. FUNCTIONS AND PROCEDURES

Errors: In all cases, the command-line will be truncated to a length of 255, even though
the operating system may support bigger command-lines. If you want to access the
complete command-line, you must use the argv pointer to access the Real values of
the command-line parameters.

See also: Paramcount (120)

For an example, see Paramcount (120).

Pi

Declaration: Function Pi : Real;

Description: Pi returns the value of Pi (3.1415926535897932385).

Errors: None.

See also: Cos (98), Sin (132)

Program Example47 ;

{ Program to demonstrate the Pi f u n c t i o n . }

begin
W r i t e l n (Pi) ; {3 . 1415926 }
W r i t e l n (Sin (Pi)) ;

end .

Pos

Declaration: Function Pos (Const Substr : String;Const S : String) : Byte;

Description: Pos returns the index of Substr in S, if S contains Substr. In case Substr isn’t
found, 0 is returned. The search is case-sensitive.

Errors: None

See also: Length (114), Copy (97), Delete (99), Insert (111)

Program Example48 ;

{ Program to demonstrate the Pos f u n c t i o n . }

Var
S : Str ing ;

begin
S:=’The first space in this sentence is at position : ’ ;
W r i t e l n (S , pos (’ ’ , S)) ;
S:=’The last letter of the alphabet doesn’’t appear in this sentence ’ ;
I f (Pos (’Z’ , S)=0) and (Pos (’z’ , S)=0) then

W r i t e l n (S) ;
end .

121

The system unit 12.2. FUNCTIONS AND PROCEDURES

Power

Declaration: Function Power (base,expon : Real) : Real;

Description: Power returns the value of base to the power expon. Base and expon can be of
type Longint, in which case the result will also be a Longint.

The function actually returns Exp(expon*Ln(base))

Errors: None.

See also: Exp (103), Ln (114)

Program Example78 ;

{ Program to demonstrate the Power f u n c t i o n . }

begin
W r i t e l n (Power (exp (1 . 0) , 1 . 0) : 8 : 2) ; { Should p r i n t 2 . 72 }

end .

Pred

Declaration: Function Pred (X : Any ordinal type) : Same type;

Description: Pred returns the element that precedes the element that was passed to it. If it is
applied to the first value of the ordinal type, and the program was compiled with
range checking on ({$R+}, then a run-time error will be generated.

Errors: Run-time error 201 is generated when the result is out of range.

See also: Ord (119), Pred (122), High (110), Low (115)

for an example, see Ord (119)
Program example80 ;

{ Example to demonstrate the High and Low f u n c t i o n s . }

Type TEnum = (North , East , South , West) ;
TRange = 14 . . 55 ;
TArray = Array [2 . . 10] of Long int ;

Function Average (Row : Array of Long int) : Real ;

Var I : l o n g i n t ;
Temp : Real ;

begin
Temp := Row[0] ;
For I := 1 to High (Row) do

Temp := Temp + Row[i] ;
Average := Temp / (High (Row)+1) ;

end ;

Var A : TEnum;

122

The system unit 12.2. FUNCTIONS AND PROCEDURES

B : TRange ;
C : TArray ;
I : l o n g i n t ;

begin
W r i t e l n (’TEnum goes from : ’ , Ord (Low(TEnum)) , ’ to ’ , Ord (high (TEnum)) , ’.’) ;
W r i t e l n (’A goes from : ’ , Ord (Low(A)) , ’ to ’ , Ord (high (A)) , ’.’) ;
W r i t e l n (’TRange goes from : ’ , Ord (Low(TRange)) , ’ to ’ , Ord (high (TRange)) , ’.’) ;
W r i t e l n (’B goes from : ’ , Ord (Low(B)) , ’ to ’ , Ord (high (B)) , ’.’) ;
W r i t e l n (’TArray index goes from : ’ , Ord (Low(TArray)) , ’ to ’ , Ord (high (TArray)) , ’.’) ;
W r i t e l n (’C index goes from : ’ , Low(C) , ’ to ’ , h igh (C) , ’.’) ;
For I :=Low(C) to High (C) do

C[i] := I ;
W r i t e l n (’Average :’ , Average (c)) ;

end .

Ptr

Declaration: Function Ptr (Sel,Off : Longint) : Pointer;

Description: Ptr returns a pointer, pointing to the address specified by segment Sel and offset
Off. Remark 1: In the 32-bit flat-memory model supported by Free Pascal, this
function is obsolete. Remark 2: The returned address is simply the offset. If
you recompile the RTL with -dDoMapping defined, then the compiler returns the
following : ptr := pointer($e0000000+sel shl 4+off) under dos, or ptr :=
pointer(sel shl 4+off) on other OSes.

Errors: None.

See also: Addr (92)

Program Example59 ;

{ Program to demonstrate the Ptr f u n c t i o n . }

Var P : ˆ Str ing ;
S : Str ing ;

begin
S:=’Hello, World !’ ;
P:= Ptr (Seg (S) , Long int (Ofs (S))) ;
{P now p o i n t s to S !}
W r i t e l n (Pˆ) ;

end .

Random

Declaration: Function Random [(L : Longint)] : Longint or Real;

Description: Random returns a random number larger or equal to 0 and strictly less than L. If
the argument L is omitted, a Real number between 0 and 1 is returned. (0 included,
1 excluded)

123

The system unit 12.2. FUNCTIONS AND PROCEDURES

Errors: None.

See also: Randomize (124)

Program Example49 ;

{ Program to demonstrate the Random and Randomize f u n c t i o n s . }

Var I , Count , guess : Long int ;
R : Real ;

begin
Randomize ; { This way we g e n e r a t e a new sequence e v e r y time

the program i s run }
Count :=0 ;
For i :=1 to 1000 do

I f Random>0 . 5 then i n c (Count) ;
W r i t e l n (’Generated ’ , Count , ’ numbers > 0.5’) ;
W r i t e l n (’out of 1000 generated numbers.’) ;
count :=0 ;
For i :=1 to 5 do

begin
w r i t e (’Guess a number between 1 and 5 : ’) ;
r e a d l n (Guess) ;
I f Guess=Random(5)+1 then i n c (count) ;
end ;

W r i t e l n (’You guessed ’ , Count , ’ out of 5 correct.’) ;
end .

Randomize

Declaration: Procedure Randomize ;

Description: Randomize initializes the random number generator of Free Pascal, by giving a
value to Randseed, calculated with the system clock.

Errors: None.

See also: Random (123)

For an example, see Random (123).

Read

Declaration: Procedure Read ([Var F : Any file type], V1 [, V2, ... , Vn]);

Description: Read reads one or more values from a file F, and stores the result in V1, V2, etc.;
If no file F is specified, then standard input is read. If F is of type Text, then the
variables V1, V2 etc. must be of type Char, Integer, Real or String. If F is a
typed file, then each of the variables must be of the type specified in the declaration
of F. Untyped files are not allowed as an argument.

Errors: If no data is available, a run-time error is generated. This behavior can be controlled
with the {$i} compiler switch.

124

The system unit 12.2. FUNCTIONS AND PROCEDURES

See also: Readln (125), Blockread (95), Write (138), Blockwrite (95)

Program Example50 ;

{ Program to demonstrate the Read (Ln) f u n c t i o n . }

Var S : Str ing ;
C : Char ;
F : Fi le of char ;

begin
Ass ign (F , ’ex50.pp’) ;
Reset (F) ;
C:=’A’ ;
W r i t e l n (’The characters before the first space in ex50.pp are : ’) ;
While not Eof (f) and (C<>’ ’) do

Begin
Read (F , C) ;
Write (C) ;
end ;

W r i t e l n ;
C lose (F) ;
W r i t e l n (’Type some words. An empty line ends the program.’) ;
repeat

Readln (S) ;
u n t i l S=’’ ;

end .

Readln

Declaration: Procedure Readln [Var F : Text], V1 [, V2, ... , Vn]);

Description: Read reads one or more values from a file F, and stores the result in V1, V2,
etc. After that it goes to the next line in the file (defined by the LineFeed (#10)
character). If no file F is specified, then standard input is read. The variables V1,
V2 etc. must be of type Char, Integer, Real, String or PChar.

Errors: If no data is available, a run-time error is generated. This behavior can be controlled
with the {$i} compiler switch.

See also: Read (124), Blockread (95), Write (138), Blockwrite (95)

For an example, see Read (124).

Release

Declaration: Procedure Release (Var P : pointer);

Description: Release sets the top of the Heap to the location pointed to by P. All memory at a
location higher than P is marked empty.

Errors: A run-time error will be generated if P points to memory outside the heap.

See also: Mark (116), Memavail (117), Maxavail (116), Getmem (108), Freemem (107) New
(118), Dispose (100)

125

The system unit 12.2. FUNCTIONS AND PROCEDURES

For an example, see Mark (116).

Rename

Declaration: Procedure Rename (Var F : Any Filetype; Const S : String);

Description: Rename changes the name of the assigned file F to S. F must be assigned, but not
opened.

Errors: A run-time error will be generated if F isn’t assigned, or doesn’t exist.

See also: Erase (102)

Program Example77 ;

{ Program to demonstrate the Rename f u n c t i o n . }
Var F : Text ;

begin
Ass ign (F , paramstr (1)) ;
Rename (F , paramstr (2)) ;

end .

Reset

Declaration: Procedure Reset (Var F : Any File Type[; L : Longint]);

Description: Reset opens a file F for reading. F can be any file type. If F is an untyped or typed
file, then it is opened for reading and writing. If F is an untyped file, the record size
can be specified in the optional parameter L. Default a value of 128 is used.

Errors: If the file cannot be opened for reading, then a run-time error is generated. This
behavior can be changed by the {$i} compiler switch.

See also: Rewrite (127), Assign (93), Close (96)

Program Example51 ;

{ Program to demonstrate the Reset f u n c t i o n . }

Function F i l e E x i s t s (Name : Str ing) : boo lean ;

Var F : Fi le ;

begin
{ $ i−}
Ass ign (F , Name) ;
Reset (F) ;
{ $I +}
F i l e E x i s t s :=(I o R e s u l t =0) and (Name<>’’) ;
C lose (f) ;

end ;

begin
I f F i l e E x i s t s (Paramstr (1)) then

126

The system unit 12.2. FUNCTIONS AND PROCEDURES

W r i t e l n (’File found’)
e lse

W r i t e l n (’File NOT found’) ;
end .

Rewrite

Declaration: Procedure Rewrite (Var F : Any File Type[; L : Longint]);

Description: Rewrite opens a file F for writing. F can be any file type. If F is an untyped or
typed file, then it is opened for reading and writing. If F is an untyped file, the
record size can be specified in the optional parameter L. Default a value of 128 is
used. if Rewrite finds a file with the same name as F, this file is truncated to length
0. If it doesn’t find such a file, a new file is created.

Errors: If the file cannot be opened for writing, then a run-time error is generated. This
behavior can be changed by the {$i} compiler switch.

See also: Reset (126), Assign (93), Close (96)

Program Example52 ;

{ Program to demonstrate the Rewr i te f u n c t i o n . }

Var F : Fi le ;
I : l o n g i n t ;

begin
Ass ign (F , ’Test.dat’) ;
{ Create the f i l e . R e c o r d s i z e i s 4 }
Rewr i te (F , S i z e o f (I)) ;
For I :=1 to 10 do

BlockWrite (F , I , 1) ;
c l o s e (f) ;
{ F c o n t a i n s now a b i n a r y r e p r e s e n t a t i o n of

10 l o n g i n t s going from 1 to 10 }
end .

Rmdir

Declaration: Procedure Rmdir (const S : string);

Description: Rmdir removes the directory S.

Errors: If S doesn’t exist, or isn’t empty, a run-time error is generated.

See also: Chdir (96), Rmdir (127)

Program Example53 ;

{ Program to demonstrate the MkDir and RmDir f u n c t i o n s . }

Const D : Str ing [8] = ’TEST.DIR’ ;

127

The system unit 12.2. FUNCTIONS AND PROCEDURES

Var S : Str ing ;

begin
W r i t e l n (’Making directory ’ , D) ;
Mkdir (D) ;
W r i t e l n (’Changing directory to ’ , D) ;
ChDir (D) ;
GetDir (0 , S) ;
W r i t e l n (’Current Directory is : ’ , S) ;
WRiteln (’Going back’) ;
ChDir (’..’) ;
W r i t e l n (’Removing directory ’ , D) ;
RmDir (D) ;

end .

Round

Declaration: Function Round (X : Real) : Longint;

Description: Round rounds X to the closest integer, which may be bigger or smaller than X.

Errors: None.

See also: Frac (107), Int (112), Trunc (136)

Program Example54 ;

{ Program to demonstrate the Round f u n c t i o n . }

begin
W r i t e l n (Round (123 . 456)) ; { P r i n t s 124 }
W r i t e l n (Round(−123 . 456)) ; { P r i n t s −124 }
W r i t e l n (Round (12 . 3456)) ; { P r i n t s 12 }
W r i t e l n (Round(−12 . 3456)) ; { P r i n t s −12 }

end .

Runerror

Declaration: Procedure Runerror (ErrorCode : Word);

Description: Runerror stops the execution of the program, and generates a run-time error
ErrorCode.

Errors: None.

See also: Exit (102), Halt (108)

Program Example55 ;

{ Program to demonstrate the RunError f u n c t i o n . }

begin
{ The program w i l l s top end emit a run−e r r o r 106 }
RunError (106) ;

end .

128

The system unit 12.2. FUNCTIONS AND PROCEDURES

Seek

Declaration: Procedure Seek (Var F; Count : Longint);

Description: Seek sets the file-pointer for file F to record Nr. Count. The first record in a file
has Count=0. F can be any file type, except Text. If F is an untyped file, with no
specified record size, 128 is assumed.

Errors: A run-time error is generated if Count points to a position outside the file, or the
file isn’t opened.

See also: Eof (101), SeekEof (129), SeekEoln (130)

Program Example56 ;

{ Program to demonstrate the Seek f u n c t i o n . }

Var
F : Fi le ;
I , j : l o n g i n t ;

begin
{ Create a f i l e and f i l l i t with data }
Ass ign (F , ’test.dat’) ;
Rewr i te (F) ; { Create f i l e }
Close (f) ;
Fi leMode :=2 ;
ReSet (F , S i z e o f (i)) ; { Opened read / w r i t e }
For I :=0 to 10 do

BlockWrite (F , I , 1) ;
{ Go Back to the b e g i n i n g of the f i l e }
Seek (F , 0) ;
For I :=0 to 10 do

begin
BlockRead (F , J , 1) ;
I f J<>I then

W r i t e l n (’Error: expected ’ , i , ’, got ’ , j) ;
end ;

C lose (f) ;
end .

SeekEof

Declaration: Function SeekEof [(Var F : text)] : Boolean;

Description: SeekEof returns True is the file-pointer is at the end of the file. It ignores all
whitespace. Calling this function has the effect that the file-position is advanced
until the first non-whitespace character or the end-of-file marker is reached. If the
end-of-file marker is reached, True is returned. Otherwise, False is returned. If the
parameter F is omitted, standard Input is assumed.

Errors: A run-time error is generated if the file F isn’t opened.

See also: Eof (101), SeekEoln (130), Seek (129)

129

The system unit 12.2. FUNCTIONS AND PROCEDURES

Program Example57 ;

{ Program to demonstrate the SeekEof f u n c t i o n . }
Var C : Char ;

begin
{ t h i s w i l l p r i n t a l l c h a r a c t e r s from s t a n d a r d i n p u t except

Whitespace c h a r a c t e r s . }
While Not SeekEof do

begin
Read (C) ;
Write (C) ;
end ;

end .

SeekEoln

Declaration: Function SeekEoln [(Var F : text)] : Boolean;

Description: SeekEoln returns True is the file-pointer is at the end of the current line. It ignores
all whitespace. Calling this function has the effect that the file-position is advanced
until the first non-whitespace character or the end-of-line marker is reached. If the
end-of-line marker is reached, True is returned. Otherwise, False is returned. The
end-of-line marker is defined as #10, the LineFeed character. If the parameter F is
omitted, standard Input is assumed.

Errors: A run-time error is generated if the file F isn’t opened.

See also: Eof (101), SeekEof (129), Seek (129)

Program Example58 ;

{ Program to demonstrate the SeekEoln f u n c t i o n . }
Var

C : Char ;

begin
{ This w i l l read the f i r s t l i n e of s t a n d a r d output and p r i n t

a l l c h a r a c t e r s except w h i t e s p a c e . }
While not SeekEoln do

Begin
Read (c) ;
Write (c) ;
end ;

end .

Seg

Declaration: Function Seg Var X : Longint;

Description: Seg returns the segment of the address of a variable. This function is only supported
for compatibility. In Free Pascal, it returns always 0, since Free Pascal is a 32 bit
compiler, segments have no meaning.

130

The system unit 12.2. FUNCTIONS AND PROCEDURES

Errors: None.

See also: DSeg (101), CSeg (98), Ofs (119), Ptr (123)

Program Example60 ;

{ Program to demonstrate the Seg f u n c t i o n . }
Var

W : Word ;

begin
W:= Seg (W) ; { W c o n t a i n s i t s own Segment }

end .

SetJmp

Declaration: Function SetJmp (Var Env : Jmp Buf) : Longint;

Description: SetJmp fills env with the necessary data for a jump back to the point where it was
called. It returns zero if called in this way. If the function returns nonzero, then it
means that a call to LongJmp (115) with env as an argument was made somewhere
in the program.

Errors: None.

See also: LongJmp (115)

program example79 ;

{ Program to demonstrate the set jmp , longjmp f u n c t i o n s }

procedure dojmp (var env : jmp buf ; v a l u e : l o n g i n t) ;

begin
v a l u e :=2 ;
W r i t e l n (’Going to jump !’) ;
{ This w i l l r e t u r n to the set jmp c a l l ,

and r e t u r n v a l u e i n s t e a d of 0 }
longjmp (env , v a l u e) ;

end ;

var env : jmp buf ;

begin
i f set jmp (env)=0 then

begin
w r i t e l n (’Passed first time.’) ;
dojmp (env , 2) ;
end

else
w r i t e l n (’Passed second time.’) ;

end .

131

The system unit 12.2. FUNCTIONS AND PROCEDURES

SetTextBuf

Declaration: Procedure SetTextBuf (Var f : Text; Var Buf[; Size : Word]);

Description: SetTextBuf assigns an I/O buffer to a text file. The new buffer is located at Buf
and is Size bytes long. If Size is omitted, then SizeOf(Buf) is assumed. The
standard buffer of any text file is 128 bytes long. For heavy I/0 operations this may
prove too slow. The SetTextBuf procedure allows you to set a bigger buffer for your
application, thus reducing the number of system calls, and thus reducing the load
on the system resources. The maximum size of the newly assigned buffer is 65355
bytes. Remark 1: Never assign a new buffer to an opened file. You can assign a new
buffer immediately after a call to Rewrite (127), Reset (126) or Append, but not
after you read from/wrote to the file. This may cause loss of data. If you still want
to assign a new buffer after read/write operations have been performed, flush the
file first. This will ensure that the current buffer is emptied. Remark 2: Take care
that the buffer you assign is always valid. If you assign a local variable as a buffer,
then after your program exits the local program block, the buffer will no longer be
valid, and stack problems may occur.

Errors: No checking on Size is done.

See also: Assign (93), Reset (126), Rewrite (127), Append (92)

Program Example61 ;

{ Program to demonstrate the SetTextBuf f u n c t i o n . }

Var
Fin , Fout : Text ;
Ch : Char ;
Buf in , Bufout : Array [1 . . 10000] of byte ;

begin
Ass ign (Fin , paramstr (1)) ;
Reset (Fin) ;
Ass ign (Fout , paramstr (2)) ;
Rewr i te (Fout) ;
{ This i s h a r m l e s s b e f o r e IO has begun }
{ Try t h i s program aga in on a big f i l e ,

a f t e r commenting out the f o l l o w i n g 2
l i n e s and r e c o m p i l i n g i t . }

SetTextBuf (Fin , Buf in) ;
SetTextBuf (Fout , Bufout) ;
While not eof (Fin) do

begin
Read (Fin , ch) ;
w r i t e (Fout , ch) ;
end ;

C lose (Fin) ;
C lose (Fout) ;

end .

Sin

Declaration: Function Sin (X : Real) : Real;

132

The system unit 12.2. FUNCTIONS AND PROCEDURES

Description: Sin returns the sine of its argument X, where X is an angle in radians.

Errors: None.

See also: Cos (98), Pi (121), Exp (103)

Program Example62 ;

{ Program to demonstrate the Sin f u n c t i o n . }

begin
W r i t e l n (Sin (Pi) : 0 : 1) ; { P r i n t s 0 . 0 }
W r i t e l n (Sin (Pi /2) : 0 : 1) ; { P r i n t s 1 . 0 }

end .

SizeOf

Declaration: Function SizeOf (X : Any Type) : Longint;

Description: SizeOf Returns the size, in bytes, of any variable or type-identifier. Remark: this
isn’t Really a RTL function. Its result is calculated at compile-time, and hard-coded
in your executable.

Errors: None.

See also: Addr (92)

Program Example63 ;

{ Program to demonstrate the SizeOf f u n c t i o n . }
Var

I : Long int ;
S : Str ing [10] ;

begin
W r i t e l n (S izeOf (I)) ; { P r i n t s 4 }
W r i t e l n (S izeOf (S)) ; { P r i n t s 11 }

end .

Sptr

Declaration: Function Sptr : Pointer;

Description: Sptr returns the current stack pointer.

Errors: None.

See also:

Program Example64 ;

{ Program to demonstrate the SPtr f u n c t i o n . }
Var

P : Long int ;

133

The system unit 12.2. FUNCTIONS AND PROCEDURES

begin
P:= Sptr ; { P Conta ins now the c u r r e n t s t a c k p o s i t i o n . }

end .

Sqr

Declaration: Function Sqr (X : Real) : Real;

Description: Sqr returns the square of its argument X.

Errors: None.

See also: Sqrt (134), Ln (114), Exp (103)

Program Example65 ;

{ Program to demonstrate the Sqr f u n c t i o n . }
Var i : I n t e g e r ;

begin
For i :=1 to 10 do

w r i t e l n (Sqr (i) : 3) ;
end .

Sqrt

Declaration: Function Sqrt (X : Real) : Real;

Description: Sqrt returns the square root of its argument X, which must be positive.

Errors: If X is negative, then a run-time error is generated.

See also: Sqr (134), Ln (114), Exp (103)

Program Example66 ;

{ Program to demonstrate the Sqrt f u n c t i o n . }

begin
W r i t e l n (Sqrt (4) : 0 : 3) ; { P r i n t s 2 . 000 }
W r i t e l n (Sqrt (2) : 0 : 3) ; { P r i n t s 1 . 414 }

end .

SSeg

Declaration: Function SSeg : Longint;

Description: SSeg returns the Stack Segment. This function is only supported for compatibolity
reasons, as Sptr returns the correct contents of the stackpointer.

Errors: None.

See also: Sptr (133)

134

The system unit 12.2. FUNCTIONS AND PROCEDURES

Program Example67 ;

{ Program to demonstrate the SSeg f u n c t i o n . }
Var W : Long int ;

begin
W:= SSeg ;

end .

Str

Declaration: Procedure Str (Var X[:NumPlaces[:Decimals]]; Var S : String);

Description: Str returns a string which represents the value of X. X can be any numerical type.
The optional NumPLaces and Decimals specifiers control the formatting of the string.

Errors: None.

See also: Val (138)

Program Example68 ;

{ Program to demonstrate the Str f u n c t i o n . }
Var S : Str ing ;

Function I n t T o S t r (I : Long int) : Str ing ;

Var S : Str ing ;

begin
Str (I , S) ;
I n t T o S t r :=S ;

end ;

begin
S:=’∗’+I n t T o S t r (−233)+’∗’ ;
W r i t e l n (S) ;

end .

Succ

Declaration: Function Succ (X : Any ordinal type) : Same type;

Description: Succ returns the element that succeeds the element that was passed to it. If it is
applied to the last value of the ordinal type, and the program was compiled with
range checking on ({$R+}, then a run-time error will be generated.

Errors: Run-time error 201 is generated when the result is out of range.

See also: Ord (119), Pred (122), High (110), Low (115)

for an example, see Ord (119).

135

The system unit 12.2. FUNCTIONS AND PROCEDURES

Swap

Declaration: Function Swap (X) : Type of X;

Description: Swap swaps the high and low order bytes of X if X is of type Word or Integer, or
swaps the high and low order words of X if X is of type Longint or Cardinal. The
return type is the type of X

Errors: None.

See also: Lo (114), Hi (109)

Program Example69 ;

{ Program to demonstrate the Swap f u n c t i o n . }
Var W : Word ;

L : Long int ;

begin
W:= $1234 ;
W:=Swap (W) ;
i f W<>$3412 then

w r i t e l n (’Error when swapping word !’) ;
L:= $12345678 ;
L:=Swap (L) ;
i f L<>$56781234 then

w r i t e l n (’Error when swapping Longint !’) ;
end .

Trunc

Declaration: Function Trunc (X : Real) : Longint;

Description: Trunc returns the integer part of X, which is always smaller than (or equal to) X.

Errors: None.

See also: Frac (107), Int (112), Trunc (136)

Program Example54 ;

{ Program to demonstrate the Trunc f u n c t i o n . }

begin
W r i t e l n (Trunc (123 . 456)) ; { P r i n t s 123 }
W r i t e l n (Trunc (−123 . 456)) ; { P r i n t s −123 }
W r i t e l n (Trunc (12 . 3456)) ; { P r i n t s 12 }
W r i t e l n (Trunc (−12 . 3456)) ; { P r i n t s −12 }

end .

Truncate

Declaration: Procedure Truncate (Var F : file);

Description: Truncate truncates the (opened) file F at the current file position.

136

The system unit 12.2. FUNCTIONS AND PROCEDURES

Errors: Errors are reported by IOresult.

See also: Append (92), Filepos (104), Seek (129)

Program Example71 ;

{ Program to demonstrate the Truncate f u n c t i o n . }

Var F : Fi le of l o n g i n t ;
I , L : Long int ;

begin
Ass ign (F , ’test.dat’) ;
Rewr i te (F) ;
For I :=1 to 10 Do

Write (F , I) ;
W r i t e l n (’Filesize before Truncate : ’ , F i l e S i z e (F)) ;
C lose (f) ;
Reset (F) ;
Repeat

Read (F , I) ;
Unti l i =5 ;
Truncate (F) ;
W r i t e l n (’Filesize after Truncate : ’ , F i l e s i z e (F)) ;
C lose (f) ;

end .

Upcase

Declaration: Function Upcase (C : Char or string) : Char or String;

Description: Upcase returns the uppercase version of its argument C. If its argument is a string,
then the complete string is converted to uppercase. The type of the returned value
is the same as the type of the argument.

Errors: None.

See also: Lowercase (115)

Program Example72 ;

{ Program to demonstrate the Upcase f u n c t i o n . }

Var I : Long int ;

begin
For i := ord (’a’) to ord (’z’) do

w r i t e (upcase (chr (i))) ;
W r i t e l n ;
{ This doesn ’ t work in TP, but i t does in Free Pasca l }
W r i t e l n (Upcase (’abcdefghijklmnopqrstuvwxyz ’)) ;

end .

137

The system unit 12.2. FUNCTIONS AND PROCEDURES

Val

Declaration: Procedure Val (const S : string;var V;var Code : word);

Description: Val converts the value represented in the string S to a numerical value, and stores
this value in the variable V, which can be of type Longint, Real and Byte. If
the conversion isn’t succesfull, then the parameter Code contains the index of the
character in S which prevented the conversion. The string S isn’t allow to contain
spaces.

Errors: If the conversion doesn’t succeed, the value of Code indicates the position where
the conversion went wrong.

See also: Str (135)

Program Example74 ;

{ Program to demonstrate the Val f u n c t i o n . }
Var I , Code : I n t e g e r ;

begin
Val (ParamStr (1) , I , Code) ;
I f Code<>0 then

W r i t e l n (’Error at position ’ , code , ’ : ’ , Paramstr (1) [Code])
e lse

W r i t e l n (’Value : ’ , I) ;
end .

Write

Declaration: Procedure Write ([Var F : Any filetype;] V1 [; V2; ... , Vn)];

Description: Write writes the contents of the variables V1, V2 etc. to the file F. F can be a typed
file, or a Text file. If F is a typed file, then the variables V1, V2 etc. must be of the
same type as the type in the declaration of F. Untyped files are not allowed. If the
parameter F is omitted, standard output is assumed. If F is of type Text, then the
necessary conversions are done such that the output of the variables is in human-
readable format. This conversion is done for all numerical types. Strings are printed
exactly as they are in memory, as well as PChar types. The format of the numerical
conversions can be influenced through the following modifiers: OutputVariable
: NumChars [: Decimals] This will print the value of OutputVariable with
a minimum of NumChars characters, from which Decimals are reserved for the
decimals. If the number cannot be represented with NumChars characters, NumChars
will be increased, until the representation fits. If the representation requires less
than NumChars characters then the output is filled up with spaces, to the left of the
generated string, thus resulting in a right-aligned representation. If no formatting is
specified, then the number is written using its natural length, with a space in front
of it if it’s positive, and a minus sign if it’s negative. Real numbers are, by default,
written in scientific notation.

Errors: If an error occurs, a run-time error is generated. This behavior can be controlled
with the {$i} switch.

See also: WriteLn (139), Read (124), Readln (125), Blockwrite (95)

138

The system unit 12.2. FUNCTIONS AND PROCEDURES

WriteLn

Declaration: Procedure WriteLn [([Var F : Text;] [V1 [; V2; ... , Vn)]];

Description: WriteLn does the same as Write (138) for text files, and emits a Carriage Return -
LineFeed character pair after that. If the parameter F is omitted, standard output is
assumed. If no variables are specified, a Carriage Return - LineFeed character pair
is emitted, resulting in a new line in the file F. Remark: Under linux, the Carriage
Return character is omitted, as customary in Unix environments.

Errors: If an error occurs, a run-time error is generated. This behavior can be controlled
with the {$i} switch.

See also: Write (138), Read (124), Readln (125), Blockwrite (95)

Program Example75 ;

{ Program to demonstrate the Write (ln) f u n c t i o n . }

Var
F : Fi le of Long int ;
L : Long int ;

begin
Write (’This is on the first line ! ’) ; { No CR/LF p a i r ! }
W r i t e l n (’And this too...’) ;
W r i t e l n (’But this is already on the second line...’) ;
Ass ign (f , ’test.dat’) ;
Rewr i te (f) ;
For L:=1 to 10 do

w r i t e (F , L) ; { No w r i t e l n a l l o w e d here ! }
Close (f) ;

end .

139

Index

Abs, 91
Addr, 92
Append, 92
Arctan, 93
Assign, 93
Assigned, 94

BinStr, 94
Blockread, 95
Blockwrite, 95

Chdir, 96
Chr, 96
Close, 96
Concat, 97
Copy, 97
Cos, 98
CSeg, 98

Dec, 99
Delete, 99
Dispose, 100
DSeg, 101

Eof, 101
Eoln, 102
Erase, 102
Exit, 102
Exp, 103

Filepos, 104
Filesize, 105
Fillchar, 105
Fillword, 106
Flush, 106
Frac, 107
Freemem, 107

Getdir, 108
Getmem, 108

Halt, 108
HexStr, 109
Hi, 109
High, 110

Inc, 111

Insert, 111
Int, 112
IOresult, 112

Length, 114
Ln, 114
Lo, 114
LongJmp, 115
Low, 115
Lowercase, 115

Mark, 116
Maxavail, 116
Memavail, 117
Mkdir, 118
Move, 118

New, 118

Odd, 119
Ofs, 119
Ord, 119

Paramcount, 120
Paramstr, 120
Pi, 121
Pos, 121
Power, 122
Pred, 122
Ptr, 123

Random, 123
Randomize, 124
Read, 124
Readln, 125
Release, 125
Rename, 126
Reset, 126
Rewrite, 127
Rmdir, 127
Round, 128
Runerror, 128

Seek, 129
SeekEof, 129
SeekEoln, 130

140

INDEX INDEX

Seg, 130
SetJmp, 131
SetTextBuf, 132
Sin, 132
SizeOf, 133
Sptr, 133
Sqr, 134
Sqrt, 134
SSeg, 134
Str, 135
Succ, 135
Swap, 136

Trunc, 136
Truncate, 136

Upcase, 137

Val, 138

Write, 138
WriteLn, 139

141

	List of Manuals
	Contents
	About this guide
	Notations
	Syntax diagrams

	List of Tables

	Pascal Tokens
	Symbols
	Comments
	Reserved words
	Turbo Pascal reserved words
	Delphi reserved words
	Free Pascal reserved words
	Modifiers

	Identifiers
	Numbers
	Labels
	Character strings

	Constants
	Ordinary constants
	Typed constants

	Types
	Base types
	Ordinal types
	Real types

	Character types
	Char
	Strings
	Short strings
	Ansistrings
	Constant strings
	PChar

	Structured Types
	Arrays
	Record types
	Set types
	File types

	Pointers
	Procedural types

	Objects
	Declaration
	Fields
	Constructors and destructors
	Methods
	Method invocation
	Visibility

	Classes
	Class definitions
	Class instantiation
	Methods
	Properties

	Expressions
	Expression syntax
	Function calls
	Set constructors
	Value typecasts
	The @ operator
	Operators
	Arithmetic operators
	Logical operators
	Boolean operators
	String operators
	Set operators
	Relational operators

	Statements
	Simple statements
	Assignments
	Procedure statements
	Goto statements

	Structured statements
	Compound statements
	The Case statement
	The If..then..else statement
	The For..to/downto..do statement
	The Repeat..until statement
	The While..do statement
	The With statement
	Exception Statements

	Assembler statements

	Using functions and procedures
	Procedure declaration
	Function declaration
	Parameter lists
	Value parameters
	var parameters
	Const parameters
	Open array parameters

	Function overloading
	forward defined functions
	External functions
	Assembler functions
	Modifiers
	Public
	cdecl
	popstack
	Export
	StdCall
	Alias

	Unsupported Turbo Pascal modifiers

	Programs, units, blocks
	Programs
	Units
	Blocks
	Scope
	Block scope
	Record scope
	Class scope
	Unit scope

	Libraries

	Exceptions
	The raise statement
	The try...except statement
	The try...finally statement
	Exception handling nesting
	Exception classes

	Using assembler
	Assembler statements
	Assembler procedures and functions

	The system unit
	Types, Constants and Variables
	Types
	Constants
	Variables

	Functions and Procedures
	Abs
	Addr
	Append
	Arctan
	Assign
	Assigned
	BinStr
	Blockread
	Blockwrite
	Chdir
	Chr
	Close
	Concat
	Copy
	Cos
	CSeg
	Dec
	Delete
	Dispose
	DSeg
	Eof
	Eoln
	Erase
	Exit
	Exp
	Filepos
	Filesize
	Fillchar
	Fillword
	Flush
	Frac
	Freemem
	Getdir
	Getmem
	Halt
	HexStr
	Hi
	High
	Inc
	Insert
	Int
	IOresult
	Length
	Ln
	Lo
	LongJmp
	Low
	Lowercase
	Mark
	Maxavail
	Memavail
	Mkdir
	Move
	New
	Odd
	Ofs
	Ord
	Paramcount
	Paramstr
	Pi
	Pos
	Power
	Pred
	Ptr
	Random
	Randomize
	Read
	Readln
	Release
	Rename
	Reset
	Rewrite
	Rmdir
	Round
	Runerror
	Seek
	SeekEof
	SeekEoln
	Seg
	SetJmp
	SetTextBuf
	Sin
	SizeOf
	Sptr
	Sqr
	Sqrt
	SSeg
	Str
	Succ
	Swap
	Trunc
	Truncate
	Upcase
	Val
	Write
	WriteLn

	Index

